The nil-Brauer category
Annals of Representation Theory, Volume 1 (2024) no. 1, pp. 21-58.

We introduce the nil-Brauer category and prove a basis theorem for its morphism spaces. This basis theorem is an essential ingredient required to prove that nil-Brauer categorifies the split ı-quantum group of rank one. As this ı-quantum group is a basic building block for ı-quantum groups of higher rank, we expect that the nil-Brauer category will play a central role in future developments related to the categorification of quantum symmetric pairs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.2
Classification: 17B10, 17B37
Keywords: Brauer category, string calculus, categorification
Brundan, Jonathan 1; Wang, Weiqiang 2; Webster, Benjamin 3

1 Department of Mathematics, University of Oregon, 1222 University of Oregon, Eugene, OR 97403-1222, United States
2 Department of Mathematics, University of Virginia, P. O. Box 400137, Charlottesville, VA 22904-4137, United States
3 Department of Pure Mathematics, University of Waterloo & Perimeter Institute for Theoretical Physics, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_1_21_0,
     author = {Brundan, Jonathan and Wang, Weiqiang and Webster, Benjamin},
     title = {The {nil-Brauer} category},
     journal = {Annals of Representation Theory},
     pages = {21--58},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {1},
     year = {2024},
     doi = {10.5802/art.2},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.2/}
}
TY  - JOUR
AU  - Brundan, Jonathan
AU  - Wang, Weiqiang
AU  - Webster, Benjamin
TI  - The nil-Brauer category
JO  - Annals of Representation Theory
PY  - 2024
SP  - 21
EP  - 58
VL  - 1
IS  - 1
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.2/
DO  - 10.5802/art.2
LA  - en
ID  - ART_2024__1_1_21_0
ER  - 
%0 Journal Article
%A Brundan, Jonathan
%A Wang, Weiqiang
%A Webster, Benjamin
%T The nil-Brauer category
%J Annals of Representation Theory
%D 2024
%P 21-58
%V 1
%N 1
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.2/
%R 10.5802/art.2
%G en
%F ART_2024__1_1_21_0
Brundan, Jonathan; Wang, Weiqiang; Webster, Benjamin. The nil-Brauer category. Annals of Representation Theory, Volume 1 (2024) no. 1, pp. 21-58. doi : 10.5802/art.2. https://art.centre-mersenne.org/articles/10.5802/art.2/

[1] Ariki, Susumu; Mathas, Andrew; Rui, Hebing Cyclotomic Nazarov–Wenzl algebras, Nagoya Math. J., Volume 182 (2006), pp. 47-134 | DOI | MR | Zbl

[2] Bao, Huanchen; Wang, Weiqiang Canonical bases arising from quantum symmetric pairs, Invent. Math., Volume 213 (2018) no. 3, pp. 1099-1177 | DOI | MR | Zbl

[3] Bao, Huanchen; Wang, Weiqiang A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs, Astérisque, 402, 2018 | Zbl

[4] Berman, Collin; Wang, Weiqiang Formulae of ı-divided powers in U q (𝔰𝔩 2 ), J. Pure Appl. Algebra, Volume 222 (2018) no. 9, pp. 2667-2702 | DOI | Zbl

[5] Brundan, Jonathan On the definition of Kac–Moody 2-category, Math. Ann., Volume 364 (2016), pp. 353-372 | DOI | MR | Zbl

[6] Brundan, Jonathan; Davidson, Nicholas Categorical actions and crystals, Categorification and higher representation theory (Contemporary Mathematics), Volume 683, American Mathematical Society, 2017, pp. 105-147 | DOI | MR | Zbl

[7] Brundan, Jonathan; Ellis, Alexander P. Monoidal supercategories, Commun. Math. Phys., Volume 351 (2017) no. 3, pp. 1045-1089 | DOI | MR | Zbl

[8] Brundan, Jonathan; Savage, Alistair; Webster, Ben Heisenberg and Kac–Moody categorification, Sel. Math., New Ser., Volume 26 (2020), Paper no. 74 | DOI | MR | Zbl

[9] Brundan, Jonathan; Savage, Alistair; Webster, Ben Foundations of Frobenius Heisenberg categories, J. Algebra, Volume 578 (2021), pp. 115-185 | DOI | MR | Zbl

[10] Brundan, Jonathan; Savage, Alistair; Webster, Ben The degenerate Heisenberg category and its Grothendieck ring, Ann. Sci. Éc. Norm. Supér., Volume 56 (2023), pp. 1517-1563

[11] Brundan, Jonathan; Webster, Ben; Wang, Weiqiang Nil–Brauer categorifies the split ı-quantum group of rank one (2023) (arXiv:2305.05877)

[12] Carpentier, Rui Pedro From planar graphs to embedded graphs—a new approach to Kauffman and Vogel’s polynomial, J. Knot Theory Ramifications, Volume 9 (2000) no. 8, pp. 975-986 | DOI | MR | Zbl

[13] Daugherty, Zajj; Ram, Arun; Virk, Rahbar Affine and degenerate affine BMW algebras: actions on tensor space, Sel. Math., New Ser., Volume 19 (2013) no. 2, pp. 611-653 | DOI | MR | Zbl

[14] Ehrig, Michael; Stroppel, Catharina Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math., Volume 331 (2018), pp. 58-142 | DOI | MR | Zbl

[15] Khovanov, Mikhail; Lauda, Aaron D. A categorification of quantum sl (n), Quantum Topol., Volume 1 (2010), pp. 1-92 | DOI | MR | Zbl

[16] Lauda, Aaron D. A categorification of quantum sl (2), Adv. Math., Volume 225 (2010) no. 6, pp. 3327-3424 | DOI | MR | Zbl

[17] Lauda, Aaron D. Categorified quantum sl (2) and equivariant cohomology of iterated flag varieties, Algebr. Represent. Theory, Volume 14 (2011) no. 2, pp. 253-282 | DOI | MR | Zbl

[18] Macdonald, Ian G. Symmetric Functions and Hall Polynomials, Oxford Classic Texts in the Physical Sciences, Clarendon Press, 2015 | Zbl

[19] Nazarov, Maxim Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra, Volume 182 (1996) no. 3, pp. 664-693 | DOI | MR | Zbl

[20] Rouquier, Raphaël 2-Kac–Moody algebras (2008) (arXiv:0812.5023)

[21] Rui, Hebing; Song, Linliang Affine Brauer category and parabolic category 𝒪 in types B, C, D, Math. Z., Volume 293 (2019), pp. 503-550 | DOI | MR | Zbl

Cited by Sources: