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Principal 2-blocks with wreathed defect groups up
to splendid Morita equivalence

Shigeo Koshitani ∗, Caroline Lassueur and Benjamin Sambale
To the memory of Professor Atumi Watanabe

Abstract. We classify principal 2-blocks of finite groups G with Sylow 2-subgroups isomorphic to a
wreathed 2-group C2n ≀C2 with n ≥ 2 up to Morita equivalence and up to splendid Morita equivalence.
As a consequence, we obtain that Puig’s Finiteness Conjecture holds for such blocks. Furthermore,
we obtain a classification of such groups modulo O2′ (G), which is a purely group theoretical result
and of independent interest. Methods previously applied to blocks of tame representation type are
used. They are, however, further developed in order to deal with blocks of wild representation type.

1. Introduction

Let k be an algebraically closed field of positive characteristic p. A splendid Morita
equivalence between two block algebras B1 and B2 of finite groups G1 and G2 of order di-
visible by p is a Morita equivalence which is induced by a (B1, B2)-bimodule (and its dual)
which is a p-permutation module when regarded as a one-sided k(G1 × G2)-module. Such
equivalences play an important role in the modular representation theory of finite groups
as they preserve many important invariants such as the defect groups or the generalised
decomposition numbers, and encode the structure of the source algebras. In this respect,
Puig’s Finiteness Conjecture (see [6, 6.2] or [34, Conjecture 6.4.2]) extends Donovan’s
Conjecture to include the structure of the source algebra of p-blocks and postulates that
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given a finite p-group D, there are only finitely many interior D-algebras, up to isomor-
phism, which are source algebras of p-blocks of finite groups with defect group D. This
is equivalent to postulating that there are only finitely many splendid Morita equivalence
classes of p-blocks of finite groups with defect group D.

In a series of previous articles [21, 22, 23] the authors classified principal block algebras
of tame representation type up to splendid Morita equivalence, that is, in the case in
which p = 2 and the Sylow 2-subgroups of the groups considered are either dihedral,
semi-dihedral, or generalised quaternion 2-groups. As a corollary, the validity of Puig’s
Finiteness Conjecture is verified for this class of 2-blocks. (The tame domestic case was
settled in [9].) The aim of the present article is to give a first try at applying similar
methods in wild representation type under good hypotheses: we investigate here groups
with Sylow 2-subgroups isomorphic to a wreathed 2-group C2n ≀C2 with n ≥ 2. We choose
this defect group for its many similarities with the tame cases. In this respect, from the
group theory point of view, we strongly rely on the facts that the wreathed 2-groups
C2n ≀ C2 have 2-rank 2 and an automorphism group which is a 2-group, whereas from the
modular representation theory point of view we rely on the Brauer indecomposability of
Scott modules with wreathed vertices proved by the first author and Tuvay in [25].

In order to state our main results, we first need to introduce some notation. Given a
finite group G and H ≤ G, we set ∆H := {(h, h) ∈ G × G | h ∈ H} and we recall that the
Scott module of kG with respect to H, denoted by Sc(G, H), is, up to isomorphism, the
unique indecomposable direct summand of the trivial kH-module induced from H to G
with the property that the trivial kG-module is a constituent of its head (or equivalently
of its socle). Furthermore, given an integer t ≥ 0 and a power q = rf of a prime number
r such that f ≥ 1 an integer, we let

SLt
2(q) :=

{
A ∈ GL2(q)

∣∣∣ det(A)2t = 1
}

and SUt
2(q) :=

{
A ∈ GU2(q)

∣∣∣ det(A)2t = 1
}

.

Now, in order to apply the previously developed methods, our first main result provides
a classification of the finite groups G with a wreathed Sylow 2-subgroup C2n ≀ C2 (n ≥ 2)
modulo O2′(G), which is of independent interest.

Theorem 1.1. Let G be a finite group with a Sylow 2-subgroup isomorphic to a wreathed
2-group C2n ≀ C2 for an integer n ≥ 2 such that O2′(G) = 1. Then one of the following
holds:

(WR1) G ∼= C2n ≀ C2 ,
(WR2) G ∼= (C2n × C2n) ⋊S3 ,
(WR3) G ∼= SLn

2 (q) ⋊ Cd where (q − 1)2 = 2n and d | f is odd,
(WR4) G ∼= SUn

2 (q) ⋊ Cd where (q + 1)2 = 2n and d | f is odd,
(WR5) G ∼= PSL3(q).H where (q − 1)2 = 2n, H ≤ C(q−1,3) × Cd and d | f is odd, or
(WR6) G ∼= PSU3(q).H where (q + 1)2 = 2n, H ≤ C(q+1,3) × Cd and d | f is odd,

where, in all cases, q = rf denotes a power of a prime number r with f ≥ 1 an integer.

This theorem, which we prove in Section 3, is a byproduct of Alperin–Brauer–Gorenstein’s
work [2] on finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.

Our second main result is then a classification of principal blocks with defect groups
isomorphic to a wreathed 2-group C2n ≀ C2 with n ≥ 2.

Theorem 1.2. Let k be an algebraically closed field of characteristic 2 and let G be a
finite group with a Sylow 2-subgroup P isomorphic to a wreathed 2-group C2n ≀ C2 for a
fixed integer n ≥ 2. Then, the following assertions hold.
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(a) The principal 2-block B0(kG) of G is splendidly Morita equivalent to the principal
2-block B0(kG′) of a finite group G′ belonging to precisely one of the following
families of finite groups:
(WR1(n)) C2n ≀ C2 ;
(WR2(n)) (C2n × C2n) ⋊S3 ;
(WR3(n)) SLn

2 (q) where q is a power of a prime number such that (q − 1)2 = 2n;
(WR4(n)) SUn

2 (q) where q is a power of a prime number such that (q + 1)2 = 2n;
(WR5(n)) PSL3(q) where q is a power of a prime number such that (q − 1)2 = 2n;

or
(WR6(n)) PSU3(q) where q is a power of a prime number such that (q + 1)2 = 2n.
Moreover, in all cases, the splendid Morita equivalence is induced by the Scott
module Sc(G × G′, ∆P ), where P is also seen as a Sylow 2-subgroup of G′.

(b) In (a), more accurately, if G1 and G2 are two finite groups belonging to the same
infinite family of finite groups (Wj(n)) with j ∈ {3, 4, 5, 6}, then Sc(G1 × G2, ∆P )
induces a splendid Morita equivalence between B0(kG1) and B0(kG2).

We emphasize that in the case of principal blocks of tame representation type, treated
in [21, 22, 23], a classification of these blocks up to Morita equivalence was known by
Erdmann’s work on tame algebras [12]. A major difference in the case of wreathed Sylow 2-
subgroups lies in the fact that a classification of these blocks up to Morita equivalence was,
to our knowledge, not known. However, it follows from our methods, that the classification
up to splendid Morita equivalence which we have obtained coincides with the classification
up to Morita equivalence.
Theorem 1.3. Let k be an algebraically closed field of characteristic 2 and let G be a
finite group with a Sylow 2-subgroup isomorphic to a wreathed 2-group C2n ≀ C2 for a fixed
integer n ≥ 2. Then B0(kG) is Morita equivalent to the principal block of precisely one of
the families of groups (WR1(n)), (WR2(n)), (WR3(n)), (WR4(n)), (WR5(n)), or (WR6(n))
as in Theorem 1.2(a).

As an immediate consequence of Theorem 1.2 we also obtain that Puig’s Finiteness Con-
jecture holds if we restrict our attention to principal blocks with a defect group isomorphic
to a wreathed 2-group C2n ≀ C2.
Corollary 1.4. For each integer n ≥ 2 there are only finitely many splendid Morita
equivalence classes of principal 2-blocks with defect groups isomorphic to a wreathed 2-
group C2n ≀ C2.

This paper is organised as follows. In Section 2 the notation is introduced. In Section 3
we state and prove the classification of finite groups G with a wreathed Sylow 2-subgroup
and O2′(G) = 1. In Section 4 we recall, state and prove preliminary results on splendid
Morita equivalences and on module theory over finite-dimensional algebras. In Sections 5,
6 and 7 we prove part (b) of Theorem 1.2. Section 8 contains the proof of Theorem 1.2
and Theorem 1.3. Finally, Appendix A fixes a gap in the proof of [22, Proposition 3.3(b)].

2. Notation

Throughout this paper, unless otherwise stated, we adopt the following notation and
conventions. We let k be an algebraically closed field of characteristic p > 0. All groups
considered are finite, all k-algebras are finite-dimensional and all modules over finite-
dimensional algebras considered are finitely generated right modules. The symbols G, G′,
G1, G2, G1 and G2 always denote finite groups of order divisible by p.
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Furthermore, we denote by Sylp(G) the set of all Sylow p-subgroups of G, and for
P ∈ Sylp(G), we let FP (G) be the fusion system of G on P . If H ≤ G, we let ∆H :=
{(h, h) ∈ G × G | h ∈ H} denote the diagonal embedding of H in G × G. Given an integer
m ≥ 2, we let D2m denote the dihedral group of order 2m, Cm denote the cyclic group of
order m, and C2m ≀ C2 denote the wreathed product of C2m by C2. Given an integer t ≥ 0
and a positive prime power q, we let

SLt
2(q) :=

{
A ∈ GL2(q)

∣∣∣ det(A)2t = 1
}

and SUt
2(q) :=

{
A ∈ GU2(q)

∣∣∣ det(A)2t = 1
}

,

as already defined in the introduction.
Given a finite-dimensional k-algebra A, we denote by rad(A) the Jacobson radical of A

and by 1A the unit element of A, respectively. Furthermore, if X is an A-module and
m ≥ 0 is an integer, then we denote by socm(X) := {x ∈ X | x · rad(A)m = 0} the mth

socle of X, where soc(X) := soc1(X) is the socle of X, and for 1 ≤ i ≤ ℓ, where ℓ is the
Loewy (or radical) length of X, we set

Si(X) := soci(X)/ soci−1(X) and Li(X) := X rad(A)i−1/X rad(A)i

and we write hd(X) for the head of X. We then talk about the radical (Loewy) series
and about the socle series of X as defined in [30, Chap. I § 8]. We describe a uniserial
A-module X with simple composition factors Li(X) ∼= Si for simple A-modules S1, · · · , Sℓ

via the diagram

X =
S1
...

Sℓ

.

We denote by P (X) the projective cover of an A-module X and by Ω(X) the kernel of
the canonical morphism P (X) ↠ X. Dually, we let Ω−1(X) := I(X)/X where I(X) is an
injective envelope of X, and we denote by X∗ the k-dual of X (which is a left A-module).
Given a simple A-module S, we denote by cX(S) the multiplicity of S as a composition
factor of X and if S1, · · · , Sn are all the pairwise non-isomorphic composition factors of X
with multiplicities m1, . . . , mn, respectively, then we write X = m1 × S1 + · · · + mn × Sn

(as composition factors). If Y is another A-module, then Y | X (resp. Y ∤ X) means
that Y is isomorphic (resp. not isomorphic) to a direct summand of X, (proj) denotes a
projective A-module (which we do not need to specify).

We write B0(kG) for the principal block of the group algebra kG. Given a block B of
kG, we write 1B for the block idempotent of B and CB for the Cartan matrix of B. We
denote by Irr(B) and IBr(B), respectively, the sets of all irreducible ordinary and Brauer
characters of G belonging to B. If D ≤ G is a defect group of the block B, then the
integer d such that |D| = pd is called the defect of B. Assuming |G| = pam with p ∤ m,
if χ ∈ Irr(G) lies in a block of defect d, then the height of χ, denoted by ht(χ), is defined
to be the exact power of p dividing the integer χ(1)/pa−d. We write k(B) := | Irr(B)| and
ℓ(B) := | IBr(B)| and ki(B) := |{χ ∈ Irr(B) | ht(χ) = i}| where ht(χ) is the height of χ.

We denote by kG the trivial kG-module. Given a kG-module M and a p-subgroup
Q ≤ G we denote by M(Q) the Brauer construction of M with respect to Q. (See
e.g. [43, p. 219].) When H ≤ G, N is a kH-module and M is a kG-module, we write N↑G

and M↓H respectively for the induction of N to G and the restriction of M to H. For a
subgroup H ≤ G we denote by Sc(G, H) the Scott module of kG with respect to H, which
by definition is the unique indecomposable direct summand of kH↑G (up to isomorphism)
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that has the trivial module kG as a constituent of its head (or equivalently of its socle).
This is a p-permutation module (see [35, Chapter 4, §8.4]).

If B1 and B2 are two finite-dimensional k-algebras and M is a (B1, B2)-bimodule, we
also write B1MB2 to emphasize the (B1, B2)-bimodule structure on M . Now, if B1 and B2
are blocks of kG1 and kG2, respectively, then we can view every (B1, B2)-bimodule M as a
right k(G1 × G2)-module via the right (G1 × G2)-action defined by m · (g1, g2) := g1

−1mg2
for every m ∈ M , g1 ∈ G1, g2 ∈ G2. Furthermore, the blocks B1 and B2 are called
splendidly Morita equivalent (or source-algebra equivalent, or Puig equivalent), if there is
a Morita equivalence between B1 and B2 induced by a (B1, B2)-bimodule M which is a
p-permutation module when viewed as a right k(G1 × G2)-module. In this case, we write
B1 ∼SM B2. By a result of Puig and Scott, this definition is equivalent to the condition
that B1 and B2 have source algebras which are isomorphic as interior P -algebras (see [33,
Theorem 4.1]). Also, by a result of Puig (see [34, Proposition 9.7.1]), the defect groups of
B1 and B2 are isomorphic. Hence we may identify them.

3. Finite groups with wreathed Sylow 2-subgroups

To begin with, we collect essential results about finite groups with wreathed Sylow 2-
subgroups. In particular, we classify such groups modulo O2′(G). This classification is a
byproduct of the results of Alperin–Brauer–Gorenstein in [2].

Lemma 3.1. Let P := C2n ≀ C2 with n ≥ 2. Then the 2-rank of P is 2 and Aut(P ) is a
2-group.

Proof. See e.g. [10, p. 5956]. □

For the benefit of legibility we state again Theorem 1.1 of the introduction, before we
prove it.

Theorem 3.2. Let G be a finite group with a Sylow 2-subgroup isomorphic to a wreathed
2-group C2n ≀ C2 for an integer n ≥ 2 such that O2′(G) = 1. Then one of the following
holds:

(WR1) G ∼= C2n ≀ C2 ,
(WR2) G ∼= (C2n × C2n) ⋊S3 ,
(WR3) G ∼= SLn

2 (q) ⋊ Cd where (q − 1)2 = 2n and d | f is odd,
(WR4) G ∼= SUn

2 (q) ⋊ Cd where (q + 1)2 = 2n and d | f is odd,
(WR5) G ∼= PSL3(q).H where (q − 1)2 = 2n, H ≤ C(q−1,3) × Cd and d | f is odd, or
(WR6) G ∼= PSU3(q).H where (q + 1)2 = 2n, H ≤ C(q+1,3) × Cd and d | f is odd,

where in all cases q = rf denotes a power of a prime number r with f ≥ 1 an integer.

Proof. If G is 2-nilpotent, then Case (WR1) holds since O2′(G) = 1. In all other cases, G
is a D-group, a Q-group or a QD-group with the notation of [2, Definition 2.1]. Let G be
a D-group. Then there exists K ⊴ G of index 2 such that P ∩ K ∼= C2n × C2n . By [4,
Theorem 1], K ∼= (C2n × C2n) ⋊ C3 and Case (WR2) holds.

If G is a Q-group, then Case (WR3) or (WR4) occurs by [2, Propositions 3.2 and 3.3].
Finally, let G be a QD-group. Then by [2, Proposition 2.2], N := O2′(G) is simple and the
possible isomorphism types of N are given by the main result of [3]. Since CG(N) ∩ N =
Z(N) = 1 we have CG(N) ≤ O2′(G) = 1. The possibilities for G/N ≤ Out(N) can
be deduced from [8]. Since |G/N | is odd, no graph automorphism is involved. Hence,
G/N ≤ C(3,q−1) ⋊ Cd or G/N ≤ C(3,q+1) ⋊ Cd. In fact, G/N must be abelian since |G/N |
is odd. □
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Theorem 3.3. Let G be as in Theorem 3.2 and let B := B0(kG). With the same labelling
of cases as in Theorem 3.2 the following holds:

(WR1) ℓ(B) = 1, k(B) = 22n−1 + 3 · 2n−1, k0(B) = 2n+1, k1(B) = 22n−1 − 2n−1;
(WR2) ℓ(B) = 2, k(B) = (22n−1 + 9 · 2n−1 + 4)/3, k0(B) = 2n+1,

k1(B) = (22n−1 − 3 · 2n−1 + 4)/3;
(WR3,4) ℓ(B) = 2, k(B) = 22n−1 + 2n+1, k0(B) = 2n+1, k1(B) = 22n−1 − 2n−1,

kn(B) = 2n−1;
(WR5,6) ℓ(B) = 3, k(B) = (22n−1 + 3 · 2n+1 + 4)/3, k0(B) = 2n+1,

k1(B) = (22n−1 − 3 · 2n−1 + 4)/3, kn(B) = 2n−1.

Proof. Cases (WR1) and (WR2) follow from elementary group theory. If Case (WR3) or
Case (WR4) of Theorem 3.2 holds, then the numbers follow from [26, Proposition (7.G)].
Suppose now that Case (WR5) or Case (WR6) holds, then the number k(B) follows from [5,
Theorem 1A] – here, Brauer even computed the degrees of the ordinary irreducible charac-
ters in B – whereas the number ℓ(B) can be obtained with [26, Lemma 7.I] for instance. □

4. Preliminaries

We state below several results which will enable us to construct splendid Morita equiv-
alences induced by Scott modules, but which are not restricted to characteristic 2. There-
fore, throughout this section we may assume that k is an algebraically closed field of
arbitrary characteristic p > 0.

Our first main tool to construct splendid Morita equivalences is given by the follow-
ing theorem which is an extended version of a well-known result due to Alperin [1] and
Dade [11] restated in terms of splendid Morita equivalences.

Theorem 4.1 (Alperin–Dade). Let G̃1 and G̃2 be a finite groups and assume G1 ⊴ G̃1,
G2 ⊴ G̃2 are normal subgroups such that G̃1/G1, G̃2/G2 are p′-groups and having a
common Sylow p-subgroup P ∈ Sylp(G1) ∩ Sylp(G2) such that G̃1 = G1C

G̃1
(P ) and G̃2 =

G2C
G̃2

(P ). Then the following assertions hold.

(a) If ẽ and e denote the block idempotents of B0(kG̃1) and B0(kG1), respectively,
then the map B0(kG1) −→ B0(kG̃1), a 7→ aẽ is an isomorphism of k-algebras.
Moreover, the right k[G̃1 × G1]-module

Sc
(
G̃1 × G1, ∆P

)
= B0

(
kG̃1

)
↓G̃1×G̃1

G̃1×G1
= ẽkG̃1 = ẽkG̃1e,

induces a splendid Morita equivalence between B0(kG̃1) and B0(kG1).
(b) The Scott module Sc(G̃1 × G̃2, ∆P ) induces a splendid Morita equivalence between

B0(kG̃1) and B0(kG̃2) if and only if the Scott module Sc(G1 × G2, ∆P ) induces a
splendid Morita equivalence between B0(kG1) and B0(kG2).

Proof. Assertion (a) follows from [1, 11]. More precisely, the given map is an isomorphism
of k-algebras by [11, Theorem] and [1, Theorems 1 and 2] proves that restriction from G̃1 to
G1 induces a splendid Morita equivalence. Assertion (b) is given by [23, Lemma 5.1]. □

Lemma 4.2. Let G̃1, G̃2 be finite groups. Assume that G1 ⊴ G̃1 and G2 ⊴ G̃2 are normal
subgroups such that G̃1/G1, G̃2/G2 are p′-groups and assume that G1 and G2 have a
common Sylow p-subgroup P such that Aut(P ) is a p-group. Then, conclusions (a) and (b)
of Theorem 4.1 hold.
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Proof. It suffices to prove that the hypotheses of Theorem 4.1 are satisfied. So, let i ∈
{1, 2}. Since Aut(P ) is a p-group we have N

G̃i
(P ) = PC

G̃i
(P ). Moreover, by Frattini’s

argument G̃i = GiNG̃i
(P ), thus G̃i = GiCG̃i

(P ), as required. □

Next, it is well-known that inflation from the quotient by a normal p′-subgroup induces
an isomorphism of blocks as k-algebras. In fact, there is splendid Morita equivalence
induced by a Scott module and we have the following stronger result.

Lemma 4.3. Let G1, G2 be finite groups with a common Sylow p-subgroup P . Let N1⊴G1
and N2 ⊴ G2 be normal p′-subgroups and write − : G1 −→ G1/N1 =: G1, respectively
− : G2 −→ G2/N2 =: G2, for the quotient homomorphisms, so that, by abuse of notation,
we may identify P = PN1/N1 ∼= P with P = PN2/N2 ∼= P . Then the following assertions
hold:

(a) Sc(G1 × G1, ∆P ) induces a splendid Morita equivalence between B0(kG1) and
B0(kG1), where ∆P is identified with {(u, ū) | u ∈ P};

(b) Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and
B0(kG2) if and only if Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence
between B0(kG1) and B0(kG2).

Proof. (a) By the assumption N1 ≤ Op′(G1), hence N1 acts trivially on B0(kG1). Thus,
B0(kG1) and its image B0(kG1) in kG1 are isomorphic as interior P -algebras. Part (a)
follows then immediately from the fact that Sc(G1 × G1, ∆P ) = kG1B0(kG1)kG1

(seen as
a (kG1, kG1)-bimodule). Part (b) follows from (a) and the fact that

Sc
(
G1 × G1, ∆P

)
⊗B0(kG1) Sc

(
G1 × G2, ∆P

)
⊗B0(kG2) Sc

(
G2 × G2, ∆P

)
∼= Sc (G1 × G2, ∆P ) .

(See e.g. the proof of [23, Lemma 5.1] for a detailed argument proving this isomorphism.)
□

The following lemma is also essential to treat central extensions.

Lemma 4.4. Let G1 and G2 be finite groups having a common Sylow p-subgroup P ∈
Sylp(G1) ∩ Sylp(G2). Assume moreover that Z1 ≤ Z(G1) and Z2 ≤ Z(G2) are central
subgroups such that P ∩ Z1 = P ∩ Z2 (after identification of the chosen Sylow p-subgroups
of G1 and G2). Set G1 := G1/Z1 and G2 := G2/Z2. Then the subgroup P := PZ1/
Z1(∼= P/(P ∩ Z1) ∼= P/P ∩ Z2) ∼= PZ2/Z2) can be considered as a common Sylow p-
subgroup of G1 and G2. Then, Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence
between B0(kG1) and B0(kG2) if and only if Sc(G1 × G2, ∆P ) induces a splendid Morita
equivalence between B0(kG1) and B0(kG2).

Proof. Let i ∈ {1, 2}. Clearly, we have Zi = (P ∩ Zi) × Op′(Zi) and

Gi = Gi/Zi
∼= (Gi/(P ∩ Zi)) / (Zi/(P ∩ Zi)) =: Gi .

Write P̃ for the image of P in the quotients Gi/(P ∩ Zi) and write P for the image
of P in the quotients Gi. Now, on the one hand, by Theorem A.2, the Scott module
Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and B0(kG2)
if and only if Sc(G1/(P ∩ Z1) × G2/(P ∩ Z2), ∆P̃ ) induces a splendid Morita equivalence
between B0(k[G1/(P ∩ Z1)]) and B0(k[G2/(P ∩ Z2)]), which by Lemma 4.3(b) happens if

Ann. Repr. Th. 1 (2024), 3, p. 439–463 https://doi.org/10.5802/art.16

https://doi.org/10.5802/art.16


446 Shigeo Koshitani et al.

and only if Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and
B0(kG2). The claim follows. □

The next theorem is a standard method, called the “gluing method”, which was already
applied in [21, 23]. It relies on gluing results, allowing us to construct stable equivalences
of Morita type, and is a slight variation of different results of the same type due to Broué,
Rouquier, Linckelmann and Rickard. See e.g. [6, 6.3.Theorem], [38, Theorem 5.6] and [33,
Theorem 3.1].

Theorem 4.5. Let G1 and G2 be finite groups with a common Sylow p-subgroup P sat-
isfying FP (G1) = FP (G2). Then, M := Sc(G1 × G2, ∆P ) induces a splendid Morita
equivalence between B0(kG1) and B0(kG2) provided the following two conditions are sat-
isfied:

(I) for every subgroup Q ≤ P of order p, the bimodule M(∆Q) induces a Morita
equivalence between B0(k CG1(Q)) and B0(k CG2(Q)); and

(II) for every simple B0(kG1)-module S1, the B0(kG2)-module S1 ⊗B0(kG1) M is again
simple.

Proof. By [21, Lemma 4.1], Condition (I) is equivalent to the fact that M induces a
stable equivalence of Morita type between B0(kG1) and B0(kG2). Therefore, applying [32,
Theorem 2.1], Condition (II) now implies that M induces a Morita equivalence between
B0(kG1) and B0(kG2). This equivalence is necessarily splendid since M is a p-permutation
module by definition. □

Lemma 4.6. Let A be a finite-dimensional k-algebra. Let X be an A-module and let Y be
an A-submodule such that X/Y and soc(Y ) are both simple. If Y is not a direct summand
of X, then soc(X) = soc(Y ), and hence X is indecomposable.

Proof. Since soc(X) and soc(Y ) are semisimple, we have soc(X) ∩ Y = soc(Y ) and
soc(X) = soc(Y ) ⊕ S where S is a submodule of X. Thus S ∩ Y = S ∩ soc(X) ∩ Y =
S ∩ soc(Y ) = 0. Hence, either S = 0 and soc(X) = soc(Y ), or Y is a submodule of S ⊕ Y
and so S ⊕ Y = X. □

Finally, the next lemma is often called the “stripping-off method”. It will be used to
verify Condition (II) of Theorem 4.5 in concrete cases.

Lemma 4.7 ([24, Lemma A.1]). Let A and B be self-injective finite-dimensional k-
algebras. Let F : mod-A −→ mod-B be a covariant functor satisfying the following
conditions:

(C1) F is exact;
(C2) if X is a projective A-module, then F (X) is a projective B-module;
(C3) F realises a stable equivalence from mod-A to mod-B.

Then, the following assertions hold.
(a) (Stripping-off method, case of socles.) Let X be a projective-free A-module, and

write F (X) = Y ⊕ (proj) where Y is a projective-free B-module. Let S be a simple
A-submodule of X and set T := F (S). If T is a simple non-projective B-module,
then there exists a B-submodule W of F (X) such that W ∼= Y , T ⊆ W and

F (X/S) ∼= W/T ⊕ (proj) .
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(b) (Stripping-off method, case of radicals.) Let X be a projective-free A-module, and
write F (X) = Y ⊕ R where Y is a projective-free B-module and R is a projective
B-module. Let X ′ be an A-submodule of X such that X/X ′ is simple and let
π : X −→ X/X ′ be the quotient homomorphism. If T := F (X/X ′) is a simple
B-module, then there exists a B-submodule R′ of F (X) such that R′ ∼= R, R′ ⊆
ker(F (π)), F (X) = Y ⊕ R′ and

ker
(

F (X)
F (π)
↠ F (X/X ′)

)
= ker

(
Y

F (π)|Y
↠ F (X/X ′)

)
⊕ (proj) .

5. Groups of type (W3(n)) and (W4(n))

Hypothesis 5.1. From now on and until the end of this manuscript we assume that the
algebraically closed field k has characteristic p = 2. Furthermore, G, G1, G2, G1, G2, G,
G1 and G2 always denote finite groups with a common Sylow 2-subgroup P ∼= C2n ≀ C2,
where n ≥ 2 is a fixed integer. In other words, we choose a Sylow 2-subgroup of each of
these groups and we identify them for simplicity. Moreover, q, q1 and q2 are (possibly
different) positive powers of odd prime numbers.

In this section and the next two ones, we prove Theorem 1.2(b) through a case-by-case
analysis. We start with the groups of types (WR3(n)) and (WR4(n)), for which we reduce
the problem to the classification of principal blocks with dihedral defect groups up to
splendid Morita equivalence obtained in [21, Theorem 1.1]. The group theory setting to
keep in mind is described in the following remark.

Remark 5.2. For any positive power q of an odd prime number [2, p. 4] shows that we
have the following inclusions of normal subgroups with the given indices:

GL2(q) GU2(q)

SLn
2 (q) SUn

2 (q)

SL2(q) ∼= SU2(q)

(q−1)/2n (q+1)/2n

2n 2n

Proposition 5.3. For each i ∈ {1, 2} let Gi := SLn
2 (qi), Gi := GL2(qi) and assume that

(qi − 1)2 = 2n. Then, the following assertions hold:
(a) Sc(G1×G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and B0(kG2);
(b) Sc(G1×G2, ∆P )induces a splendid Morita equivalence between B0(kG1)and B0(kG2).

Proof. Elementary calculations yield Gi ◁Gi and |Gi/Gi| = (qi −1)/2n for each i ∈ {1, 2}
(see Remark 5.2). In particular both indices are odd. Hence, by Lemma 3.1 and Lemma 4.2,
assertion (b) follows from assertion (a), so it suffices to prove (a).

Now, P ∩Z(G1) = P ∩Z(G2) = Z(P ), so P := (PZ(G1))/Z(G1) ∼= (PZ(G2))/Z(G2) , and
hence, up to identification, we can consider that P ∈ Syl2(G1/Z(G1)) ∩ Syl2(G2/Z(G2)).
Moreover, we have

P ∼= P/Z(P ) ∼= D2n+1 ,

see e.g. [26, (2.A) Lemma (iii)]. Since Gi/Z(Gi) ∼= PGL2(qi) for each i ∈ {1, 2}, asser-
tion (a) now follows directly from Lemma 4.4 and [21, Theorem 1.1]. □
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Proposition 5.4. For each i ∈ {1, 2} let Gi := SUn
2 (qi), Gi := GU2(qi) and assume that

(qi + 1)2 = 2n. Then, the following assertions hold:
(a) Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and

B0(kG2);
(b) Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and

B0(kG2).

Proof. In this case Gi ◁Gi and |Gi/Gi| = (qi + 1)/2n for each i ∈ {1, 2} (See Remark 5.2).
Thus both indices are odd. Again by Lemma 3.1 and Lemma 4.2, it suffices to prove (a).

Now, P ∩ Z(G1) = P ∩ Z(G2) = Z(P ). Thus P := (PZ(G1))/Z(G1) ∼= (PZ(G2))/Z(G2)
and we can consider that P ∈ Syl2(G1/Z(G1)) ∩ Syl2(G2/Z(G2)). As in the previous proof,

P ∼= P/Z(P ) ∼= D2n+1 .

Next, for each for i ∈ {1, 2} we have an isomorphism SU2(qi) ∼= SL2(qi), and hence
PSU2(qi) ∼= PSL2(qi). Furthermore, since qi is odd, PGL2(qi) = PSL2(qi).2 (where 2
denotes the cyclic group of order 2 generated by the diagonal automorphism of PSL2(qi))
by Steinberg’s result (see [42, Chap. 6(8.8), p. 511 and Theorem 8.11]). In other words,
we have

Gi/Z(Gi) = PGU2(qi) ∼= PGL2(qi) . (5.1)
Therefore, assertion (a) follows immediately from Lemma 4.4 and [21, Theorem 1.1], prov-
ing the proposition. □

6. Groups of type (WR5(n))

We now turn to the groups of type (WR5(n)). We continue using Hypothesis 5.1.

Notation 6.1. Throughout this section we let i ∈ {1, 2} be arbitrary and set Gi :=
PSL3(qi), Gi := SL3(qi) and G̃i := GL3(qi) where we assume that (qi − 1)2 = 2n. After
identification, we may assume that G1, G2, G1 and G2 have a common Sylow 2-subgroup
P isomorphic to C2n ≀ C2. Then,

B0(kGi) ∼SM B0(kGi) (6.1)

where the splendid Morita equivalence is induced by inflation (as Z(SL3(qi)) ∼= C(3,qi−1)
is a 2′-group). Using [16, Proposition 4.3.1 and Remark 4.2.1] we know that B0(kGi)
contains three unipotent characters, namely

1Gi
, χq2

i +qi
, χq3

i
,

where we use the convention that the indices denote the degrees, whereas those lying in
B0(kG̃i) can be written as

1
G̃i

, χ̃q2
i +qi

, χ̃q3
i

and satisfy 1
G̃i

↓Gi
= 1Gi

, χ̃
q2

i +qi
↓Gi

= χ
q2

i +qi
and χ̃

q3
i
↓Gi

= χ
q3

i
. (We also refer to [41], [18,

7.19. Theorem (i)], that first described these characters and their degrees.)
We obtain from [19, § 4] and the above that 3 = ℓ(B0(kG̃i)) = ℓ(B0(kGi)) and we may
write

Irrk(B0(kGi)) =: {kGi
, Si, Ti} and Irrk

(
B0(kG̃i)

)
=:

{
k

G̃i
, S̃i, T̃i

}
,
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where Si = S̃i↓Gi
and Ti = T̃i↓Gi

. Moreover, by [19, p. 253], the part of the 2-decomposition
matrix of B0(kG̃i) whose rows are labelled by the unipotent characters is as follows:

k
G̃i

S̃i T̃i

1
G̃i

1 . .

χ̃
q2

i +qi
. 1 .

χ̃
q3

i
1 . 1

(This is the case ∆3 with n = 3, e = 2 and p ≥ 2.)

We start by describing some trivial source modules belonging to the principal 2-block
of SL3(qi) which we will use in the sequel.

Lemma 6.2. The principal block B0(kGi) contains, amongst others, the following trivial
source modules:

(a) the trivial module kGi
, with vertex P and affording the trivial character 1Gi

;
(b) the simple module Si, having Q := C2n × C2n ≤ P as a vertex, and affording the

character χ
q2

i +qi
;

(c) the Scott module Sc(Gi, Q) with vertex Q, satisfying Sc(Gi, Q) ≇ Si;
(d) the Scott module Sc(Gi,Bi) on a Borel subgroup Bi of Gi, which is uniserial with

composition series
kGi

Ti

kGi

and affords the character 1Gi
+ χq3

i
.

Proof. First we note that it is clear that all the given modules belong to the principal
block as at least one of their constituents obviously does.
(a) It is clear that the trivial module is a trivial source module with vertex P affording
the trivial character.
(b) As the restriction of a trivial source module is always a trivial source module, to
prove that Si is a trivial source module affording χ

q2
i +qi

, it is enough to prove that the
kG̃i-module S̃i is a trivial source module affording χ̃

q2
i +qi

. (See e.g. [31, § 4] for these
properties.) Now, [41, pp. 228–229] shows that 1

G̃i
+ χ̃q2+q is a permutation character.

More precisely there exists a subgroup H̃i ≤ G̃i such that

H̃i
∼= (Cqi × Cqi) ⋊ GL2(qi),

∣∣∣G̃i : H̃i

∣∣∣ = 1 + qi + q2
i and 1

H̃i
↑G̃i = 1

G̃i
+ χ̃q2

i +qi
.

Thus, setting Xi := k
H̃i

↑G̃i , the decomposition matrix given in Notation 6.1 implies that

Xi = k
G̃i

+ S̃i (as composition factors) .

Then Xi = k
G̃i

⊕ S̃i as kGi must occur as a composition factor of the socle and of the
head, proving that S̃i is a trivial source module affording the character χ̃

q2
i +qi

. Finally,
using [30, II Lemma 12.6(iii)] and the character table of SL3(qi) in [40] we can read from
the values of the character χ

q2
i +qi

at non-trivial 2-elements that Q = C2n × C2n ≤ P is a
vertex of Si.
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(c) The Scott module Sc(Gi, Q) is a trivial source module with vertex Q and clearly
Si ≇ Sc(Gi, Q), as a Scott module always has a trivial constituent in its head by definition.
(d) [41, pp. 228–229] also shows that 1

G̃i
+2χ̃q2

i +qi
+ χ̃q3

i
is a permutation character. More

precisely, there is a Borel subgroup B̃i ≤ G̃i such that

1B̃i
↑G̃ = 1

G̃i
+ 2χ̃q2

i +qi
+ χ̃q3

i
.

Setting Yi := kB̃i
↑G̃i we obtain from the decomposition matrix in Notation 6.1 that

Yi = 2 × k
G̃i

+ 2 × S̃i + T̃i (as composition factors).

As both Yi and S̃i are trivial source modules, we have

dimk Hom
kG̃i

(
Yi, S̃i

)
= dimk Hom

kG̃i

(
S̃i, Yi

)
=

〈
1

G̃i
+ 2χ̃q2

i +qi
+ χ̃q3

i
, χ̃q2

i +qi

〉
G̃i

= 2

(see [30, II Theorem 12.4(iii)]), implying that S̃i ⊕ S̃i | soc(Yi) and S̃i ⊕ S̃i | hd(Yi). Thus,
there exists a submodule Ui of Yi such that Yi

∼= S̃i ⊕ S̃i ⊕ Ui and hence Ui is a trivial
source module with composition factors 2 × k

G̃i
+ Ti and Ui affords the ordinary character

1
G̃i

+ χ̃q3
i
. Applying [30, II Theorem 12.4(iii)] again, we get

dimk Hom
kG̃

(Ui, Ui) =
〈
1

G̃i
+ χ̃q3

i
, 1

G̃i
+ χ̃q3

i

〉
G̃i

= 2

and
dimk Hom

kG̃i

(
k

G̃i
, Ui

)
=

〈
1

G̃i
, 1

G̃i
+ χ̃q3

i

〉
G̃i

= 1 = dimk Hom
kG̃

(
Ui, k

G̃i

)
.

It follows that

Ui =
k

G̃i

T̃
k

G̃i

= Sc
(
G̃i, B̃i

)

and setting Bi := B̃i ∩ Gi yields assertion (d). □

We can now prove Theorem 1.2(b) for the groups of types (WR5(n)).

Proposition 6.3. The Scott module Sc(G1 × G2, ∆P ) induces a splendid Morita equiva-
lence between B0(kG1) and B0(kG2).

Proof. Below i ∈ {1, 2}. First, we observe that by Lemma 4.4, Sc(G1 × G2, ∆P ) induces a
splendid Morita equivalence between the principal blocks B0(kG1) and B0(kG2) if and only
if Sc(G1 × G2, ∆P ) =: M induces a splendid Morita equivalence between B1 := B0(kG1)
and B2 := B0(kG2). Thus, we may work with Gi instead of Gi (for i ∈ {1, 2}). Now,
observe that FP (G1) = FP (G2) and all involutions in Gi are Gi-conjugate (see e.g. [10,
Theorem 5.3] and [2, Proposition 2 on p. 11]). Thus, it follows that it now suffices to prove
that Conditions (I) and (II) of Theorem 4.5 hold.

Condition (I). By the above we only need to consider one involution in P , so we
choose an involution z ∈ Z(P ), and set Ci := CGi

(z). Clearly, Ci
∼= GL2(qi) and again,

up to identification, we see P ∈ Syl2(G1) ∩ Syl2(G2) (see Remark 5.2). We have to prove
that M(∆⟨z⟩) induces a Morita equivalence between B0(kC1) and B0(kC2). Now, recall
that Mz := Sc(C1 × C2, ∆P ) induces a splendid Morita equivalence between B0(kC1) and
B0(kC2) by Proposition 5.3(a). Moreover, obviously, it is always true that Mz | M(∆⟨z⟩),
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and we obtain that equality Mz = M(∆⟨z⟩) holds by the Brauer indecomposability of M
proved in [25, Theorem 1.1]. Thus Condition (I) is verified.

Condition (II). We have to prove that the functor − ⊗B1 M maps the simple B1-
modules to the simple B2-modules. First, we have kG1 ⊗B1 M ∼= kG2 by [21, Lemma 3.4(a)].
Next, as NGi

(Q)/Q ∼= S3, there are precisely |S3|2 = 2 non-isomorphic trivial source kGi-
modules (see e.g. [31, Theorem 4.6(c)]), namely the modules Sc(Gi, Q) and Si, both
belonging to the principal block by Lemma 6.2. Now, on the one hand, we know from [21,
Theorem 2.1(a)] that S1 ⊗B1 M =: V is indecomposable and non-projective, and on
the other hand we know from [21, Lemma 3.4(b)] that V is a trivial source module with
vertex Q. Thus V is either Sc(G2, Q) or S2. However, Sc(G1, Q)⊗B1 M ∼= Sc(G2, Q)⊕(proj)
by [21, Lemma 3.4(c)]. Hence, it follows immediately that

S1 ⊗B1 M ∼= S2 .

It remains to treat T1. By our assumption, (q − 1)2 = (q2 − 1)2 = 2n, so the Sylow
2-subgroups of B1 and B2 are isomorphic, meaning that the Scott modules Sc(G1,B1)
and Sc(G2,B2) have isomorphic vertices (see e.g. [35, Corollary 4.8.5]). Therefore, [21,
Lemma 3.4(c)] together with Lemma 6.2(d) yield

kG1
T1
kG1

⊗B1 M = Sc(G1,B1) ⊗B1 M ∼= Sc(G2,B2) ⊕ (proj) =
kG2
T2
kG2

⊕ (proj)

and Lemma 4.7 implies that T1 ⊗B1 M ∼= T2 ⊕(proj) . However, again [21, Theorem 2.1(a)]
tells us that T1 ⊗B1 M is indecomposable non-projective, proving that

T1 ⊗B1 M ∼= T2 .

Thus, Condition (II) is verified and the Proposition 6.3 is proved. □

7. Groups of type (WR6(n))

Finally, we examine the groups of type (WR6(n)), and we continue using Hypothesis 5.1.
Our aim is to prove Theorem 1.2(b) for such groups. However, in order to reach this aim,
first we start by collecting some information about the principal 2-block of PGU3(q) and
about some of its modules.

Notation 7.1. Throughout this section, given a positive power q of a prime number
satisfying (q + 1)2 = 2n, we set the following notation. The 3-dimensional projective
unitary group is

GU3(q) =
{

(ars) ∈ GL3
(
q2

) ∣∣∣ (asr)w0(aq
rs) = w0

}
with w0 :=

( 0 0 1
0 1 0
1 0 0

)
,

G := G(q) := PGU3(q) = GU3(q)/Z(GU3(q)) where Z(GU3(q)) consists of the scalar
matrices in GU3(q), and PSU3(q) =: G(q) is the commutator subgroup of PGU3(q), which
is a normal subgroup of index (3, q + 1). Furthermore, we let B := B(q) denote the Borel
subgroup of GU3(q) defined by B(q) = T(q)U(q), with T(q) := {diag(ζ−1, 1, ζq) | ζ ∈ F×

q2}
and

U(q) :=
{(

1 0 0
α 1 0
β −αq 1

)
∈ GU3(q)

∣∣∣∣ α, β ∈ Fq2 and αq+1 + βq + β = 1
}

.

It is clear that B ∩ Z(GU3(q)) = 1, thus we may, and we do, identify B with a subgroup
of PGU3(q).
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Next, we observe that [5, Theorem 1A] gives us the number of ordinary characters in the
principal 2-block of G and their degrees. Moreover, using [40] and [13, Table 1.1 and
Table 3.1], or CHEVIE [14] it is easy to compute central characters and we have that
B0(kG) contains the following ordinary irreducible characters, in the notation of [13]:

condition number of characters
1G 1
χq(q−1) 1
χq3 1
χ

(u)
q2−q+1 u ≡ 0 (mod (q + 1)2′) 2n − 1

χ
(u)
q(q2−q+1) u ≡ 0 (mod (q + 1)2′) 2n − 1

χ
(u,v)
(q−1)(q2−q+1) u, v ≡ 0 (mod (q + 1)2′) (2n − 1)(2n−1 − 1)/3

χ
(u)
q3+1 u ≡ 0 (mod (q + 1)2′) 2n−1

where the subscripts denote the degrees. Finally, the principal block of kG contains pre-
cisely three pairwise non-isomorphic simple modules and we write

Irrk(B0(kG)) = {kG, φ, θ}
as in [17, Theorem 4.1] where the simples and their Brauer characters are identified for
simplicity.

Lemma 7.2. With the notation of Notation 7.1, the decomposition matrix of the principal
2-block of G = PGU3(q) is as follows:

kG φ θ number of characters
1G 1 . . 1
χq(q−1) . 1 . 1
χq3 1 2 1 1
χ

(u)
q2−q+1 1 1 . 2n − 1

χ
(u)
q(q2−q+1) 1 1 1 2n − 1

χ
(u,v)
(q−1)(q2−q+1) . . 1 (2n − 1)(2n−1 − 1)/3

χ
(u)
q3+1 2 2 1 2n−1

Proof. To start with, [17, Appendix] gives us the unipotent part of the decomposition
matrix. (See also [15, Table 4.5].) Then, direct computations using [13, Table 1.1 and
Table 3.1] (see also [40]) or CHEVIE [14] yield the remaining entries. In particular, it
follows easily from the character table that any two irreducible characters of the same
degree have the same reduction modulo 2. □

Corollary 7.3. The B0(kG)-simple modules φ and θ are not trivial source modules.

Proof. It follows from the decomposition matrix of B0(kG) in Lemma 7.2 that φ and θ are
liftable modules. Moreover, any lift of φ to an OG-lattice affords the unipotent character
χq(q−1), and any lift of θ to an OG-lattice affords one of the characters χ

(u,v)
(q−1)(q2−q+1) of

degree (q − 1)(q2 − q + 1). However, it follows from [30, II Theorem 12.4(iii)] that neither
χq(q−1) nor the characters χ

(u,v)
(q−1)(q2−q+1) can be the characters of trivial source modules,

because it is easily checked from the character table that these characters take strictly
negative values at some 2-elements. (See e.g. [13, Table 3.1].) □
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Next we collect useful information about the permutation module kB↑G and the 2nd
Heller translate Ω2(kG), based on ideas of [36, pp. 259–260 and p. 263] and which comple-
ments the information provided in [17, pp. 227–228].

Lemma 7.4. Assume G = PGU3(q) and set X := Ω2(kG). Then, the following assertions
hold:

(a) the permutation module kB↑G is a trivial source module affording the ordinary
character 1B↑G = 1G + χq3 and satisfying

kB↑G =

kG
φ
θ
φ
kG

= Sc(G,B) = Sc(G, Q)

where Q ∈ Syl2(B) is such that Q ∼= C2n+1 and we may assume that Q ≤ P ;
(b) no indecomposable direct summand U of φ↓B or θ↓B belongs to B0(kB);
(c) Ext1

kG(kG, kG) = 0;
(d) dimk Ext1

kG(kG, φ) = dimk Ext1
kG(φ, kG) = 1;

(e) Ext1
kG(kG, θ) = Ext1

kG(θ, kG) = 0;
(f) hd(Ω(kG)) = φ and so there exists a surjective kG-homomorphism P (φ) ↠ Ω(kG);
(g) X lifts to an OG-lattice which affords the character χq(q−1)+χq3 and as composition

factor X = kG + 3 × φ + θ ;
(h) soc(X) ∼= φ and φ | hd(X) ;
(i) dimk HomkG(X, kB↑G) = dimk HomkG(kB↑G, X) = 1;
(j) kG ̸ | soc2(X);
(k) X has a uniserial kG-submodule Z ∼= kB↑G/ soc(kB↑G) of the form

kG
φ
θ
φ

and hence if Y := rad(Z) =
φ
θ
φ

then X/Y is of the form φ
kG

or of the form

kG ⊕ φ .

Proof. (a) The claim about the structure of Q is clear from the structure of B. Hence, it
is clear that Sc(G,B) = Sc(G, Q) (see e.g. [35, Corollary 4.8.5]). The claim about kB↑G

being uniserial with the given composition series and the given ordinary character is given
by [17, Theorem 4.1(c) and Appendix (pp. 238–241)]. Then, as kB↑G is indecomposable,
and Sc(G,B) is an indecomposable direct summand of kB↑G by definition, certainly kB↑G =
Sc(G,B).

(b) Suppose that U | φ↓B and U lies in B0(kB). Since B is 2-nilpotent, its principal block
is nilpotent and so Irrk(B0(kB)) = {kB}. All the composition factors of U are isomorphic
to kB as they must lie in B0(kB). Thus, 0 ̸= HomkB(U, kB) and Frobenius reciprocity
yields

0 ̸= HomkB(φ↓B, kB) ∼= HomkG

(
φ, kB↑G

)
,
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proving that φ is a constituent of the socle of kB↑G. This contradicts (a) and so the first
claim follows. The claim about θ is proved analogously.

(c) By [30, I Corollary 10.13], Ext1
kG(kG, kG) = 0 as O2(G) = G.

(d) First, it is immediate from (a) that dimk Ext1
kG(kG, φ) ≥ 1. Now, suppose that

dimk Ext1
kG(kG, φ) ≥ 2. Then, there exists a non-split short exact sequence

0 → φ → V → kB↑G → 0
of kG-modules, i.e. Ext1

kG(kB↑G, φ) ̸= 0. However, by the Eckmann–Shapiro Lemma,

Ext1
kG

(
kB↑G, φ

)
∼= Ext1

kB(kB, φ↓B) ,

which is zero by (b). This is a contradiction and so it follows that dimk Ext1
kG(kG, φ) = 1.

Moreover, dimk Ext1
kG(kG, φ) = 1 as well by the self-duality of kG and φ.

(e) Suppose that Ext1
kG(kG, θ) ̸= 0. Then, with arguments similar to those used in the

proof of (d), we obtain that Ext1
kG(kB↑G, θ) ̸= 0, which contradicts(b). Again, as kG and θ

are self-dual, it follows that Ext1
kG(kG, θ) = 0 as well.

(f) Since Irrk(B0(kG)) = {kG, φ, θ}, it follows from (c), (d) and (e) that the second
Loewy layer of P (kG) consists just of the simple module φ, with multiplicity 1. Thus, the
claim follows from the fact that Ω(kG) = P (kG)·rad(kG).

(g) First, it is well-known that X lifts to an OG-lattice (see e.g. [31, §7.3]). Moreover,
by (f) we have that Ω2(kG) is the kernel of a short exact sequence of kG-modules of the
form

0 → Ω2(kG) → P (φ) → Ω(kG) → 0 .

Thus, in the Grothendieck ring of kG, we have
Ω2(kG) = P (φ) − Ω(kG) = P (φ) − P (kG)· rad(kG) = P (φ) − (P (kG) − kG) .

Using the decomposition matrix of B0(kG) given in Lemma 7.2, we obtain that the char-
acter afforded by Ω2(kG) is χq(q−1) +χq3 , and the composition factors of X are as claimed.

(h) It is clear that soc(X) ∼= φ as Ω2(kG) is a submodule of P (φ) by the proof of
assertion (g). Now, by Lemma 7.2, any lift of φ affords the character χq(q−1). Thus,
by [30, I Theorem 17.3], X has a pure submodule Y affording the Steinberg character χq3 .
Then, X/Y ∼= φ, proving the claim.

(i) It follows from Frobenius reciprocity that

HomkG
(
kB↑G, X

)
∼= HomkB(kB, X↓B).

Now, as Irrk(B0(kG)) = {kG, φ, θ} and by assertion (g) we have that kG has multiplicity
one as a composition factor of X, it follows from (b) that

HomkB(kB, X↓B) ∼= HomkB(kB, kG↓B) ∼= k

as k-vector spaces. The second equality is obtained analogously.
(j) Consider the Auslander–Reiten sequence (E) : 0 → X

g→ E
π→ kG → 0 starting at

X = Ω2(kG) (and hence ending at kG). (See e.g. [43, §34] for this notion.) By (d) there
exists a uniserial module of length 2 of the form

kG
φ

=: Y .

Consider the quotient homomorphism ρ : Y → Y/φ ∼= kG, which is obviously not a split-
epi. Hence there exists a kG-homomorphism α : Y → E with π ◦ α = ρ. Next we claim
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that ker(α) ̸= soc(Y ). So assume ker(α) = soc(Y ). Then, E ≥ Im(α) ∼= kG, proving that
Im(α) ≤ soc(E) (as it is simple). On the other hand, by (h), soc(X) = φ, implying that
Im(α) ∩ soc(X) = 0. Thus, identifying X with its image in E, we get that Im(α) ∩ X = 0
as Im(α) is simple. (Use here the same argument as in the last five lines of the proof
of Lemma 4.6.) Hence, E has a submodule of the form Im(α) ⊕ X, which implies that
E = Im(α) ⊕ X as we can read from the s.e.s. (E) that they have the same k-dimension.
Thus, it follows from [7, Lemma 6.12] that the sequence (E) splits, which is a contradiction
and the claim follows. Next, since α ̸= 0, it follows that ker(α) = 0, that is, α is injective.
Hence, Im(α) ∼= Y . Now, suppose that kG | soc2(X). Set W := soc2(X) + Im(α) ≤ E.
Note that Im(α) ̸≤ X since X = ker(π), so that Im(α) ̸≤ soc2(X). Hence soc2(X)+Im(α)
has the following socle series [

kG kG
φ

]
,

since by Lemma 4.6 we have soc(E) = soc(X) ∼= φ, where the last isomorphism holds
by (h). This is a contradiction to (d), and so the claim follows.

(k) It follows from assertions (i) and (a) that

1 = dimk HomkG(kB↑G, X) = dimk HomkG


kG
φ
θ
φ
kG

, X

 = dimk HomkG


kG
φ
θ
φ

, X

 ,

where
kG
φ
θ
φ

:= kB↑G/ soc(kB↑G)

and the last equality holds because cX(kG) = 1 by (g). Therefore, there exists a non-zero
kG-homomorphism

γ :

kG
φ
θ
φ

−→ X

Now, either γ is injective and we are done, or ker(γ) ̸= 0. In the latter case, by (h) we

have ker(γ) = θ
φ

and so there is an injective homomorphism

j : kG
φ

↪→ X .

which contradicts assertion (j). The claim follows. □

We can now prove the main result of this section.

Proposition 7.5. For each i ∈ {1, 2} let Gi := G(qi) = PGU3(qi) and Gi := G(qi) =
PSU3(qi), where we assume that (qi + 1)2 = 2n. Then, the following assertions hold:
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(a) Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and
B0(kG2);

(b) Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and
B0(kG2).

Proof. Again, as Gi◁Gi and |Gi/Gi| = (3, q +1) is odd for each i ∈ {1, 2}, by Lemma 3.1
and Lemma 4.2, assertion (b) follows from assertion (a), so it suffices to prove (a).

Set M := Sc(G1 × G2, ∆P ). For each i ∈ {1, 2} write Bi := B0(kGi). Write Irrk(Bi) =
{kGi

, φi, θi} with dimk φi = qi(qi−1) and dimk θi = (qi−1)(qi
2−qi+1), and set Bi := Bi(qi)

as in Notation 7.1. Moreover, let Qi ∈ Syl2(Bi) such that Qi ≤ P and let Xi := Ω2(kGi
)

as in Lemma 7.4. Furthermore, observe that FP (G1) = FP (G2) and all involutions in Gi

are Gi-conjugate (see e.g. [10, Theorem 5.3] and/or [2, Proposition 2 on p. 11]). It follows
that it suffices to prove that Conditions (I) and (II) of Theorem 4.5 hold.

Condition (I). A similar argument to the one used in the proof of Proposition 6.3
(Condition (I)) can be used. In the present case, if z is an involution in the centre of
P , then CGi

(z) =: Ci is a quotient of GU2(q) by a normal subgroup of odd index by [2,
Proposition 4(iii)]. Hence, we obtain from Lemma 4.3 and Proposition 5.4 that Mz :=
Sc(C1 × C2, ∆P ) induces a splendid Morita equivalence between B0(kC1) and B0(kC2)
by Proposition 5.3(a). Moreover, Mz = M(∆⟨z⟩) by the Brauer indecomposability of M
proved in [25, Theorem 1.1], proving that Condition (I) is verified.

Condition (II). Again, we have to prove that the functor − ⊗B1 M maps the simple
B1-modules to the simple B2-modules, and again, we have kG1 ⊗B1 M ∼= kG2 by [21,
Lemma 3.4(a)]. Thus, it remains to prove that φ1 ⊗B1 M ∼= φ2 and θ1 ⊗B1 M ∼= θ2.

First recall from Lemma 7.4(a) that for each i ∈ {1, 2} we have

Sc(Gi, Qi) =

kGi

φi

θi

φi

kGi

. (7.1)

and moreover by [21, Lemma 3.4(c)] we have
Sc(G1, Q1) ⊗B1 M ∼= Sc(G2, Q2) ⊕ (proj) .

Thus, because we already know that
soc(Sc(G1, Q1)) ⊗B1 M = kG1 ⊗B1 M ∼= kG2 = soc(Sc(G2, Q2)) ,

the stripping-off method (see Lemma 4.7(C1)) yields

kG1
φ1
θ1
φ1

⊗B1 M ∼=

kG2
φ2
θ2
φ2

⊕ (proj) (7.2)

where for each i ∈ {1, 2}, the latter uniserial module of length 4 is defined to be

kGi

φi

θi

φi

:= Sc(Gi, Qi)/ soc(Sc(Gi, Qi)) =: Zi
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as in Lemma 7.4(k). Then, applying again the stripping-off method (Lemma 4.7(C2) this
time) to equation (7.2) and hd Zi

∼= kGi
(i ∈ {1, 2}), we obtain that

φ1
θ1
φ1

⊗B1 M =
φ2
θ2
φ2

⊕ (proj) (7.3)

where for each i ∈ {1, 2}, the latter uniserial module of length 3 is defined to be

φi

θi

φi

:= rad(Zi) =: Yi ,

again as in Lemma 7.4(k). Now, by the proof of Lemma 7.4(k), we also know that Yi is
(up to identification) a submodule of Xi for each i ∈ {1, 2}, and

X1 ⊗B1 M ∼= X2 ⊕ (proj)

by [21, Lemma 3.4(d)]. Because of the way, we have defined Xi and Yi (i ∈ {1, 2}) via the
stripping-off method, it follows from the exactness of the functor − ⊗B1 M that

X1/Y1 ⊗B1 M ∼= (X1 ⊗B1 M)/(Y1 ⊗B1 M) ∼= X2/Y2 ⊕ (proj) .

Lemma 7.4(k) gives, up to isomorphism, two possibilities for X1/Y1 and two possibilities
for X2/Y2, namely,

φ1
kG1

or kG1 ⊕ φ1, and φ2
kG2

or kG2 ⊕ φ2, respectively,

but in any configuration we can apply the stripping-off method again (Lemma 4.7(C1))
to strip off the trivial socle summand of X1/Y1 and X2/Y2 and we obtain that

φ1 ⊗B1 M ∼= φ2 ⊕ (proj) .

However, as φ1 is simple, φ1 ⊗B1 M must be indecomposable by [21, Theorem 2.1(a)],
proving that φ1 ⊗B1 M ∼= φ2. Then, we can apply yet again the stripping-off method
twice (once Lemma 4.7(C1) and once Lemma 4.7(C2)) to equation (7.3) and soc(Yi),
respectively hd(Yi), (i ∈ {1, 2}) to obtain that

θ1 ⊗B1 M ∼= θ2 ⊕ (proj) .

However, again, as θ1 is simple, θ1⊗B1 M must be indecomposable by [21, Theorem 2.1(a)],
eventually proving that θ1 ⊗B1 M ∼= θ2. □

8. Proofs of Theorem 1.2 and Theorem 1.3.

We can now prove our main results, that is, Theorem 1.2 and Theorem 1.3. We recall
that G is a finite group with a fixed Sylow 2-subgroup P ∼= C2n ≀ C2, where n ≥ 2 is a
fixed integer.

Proof of Theorem 1.2. (a) To start with, by Lemma 4.3, we may assume that O2′(G) = 1
and therefore that G is one of the groups listed in Theorem 1.1. Furthermore, by
Lemma 3.1 and Lemma 4.2, we may also assume that O2′(G) = G. Hence, Theorem 1.1,
applied a second time, implies that G belongs to family (Wj(n)) for some j ∈ {1, · · · , 6}.
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It remains to prove that j is uniquely determined. So, suppose that G =: G1 is a finite
group belonging to family (Wj1(n)) for some j1 ∈ {1, · · · , 6} and assume that the following
hypothesis is satisfied:

(∗) B0(kG1) is splendidly Morita equivalent to the principal block B0(kG2) of a finite
group G2 belonging to family (Wj2(n)) for some j2 ∈ {1, · · · , 6}.

For i ∈ {1, 2} set Bi := B0(kGi), and notice that (∗) implies that ℓ(B1) = ℓ(B2) and
k(B1) = k(B2) because these numbers are invariant under Morita equivalences.

Now, first assume that j1 = 1. Then, it follows from Theorem 3.3 that ℓ(B1) = 1 and
ℓ(B2) > 1 if j2 > 1, contradicting (∗). Hence, we have j2 = 1 and G2 ∼= G1.

Assume then that j1 = 2. Then, by Theorem 3.3, we have ℓ(B1) = 2 and by (∗) we may
also assume that j2 ∈ {2, 3, 4}. If j2 ̸= 2, then, as n ≥ 2, Theorem 3.3 yields

k(B1) =
(
22n−1 + 9·2n−1 + 4

)
/3 ̸= 22n−1 + 2n+1 = k(B2) ,

also contradicting (∗), so that j2 = 2 and G2 ∼= G1.
Suppose next that j1 = 3. Then, again by Theorem 3.3, we have ℓ(B1) = 2 and

by (∗) we may assume that j2 ∈ {2, 3, 4}. Moreover, by the previous case, we have
j2 ̸= 2. So, let us assume that j2 = 4. We can consider that B1 = B0(k SLn

2 (q1)) and
B2 = B0(k SUn

2 (q2)) for prime powers q1, q2 such that (q1 − 1)2 = 2n = (q2 + 1)2. Then,
again, as SLn

2 (q1) ◁ GL2(q1) and SUn
2 (q2) ◁ GU2(q2) are normal subgroups of odd in-

dex, it follows from Lemma 3.1 and Lemma 4.2 that B0(k GL2(q1)) and B0(k GU2(q2))
are splendidly Morita equivalent, and so Lemma 4.4 implies that B0(k PGL2(q1)) and
B0(k PGU2(q2)) are splendidly Morita equivalent. Now, as PGL2(q1) ∼= PGU2(q1), we
have that B1 := B0(k PGL2(q1)) and B2 := B0(k PGL2(q2)) are splendidly Morita equiv-
alent, where D2n+1 ∈ Syl2(PGL2(q1)) ∩ Syl2(PGL2(q2)) by the proofs of Proposition 5.3
and Proposition 5.4. However, the conditions on q1 and q2 imply that B1 and B2 are
in (5) and (6), respectively, in the list of [21, Theorem 1.1], hence cannot be splendidly
Morita equivalent. Thus, we have a contradiction, proving that j2 = 3 if j1 = 3. Moreover,
swapping the roles of j1 and j2 in the previous argument, we obtain that j2 = 4 if j1 = 4.

Suppose next that j1 = 5. Then, as above, Theorem 3.3 and (∗) imply that ℓ(B1) = 3
and j2 ∈ {5, 6}. So, assume that j2 = 6. Hence, we can consider that B1 = B0(k PSL3(q1))
and B2 = B0(k PSU3(q2)) for prime powers q1 and q2 such that (q1 − 1)2 = 2n = (q2 + 1)2.
However, B0(k PSL3(q1)) and B0(k PSU3(q2)) cannot be splendidly Morita equivalent by
Lemma 6.2 and Corollary 7.3, because such an equivalence maps simple modules to simple
modules and also trivial source modules to trivial source modules. It follows that j2 = 5
if j1 = 5. Again, swapping the roles of j1 and j2 in the previous argument, we obtain that
j2 = 6 if j1 = 6. Finally, we observe that the claim about the Scott module is immediate
by construction.
(b) Assume G1 and G2 both belong to family (Wj(n)) for a j ∈ {3, 4, 5, 6}. Then,
Sc(G1 × G2, ∆P ) induces a splendid Morita equivalence between B0(kG1) and B0(kG2)
by Propositions 5.3, 5.4, 6.3 and 7.5 for j = 3, 4, 5 and 6 respectively. □

Proof of Theorem 1.3. It is clear from the definitions that any splendid Morita equivalence
is in particular a Morita equivalence. Thus, it only remains to prove that two distinct
splendid Morita equivalence classes of principal blocks in Theorem 1.2 do not merge into
one Morita equivalence class. In fact, from the numbers ℓ(B) and k(B) in Theorem 3.3, it
suffices to argue that the splendid Morita equivalence classes of principal blocks of groups of
type (Wj(3)) and (Wj(4)), respectively of type (Wj(5)) and (Wj(6)), do not merge into one
Morita equivalence class. In the former case, this is clear from the proof of Theorem 1.2,
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because else B0(k PGL2(q1)) and B0(k PGL2(q2)) with (q1 − 1)2 = 2n = (q2 + 1)2 would
be Morita equivalent, which would contradict Erdmann’s classification of tame blocks
in [12]. In the latter case, it follows from the decomposition matrices of B0(k PSL3(q1))
and B0(k PSU3(q2)) with (q1 − 1)2 = 2n = (q2 + 1)2 given in [39, Proposition 6.12] and
Lemma 7.2, respectively, that these blocks are not Morita equivalent. The claim follows.

□

Appendix A. On [22, Proposition 3.3(b)]

The purpose of this appendix is to fix a problem in the proof of [22, Proposition 3.3(b)],
which was incomplete as written in [22]. See Remark A.3.

The next corollary is the most essential in this appendix, namely, for the proof of
(ii) implies (i) in Theorem A.2. This is already implicitly explained in the proof of [34,
Theorem 9.7.4].

Corollary A.1 (See [34, Theorem 9.7.4]). The notation here is the same as that in [34]
except that O is replaced by k. Let G, H be finite groups, let b, c be blocks of kG, kH, re-
spectively, such that kGb and kHc have a common defect group P . Let i and j be P -source
idempotents of kGb and kHc, respectively (and hence i ∈ (kGb)∆P and j ∈ (kHc)∆P ).

Now, suppose that there is an indecomposable direct summand M of the (kGb, kHc)-
bimodule kGi ⊗kP jkH such that the pair (M, M∗) induces a Morita equivalence between
kGb and kHc. Furthermore let φ := φM be the unitary interior P -algebra isomorphism
φ : i kGi

≈→ jkHj induced by M as in [34, Theorem 9.7.4]. Then, for any indecomposable
right kGb-module X,

Xi ∼= (X ⊗kGb Mj)φ as right i kGi-modules

where (X ⊗kGb Mj)φ = X ⊗kGb Mj as k-vector spaces and the right action of i kGi is
defined using φ.

Proof. The notation here is the same as in the proof of [34, (i) ⇒ (ii) in Theorem 9.7.4]
except that O is replaced by k. First we know already Mj ∼= kGi as (kG, kP )-bimodules
via α there. In the following the endomorphism ring of a left R-module X for a ring R is
denoted by EndR(X). Then, since Mj can be considered as a right not only kP -module
but also EndkGb(Mj)-module. Since Mj ∼= kGi as left kGb-modules from the above, it
follows that EndkGb(Mj) ∼= EndkGb(kGi) ∼= (i kGi)op as k-algebras. On the other hand,
EndkGb(Mj) ∼= EndkGb(M ⊗kHc kHj) ∼= EndkHc(kHj) ∼= (j kHj)op as k-algebras (the
second isomorphism comes from the fact that M realises a Morita equivalence between
kGb and kHc). Since the isomorphism φ = φM is defined by using these isomorphisms
(see the final several lines in the proof of [34, (i) ⇒ (ii) in Theorem 9.7.4]), we eventually
obtain that (X ⊗kGb Mj)φ

∼= X ⊗kGb kGi ∼= Xi as right i kGi-modules. □

Theorem A.2 (See [22, Proposition 3.3(b)]). Suppose that G1 and G2 are finite groups
with a common Sylow p-subgroup P , and assume that Z is a subgroup of P such that
Z ≤ Z(G1) ∩ Z(G2). Write G1 := G1/Z, G2 := G2/Z and P := P/Z. Then, the following
assertions are equivalent:

(i) Sc(G1 × G2, ∆P ) induces a Morita equivalence between B0(kG1) and B0(kG2);
(ii) Sc(G1 × G2, ∆P ) induces a Morita equivalence between B0(kG1) and B0(kG2).
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Proof. Let i ∈ {1, 2}. Write Bi := B0(kGi) and let Bi be the image of Bi under the k-
algebra epimorphism kGi ↠ kGi induced by the quotient group homomorphism Gi ↠ Gi.
Then [35, Chap. 5 Theorem 8.11] says that Bi = B0(kGi). Furthermore Bi

∼= kGi ⊗kGi

Bi ⊗kGi
kGi as (kGi, kGi)-bimodules. Write M := Sc(G1 × G2, ∆P ) and N := M∗ =

Sc(G2 × G1, ∆P ). Set M := kG1 ⊗kG1 M ⊗kG2 kG2. Then, the following holds:

M
∣∣∣ kG1 ⊗kG1

(
IndG1×G2

∆P (k∆P )
)

⊗kG2 kG2 = kG1 ⊗kG1 (kG1 ⊗kP kG2) ⊗kG2 kG2

∼= kG1 ⊗kP kG2
∼= kG1 ⊗kP kG2

∼= IndG1×G2
∆P

(k∆P ).

Note furthermore that M obviously has the trivial k(G1 × G2)-module kG1×G2
as an

epimorphic image. Set M := Sc(G1 × G2, ∆P ). Then

M
∣∣∣ M (equality does not necessarily hold). (A.1)

(i) ⇒ (ii): Set N := kG2 ⊗kG2 N ⊗kG1 kG1. Then,

M ⊗B2
N ∼= M ⊗kG2

N

∼= (kG1 ⊗kG1 M ⊗kG2 kG2) ⊗kG2
(kG2 ⊗kG2 N ⊗kG1 kG1)

∼= kG1 ⊗kG1 (M ⊗kG2 kG2) ⊗kG2 N ⊗kG1 kG1
∼= kG1 ⊗kG1 (kG1 ⊗kG1 M) ⊗kG2 N ⊗kG1 kG1

since M ⊗kG2 kG2 ∼= kG1 ⊗kG1 M as (kG1, kG2)-bimodules
∼= (kG1 ⊗kG1 kG1) ⊗kG1 M ⊗kG2 N ⊗kG1 kG1
∼= (kG1 ⊗kG1

kG1) ⊗kG1 M ⊗kG2 N ⊗kG1 kG1
∼= kG1 ⊗kG1 (M ⊗kG2 N) ⊗kG1 kG1
∼= kG1 ⊗kG1 B1 ⊗kG1 kG1 by (i)
∼= B1.

Since Bi is a symmetric k-algebra for i = 1, 2, the above already shows that the pair
(M, N) induces a Morita equivalence between B1 and B2, and hence M is indecomposable
as a right k(G1 × G2)-module, which implies that M ∼= M from (A.1).
(ii) ⇒ (i): As in [33, p. 822] there exist P -source idempotents ji of Bi for i = 1, 2 with
M | (kG1 j1 ⊗kP j2 kG2). Then, for i = 1, 2, the image ji of ji via the canonical k-algebra
epimorphism kGi ↠ kGi is a P -source idempotent of Bi (see [35, Chap. 5 Theorem 8.11],
[28, §3] and [20, Lemma 4.1]).

Hence,
M | (kG1 j1 ⊗kP j2 kG2) (A.2)

from (A.1). Now, we apply [34, (i) ⇒ (ii) in Theorem 9.7.4] to the blocks B1 and B2.
Namely, the existence of such an M induces a unitary interior P -algebra isomorphism

Φ := φM : j1 kG1 j1
≈→ j2 kG2 j2.

Thanks to [37, Corollary 1.12] (see [27]), Φ lifts to a unitary interior P -algebra isomor-
phism φ : j1kG1 j1

≈→ j2kG2 j2, that is, Φ(a) = φ(a) for every a ∈ j1 kG1 j1. Then, by
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making use of φ it follows from [34, (ii) ⇒ (i) in Theorem 9.7.4] that there is an inde-
composable direct summand M of the (B1, B2)-bimodule kG1 j1 ⊗kP j2 kG2 such that the
pair (M, M∨) induces a Morita equivalence between B1 and B2 . Set S2 := kG1 ⊗B1 M.
Then, though we do not know that M = Sc(G × H, ∆P ) yet, Corollary A.1 yields that
(S2 j2)φ

∼= kG1 j1 as right j1 B1 j1-modules. Hence by sending these via the canonical
epimorphism kGi ↠ kGi,

(S2 j2)Φ ∼= (S2 j2)φ
∼= kG1

j1 as right j1 B1 j1-modules. (A.3)

Now, we claim that M ∼= M . Since the Scott module M induces a Morita equivalence
between B1 and B2 and M is related to ji for i = 1, 2 (see (A.2)) and Φ, it follows from
Corollary A.1 and [21, Lemma 3.4(a)] that

kG1
j1 ∼= (kG1

⊗B1
M j2)Φ ∼= (kG2

j2)Φ as right j1B1 j1-modules. (A.4)

Hence (A.3) and (A.4) yield that (S2 j2)Φ ∼= (kG2
j2)Φ as right j1B1 j1-modules, and hence

S2 j2 ∼= kG2
j2 as right j2B2 j2-modules. Since the pair (B2 j2, j2B2) induces the canonical

Morita equivalence between B2 and its source algebra j2 B2 j2, we get that S2 ∼= kG2

as right B2-modules, say as right kG2-modules. Since S2 and kG2 are both simple right
kG2-modules, Z is in their kernels. Thus, DefG2

G2
S2 ∼= DefG2

G2
kG2 as right kG2-modules

where Def is the deflation. Hence S2 ∼= kG2 as right kG2-modules. This means by
the definition of S2 that the bimodule M transposes kG1 to kG2 . Thus, the adjunction
in [38, Line 9 on p. 105] implies that Hom(k(G1×G2))op(M, k(G1×G2)) ̸= {0}. Therefore M ∼=
Sc(G1 × G2, ∆P ) = M by [43, Exercise (27.5)]. The claim is proved. □

Remark A.3. On the right-hand side of line 2 of [22, Lemma 3.1(b)], Sc(G × H, ∆P )
must be replaced by Sc(G × H, ∆P ) ⊕ N for a possibly non-zero k(G × H)-module N as
in (A.1). As a result, the proof of [22, Proposition 3.3(b)] as given in [22] holds only in the
case in which N = {0}. However, Theorem A.2 now proves that [22, Proposition 3.3(b)]
is correct, also in the case in which N ̸= {0}. As a consequence, [22] and [23, proof of
Proposition 5.2], where [22, Proposition 3.3(b)] are used, are not affected and remain true
with the given proofs. Moreover, we would like to mention that the results of [29], together
with further explicit calculations, give an alternative way to establish the validity of [22,
Proposition 3.3(b)] in special cases, e.g. when the defect groups are generalised quaternion
or semi-dihedral 2-groups.
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