We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category attached to a Coxeter system and a given realization to the Hecke category attached to the same Coxeter system and the dual realization. This extends a construction of Beĭlinson–Ginzburg–Soergel [8] and Bezrukavnikov–Yun [9] in a geometric context, and of the first author with Achar, Makisumi and Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves” considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of attached to the dual realization.
Revised:
Accepted:
Published online:
Keywords: Koszul duality, Coxeter group, Elias–Williamson diagrammatic category, Hecke category, Highest weight categories, Perverse sheaves
Riche, Simon 1; Vay, Cristian 2
@article{ART_2024__1_3_335_0, author = {Riche, Simon and Vay, Cristian}, title = {Koszul duality for {Coxeter} groups}, journal = {Annals of Representation Theory}, pages = {335--374}, publisher = {The Publishers of ART}, volume = {1}, number = {3}, year = {2024}, doi = {10.5802/art.10}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.10/} }
TY - JOUR AU - Riche, Simon AU - Vay, Cristian TI - Koszul duality for Coxeter groups JO - Annals of Representation Theory PY - 2024 SP - 335 EP - 374 VL - 1 IS - 3 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.10/ DO - 10.5802/art.10 LA - en ID - ART_2024__1_3_335_0 ER -
Riche, Simon; Vay, Cristian. Koszul duality for Coxeter groups. Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 335-374. doi : 10.5802/art.10. https://art.centre-mersenne.org/articles/10.5802/art.10/
[1] A homomorphism between Bott–Samelson bimodules (2020) | arXiv
[2] A bimodule description of the Hecke category, Compos. Math., Volume 157 (2021) no. 10, pp. 2133-2159 | DOI | MR | Zbl
[3] Free-monodromic mixed tilting sheaves on flag varieties (2017) | arXiv
[4] Koszul duality for Kac–Moody groups and characters of tilting modules, J. Am. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl
[5] Modular perverse sheaves on flag varieties, II: Koszul duality and formality, Duke Math. J., Volume 165 (2016) no. 1, pp. 161-215 | DOI | MR | Zbl
[6] Mixed perverse sheaves on flag varieties for Coxeter groups, Can. J. Math., Volume 72 (2020) no. 1, pp. 1-55 | DOI | MR | Zbl
[7] Tilting exercises, Mosc. Math. J., Volume 4 (2004) no. 3, pp. 547-557 | DOI | MR | Zbl
[8] Koszul duality patterns in representation theory, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl
[9] On Koszul duality for Kac–Moody groups, Represent. Theory, Volume 17 (2013), pp. 1-98 | DOI | MR | Zbl
[10] Algebras of derived dimension zero, Commun. Algebra, Volume 36 (2008) no. 1, pp. 1-10 | DOI | MR | Zbl
[11] The Hodge theory of Soergel bimodules, Ann. Math., Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl
[12] Soergel calculus, Represent. Theory, Volume 20 (2016), pp. 295-374 | DOI | MR | Zbl
[13] Localized calculus for the Hecke category, Ann. Math. Blaise Pascal, Volume 30 (2023) no. 1, pp. 1-73 | DOI | MR | Zbl
[14] Existence and rotatability of the two-colored Jones-Wenzl projector, Bull. Lond. Math. Soc., Volume 56 (2024) no. 3, pp. 1095-1113 | DOI | MR | Zbl
[15] The -canonical basis for Hecke algebras, Categorification and higher representation theory, American Mathematical Society, 2017, pp. 333-361 | DOI | Zbl
[16] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl
[17] Karoubianness of a triangulated category, J. Algebra, Volume 310 (2007) no. 1, pp. 452-457 | DOI | MR | Zbl
[18] Light leaves and Lusztig’s conjecture, Adv. Math., Volume 280 (2015), pp. 772-807 | DOI | MR | Zbl
[19] Lectures on modular representation theory of reductive algebraic groups (book in preparation, https://lmbp.uca.fr/~riche/curso-riche-total.pdf)
[20] Koszul duality and modular representations of semisimple Lie algebras, Duke Math. J., Volume 154 (2010) no. 1, pp. 31-134 | DOI | MR | Zbl
[21] Tilting modules and the -canonical basis, Astérisque, 397, Société Mathématique de France, 2018 | Zbl
[22] Koszul duality and Soergel bimodules for dihedral groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1251-1283 | DOI | MR | Zbl
[23] Kategorie , perverse garben und moduln über den koinvarianten zur Weylgruppe, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 421-445 | DOI | Zbl
[24] Kazhdan–Lusztig polynomials and a combinatorics for tilting modules, Represent. Theory, Volume 1 (1997), pp. 83-114 | DOI | MR | Zbl
[25] Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu, Volume 6 (2007) no. 3, pp. 501-525 | DOI | Zbl
Cited by Sources: