On self-orthogonal modules in Iwanaga–Gorenstein rings
Annals of Representation Theory, Volume 1 (2024) no. 1, pp. 67-70.

Let A be an Iwanaga–Gorenstein ring. Enomoto conjectured that a self-orthogonal A-module has finite projective dimension. We prove this conjecture for A having the property that every indecomposable non-projective maximal Cohen–Macaulay module is periodic. This answers a question of Enomoto and shows the conjecture for monomial quiver algebras and hypersurface rings.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.4
Classification: 16G10, 16E10
Keywords: self-orthogonal module, Iwanaga–Gorenstein ring

Marczinzik, René 1

1 Mathematical Institute of the University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_1_67_0,
     author = {Marczinzik, Ren\'e},
     title = {On self-orthogonal modules in {Iwanaga{\textendash}Gorenstein} rings},
     journal = {Annals of Representation Theory},
     pages = {67--70},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {1},
     year = {2024},
     doi = {10.5802/art.4},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.4/}
}
TY  - JOUR
AU  - Marczinzik, René
TI  - On self-orthogonal modules in Iwanaga–Gorenstein rings
JO  - Annals of Representation Theory
PY  - 2024
SP  - 67
EP  - 70
VL  - 1
IS  - 1
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.4/
DO  - 10.5802/art.4
LA  - en
ID  - ART_2024__1_1_67_0
ER  - 
%0 Journal Article
%A Marczinzik, René
%T On self-orthogonal modules in Iwanaga–Gorenstein rings
%J Annals of Representation Theory
%D 2024
%P 67-70
%V 1
%N 1
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.4/
%R 10.5802/art.4
%G en
%F ART_2024__1_1_67_0
Marczinzik, René. On self-orthogonal modules in Iwanaga–Gorenstein rings. Annals of Representation Theory, Volume 1 (2024) no. 1, pp. 67-70. doi : 10.5802/art.4. https://art.centre-mersenne.org/articles/10.5802/art.4/

[1] Eisenbud, D. Homological algebra on a complete intersection, with an Application to Group Representations, Trans. Am. Math. Soc., Volume 260 (1980) no. 1, pp. 35-64 | Zbl

[2] Enomoto, H. Maximal self-orthogonal modules and a new generalization of tilting modules (2023) | arXiv

[3] Geiss, C.; Reiten, I. Gentle algebras are Gorenstein, Representations of algebras and related topics. Proceedings from the 10 th international conference, ICRA X, Toronto, Canada, 2002 (Fields Institute Communications), Volume 45, American Mathematical Society (2005), pp. 129-133 | Zbl

[4] Iyama, O. Auslander correspondence, Adv. Math., Volume 210 (2007) no. 1, pp. 51-82 | Zbl

[5] Kameyama, N.; Kimura, Y.; Nishida, K. On stable equivalences of module subcategories over a semiperfect noetherian ring, Colloq. Math., Volume 137 (2014) no. 1, pp. 7-26 | Zbl

[6] Ringel, C. M.; Zhang, P. Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory, Volume 14 (2020) no. 1, pp. 1-36 | Zbl

[7] Yamagata, K. Frobenius algebras, Handbook of algebra. Vol. 1, North-Holland, 1996, pp. 841-887 | Zbl

[8] Zimmermann-Huisgen, B. Predicting syzygies over monomial relations algebras, Manuscr. Math., Volume 70 (1991) no. 2, pp. 157-182 | Zbl

Cited by Sources: