Koszul duality for Coxeter groups
Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 335-374.

We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W,S) attached to the dual realization.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.10
Classification: 18M30, 20C08, 20F55, 16S37
Keywords: Koszul duality, Coxeter group, Elias–Williamson diagrammatic category, Hecke category, Highest weight categories, Perverse sheaves

Riche, Simon 1; Vay, Cristian 2

1 Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
2 Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, CIEM–CONICET, Córdoba, Argentina
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_3_335_0,
     author = {Riche, Simon and Vay, Cristian},
     title = {Koszul duality for {Coxeter} groups},
     journal = {Annals of Representation Theory},
     pages = {335--374},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {3},
     year = {2024},
     doi = {10.5802/art.10},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.10/}
}
TY  - JOUR
AU  - Riche, Simon
AU  - Vay, Cristian
TI  - Koszul duality for Coxeter groups
JO  - Annals of Representation Theory
PY  - 2024
SP  - 335
EP  - 374
VL  - 1
IS  - 3
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.10/
DO  - 10.5802/art.10
LA  - en
ID  - ART_2024__1_3_335_0
ER  - 
%0 Journal Article
%A Riche, Simon
%A Vay, Cristian
%T Koszul duality for Coxeter groups
%J Annals of Representation Theory
%D 2024
%P 335-374
%V 1
%N 3
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.10/
%R 10.5802/art.10
%G en
%F ART_2024__1_3_335_0
Riche, Simon; Vay, Cristian. Koszul duality for Coxeter groups. Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 335-374. doi : 10.5802/art.10. https://art.centre-mersenne.org/articles/10.5802/art.10/

[1] Abe, Noriyuki A homomorphism between Bott–Samelson bimodules (2020) | arXiv

[2] Abe, Noriyuki A bimodule description of the Hecke category, Compos. Math., Volume 157 (2021) no. 10, pp. 2133-2159 | DOI | MR | Zbl

[3] Achar, Pramod N.; Makisumi, Shotaro; Riche, Simon; Williamson, Geordie Free-monodromic mixed tilting sheaves on flag varieties (2017) | arXiv

[4] Achar, Pramod N.; Makisumi, Shotaro; Riche, Simon; Williamson, Geordie Koszul duality for Kac–Moody groups and characters of tilting modules, J. Am. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl

[5] Achar, Pramod N.; Riche, Simon Modular perverse sheaves on flag varieties, II: Koszul duality and formality, Duke Math. J., Volume 165 (2016) no. 1, pp. 161-215 | DOI | MR | Zbl

[6] Achar, Pramod N.; Riche, Simon; Vay, Cristian Mixed perverse sheaves on flag varieties for Coxeter groups, Can. J. Math., Volume 72 (2020) no. 1, pp. 1-55 | DOI | MR | Zbl

[7] Beilinson, Alexander A.; Bezrukavnikov, Roman; Mirković, I. Tilting exercises, Mosc. Math. J., Volume 4 (2004) no. 3, pp. 547-557 | DOI | MR | Zbl

[8] Beilinson, Alexander A.; Ginzburg, Victor; Soergel, Wolfgang Koszul duality patterns in representation theory, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl

[9] Bezrukavnikov, Roman; Yun, Zhiwei On Koszul duality for Kac–Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 | DOI | MR | Zbl

[10] Chen, Xiao-Wu; Ye, Yu; Zhang, Pu Algebras of derived dimension zero, Commun. Algebra, Volume 36 (2008) no. 1, pp. 1-10 | DOI | MR | Zbl

[11] Elias, Ben; Williamson, Geordie The Hodge theory of Soergel bimodules, Ann. Math., Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl

[12] Elias, Ben; Williamson, Geordie Soergel calculus, Represent. Theory, Volume 20 (2016), pp. 295-374 | DOI | MR | Zbl

[13] Elias, Ben; Williamson, Geordie Localized calculus for the Hecke category, Ann. Math. Blaise Pascal, Volume 30 (2023) no. 1, pp. 1-73 | DOI | MR | Zbl

[14] Hazi, Amit Existence and rotatability of the two-colored Jones-Wenzl projector, Bull. Lond. Math. Soc., Volume 56 (2024) no. 3, pp. 1095-1113 | DOI | MR | Zbl

[15] Jensen, Lars Thorge; Williamson, Geordie The p-canonical basis for Hecke algebras, Categorification and higher representation theory, American Mathematical Society, 2017, pp. 333-361 | DOI | Zbl

[16] Kazhdan, David; Lusztig, George Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl

[17] Le, Jue; Chen, Xiao-Wu Karoubianness of a triangulated category, J. Algebra, Volume 310 (2007) no. 1, pp. 452-457 | DOI | MR | Zbl

[18] Libedinsky, Nicolas Light leaves and Lusztig’s conjecture, Adv. Math., Volume 280 (2015), pp. 772-807 | DOI | MR | Zbl

[19] Riche, Simon Lectures on modular representation theory of reductive algebraic groups (book in preparation, https://lmbp.uca.fr/~riche/curso-riche-total.pdf)

[20] Riche, Simon Koszul duality and modular representations of semisimple Lie algebras, Duke Math. J., Volume 154 (2010) no. 1, pp. 31-134 | DOI | MR | Zbl

[21] Riche, Simon; Williamson, Geordie Tilting modules and the p-canonical basis, Astérisque, 397, Société Mathématique de France, 2018 | Zbl

[22] Sauerwein, Marc Koszul duality and Soergel bimodules for dihedral groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1251-1283 | DOI | MR | Zbl

[23] Soergel, Wolfgang Kategorie 𝒪, perverse garben und moduln über den koinvarianten zur Weylgruppe, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 421-445 | DOI | Zbl

[24] Soergel, Wolfgang Kazhdan–Lusztig polynomials and a combinatorics for tilting modules, Represent. Theory, Volume 1 (1997), pp. 83-114 | DOI | MR | Zbl

[25] Soergel, Wolfgang Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu, Volume 6 (2007) no. 3, pp. 501-525 | DOI | Zbl

Cited by Sources: