We give an example of a finite dimensional algebra with infinite delooping level, based on an example of a semi-Gorenstein-projective module due to Ringel and Zhang.
Revised:
Accepted:
Published online:
Keywords: delooping level, semi-Gorenstein-projective modules, finitistic dimension conjecture
Kershaw, Luke 1; Rickard, Jeremy 1

@article{ART_2024__1_1_61_0, author = {Kershaw, Luke and Rickard, Jeremy}, title = {A finite dimensional algebra with infinite delooping level}, journal = {Annals of Representation Theory}, pages = {61--65}, publisher = {The Publishers of ART}, volume = {1}, number = {1}, year = {2024}, doi = {10.5802/art.3}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.3/} }
TY - JOUR AU - Kershaw, Luke AU - Rickard, Jeremy TI - A finite dimensional algebra with infinite delooping level JO - Annals of Representation Theory PY - 2024 SP - 61 EP - 65 VL - 1 IS - 1 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.3/ DO - 10.5802/art.3 LA - en ID - ART_2024__1_1_61_0 ER -
%0 Journal Article %A Kershaw, Luke %A Rickard, Jeremy %T A finite dimensional algebra with infinite delooping level %J Annals of Representation Theory %D 2024 %P 61-65 %V 1 %N 1 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.3/ %R 10.5802/art.3 %G en %F ART_2024__1_1_61_0
Kershaw, Luke; Rickard, Jeremy. A finite dimensional algebra with infinite delooping level. Annals of Representation Theory, Volume 1 (2024) no. 1, pp. 61-65. doi : 10.5802/art.3. https://art.centre-mersenne.org/articles/10.5802/art.3/
[1] Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1995 | Zbl
[2] Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc., Volume 95 (1960), pp. 466-488 | Zbl
[3] Ring constructions and generation of the unbounded derived module category, Algebr. Represent. Theory, Volume 26 (2023) no. 1, pp. 281-315 | Zbl
[4] Trivial extensions of abelian categories. Homological algebra of trivial extensions of abelian categories with applications to ring theory, Lecture Notes in Mathematics, 456, Springer, 1975 | Zbl
[5] The depth, the delooping level and the finitistic dimension, Adv. Math., Volume 394 (2022), Paper no. 108052 | Zbl
[6] Independence of the total reflexivity conditions for modules, Algebr. Represent. Theory, Volume 9 (2006) no. 2, pp. 217-226 | Zbl
[7] Gendo-symmetric algebras, dominant dimensions and Gorenstein homological algebra (2021) | arXiv
[8] Unbounded derived categories and the finitistic dimension conjecture, Adv. Math., Volume 354 (2019), Paper no. 106735, 21 pages | Zbl
[9] Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory, Volume 14 (2020) no. 1, pp. 1-36 | Zbl
Cited by Sources: