Rigid integral representations of quivers over arbitrary commutative rings
Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 375-384.

In earlier work, the author classified rigid representations of a quiver by finitely generated free modules over a principal ideal ring. Here we extend the results to representations of a quiver by finitely generated projective modules over an arbitrary commutative ring.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.15
Classification: 16G20, 16G30, 16H20, 13C10
Keywords: Quiver representations, Rigid representations, Lattices over orders

Crawley-Boevey, William 1

1 Fakultät für Mathematik, Universität Bielefeld Postfach 100131 33501 Bielefeld Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_3_375_0,
     author = {Crawley-Boevey, William},
     title = {Rigid integral representations of quivers over arbitrary commutative rings},
     journal = {Annals of Representation Theory},
     pages = {375--384},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {3},
     year = {2024},
     doi = {10.5802/art.15},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.15/}
}
TY  - JOUR
AU  - Crawley-Boevey, William
TI  - Rigid integral representations of quivers over arbitrary commutative rings
JO  - Annals of Representation Theory
PY  - 2024
SP  - 375
EP  - 384
VL  - 1
IS  - 3
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.15/
DO  - 10.5802/art.15
LA  - en
ID  - ART_2024__1_3_375_0
ER  - 
%0 Journal Article
%A Crawley-Boevey, William
%T Rigid integral representations of quivers over arbitrary commutative rings
%J Annals of Representation Theory
%D 2024
%P 375-384
%V 1
%N 3
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.15/
%R 10.5802/art.15
%G en
%F ART_2024__1_3_375_0
Crawley-Boevey, William. Rigid integral representations of quivers over arbitrary commutative rings. Annals of Representation Theory, Volume 1 (2024) no. 3, pp. 375-384. doi : 10.5802/art.15. https://art.centre-mersenne.org/articles/10.5802/art.15/

[1] Caldero, P.; Keller, B. From triangulated categories to cluster algebras. II, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 6, pp. 983-1009 | DOI | Numdam | MR | Zbl

[2] Crawley-Boevey, W. Exceptional sequences of representations of quivers, Representations of algebras (Ottawa, ON, 1992) (CMS Conference Proceedings), Volume 14, American Mathematical Society, 1993, pp. 117-124 | MR | Zbl

[3] Crawley-Boevey, W. Rigid integral representations of quivers, Representation theory of algebras (Cocoyoc, 1994) (CMS Conference Proceedings), Volume 18, American Mathematical Society, 1996, pp. 155-163 | MR | Zbl

[4] Crawley-Boevey, W. Subrepresentations of general representations of quivers, Bull. Lond. Math. Soc., Volume 28 (1996) no. 4, pp. 363-366 | DOI | MR | Zbl

[5] Demazure, M.; Gabriel, P. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris; North-Holland, 1970 (avec un appendice Corps de classes local par Michiel Hazewinkel) | MR | Zbl

[6] Eisenbud, D. Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | DOI | MR | Zbl

[7] Geiß, C.; Leclerc, B.; Schröer, J. Rigid modules and Schur roots, Math. Z., Volume 295 (2020) no. 3-4, pp. 1245-1277 | DOI | MR | Zbl

[8] Gorodentsev, A. L. Exceptional bundles on surfaces with a moving anticanonical class, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 52 (1988) no. 4, p. 740-757, 895 | DOI | MR | Zbl

[9] Happel, D.; Ringel, C. M. Tilted algebras, Trans. Am. Math. Soc., Volume 274 (1982) no. 2, pp. 399-443 | DOI | MR | Zbl

[10] Hubery, A.; Krause, H. A categorification of non-crossing partitions, J. Eur. Math. Soc., Volume 18 (2016) no. 10, pp. 2273-2313 | DOI | MR | Zbl

[11] Lam, T. Y. Serre’s problem on projective modules, Springer Monographs in Mathematics, Springer, 2006 | DOI | MR

[12] Rudakov, A. N. Exceptional collections, mutations and helices, Helices and vector bundles (London Mathematical Society Lecture Note Series), Volume 148, Cambridge University Press, 1990, pp. 1-6 | DOI | MR | Zbl

[13] Schofield, A. General representations of quivers, Proc. Lond. Math. Soc., Volume 65 (1992) no. 1, pp. 46-64 | DOI | MR | Zbl

Cited by Sources: