Principal 2-blocks with wreathed defect groups up to splendid Morita equivalence
Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 439-463.

We classify principal 2-blocks of finite groups G with Sylow 2-subgroups isomorphic to a wreathed 2-group C 2 n C 2 with n2 up to Morita equivalence and up to splendid Morita equivalence. As a consequence, we obtain that Puig’s Finiteness Conjecture holds for such blocks. Furthermore, we obtain a classification of such groups modulo O 2 (G), which is a purely group theoretical result and of independent interest. Methods previously applied to blocks of tame representation type are used. They are, however, further developed in order to deal with blocks of wild representation type.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.16
Classification: 20C05, 20C20, 20C15, 20C33, 16D90
Keywords: wreathed $2$-group, Morita equivalence, splendid Morita equivalence, Puig’s Finiteness Conjecture, principal block, trivial source module, $p$-permutation module, Scott module, Brauer indecomposability, decomposition matrix

Koshitani, Shigeo 1; Lassueur, Caroline 2; Sambale, Benjamin 2

1 Chiba University Department of Mathematics and Informatics Graduate School of Science 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)
2 Leibniz Universität Hannover Institut für Algebra, Zahlentheorie und Diskrete Mathematik Welfengarten 1 D-30167 Hannover (Germany)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_3_439_0,
     author = {Koshitani, Shigeo and Lassueur, Caroline and Sambale, Benjamin},
     title = {Principal $2$-blocks with wreathed defect groups up to splendid {Morita} equivalence},
     journal = {Annals of Representation Theory},
     pages = {439--463},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {3},
     year = {2024},
     doi = {10.5802/art.16},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.16/}
}
TY  - JOUR
AU  - Koshitani, Shigeo
AU  - Lassueur, Caroline
AU  - Sambale, Benjamin
TI  - Principal $2$-blocks with wreathed defect groups up to splendid Morita equivalence
JO  - Annals of Representation Theory
PY  - 2024
SP  - 439
EP  - 463
VL  - 1
IS  - 3
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.16/
DO  - 10.5802/art.16
LA  - en
ID  - ART_2024__1_3_439_0
ER  - 
%0 Journal Article
%A Koshitani, Shigeo
%A Lassueur, Caroline
%A Sambale, Benjamin
%T Principal $2$-blocks with wreathed defect groups up to splendid Morita equivalence
%J Annals of Representation Theory
%D 2024
%P 439-463
%V 1
%N 3
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.16/
%R 10.5802/art.16
%G en
%F ART_2024__1_3_439_0
Koshitani, Shigeo; Lassueur, Caroline; Sambale, Benjamin. Principal $2$-blocks with wreathed defect groups up to splendid Morita equivalence. Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 439-463. doi : 10.5802/art.16. https://art.centre-mersenne.org/articles/10.5802/art.16/

[1] Alperin, J. L. Isomorphic blocks, J. Algebra, Volume 43 (1976), pp. 694-698 | DOI | Zbl

[2] Alperin, J. L.; Brauer, R.; Gorenstein, D. Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Am. Math. Soc., Volume 151 (1970), pp. 1-261 | DOI | Zbl

[3] Alperin, J. L.; Brauer, R.; Gorenstein, D. Finite simple groups of 2-rank two, Scr. Math., Volume 29 (1973), pp. 191-214 | Zbl

[4] Brauer, R. Some applications of the theory of blocks of characters of finite groups. II, J. Algebra, Volume 1 (1964), pp. 307-334 | DOI | Zbl

[5] Brauer, R. Character theory of finite groups with wreathed Sylow 2-subgroups, J. Algebra, Volume 19 (1971), pp. 547-592 | DOI | Zbl

[6] Broué, M. Equivalences of blocks of group algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) (NATO Science Series C: Mathematical and Physical Sciences), Kluwer Academic Publishers, 1994, pp. 1-26 | DOI | Zbl

[7] Carlson, J. F. Modules over group algebras, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1996 | DOI | Zbl

[8] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985 | Zbl

[9] Craven, D. A.; Eaton, C. W.; Kessar, R.; Linckelmann, M. The structure of blocks with a Klein four defect group, Math. Z., Volume 268 (2011), pp. 441-476 | DOI | Zbl

[10] Craven, D. A.; Glesser, A. Fusion systems on small p-groups, Trans. Am. Math. Soc., Volume 364 (2012), pp. 5945-5967 | DOI | Zbl

[11] Dade, E. C. Remarks on isomorphic blocks, J. Algebra, Volume 45 (1977), pp. 254-258 | DOI | Zbl

[12] Erdmann, Karin Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, 1428, Springer, 1990 | DOI | Zbl

[13] Geck, M. Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic, Commun. Algebra, Volume 18 (1990), pp. 563-584 | DOI | Zbl

[14] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G. CHEVIE – a system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Eng. Commun. Comput., Volume 7 (1996), pp. 175-210 special issue ‘Computational methods in Lie theory (Essen, 1994)’ | DOI | Zbl

[15] Geck, M.; Jacon, N. Representations of Hecke algebras at roots of unity, Algebra and Applications, 15, Springer, 2011 | DOI | Zbl

[16] Geck, M.; Malle, G. The character theory of finite groups of Lie type, A guided tour, Cambridge Studies in Advanced Mathematics, 187, Cambridge University Press, 2020 | DOI | Zbl

[17] Hiss, G. Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups, Indag. Math., New Ser., Volume 15 (2004), pp. 223-243 | DOI | Zbl

[18] James, G. The irreducible representations of the finite general linear groups, Proc. Lond. Math. Soc., Volume 52 (1986), pp. 236-268 | DOI | Zbl

[19] James, G. The decomposition matrices of GL n (q) for n10, Proc. Lond. Math. Soc., Volume 60 (1990), pp. 225-265 | DOI | Zbl

[20] Kawai, H. Varieties for modules over a block of a finite group, Osaka J. Math., Volume 40 (2003), pp. 327-344 | Zbl

[21] Koshitani, S.; Lassueur, C. Splendid Morita equivalences for principal 2-blocks with dihedral defect groups, Math. Z., Volume 294 (2020), pp. 639-666 | DOI | Zbl

[22] Koshitani, S.; Lassueur, C. Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra, Volume 558 (2020), pp. 523-533 | DOI | Zbl

[23] Koshitani, S.; Lassueur, C.; Sambale, B. Splendid Morita equivalences for principal blocks with semidihedral defect groups, Proc. Am. Math. Soc., Volume 150 (2022), pp. 41-53 | DOI | Zbl

[24] Koshitani, S.; Müller, J.; Noeske, F. Broué’s abelian defect group conjecture holds for the sporadic simple Conway group Co 3 , J. Algebra, Volume 348 (2011), pp. 354-380 | DOI | Zbl

[25] Koshitani, S.; Tuvay, İ. The Brauer indecomposability of Scott modules with wreathed 2-group vertices, Rocky Mt. J. Math., Volume 51 (2021), pp. 1259-1280 | DOI | Zbl

[26] Külshammer, B. On 2-blocks with wreathed defect groups, J. Algebra, Volume 64 (1980), pp. 529-555 | DOI | Zbl

[27] Külshammer, B., 2001 (American Mathematical Society, review on “Source algebras of p-central group extensions”, MR1807669)

[28] Külshammer, B.; Puig, L. Extensions of nilpotent blocks, Invent. Math., Volume 102 (1990), pp. 17-71 | DOI | Zbl

[29] Kunugi, N.; Suzuki, K. Relative stable equivalences of Morita type for the principal blocks of finite groups and relative Brauer indecomposability, J. Group Theory, Volume 26 (2023), pp. 1157-1184 | DOI | Zbl

[30] Landrock, P. Finite group algebras and their modules, London Mathematical Society Lecture Note Series, 84, Cambridge University Press, 1983 | DOI | Zbl

[31] Lassueur, C. A tour of p-permutation modules and related classes of modules, Jahresber. Dtsch. Math.-Ver., Volume 125 (2023), pp. 137-189 | DOI | Zbl

[32] Linckelmann, M. Stable equivalences of Morita type for self-injective algebras and p-groups, Math. Z., Volume 223 (1996), pp. 87-100 | DOI | Zbl

[33] Linckelmann, M. On splendid derived and stable equivalences between blocks of finite groups, J. Algebra, Volume 242 (2001), pp. 819-843 | DOI | Zbl

[34] Linckelmann, M. The block theory of finite group algebras. Vol. I and Vol. II, London Mathematical Society Student Texts, 91-92, Cambridge University Press, 2018

[35] Nagao, H.; Tsushima, Y. Representations of finite groups, Academic Press Inc., 1989 | Zbl

[36] Okuyama, T.; Waki, K. Decomposition numbers of SU (3,q 2 ), J. Algebra, Volume 255 (2002), pp. 258-270 | DOI | Zbl

[37] Puig, L. Source algebras of p-central group extensions, J. Algebra, Volume 235 (2001), pp. 359-398 | DOI | Zbl

[38] Rouquier, R. Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (Charlottesville, VA, 1998) (Collins, M. J.; Parshall, B. J.; Scott, L. L., eds.), Walter de Gruyter, 2001, pp. 101-146 | Zbl

[39] Schulte, E. The inductive blockwise Alperin Weight Condition for the finite groups SL 3 (q), G 2 (q), and 3 D 4 (q), Ph. D. Thesis, TU Kaiserslautern, Germany (2015)

[40] Simpson, W. A.; Frame, J. S. The character tables for SL (3,q), SU (3,q 2 ), PSL (3,q), PSU (3,q 2 ), Can. J. Math., Volume 25 (1973), pp. 486-494 | DOI | Zbl

[41] Steinberg, R. The representations of GL (3,q), GL (4,q), PGL (3,q), and PGL (4,q), Can. J. Math., Volume 3 (1951), pp. 225-235 | DOI | Zbl

[42] Suzuki, M. Group theory. II, Grundlehren der Mathematischen Wissenschaften, 248, Springer, 1986 | DOI | Zbl

[43] Thévenaz, J. G-algebras and modular representation theory, Oxford Mathematical Monographs, Clarendon Press, 1995 | Zbl

Cited by Sources: