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Koszul duality for Coxeter groups

Simon Riche and Cristian Vay

ABSTRACT. We construct a “Koszul duality” equivalence relating the (diagrammatic) Hecke category
attached to a Coxeter system and a given realization to the Hecke category attached to the same Cox-
eter system and the dual realization. This extends a construction of Beilinson-Ginzburg—Soergel [8]
and Bezrukavnikov—Yun [9] in a geometric context, and of the first author with Achar, Makisumi and
Williamson [4]. As an application, we show that the combinatorics of the “tilting perverse sheaves”
considered in [6] is encoded in the combinatorics of the canonical basis of the Hecke algebra of (W, .S)
attached to the dual realization.

1. INTRODUCTION

1.1. Koszul duality for general Coxeter groups. The utility of Koszul duality in
Representation Theory has been first emphasized by Beilinson—Ginzburg—Soergel [8] in the
setting of the Kazhdan—Lusztig conjecture on characters of simple highest weight modules
for a complex semisimple Lie algebra. In this paper the authors explained in particular
the relation between this construction and some “mixed” properties of f-adic perverse
sheaves on flag varieties of reductive algebraic groups. A modified form of this Koszul
duality for constructible sheaves on flag varieties was later generalized to Kac—Moody
groups by Bezrukavnikov—Yun [9], which allowed to explain the relations between several
equivalences of categories constructed by Bezrukavnikov with various collaborators, and
related to local geometric Langlands duality and representations of quantum groups at
roots of unity.

More recently, as part of a program aiming at generalizing some of Bezrukavnikov’s
equivalences in the setting of reductive algebraic groups over fields of positive character-
istic, a version of the Koszul duality of [9] was obtained by the first author with Achar,
Makisumi and Williamson in [4]. This construction is more formal and less geometric than
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that of [9]; in particular it involves the “mixed derived categories” constructed with Achar
(see [5]), which are useful but rather ad-hoc. A more natural setting for this construction
seems to be that of the Hecke category attached to a Coxeter system and a given realiza-
tion by Elias—Williamson [12] and, although the final construction of Koszul duality was
restricted to the case of Cartan realizations of crystallographic Coxeter systems, i.e. the
case when the Hecke category can be described geometrically in terms of parity complexes
on flag varieties of Kac—-Moody groups, part of the constructions involved were already
treated in full generality in [3].

This raised the question of the existence of a version of Koszul duality in the general
setting of [12], involving in particular a general Coxeter system.! The main result of this
paper is a realization of this idea based on some prior work with Achar [6], under some
technical conditions that we discuss in §1.4 below.

1.2. Statement. Let us consider a Coxeter system (W,S) and a realization b of (W, .S)
over a field k satisfying appropriate assumptions (see §1.4). To these data Elias—Williamson
attach a k-linear monoidal category Zps(h, W) endowed with a “shift” autoequivalence
(1), defined by generators and relations, and whose split Grothendieck group identifies
with the Hecke algebra of (W, S). For any objects X and Y in Zgs(h, W), the k-vector
space

P Homgp, h.u) (X, Y (1))

newr
admits a canonical structure of graded bimodule over the symmetric algebra R of V*
where V' is the representation underlying b, and by “killing” the left, resp. right, action of
this algebra one obtains a category Zps(h, W), resp. Zpg(h, W). We then introduce the
“biequivariant”, “right equivariant” and “left equivariant” categories attached to (h, W) as

BE(h, W) = K*254(h, W),
RE(h, W) = K" Zg(h, W),
LE(h, W) = K> 28, (h, W)

where the superscript “@” indicates the additive hull. (The terminology, taken from [3],
is motivated by the special case when the Hecke category can be described in terms of
constructible sheaves: the biequivariant category involves sheaves on the group which are
equivariant for a Borel subgroup on both sides, while the right, resp. left, equivariant
category involves sheaves which are equivariant for the action on the right, resp. left.)

With this notation, in the special case considered there, one form of the Koszul duality
of [4] is an equivalence of triangulated categories

K+ RE(h, W) = LE(h*, W)

which satisfies ko (1) = (—1)[1] ok, where h* is the dual realization (obtained by switching
roots and coroots; in the case related to geometry this amounts to Langlands duality).
To state further properties of this equivalence one needs to recall that the categories
RE(h, W) and LE(h*, W) admit canonical “perverse” t-structures (again, the terminology
comes from geometry) whose hearts admit canonical highest weight structures. More
precisely, at the time when [3, 4] were written this was known only in the case of Cartan
realizations of crystallographic Coxeter systems, but in the meantime this construction was
extended to the general setting in [6]. As in any highest weight category one can consider

LA first suggestion of the existence of such a construction can be found in [12, Remark 3.5].
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the indecomposable tilting objects in these categories, and the main property of Koszul
duality can be roughly stated as the fact that it exchanges the indecomposable objects in
the karoubian envelope of @;‘gs(h, W), resp. Z55(h*, W), with the indecomposable tilting
objects in the heart of the perverse t-structure on LE(h*, W), resp. RE(h, W). One of the
main results of the present paper is a version of this statement for general realizations of
general Coxeter groups, see Theorem 7.4.

1.3. Strategy. The main strategy of our proof is similar to that used in [4] (which, itself, is
an adaptation of constructions considered in [7, 8, 9, 23]). Namely, instead of constructing
the equivalence  directly, we first consider a “free monodromic” variant, from which (the
inverse of) k will be obtained by essentially “killing” a left R-action on morphisms. The
main point is that in this setting one works with monoidal categories, where the definition
of Zps(h, W) by generators and relations can be used with great effect.

We therefore construct a category of “free monodromic tilting objects” Fg(h, W) at-
tached to (h, W), and then an equivalence of monoidal categories

-@BS(U*v W) :> yBS(bv W)7

see Theorem 7.1. The main difficulty lies in the definition of such a functor; once this is
known the same arguments as in [4] can be developed to prove that it is an equivalence.
To define this functor, in view of the definition of Zpg(h*, W) we need to describe the
images of the generating morphisms, and then check that these images satisfy the relations
imposed in Zps(h*, W). The construction of all the morphisms involving only one color
can be copied from [4], but the definition of the morphism corresponding to the 2-colors
generators given there relies partially on geometry. Here we give a different (and general)
construction of this morphism in Section 6.

This construction relies on the prior construction of a “functor V” in case W is finite,
explained in Section 5. This construction is similar to that in [4], with one notable excep-
tion: in [4] this functor takes values in “usual” Soergel bimodules, which leads to imposing
technical assumptions on the characteristic of k; these assumptions can be removed later
in the paper using some change-of-scalars arguments which make sense only for Cartan
realizations. Here we use a variant of the construction of Soergel bimodules developed in
the meantime by Abe [2], which allows to avoid these technical assumptions completely.

The proof that these morphisms satisfy the required relations is again similar to the
corresponding part of [4], but using Abe’s category of bimodules rather than plain bimod-
ules.

1.4. Assumptions. The assumptions that we have to impose on our relization § are
explained in detail in §2.1, §2.3 and §4.9. The assumptions of §2.1-§2.3 are “standard”
assumptions that are required for the theories in [12] and [2] to behave appropriately. They
are known to hold in the main examples of realizations that arise “in nature,” i.e. the
Cartan realizations of crystallographic Coxeter systems and the geometric realization (and
its variants considered by Soergel) of any Coxeter system not involving type Hs.

The assumption of §4.9 is of a different kind: in [3] an ad-hoc version of the “free mon-
odromic completed category” of [9] was constructed in the diagrammatic setting. This
category (or a subcategory) should be monoidal, and all the structures involved can in-
deed be constructed, but the question of whether these structures satisfy the appropriate
“interchange law” was left open. Here we assume that this property is satisfied for appro-
priate objects. A proof that it is indeed the case in full generality has been announced by
Hogancamp and Makisumi, but no written account of their work is available as of now.
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In [3] it was proved that this property holds for Cartan realizations of crystallographic
Coxeter systems, and here we remark that the same approach, combined with the results
of [6], also applies under some technical assumptions that are satisfied for geometric and
Soergel realizations.

In particular, the presently available literature is enough to show that all of our state-
ments hold at least for the 2 main families of examples of realizations of Coxeter systems
that are known.

1.5. Application. As an application, we show in §7.7 that the combinatorics of the in-
decomposable tilting objects in RE(h, W) (constructed in [6]) is governed by the combina-
torics of the “canonical basis” attached to the dual realization. In particular, in the case
of Soergel realizations, this combinatorics is governed by Kazhdan—Lusztig polynomials
(see Example 7.6), and the heart of the perverse t-structure on RE(h, W) is equivalent to
the category of finite-dimensional graded modules over a finite-dimensional Koszul ring
(see Remark 7.7).

2. PRELIMINARIES

2.1. Conventions and assumptions. Throughout the work (W, S) denotes a Coxeter
system with S finite. (As usual, we will usually only indicate W in our notations, although
all the structures we consider also depend on the choice of Coxeter generators S.) We
consider on W the Bruhat order < and the length function £. We will use the standard
terminology regarding Coxeter systems, as recalled e.g. in [6, §3.1]. In particular, an
expression is a word w = (s1, ..., sp) in S and 7(w) = $1 - -- s, denotes the element in
W expressed by w. The set of expressions will be denoted Exp(W). The length of an
expression w is its length as a word; it will be denoted ¢(w). We will identify simple
reflections with the corresponding 1-letter expression whenever convenient. Given a pair
(s,t) of simple reflections, we will denote by ms € Z>1 U {oo} the order of st in W, and
by (s, t) the subgroup generated by s and t.
We fix a field k and a realization

h:(V,(aSV:SGS),(ozs:SES))

of (W, S) over k in the sense of Elias—Williamson [12, Definition 3.1]. In particular, V is a
finite-dimensional k-vector space, (o) : s € S) is a collection of vectors in V, (a5 : s € S)
is a collection of vectors in V* := Homy(V, k), and there exists an action of W on V' such
that for s € S and v € V' we have

s v=10v— (asv)ay.

Realizations can be restricted to parabolic subsystems of (W, .S), by simply forgetting part
of the elements ag and «: if S’ C S is a subset, and W’ C W is the subgroup generated
by S’, we will denote by by the realization (V, (o) : s € §’), (a5 : s € §')) of (W', ).

In addition to the conditions appearing in this definition, it has been recently explained
in [13] that some further restrictions have to be imposed in order for the theory developed
in [12] to behave as expected, most of which were made more explicit in [14]. Here we will
assume that the following conditions are satisfied.

(1) The realization is balanced (see [12, Definition 3.7]) and satisfies Demazure sur-
jectivity (see [12, Assumption 3.9]).
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(2) In case W admits a parabolic subgroup of type Hs, we assume that there exists a
linear combination of diagrams as in [12, Equation (5.12)] which is sent to 0 under
the operation described in [13, §2].

(3) For any pair (s,t) of distinct simple reflections such that m,; < co we have

[mksi (e, s} (o' 00)) = [”H (a0} (0 ) =0

for all integers 1 < k < mg — 1, where we use the notation of [14].

The assumptions in (1) are standard in this theory. The second one is really necessary;
the first one can usually be relaxed at the cost of a more complicated combinatorics (see
e.g. [13, §7]), but we will not consider this question here. Assumptions (2) and (3) are
also necessary for the theory of [12], hence also for all of its applications, although this was
not made explicit before [13, 14]. (In particular, they should be imposed in [3] and in [6].)
Here, by the main result of [14], (3) implies the existence and rotatability of Jones—Wenzl
projectors, which as explained in [13] plays a crucial role in this story. Note that (3) is
also the technical condition imposed in [1] to ensure that the theory of [2] applies.

It is important to note that if the assumptions (1)—(3) are satisfied by a realization,
then they are satisfied by its restriction to any parabolic subsystem of (W, S). Further
assumptions will be imposed and discussed in §2.3 and §4.9; they are also stable under
restriction to a parabolic subsystem.

Example 2.1. The main examples of data as above the reader can keep in mind are the
following.

(1) Let A = (aij)ijer be a generalized Cartan matrix. A Kac-Moody root datum
associated with A is a triple

(X, (a;:i€1), (o) 1i€1))

where X is a finite free Z-module, (o; : ¢ € I) is a family of elements of X, and
(o) :i € I)is a family of elements of Homy (X, Z), such that (o, aj) = a; j for any
i,7 € I. To A one can associate a Coxeter system (W,.S) where S is in bijection

with I (through a map s — i), and the order mg; of st is determined as follows:

if @i aigi, = 0;
if a4, ipi, = 1;

Mmst =

)

if aigi, @i, = 2;

if Qi Agyiy = 3;

8@%03[\3

if Aijgiy Aiyig Z 4.

To (X,(a; : i € I),(o) : i € I)) one can associate a realization of (W, S) over

any field k by setting V := k ®z Homy(X,Z), and choosing for (o : s € S) and
(as: s € S) the images of (af :i € I) and (o; : i € I) in V and V* respectively.
These realizations are called Cartan realizations of crystallographic Coxeter
groups. The status of our assumptions above for such realizations is discussed
at length in [19, Chap. II, §2.4 and §3.2]. Regarding (1), such realizations are
always balanced; they satisfy Demazure surjectivity at least when char(k) # 2.
Assumption (2) is irrelevant since crystallographic Coxeter groups do not admit

parabolic subgroups of type Hs. Assumption (3) is automatically satisfied.
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Cartan realizations of crystallographic Coxeter groups are the realizations con-
sidered in [3, Chap. 10-11] and [4] (where more general coefficient rings are al-
lowed.) For such a realization, the associated Hecke category (see §3.1) can be
realized geometrically as a category of parity complexes on the flag variety of the
Kac-Moody group associated with (X, (o : i € I), (o) : i € I)); see [21, Part III]
for details.

(2) In the special case when A is a Cartan matrix, the datum of a Kac-Moody root
datum of A is equivalent to the datum of a based root datum with associated
Cartan matrix A. In this case, W is the Weyl group of the associated connected
reductive algebraic group (over any algebraically closed field).

(3) Let now (W,S) be an arbitrary Coxeter system with S finite. Let V be the
associated geometric representation of W it is a representation over R, and comes
with a basis (es : s € S) indexed by S and a bilinear form (—,—). One can
“upgrade” this representation to a realization of (W, S) over R, called the geometric
realization, by setting aY := e and a; := 2(es, —). As explained in [19, Chap. II,
§2.4 and §3.2], for this realization our assumptions (1) and (3) are satisfied. The
status of assumption (2) (in case (W, S) has a parabolic subsystem of type Hs) is
unclear to us.

(4) For an arbitrary Coxeter system (W, S) with S finite, one can also consider variants
of the geometric realization considered by Soergel in [25], see e.g. [19, Chap. II,
§1.2.2]. Namely, consider a vector space V endowed with linearly independent
families (es : s € 5) of vectors of V and (e} : s € S) of vectors of V* such that

0
e, er) = —2cos
<t s> (ms,t>

where my ¢ is the order of st in W. (We use the convention that % = 0. Note also
that such data always exist.) Then (V,(es : s € S), (e} : s € 9)) is a realization
of (W, 5), see [19, Chap. II, Remark 2.7]. These realizations will be called Soergel
realizations. (Note that in case W is finite, the geometric realization is an example
of a Soergel realization.) In this case again, our assumptions (1) and (3) are
satisfied (see [19, Chap. II, §2.4 and §3.2]), but the status of assumption (2) (in
case (W, S) has a parabolic subsystem of type Hg) is unclear to us. For such
a realization, the Hecke category is equivalent to the corresponding category of

Soergel bimodules by [12, §6.7].

2.2. Gradings. By a “graded” (resp. “bigraded”) vector space, we mean a Z-graded
(resp. Z*-graded) vector space. Whenever convenient, we will identify graded vector
spaces with bigraded vector spaces which are zero in all degrees belonging to (Z~{0}) x Z.
If M is graded, resp. bigraded, its component in degree n, resp. in bidegree (n,m), will
be denoted M, resp. M. The shift-of-grading functor (1) on a bigraded vector space
M = @i,jEZMJZ: is defined by

M(1)5 = Mt

We also have shift functors [1] and (1) := (—1)[1], which satisfy (M[l})z = M;H and
(M<1>); = M;fl. Note that (1) stabilizes graded vectors spaces.
We will work in particular with the symmetric algebras

R:=Sym(V*), RY:=Sym(V), R":=Sym(V),
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considered as graded rings where V* C R is in degree 2, V C R" is in degree —2 and
V C R is in degree 2. We will also consider the localization @ of the ring R with respect
to the multiplicative subset generated by {w(as) : s € S, w € W}; this ring has a natural
grading where the elements @ are in degree —2. Analogously, we denote by QY and
Q" the corresponding localizations of RV and R".

Let RY-Mod?-RY denote the category of graded RY-bimodules, and define analogously
R"Mod?-R". Then (1) induces autoequivalences of these categories, which will be de-
noted similarly. If M belongs to RY-Mod?-RY, we let M” be the graded R"-bimodule
which is M as ungraded bimodule and whose homogeneous components are (M"); = M_;,
i € Z. This induces a functor from RY-Mod?-RY to R"-Mod?-R" which satisfies

(M (1) = M"(~1). (2.1)
Given a graded free right RV-module, resp. vector space, of finite rank M ~ &; RY (n;),

resp. M ~ @;k(n;), we set
grkpy M = Z v "™ resp. grky M = Z v,
i i

considered as elements in Z[v,v~!] where v is an indeterminate. (In other words, if V'
is a finite-dimensional k-vector space we have grk(V) = 3 dim(V_,)v".) Of course,
if M,N are graded free right RV-module of finite rank, then M ~ N if and only if
grkpy M = grkpy N. We define analogously the function grkps. Note that if M is a
graded free right RV-module, then M" is a graded free right R"-module and we have

grkRA M/\ = gI‘kR\/ M (22)
where - is the unique ring automorphism of Z[v,v~!] such that 7 = v~!.
Below we will need the following application of the graded Nakayama lemma, where we

consider k (concentrated in degree 0) as a graded RY-module by letting V act by zero.

Lemma 2.2. Let M and N be graded free right RY -modules of finite rank and f : M — N
be a morphism of graded RY-modules. If

forvk: Mgk —= NQgvk
is injective (resp. surjective), then f is injective (resp. surjective).
Proof. Let C' denote the complex

0= ML NSO

with M, resp. N, placed in degree —1, resp. 0. If f®pgvk is injective, this complex satisfies
the assumptions of [3, Lemma 3.4.1]. In particular, it follows that H~1(C) = 0, that is f
is injective. If f @pv k is surjective, we use [3, Lemma 3.4.1] with the same complex with
M, resp. N, placed in degree 0, resp. 1, to deduce that f is also surjective. O

2.3. Dual realization. We will also consider the dual realization
h* = (V" (as:s€95),(a) :s€8))

of (W, S) over k. It is clear that this realization satisfies our assumptions (1) and (3). It
is not clear (to us) whether assumption (2) is automatically satisfied; in doubt, we will
assume that it is also satisfied by h*. Note that the graded ring playing, with respect to
bh*, the role that R plays for b is R".
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Example 2.3.
(1) In the setting of Example 2.1(1), if (X, (a; : 4 € I), () : i € I)) is a Kac-Moody

7
root datum associated with a generalized Cartan matrix A, then

(Homgz(X,Z), (o) i€ 1), (i i € 1))

is a Kac-Moody root datum associated with the generalized Cartan matrix *A.
These generalized Cartan matrices share the same associated Coxeter system
(W, S), and for any field k the dual of the realization over k associated with (X, («; :
i € I),(a)f : i € 1)) is the realization over k associated with (Homy(X,Z), (o) :
i€1),(a; :i€1)). Note that this “duality” of Kac-Moody root data restricts to
Langlands’ duality in the setting of Example 2.1(2).

(2) Consider the setting of Example 2.1(4). By definition the dual of a Soergel realiza-
tion is also a Soergel realization. In particular, in case W is finite, the geometric

realization of Example 2.1(3) is self dual.

3. TWO INCARNATIONS OF THE HECKE CATEGORY

We continue with our data (W,S) and h as in Section 2, which satisfy the conditions
of §2.1 and §2.3. We recall in this section the definitions of the Elias—Williamson diagram-
matic category and of Abe’s category attached to h and (W, S).

3.1. The Elias—Williamson diagrammatic category. We will denote by
-@BS(ha W)

the category attached to (W,S) and b in [12, §5.2] (see also [19, Chap. II, §2.5]). This
category is a k-linear monoidal category, which can be considered equivalently as enriched
over graded vector spaces or endowed with a shift-of-grading autoequivalence (1), see [6,
§2.1]. From the first of these points of view, the objects in Zgg(h, W) are the symbols B,,
for w € Exp(WW). The monoidal product is defined by B, * By, = By, where vw is the
concatenation of v and w. The morphisms are generated (under horizontal and vertical
concatenation, and k-linear combinations) by morphisms depicted by some diagrams re-
called below, and are subject to a number of relations for which we refer to [12], [3, §2.3]
r [19]. The generating morphisms are (to be read from bottom to top):

(1) for any homogeneous f € R, a morphism

g
from Bg to itself, of degree deg(f);
(2) for any s € S, “dot” morphisms
and l
!

from B; to By and from By to By respectively, of degree 1;
(3) for any s € S, trivalent morphisms

Yo A

from B; to B, ) and from B, ,) to Bs respectively, of degree —1;
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(4) for any pair (s,t) of distinct simple reflections such that st has finite order mg in
W, a morphism

t st t t st s

>< if mg; is odd or >< if mg; is even

st s s st s t

from B(y;..) to B ...) (where each expression has length m;, and colors alter-
nate), of degree 0.

The graded vector space of morphisms from B, to B, will be denoted
Hom.@BS(mw) (Bﬂ’ By)

Considering Zpg(h, W) as a category with shift-of-grading autoequivalence (1), its objects
are the symbols By, (n) where w € Exp(W) and n € Z, and the vector space of morphisms
from By (n) to By(m) is Homg];srémw)(B&, B,). This is the point of view we will mostly
use below.

More generally, given X,Y in Zgs(h, W) we will set

Hom'_@BS(mW) (X,Y) = @ Homg, . (X, Y (n)).
nez
This graded vector space has a natural structure of graded R-bimodule, where the left
(resp. right) action of f € R, is given by adding a box labelled by f to the left (resp. right)
of a diagram. With this structure, Hom? .,y (X, Y) is graded free of finite rank as a
left R-module and as a right R-module, see [12, Corollary 6.14].

We will denote by @ées(h,W) the additive hull of Zgg(h, W), and by Z(h, W) the
karoubian envelope of @]?S(h, W). The latter category is Krull-Schmidt, and there exists
a family (B, : w € W) of objects in Zpg(h, W) characterized in [12, Theorem 6.26] and
such that the assignment (w,n) — By, (n) induces a bijection between W x Z and the set
of isomorphism classes of indecomposable objects in Z(h, W).

We will also consider the category Zpg(h, W) which has the same objects as Zgs(h, W),
and such that the morphism space from X to Y is the subspace of degree-0 elements in
the graded vector space

k ®r Hom‘@BS(hw) (X,Y)
(where k is in degree 0 and R acts via the quotient R/V - R = k). The functor (1)
induces an autoequivalence of Zs(h, W) which will be denoted similarly, and Zgg(h, W)

is naturally a right module category for the monoidal category Zps(h,W). We have a
natural functor

@BS([)JW) _>§BS(67W)7 (31)
the image of B, under this functor will be denoted B,,. As for Zgs(h, W), we will denote
by @gs(b, W) the additive hull of Zg(h, W), and by Z(h, W) the karoubian envelope of
=&

*@BS (hv W) : o

The functor (3.1) induces a functor Z5g(h, W) — .@gs(f), W), and then a functor
2(h,W) — 2(h,W). The category Z(h, W) is Krull-Schmidt, being karoubian and with
finite-dimensional morphism spaces, see [10, Corollary A.2]. For w € W, we will denote
by B, the image of By, in Z(h, W). Then Endz, 1 (Bw) is a quotient of Endg g ) (Buw),

hence is a local ring, which implies that B,, is an indecomposable object. Using this, it is
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easily seen that the assignment (w,n) — By (n) induces a bijection between W x Z and
the set of isomorphism classes of indecomposable objects in Z(h, W).

We will also denote by Zgg(h, W), Zgs(h, W) and 2(h, W) the categories obtained in
the same way using the tensor product on the right with k over R. Here Znq(h, W) is
naturally a left module category over Zpg(h, W), and the same considerations as above
for Zgs(h, W) apply. We will use obvious variants of the notations introduced above;
in particular, for w € W, resp. for w € Exp(W), we define the object B,, € Z2(h, W),
resp. B, € Zps(h, W), in the same way as for By, resp. By.

Remark 3.1.

(1) Of course, all the constructions above can also be considered for the realization h*
of §2.3, giving rise to the category Zps(h*, W) and all its cousins. To distinguish
the two cases, the object of Zpg(h*, W) attached to an expression w will be denoted
BJ. Similar conventions will be used for the objects By, By, B,,-

(2) Tt is a standard fact that the category Zps(h, W) admits a canonical autoequiv-
alence induced by reflecting diagrams along a vertical axis. This autoequivalence
exchanges left and right multiplication by polynomials, hence induces an equiva-
lence between Zgg(h, W) and Zgs(h, W).

3.2. Abe’s category. Below we will also use a different incarnation of the Hecke category
attached to (W, S) and b, which we will denote by @zg(h, W), and which was introduced
by Abe in [2].

Remark 3.2. Although this is not written explicitly, the conventions on realizations
in [1, 2] are different from those of [12, 13] (which we follow here). Namely, in [1, 2] a
realization is a triple (V,(as : s € S),(a) : s € S)) where ag € V and o) € V* and
the algebra R is defined as the symmetric algebra of V. In other words, the module “V”
of [1, 2] is the module “V*” of [12, 13]. Here we have decided to follow the conventions
of [12, 13]; we will therefore translate all the results and constructions from [1, 2] into

these conventions.

In order to construct the category 27zg(h, W), Abe first introduces the category € (h, W)
(denoted ¢” in [1, 2]?) whose objects are the triples

(M, (ME)wew )

where M is a graded R-bimodule, each Mé” is a graded (R, @)-bimodule such that m- f =
w(f)-m for any m € M and f € R, these bimodules being 0 except for finitely many
w’s, and

v MerQ— @ MY (3.2)

weW
is an isomorphism of graded (R, @)-bimodules. A morphism in €' (h, W) from the object
(M, (Mg)wew,&nm) to (N, (N§)wew,&n) is a morphism of graded R-bimodules ¢ : M —
N such that
(vo (@R Q) o0&} (ME) C N§

for any w € W. This category has a natural monoidal structure induced by ®pg, with
neutral object the R-bimodule R (upgraded in the obvious way to an object of € (h, W)).

2In fact the definition of € in [2] is slightly different, but this creates difficulties. The definition we use
below solves these problems, as explained in [1].
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The shift-of-grading functor (1) (see §2.2) induces in the natural way an autoequiva-
lence of €' (h, W), which will be denoted similarly. For simplicity, we often write M for
(M, (ME)w e wEnr):
For s € S, let
R ={feR|s-f=[}

be the subring of s-invariant elements in R, and choose an element d; € V* such that
(ds,f) = 1. (Such a vector exists because our realization is assumed to satisfy Demazure
surjectivity.) The R-bimodule B; = R®ps R(—1) can be upgraded to an object in € (h, W)
by setting

(Bs)g = Qs @1 =1®s(ds)), (Bs)g=Q(0s®1—-1®4ds) (3.3)

and (Bs)g = 0 for all w ¢ {e, s}; see [2, §2.4] or [19, Chap. II, §3.1.4].

The category o7gs(h, W) is defined as the smallest full subcategory of € (h, W) which
contains the neutral object R and the objects (B; : s € §) and is stable under the monoidal
product ®p and the shift functor (1). In other words, the objects in o/gg(h, W) are the
objects of the form

le KR ®R Bsr <TL>

with r € Z>9, s1, -+, s, € S and n € Z. As in the diagrammatic category we will set
Hom?, ) (X,Y) = €D Hom ) (X, Y (—n)),
nezL

considered as a graded vector space with Hom @ ) (X, Y (—n)) in degree n. We will
denote by d]%(h,W) the additive hull of ezg(h, W), and by 7 (h, W) the karoubian
envelope of ,Qf]?s(h, W).

For an expression w = (s1, -+ , sp), we define the object By, in @/gs(h, W) as

By = By, ®p--- @r Bs, = RQps1 -~ @pen R(—n)
if n > 1, and By = R. The so-called 1-tensor element
Uy =(1®1)®r--@r(1®1) € By

plays a singular role in the theory. (In case w = @ is the empty expression, the element
ug is interpreted as 1 € R.)

As the reader might have noticed, we have used the same notation as for some objects
in Zpg(h, W). This should not lead to any confusion, because of the following result due
to Abe (see [1, Theorem 3.15]).

Theorem 3.3. There exists an equivalence of monoidal categories
@BS([)’ W) = MBS(‘]’ W)

which intertwines the autoequivalences (1) and (—1) and sends By, to By, for any
w € Exp(W).

Remark 3.4. The proof of Theorem 3.3 has two parts: (a) the construction of the functor,
and (b) the proof that it is an equivalence. Once (a) has been solved in the appropriate way,
(b) is guaranteed by the results of [2]. The current proof of (a) relies on the computations
in [1]. We believe that considerations similar (or, in a sense, “Koszul dual”) to those in
Sections 56 (using, for W finite, the indecomposable object B,,, rather than 7,,) can be
used to provide an alternative construction of this functor. Details will appear elsewhere
if this finds any application.
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4. PERVERSE AND TILTING SHEAVES

In this section we briefly recall the definitions of a series of homotopy-type categories
constructed from the Hecke category. These categories are the main objects of study of [3]
and [6]. We also extend some results of [3, Chap. 10-11] to our present setting.

4.1. The biequivariant category. The biequivariant category BE(h, W) is defined in [3,
§4.2] as

BE(h, W) := K"Z5(b, W);
the natural functor from BE(h, W) to K®2(h, W) is an equivalence, see [3, Lemma 4.9.1],
and we will therefore identify these categories whenever convenient. The biequivariant
category is monoidal for a certain product x which restricted to Zgg(h, W) coincides with
* and is triangulated on both sides; see [3, §4.2] for details.

The cohomological shift functors on the triangulated category BE(h, W) is denoted [1].
The shift-of-grading functor (1) on BE(h, W) is the functor sending a complex (F", d")nez
to the complex (F™(1),—d"),ez. We also have the shift functor (1) = (—1)[1].

As in [3, §4.2], given F,G in BE(h, W), we will denote by

Homgg 1w (F, G)

the bigraded k-vector space whose homogeneous components are

Homgg g, 1w (F, g); := Homgg 1w (F, Gi]{—3))
for all 4, € Z. We also set Endgg( ) (F) = Hompgy w)(F, F).

Following [3, Example 4.2.2], we define the standard object A, and the costandard
object V,, for any expression w = (s1,...,5,) as

Ay =Agx-xA,;, and Vyu =Vg *x-- %V,

where Ay and V4 denote the complexes

-~0—>B8—T—>B@(1)—>0-~ and ---0— Bg(—1) — Bs —0--- (4.1)

concentrated in degrees 0 and 1, and —1 and 0, respectively. (By convention, Ay = Vg =
Bg.)

On the other hand, standard and costandard objects A, and V,, in BE(h, W) were
defined for every w € W in [6, §6.3].> We have

Ay ~A, and V, >V, (4.2)

if w is a reduced expression for w, see [6, Proposition 6.11].

A t-structure on BE(h, W) is constructed in [6, §7.2]; its heart will be denoted Pgg(h, W).
It turns out that the (co)standard objects A,, and V,, (w € W) belong to Pge(h, W), see [6,
Proposition 7.8], and that the shift functor (1) is t-exact, see [6, Lemma 7.3]. For every
w € W, there is (up to scalar) a unique nonzero morphism f, : Ay, — V,, [6, Lemma 6.6];
we let

Ly = 1Im(fw)

be the image of this morphism in Pgg(h,W). Then the assignment (w,n) — Z,(n)
induces a bijection between W x Z and the set of isomorphism classes of simple objects in
Pge(h, W), see [6, §8.1].

3In [6, §6.3] such objects are defined for certain subsets I C W containing w. Here we take I = W,

and omit it from the notation, following the conventions in [6]. The same comment applies to various
constructions from [6] considered below.
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The following statement, which follows from the construction of standard and costan-
dard objects via the recollement formalism of [6, §5], will be required below.

Lemma 4.1. For any w € W, the cone of any nonzero morphism Ay, — V., in BE(h, W)
belongs to the triangulated subcategory generated by the objects of the form A,(n) with
v € W satisfying v < w and n € Z.

4.2. The right-equivariant category. The right-equivariant category is defined in [3,
§4.3] as

RE(h, W) := K°Z54(h, W);

the natural functor from RE(h, W) to K®Z(h, W) is an equivalence, see [3, Lemma 4.9.1],
and we will thus identify these two categories whenever convenient. The category RE(h, W)
is in a natural way a right module category for the monoidal category (BE(h, W), x); the
action bifunctor will also be denoted x, it is triangulated on both sides. There exists a
natural “forgetful” functor

ForRe : BE(h, W) — RE(h, W)
induced by (3.1); this functor satisfies
ForBE(F xG) = ForgE(F) xG (4.3)

for F,G in BE(h, W). The shifts functors [1], (1) and (1), and the bigraded vector spaces
Homge g, w)(F,G) are defined as for the biequivariant category. Then the functor ForBE
commutes with the functors [1], (1) and (1) in the obvious way.

A t-structure on RE(h, W) is also constructed in [6, §9]; its heart will be denoted
Pre(h, W). For this structure, the functors (1) and ForEE are t-exact. The category
Pre(h, W) shares many properties with the categories of Bruhat-constructible perverse
sheaves on flag varieties of Kac-Moody groups, but “with an extra grading;” in particular
it has a natural structure of graded highest weight category (in the sense of [5, Appendix]?)
with weight poset (W, <) and normalized standard and costandard objects

A, :=ForgE(A,) and V, = ForBE(Vy,)

for w € W, see [6, Theorem 9.6]. (In case W is a the Weyl group of a reductive group,
and for an appropriate choice of h, one can in fact relate explicitly Pre(h, W) with the
corresponding category of perverse sheaves; see [5] for details.) The restriction of the
functor ForBE to the hearts of the perverse t-structures defines a fully faithful functor
Pee(h, W) — Pre(h, W), see [6, Proposition 9.4]. Up to isomorphism, the simple objects
in Pre(h, W) are the objects

Rz BE
Zw(n) = Forge(Zw(n))
for (w,n) € W x Z.
4Compared to this reference, we make two modifications. First, we use the term “highest weight”
instead of “quasihereditary.” Second, we allow our weight poset S to be infinite, but with the condition

that for any s € S the set {t € S |t < s} is finite; this does not affect the theory, except for the existence
of enough projective objects, which is not used here. See e.g. [19, §A] for the ungraded setting.

Ann. Repr. Th. 1 (2024), 3, p. 335-374 https://doi.org/10.5802/art.10


https://doi.org/10.5802/art.10

348 Simon Riche & Cristian Vay

4.3. Tilting objects. Since Pre(h, W) has a natural structure of graded highest weight
category, it makes sense to consider its tilting objects, i.e. the objects admitting both
a filtration with subquotients of the form A, (n)(w € W, n € Z) and a filtration with
subquotients of the form V., (n)(w € W, n € Z). The full subcategory of Pgrg(h, W)
whose objects are tilting will be denoted Tiltre(h, W). The category Tiltre(h, W) is Krull-
Schmidt, and its isomorphism classes of indecomposable objects is in a natural bijection
with W x Z; for w € W we will denote by T, the indecomposable object corresponding to
(w,0). Then, for any n € Z, the indecomposable object corresponding to (w,n) is T, (n).
(For all of this, see [5, Appendix].) It follows from [5, Lemma A.5 and Lemma A.6] that
the natural functors

KbTiItRE(baW) — DbPRE(bvw) - RE(h,W) (44)
are equivalences of triangulated categories.

Example 4.2. The simple object in Pre(h, W) corresponding to the neutral element of
W is By, viewed as a complex concentrated in degree 0, and it coincides with the object

Example 4.3. Let s € S. The indecomposable tilting object T in Tiltre(h, W) is the
complex

-0 — Bgy(—1) — By ng(l) —0---
concentrated in degrees —1, 0 and 1. It fits in exact sequences
0—=Ay = Ts—A1{(1) >0 and 0—Vi(-1) =T, —V,—0.
For this, see [3, Example 4.3.4].

4.4. The left-equivariant category. We now define the left-equivariant category as
LE(h, W) := K284 (h, W).

Of course, all the constructions and properties of RE(h, W) have analogues for LE(h, W).
(In fact, these two categories are equivalent by Remark 3.1(2).) In particular, we will
denote by ForBE : BE(h, W) — LE(h, W) the natural “forgetful” functor (induced by the
natural functor Zg¢(h, W) — 254 (h, W)), and by

A, = ForPE(A,), resp. VYV, = ForPE(V,)

the standard, resp. costandard, object associated with w € W. The category LE(h, W)
admits a natural “perverse” t-structure whose heart, denoted P g(h, W), admits a canon-
ical structure of graded highest weight category with weight poset (W, <) and normalized
standard, resp. costandard, objects the objects (4, : w € W), resp. (V,, : w € W).
Its full subcategory of tilting objects will be denoted Tilt g(h, W). The indecomposable
objects in Tilt g(h, W) are in a canonical bijection with W x Z, and the indecomposable
object associated with (w,0) will be denoted T, (for w € W).

Recall that 24 (h, W) is a left module category for the monoidal category Zg(h, W).
This structure “extends” to a bifunctor

x : BE(h, W) x LE(h, W) — LE(h, W)
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which defines a left action of the monoidal category (BE(h, W), x) on LE(h, W). This
bifunctor is triangulated on both sides, and for F,G € BE(h, W) we have a canonical (in
particular, bifunctorial) isomorphism

ForBE(F xG) = FxForBE(G).

Remark 4.4. Asin Remark 3.1 (1), below we will also consider all the constructions above
for the realization h* instead of h. We will add a superscript “A” to all our notations in
this case.

4.5. Free-monodromic category. We will denote by
FM(b, W)

the “free-monodromic” category defined in [3, §5.1]. It is a k-linear additive category,
whose objects are sequences of objects in Qées(h, W) endowed with a kind of differential;
the precise construction is rather technical, and will not be recalled here. The category
FM(h, W) has shift functors [1], (1) and (1) commuting with each other and such that
(1) = (=1)[1]. (Note that [1] is a priori not the suspension functor for a triangulated
structure on FM(h, W); in fact it is not known at this point whether this category admits
a triangulated structure.) As in the biequivariant category (see §4.1), for 7,G € FM(h, W)
we define the bigraded vector space Homgwmy w)(F,G) by setting

Homgw g,y (F g); := Homgmp,w) (F, Gli](—J))
and Endgyp,w) (F) = Hompmy,w) (F, F). We point out that we have
Homgwm g,y (F, G(1)) = Homppm g, wy(F, G)(1) (4.5)

for all F,G € FM(h, W).

As in §2.2 we consider the graded ring RV as a bigraded ring with nonzero components
concentrated in {0} x Z. Then as explained in [3, §5.2], for F,G € FM(h, W) the bigraded
vector space Homppy g w) (F,G) has a natural structure of bigraded RY-bimodule. Both
actions are denoted * and are compatible with composition in the sense that x % (fog) =
(x*xf)og = fo(xxg) for x € RV, and similarly for the right action. In particular, the
left action is induced by certain bigraded algebra homomorphisms

pr : RY — Endeyg,w) (F)

for any object F; if f € Hompm wy(F,G) and € RY, then 2% f = pg(x)o f = four(x).

It should be the case that FM(f, W) (or an appropriate subcategory) admits a structure
of monoidal category. Unfortunately this construction turns out to be delicate, and no
general answer is known at present. But at least part of this structure has been con-
structed in [3, Chap. 6-7]. Explicitly, there is a notion of “convolutive complexes” in
FM(h, W), see [3, Definition 6.1.1], and the full subcategory of FM(h, W) whose objects
are the convolutive complexes is equipped with an operation * such that F*(—) and
(—) % F are functors for any fixed convolutive object F. Moreover, for a fixed convolutive
complex F the functor F* (—) has an extension to the whole category FM(h, W), see [3,
Proposition 7.6.3]. The operation * satisfies all the axioms of a monoidal category except
possibly for the “interchange law” stating that for f: F =+ G, g: G — H, h: F' — G’ and
k : G’ — H' morphisms between convolutive complexes we have

(go f)x(koh)=(g%k)o (f*h);
see [3, Chap. 7] for details. In particular:
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e the operation % is associative, so that we can omit parentheses when considering
multiple instances of %, see [3, §7.2];
e we have a convolutive object 7z constructed in [3, §5.3.1] and which behaves like
a unit object; see [3, §7.1].
We will return to this question in §4.9 below.

4.6. Left-monodromic category. We will denote by
LM(h, W)

the “left monodromic” category defined in [3, §4.4]. As for the free-monodromic category,
the objects in this category are sequences of objects in .@ées(h, W) endowed with (another
kind of) “differential”. There are shift functors [1], (1) and (1) with analogous properties
to those in FM(h, W), which allows to define bigraded vector spaces Homy (1w (F,G)
for F,G € LM(h, W) by the same recipe as in FM(h, ). This time, the bigraded space
Homy pep,w (F,G) has a canonical structure of bigraded left R¥-module. There exists a
functor
ForfM : FM(h, W) — LM(h, W)
which satisfies
ForfM o (1) = (1) o ForfM,  ForfM o [1] = [1] o ForfM, ForfM o (1) = (1) o Forf M.

Moreover, LM(h, W) has a natural structure of triangulated category with suspension
functor [1]. There is also a natural right action of the monoidal category (BE(h, W), x)
on LM(h, W); the corresponding bifunctor will again be denoted *. (See [3, (4.23)] for an
explicit construction.)

There is a notion of convolutive objects in LM(h, W) and, for F € FM(h, W) and
G € LM(h, W) both convolutive, a convolutive object F*G € LM(h, W). There is also a
“convolution” operation on morphisms, such that for 7 € FM(h, W) and G € LM(h, W)
convolutive the operations F x (—) and (—)x G are functorial; see [3, §6.6]. Moreover, for a
fixed convolutive object F € FM(h, W) the functor F % (—) extends to a triangulated func-
tor from LM(h, W) to itself, see [3, Proposition 7.6.4]. The functor ForfM sends convolutive
complexes to convolutive complexes and satisfies

ForfM(F*G) ~ FxForfM(G) (4.6)
for all F,G in FM(h, W) convolutive, see [3, (6.18)].
There is also an equivalence of triangulated categories
Forgy : LM(h, W) = RE(h, W) (4.7)
given in [3, Theorem 4.6.2] and we have a functor
ForBE : BE(h, W) — LM(h, W)

such that Fork¥ o ForBE = ForBE, cf. [3, §4.6]. By [3, Lemma 6.6.1], for any G € BE(h, W)
the object ForBE (G) is convolutive, and for all F € FM(h, W) we have a canonical isomor-
phism

F*ForBE(G) ~ ForfM(F) 6.

The functors Fork¥ and ForBf commute with the shift functors in the obvious way.

We can use that Fork'\E/I is an equivalence to translate all of the structures and properties

of RE(h, W) to LM(h, W). Explicitly, we endow LM(h, W) with the t-structure obtained
from that of RE(h, W) (see §4.2) and denote by P m(h, W) its heart, i.e. the inverse image
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of Pre(h, W) under the equivalence Fork¥. Of course, this category is stable under (1) and
inherits the graded highest weight structure from Prg(h,W). The normalized standard
and costandard objects are

A, = ForPG(A,) and VY, := ForPG (V) (4.8)

for all w € W, since Forky (ForBG(Ay)) = ForBE(A,) = A, and similarly for the costan-
dard object. The objects
Loy(n) = Forpi(ZLu(n)),
(w,n) € W x Z, form a family of representatives of the isomorphism classes of simple
objects in P pm(h, W). By Example 4.2, we have £1 = Ay = V.
The following property is useful to extend results from [4] to our more general context.

Proposition 4.5. Let w € W.
(1) The socle of Ay, is isomorphic to L1(—f(w)), and the cokernel of the inclusion
L1(—l(w)) < Ay has no composition factor of the form L1(n) with n € Z.
(2) The head of N, is isomorphic to L1(¢(w)), and the kernel of the surjection V,, —
L1 (f(w)) has no composition factor of the form Li(n) with n € 7Z.

Proof. The objects £1, A, and V,, satisfy an analogous statement in BE(h, W), see [6,
Proposition 8.3]. Since the functor ForBE : Pge(h, W) — Pre(h, W) is fully faithful, and
since its essential image contains all simple objects, we deduce that the socle of A, is
isomorphic to £1(—¢(w)) and the head of V,, is isomorphic to £1(¢(w)). The other claims
also follow, since ForBE is exact and sends simple objects to simple objects. O

4.7. Left-monodromic tilting category. The following results were established for
Cartan realizations of crystallographic Coxeter groups in [3, Chap. 10]. Using the theory
developed in [6], we can extend them to our present setting, with identical proofs.

For s € S, recall the object T; € FM(h, W) defined in [3, §5.3.2]; this object is convolutive
by definition. We therefore have a triangulated functor 7; % (=) : LM(h, W) — LM(h, W),
see §4.6.

Lemma 4.6. Let w e W and s € S.
(1) If sw > w, we have distinguished triangles

Agw = To%hw = Ap(1) By and Vip(—1) = T3V, — Vi, 25

in LM(bh, W), where in each case the second morphism is nonzero.
(2) If sw < w, we have distinguished triangles

Ap(—1) = To7Ap = Agw b and Vi = To5 Y, — V(1) 25

in LM(bh, W), where in each case the second morphism is nonzero.

Proof. The existence of the distinguished triangles can be obtained as in [3, Lemma 10.5.3],
citing [6, Proposition 6.11] instead of [5, Proposition 4.4] when tensoring with (co)standard
objects. We prove that the second morphism in the first triangle in (1) is nonzero; the
other cases are similar. Assume for a contradiction that this is not the case; then we have
Agy = To*x Ay & Ay (1)[—1]. This contradicts the fact that Hom(Asy,, A, (1)[—1]) = 0,
which follows e.g. from the fact that both Ay, and A, (1) belong to P m(h, W). O

Lemma 4.7. The triangulated functor Ts* (=) : LM(h, W) — LM(h, W) is t-exact with
respect to the perverse t-structure.
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Proof. By [6, Lemma 7.5 and Remark 7.6], the nonpositive and nonnegative parts of the t-
structure are generated under extensions by appropriate shifts of standard and costandard
objects, respectively. Thus, the claim follows from Lemma 4.6. g

We set 71 := ForP5(Bg) and, given an expression w = (s, ..., s,), we set

Tow =T - *T,, %*T1 € LM(p, W).

Let Tiltf,(h, W) be the full subcategory of LM(h, W) whose objects are the direct sums
of objects of the form 7Ty, (n) with w € Exp(W) and n € Z. We define the left-monodromic

tilting category Tiltim(h, W) as its karoubian envelope. (Note that Tiltpm(h, W) is a full
subcategory of LM(h, W) as the latter has a bounded t-structure and hence is karoubian
by the main result of [17].) This definition is justified by the following result.

Proposition 4.8. The functor Fork'\E/I induces an equivalence of additive categories
Tiltym(h, W) = Tiltre(h, W).
As a consequence, the natural functors
K Tiltum (b, W) — DPPiw(h, W) — LM(h, W) (4.9)
are equivalences of triangulated categories.

Proof. For the first claim, the proof of [3, Proposition 10.5.1] applies in the present setting,
using Lemma 4.6 instead of [3, Lemma 10.5.3]. Then, the fact that the functors in (4.9)
are equivalences follows from the similar property for the functors in (4.4). O

Remark 4.9. Standard arguments show that the obvious functor
KPTiltum(h, W) — KPTiltd,(h, W)
is an equivalence of triangulated categories. Hence we also obtain an equivalence of cate-
gories
KPTiltd, (5, W) = LM(h, W), (4.10)
as in [4, Lemma 2.4].
Using Proposition 4.8 we can transfer to Tiltym(h, W) the usual properties satisfied

by the tilting objects of a graded highest weight category, cf. [6, §9.5], and obtain the
following statement.

Corollary 4.10. The category Tiltum(h, W) is Krull-Schmidt. For any w € W, there ex-
ists a unique (up to isomorphism) indecomposable object T,, characterized by the following
properties:
(1) for any reduced expression w expressing w, T, occurs as a direct summand of Ty
with multiplicity 1;
(2) Ty does not occur as a direct summand of any object Ty(n) with v an expression
such that £(v) < {(w) and n € Z.

Moreover, the assignment (w,n) — Ty (n) induces a bijection bewteen W x Z and the set
of isomorphism classes of indecomposable objects in Tiltym (b, W).
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4.8. Free-monodromic tilting category. Given an expression w = (sq, ..., S.), we set
T =Ta % - %75, € FM(h, W).
Note that by (4.6) we have Ty, = ForfM(Ty,).

Proposition 4.8 implies that for any expressions v, w and i,j € Z we have
Homy my,w) (To, Twlil(j)) =0 unless i =0

(see [6, (9.2)]). As in the proof of [3, Corollary 10.6.2], the above equality and [3,
Lemma 5.2.3] imply the following statement.

Proposition 4.11. For any expressions v, w and any i,j € Z, we have
Hompmp,w) (’73,,72,)Z =0 wunless ©=0.
= /j

Moreover HomFM(hjw)(’E,ﬁ,)? is graded free as a right RY -module, and the morphism

~ ~\0
HOIHFM([)’W) (7'2, Ti). Qrvk — HomLM(h,W) (7-27 Tﬂ)?
induced by the functor ForfM is an isomorphism. O

Below we will need to consider the karoubian envelope FMK"“(I’), W) of the category
FM(h, W). The shift functors (m) extend to autoequivalences of FMX8 (h W). Given
F,G in FMmKar (h, W), we will also consider the bigraded k-vector space

HomFMKar(mw) (.F, g) = @ HomFMKar(mW) (f,g<—m> [nD
nmeZ

Using the fact that the left and right actions of RY on morphism spaces in FM(h, W) is
compatible with composition, one sees that this space has a canonical structure of bigraded
RY-bimodule. The functor ForfM : FM(h, W) — LM(h, W) extends to FM¥*(h, W) by the
universal property of the karoubian envelope. By a minor abuse of notation we also denote
this extension by Forf M.

We define the free-monodromic tilting category Zps(h, W) as the full subcategory of
FM(h, W) whose objects are those of the form Ty (n) with w € Exp(W) and n € Z. We
denote by Z2(h, W) the additive hull of Fs(h, W), and by 7 (h, W) the karoubian enve-
lope of EBG%(IJ, W) (a full subcategory in FMX2(§, W)). By construction, the convolution
operation * restricts to an operation

% 1 Tas(h, W) x Tiltuw(h, W) — Tiltuw (b, W). (4.11)
Proposition 4.11 extends to all objects in .7 (h, W), as follows.
Proposition 4.12. Let F,G be objects in T (h,W). Then we have
Homgykar 1y (F g); =0 wunless =0,

HOmFMKar(ELW) (F,G) is graded free as a right RY-module, and the morphism

Homgyxar i ) (F, G) ®@pv k — Homypmp,w) (FOVERAA (%), FOVEM(Q))

induced by the functor ForfM is an isomorphism.
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Proof. By construction of the karoubian envelope, HOmFMKar(h’W) (F,G) identifies with a
direct summand of a similar space of morphisms in FM(h, W). Hence this space vanishes
in degrees in (Z \ {0}) x Z and is a projective graded R"-module by Proposition 4.11
and thus is graded-free. The fact that ForfM induces an isomorphism also follows from
Proposition 4.11. O

The classification of the indecomposable tilting objects in Tiltym(h, W) can be “up-
graded” to .7 (h, W) using Proposition 4.12, as in [3, Theorem 10.7.1].

Theorem 4.13. The category 7 (h, W) is Krull-Schmidt. For any w € W, there exists a
unique (up to isomorphism) indecomposable object Ty, such that

Forf,\'\ﬂ(’ﬁ,) = Tw.
In addition, T s characterized by the following properties:

(1) for any reduced expression w expressing w, Ty occurs as a direct summand of 7~'£
with multiplicity 1; N

(2) Tw does not occur as a direct summand of any object T, with v an expression such
that £(v) < ¢(w) and n € Z.

Moreover, the assignment (w,n) — Ty (n) induces a bijection bewteen W x Z and the set
of isomorphism classes of indecomposable objects in T (b, W).

In case w = 1 we have ’7~E = 7%, and~if w = s € S then ’7~; is the object denoted in this
way above. In these cases the object T, is canonical; in general, it is only defined up to
isomorphism.

4.9. The bifunctoriality assumption. As explained in §4.5, it is not known whether
the operation * is a bifunctor on the subcategory of convolutive objects in FM(h, W). As
explained in [3, §7.7], it is expected that this condition holds at least on the subcategory
Iis(h, W), which boils down to the fact that for f: F -G, g: G —H, h: F — G" and
k : G" — H' morphisms between objects in Fs(h, W) we have

(go f)*(koh) = (g%k)o (f*h). (4.12)

Below we will assume that this property holds for our given realization, which implies that
* induces a monoidal structure on the category Jis(h, W) (and then on ZxZ(h, W) and
on 7 (h,W)).

Remark 4.14.

(1) In case our realization is a Cartan realization of a crystallographic Coxeter group,
the main result of [3, Chap. 11] states that the condition above is satisfied.

(2) Using the results of §4.8, the methods of [3, Chap. 11] also apply for a general real-
ization of a general Coxeter group, provided for any pair s,t € S of distinct simple
reflections generating a finite subgroup of W, the conditions in [3, Chap. 8] are
satisfied by (4. This case covers at least, for any Coxeter system, the geomet-
ric realization and the Soergel realizations (see §2.1), provided the condition (2)
of §2.1 is satisfied in case (W, S) admits a parabolic subsystem of type Hs.

(3) Matthew Hogancamp and Shotaro Makisumi have announced a proof of this condi-
tion in full generality (provided the assumptions (1)—(2)—(3) of §2.1 are satisfied).
Unfortunately, no written account of their proof is available at this point.
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(4) Using Proposition 4.11 one obtains that, if the condition above is satisfied, the
operation (4.11) is a bifunctor, and defines on Tiltym(h, W) a structure of module
category for the monoidal category (7 (h, W), %).

5. A FUNCTOR V

In this section we assume that the conditions of §2.1, §2.3 and §4.9 are satisfied. In
addition, we assume that W is finite.

5.1. Statement. Recall the dual realization h* of (W, S) considered in §2.3. Our aim is
to prove the following statement.

Theorem 5.1. There exists a canonical equivalence of monoidal additive categories
V: Tss(h, W) = aps(h*™, W)

which satisfies Vo (1) = (—1) o V and V(Ty,) ~ By, for any expression w.
We construct the functor V and prove the theorem in §5.4 and §5.5. Before that we
need some preliminaries.

5.2. The big tilting object. Let wy be the longest element in W, and consider the
corresponding indecomposable tilting object Ty, in Tiltpm(h, W), see Corollary 4.10. We
set

P = To (—€(wp)).
By [6, Theorem 10.3], P is the projective cover of the simple object 7; = L1, and [6,
(10.5)] implies that

1 if m=—l(w);
dimy H P,V = ’ 5.1
Hilk OmLM(b’W)( (m)) {O otherwise. (5.1)
In particular, we have
- k ifi=45=0;
H P, Th): = ’ 5.2
OHLM(b, W) ( T0)j {0 otherwise. (5:2)

We fix an indecomposable tilting object To, in 7 (b, W) such that ForfM(Tu,) = T,
see Theorem 4.13, and set
P = Tuo (—L(w0)). (5.3)
Proposition 4.12 and (5.2) imply that we have an isomorphism of graded RY-modules
Homgpxcar 5 1) (P,T1) ~ R,
hence in particular that
dimy (Homg(mw) (73,’71)) =1
We fix from now on a nonzero morphism
£&:P =T, (5.4)
which is automatically a generator of HOmFMKar(hyw) (73,7~'1) as a right RY-module. We
also set &' = ForfM(€), a generator of Homy my,w) (P T1)-

The objects P and P are studied in [4, §§3.1-3.4] for Cartan realizations of (finite)
crystallographic Coxeter groups. As in §4.8, these results hold in our present setting, and
their proofs can be copied from [4], replacing the references to [5] by references to [6].
Below we state the results we will use, and give sketches of proofs.
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Lemma 5.2. In the abelian category Pym(h, W) we have
[P Li(m)] =0
unless m < 0, and moreover [P : L1] = 1. In particular, Endym @ w)(P) =k - id.
Proof. The proof is similar to that of [4, Lemma 3.1]. Namely, as P is tilting it admits

a standard filtration. Using the reciprocity formula (see e.g. [6, (10.1)]), for w € W and
n € Z we have

(P : Aw(n)) = [V (n) : L],
which is equal to 1 if n = —¢(w) and to 0 otherwise by Proposition 4.5. Using again
Proposition 4.5 we deduce that

[P La(n)] = #{w € W | n = —26(w)},
which implies the statement. O

Let s € S and €, : T3 — T1(1) be the morphism defined in [3, §5.3.4]. As in [4, §3.3],
there exists a unique morphism

P — To(-1)

such that ForfM(€,(=1)) o ¢/ = €. In turn, as in [4, Lemma 3.5], there exists a unique

morphism
(s: P — Ts(—1) (5.5)
such that ForfM(¢s) = ¢, and this morphism satisfies
&(-1yo¢ =¢. (5.6)
And there is a unique isomorphism of graded RY-bimodules
Vst RY ®(gpvys RY(1) = Hompyar ) (P, 75) (5.7)

sending us = 1 ® 1 to (.
The following statement is the analogue in our setting of [4, Proposition 3.6], for which
the same proof applies.

Proposition 5.3. The object P admits a canonical coalgebra structure in the monoidal
category 7 (b, W), with counit & : P — Ti and the comultiplication morphism 6 : P —
P*xP characterized as the unique morphism such that (§x&)od = &. g
5.3. Localization. We now recall the localization procedure from [3, §11.1]. (Once again,
in [3], this construction is considered only for Cartan realizations of crystallographic Cox-

eter groups, but it now makes sense in our present setting.)
Recall the graded ring QY from §2.2. If F,G are objects in FM(h, W) we set

Homloc(f, g) = HOIDFM(mw) (f, g) ®RV QV,
where we consider the right action of R on Homgp wy(F,G) from §4.5. Let
Loc(h, W)

be the category whose objects are the same as those of FM(h, W), and such that the space
of morphisms from F to G consists of the elements of bi-degree (0, 0) in Homy..(F,G). By
construction there exists a canonical functor

Loc : FM(h, W) — Loc(h, W).
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We will also denote by Loc’(h, W) the category obtained from FMX (h, W) by the same
procedure as Loc(h, W) is obtained from FM(fh, W). Then there exists a canonical fully
faithful functor Loc(h, W) — Loc'(h, W).

Recall from [4, §7.4] that for any s € S we have a certain convolutive object V, in
FM(h, W). Then, for an expression w = (s1,--- , $,) we can consider the object

Vo =Va% %V,

n*

When w = @ we set 6@ = 7~'@. Using [4, Lemma 7.4.2 and Corollary 11.3.2], one sees
that we have isomorphisms of graded @QV-modules

QY if m(z) = 7(y);
H Ve, V = 5.8
OftHloc ( £ ) {0 otherwise (58)
where 7 is as in §2.1.
Consider the morphism
¢s: Ts = V(1) @ Vs (5.9)
in FM(h, W) denoted 22 in [3, Proposition 11.2.1]. Given an expression w = (s1,- -+ ,8,),
we set
buwi= o F o F e T~ (Vo) @V ) %% (Vo) @ Vs, ). (5.10)
With this definition, it is clear that for any expressions v, w we have
¢y¥¢g = ¢w (5.11)

The following statement is our version of [3, Corollary 11.2.2], which follows from the
same arguments.

Lemma 5.4. For any expression w, the morphism Loc(¢y) is an isomorphism.

5.4. Construction of the functor V. Recall the functor (—)" considered in §2.2. For
F € Ips(h, W) we set
~ A
V(F) = (HomFMKar(b,W) (P,f))
We observe that Vo (1) = (—1) o V by definition and (2.1). This defines a functor from
Tiss(h, W) to R*-Mod%-R". Our goal in this subsection is to show that this functor factors
through a monoidal functor from Zs(h, W) to azs(h*, W).
If w= (s1,---, sp) is an expression, we denote by S, the multiset of subexpressions
of w, i.e. expressions which can be obtained from w by removing some letters. (The

multiplicities come from the fact that the same expression can sometimes be obtained by
removing letters from w in several ways.) Then we have

(Voo Vy) %% (Vo) @ Vs,) = P Vull(w) - ((v).

VE Sw

D Vullw) — ().

VE Sy
m(v)=u

For uw € W, we set

Then ¢,, defines a morphism

\ E

- @ 7u.
ueW
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and if v and w are expressions, for x,y € W we have
Homje, (72”3, ’7~'Qy) =0 unlessz=y (5.12)

by (5.8).
If w is an expression and u € W, we consider the (R", @")-bimodule

A
V(Ta)bn = (@ Homgyyicar 1) (75, ﬁg<n>)) D Q"

nez
and the morphism of graded (R", Q")-bimodules
vy V(Tw) ©rn Q= @ V(Twbs
- ueWw

induced by the assignment g — ¢, o g for g € Hom 7w (ﬁ,7~@<—n>) It follows from
Lemma 5.4 that fw7~_ ) is an isomorphism.

Recall the definition of the category € (h*, W) in §3.2.

Lemma 5.5.

(1) For any expression w, the triple

(70 (7))

is an object of the category € (h*, W).
(2) For any expressions v,w and any ¢ € Homgmp w)(To, Tw), V(p) is a morphism
in the category € (h*, W) from the triple

<V(7~Z), (V(’E)qéA)ueW 7§V(ﬁ)> to the triple (V(%’w)v (V(%E)ZZA>1L€W ’gV(%w)> '

Proof. (1) Let w be an expression, and let z € RY. For any expression y and any
g € Homgyicar gy yry (P, Vy) we have

T*xg=go ugg(w) = g%(y)*l(x)

by [3, Lemma 7.4.1]. Therefore the left and right R"-action on V(7y,)$. satisfy the

compatibility property in the definition of € (h*, W) for all w € W. Hence our triple is an
object of € (h*, W), as desired.
(2) Fix v, w and ¢ as in the statement. What we have to prove is that for any « € W and

any f € V(Tu)$n the element

-1\ _
h:= ({V(:ﬁu) o (V((P) QRA 1) o <£V(ﬁ)> ) (f)

belongs to V(7y)Hn-
First, let us assume that f = év(%)(f) for some f € V(7,). In this case, h = ¢, 0o f

in Loc’(h, W). Since ¢, is an isomorphism in this category, we have
h=(duowos,')o(duof) = (duopod,') otz (f)

and hence h € V(%w)g% by our assumption on f and (5.12), see Figure 5.1.
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ptor 2 n p—t 7 2 7
Loc’ N
@J J ANNS 5V;ﬂ(f ) ! O by I9) bu
+
[ e @ , &7
ueWw ueW ueW bwopod,l  uweW

FIGURE 5.1. The diagram on the left-hand side is in FMX2*(h, W) and
the other one is in Loc’(h, W) where the dashed morphisms exist and their
composition equals h.

Now we consider the general case. There exist a € R" and f € V(’]NL) such that

f= &y 7_)(f ). Then fV (f) € V(T)QA since §V is morphism of right Q"-modules,
hence ha € V(T )on Wthh implies that h also belongs to V(7o )on O

Lemma 5.5 shows that the functor V factors through a functor
C7BS(ha W) =ad (h*v W) )

which will be denoted similarly. We will next show that this functor can be endowed with
a monoidal structure. For that, we introduce the morphism

Yo : By =R =V (T5) = V(1) (5.13)
given by the assignment z — £xx (where £ is as in (5.4)), and the bifunctorial morphism
Brg : V(F) @pn V(G) = V(F*G)

defined by Srg(f ® g) = (f*g) 06 € V(F*xG)myn for all f € V(F),, and g € V(G),
(where ¢ is as in Proposition 5.3).

Proposition 5.6. The triple (V, 8,7z) is a monoidal functor from Ts(h,W) to € (h*, W).

Proof. We first observe that the proof of [4, Proposition 3.7] shows that (V,,v4) is a
monoidal functor from Is(h, W) to R"-Mod?%-R". In fact, all the ingredients of this
proof have been repeated above, except for [4, Lemma 2.6], which can be proved by the
same considerations using Proposition 4.5 instead of [5, Lemma 4.9].

It is clear also that 74 is a morphism in €(h*, W), so all that remains to be justified
is that Sr¢g is a morphism in €(h*, W) for any F,G € Ips(h, W), ie. that for any
expressions v, w the morphism

Bow =By 7 V(T) ©rr V(Tw) = V (T3 )

is a morphism in €(h*, W). Let z,y € W, f € V(T, w)on and g € (%w)zp What we have
to prove that the element

him (o Bew om0 o (6 @an 55 ) (T2 3)

belongs to V(%M)QA As in the proof of Lemma 5.5(2), we can assume that there exist
feV(T,) and g € V(Ty,) such that

F =8y (D €V(THr and §= &z (9) € V(Tw)hs
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Thus, in Loc/(h, W) we have
b=ty ((Bow @ 1) ((f @10 1) @gn (98r 1)) € b0 (f7g) 06
= (Gu*duw) o (f*g)od
D (dyof) % (duog) s
2 (&4 (D7 ¢y7(0)) o5

Here:
e (a) and (d) follow from the definitions of §V(% ) and f3;

e (b) follows from (5.11);
e (c¢) follows from the interchange law, see §4.9.

Therefore h € V(TM)SJA by our assumptions and (5.12), see Figure 5.2. O
* -~ ~
p—tpip T, Tou
S (N ¥ @) o) Po* Pw o) J vw
e (@ )¢ (@ %) T
wuew wew wuew

FIGURE 5.2. The dashed morphisms are in Loc’(h, W) and the others in FM¥a(h, W).

Recall the morphism ~/ defined in (5.7).

Lemma 5.7. For any s € S, the morphism s == (7.)" defines an isomorphism B =
V(T5) in € (h*, W).

Proof. We already know that 75 is an isomorphism of graded R"-bimodules, so we only
have to show that it defines a morphism from B} to V(T;) in €(h*, W). However, the
bimodules (B;) and (V(i))ggA vanish unless u € {1, s}, and identify with the subset of
elements m which satisfy m - x = u(x) - m for any x € R" if u € {1, s} (see the comments
at the beginning of [2, §2.4]), so that the forgetful functor induces an isomorphism

Endyg (e w) (B2, V(75)) < Bnd g rgoaz.pn (BS V(T5)) -
Hence the desired property is automatically satisfied. O

Using Proposition 5.6 and Lemma 5.7 we obtain, for any nonempty expression w, a
canonical isomorphism

Yt By = V(Tw) (5.14)
in €(b*, W). (For the empty expression, such an isomorphism was already constructed
in (5.13).)

We have therefore proved that the functor V defines a monoidal functor

V: Tps(h, W) — afgs (b, W)
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such that Vo (1) = (=1) oV, and canonical isomorphisms v, : By — V(7y) for all

expressions w. To finish the proof of Theorem 5.1, it only remains to prove that this
functor is fully faithful, which will be done in the next subsection.

5.5. Invertibility of V. We start by comparing the graded ranks of morphisms in the
source and target categories of V.

Lemma 5.8. For any expressions y,w we have

=\ . A A
grkR/\ HOI’I]‘QBS (h,W) (E, T7> = grkRA I’IOl’Il{KZ{BS (h*,W) (BQ y BE) .
Proof. As in [4, §2.7], we consider the Hecke algebra H sy of (W, S), its “standard” basis
(Hy :w e W) (as a Z[v, v ']-module) and the Z[v, v !]-bilinear pairing (—, —) on H s
which satisfies (Hy, Hy) = 044, for z,y € W. For s € S we set H, = Hy + v, and if

w = (81, -+, Sp) IS an expression we set

H,=H, - H

=8n"

The expansion of this element in the basis (H, : x € W) will be denoted
H,= > p;(v)H,.

zeW

By [4, Lemma 2.8] (which holds in our setting, with the same proof), for any expressions
Y, w we have

<ﬂg, ﬂ£> = grky Hom my,w)(Ty, Tw) = grkpv Hompwm gy, w) (727 72) (5.15)

where the second equality is due to Proposition 4.11. On the other hand, by [2, Corol-
lary 4.7] we have

<ﬂg,ﬂ£> = Z pg(v)p@(v) = grkpa Hom;VBs(h*,W) (BQ,B@)

zeW
This proves the lemma, in view of (2.2). O

Let us now denote by RY-Mod?, resp. R"-Mod?, the category of graded left RY-
modules, resp. R"-modules. Then as for bimodules we have a natural equivalence of
categories

(=) : RY-Mod? — R"-Mod”
which replaces the grading by the opposite grading. We consider the functor

V' : Tiltym(h, W) — R -Mod? (5.16)
defined by

Vl(]:) = HomLM(mw) (P, .F)/\
Then by Proposition 4.12 we have a commutative diagram

Fis(h, W) ———~ RNMod?%-R"
ForEMl l(_)@)ﬁ'/\k
Tiltum (5, W) ——~ RA-ModZ.

The following lemma is an analogue of [4, Lemma 3.9], which follows from the same
arguments using Proposition 4.5 instead of [5, Lemma 4.9].
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Lemma 5.9. The functor V' is faithful. O

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. As explained at the end of §5.4, it only remains to prove that V is
fully faithful. First we show that V is faithful. Let w and bee expressions. Fix a finite
family of n homogeneous generators of the RY-bimodule V(7,); by Proposition 4.12 this
also provides a family of homogeneous generators of the left RY-module V/(7,). Consider

the commutative diagram N

| l

Homym(,w) (To: Tuw) — @p Hompy yjoqz (V/(T0), V/ (Tw) (m)) —= V! (Tw) "

where:

e the left horizontal arrows are induced by the functors V and V’; N
e the right horizontal arrows are induced by our choice of generators of V(7,) and
V(Ty);

e the vertical arrows are induced by the functors ForfM and (—) @g» k.
Proposition 4.12 shows that in the leftmost column and in the rightmost column, the k-
vector space on the bottom line is obtained from the free right RV-module on the upper
line by applying the functor (—) ® g k. The lower composition is injective by Lemma 5.9
and the fact that our family generates V'(7,). By Lemma 2.2, it follows that the upper
composition is also injective, hence so is the upper left morphism, showing that V is
faithful.

Now, for any m € Z, the functor V induces a morphism between the homogeneous
components

~ o~ AN ~ ~
<HomFM(h7W) (’TE, TQ) ) and  Hom, g+ w) (V(E),V(T@(—m»
m
which is injective as V is faithful. By Lemma 5.8, these vector spaces have the same
finite dimension. Therefore this morphism is an isomorphism, proving that V is fully
faithful. 0

Remark 5.10. Our proof of full faithfulness above is less direct than that of the corre-
sponding claim in [4]. This is due to the fact that there is no theory of “Soergel modules”
in the setting of [2].

6. CONSTRUCTION OF THE 2mg-VALENT MORPHISMS

From now on we drop the assumption that W is finite. We therefore consider an
arbitrary Coxeter system (W, S) and a realization b of (W, S) which satisfies the conditions
of §2.1, §2.3 and §4.9.

6.1. Overview. Given a pair s,t of distinct simple reflections such that the product st
have finite order ms;, we will denote by w(s,t) the word (s,t, ---) of length ms; where
the letters alternate between s and ¢. Note that the relation m(w(s,t)) = m(w(t,s)) in

Ann. Repr. Th. 1 (2024), 3, p. 335-374 https://doi.org/10.5802/art.10


https://doi.org/10.5802/art.10

Koszul duality for Cozeter groups 363

W is precisely the braid relation associated with s and ¢. Our goal in this section is to
construct, for any such pair s, t, a canonical morphism

Tt 2 Tugs,t) = Twts)
which will eventually be the image under Koszul duality of the 2m, ;-valent morphism
associated with (s,t) in the Hecke category.
We will proceed as follows. By Abe’s theory there exists a unique morphism

st Biys) — Buis)

in os(h*, W) such that, using the notation of §3.2, we have

Dot (uw(s,t)> = Ug(t,5) (6.1)

see [1, Theorem 3.9]. (More specifically, this reference states the existence of such a mor-
phism. Unicity follows from [2, Theorem 4.6] and the computations in [18, §4.1].) Now,
choose a subset S’ C S which contains s and ¢ and generates a finite subgroup W' of W.
Choose also the data that allow to define a functor Vi as in §5.4 and its monoidal struc-
ture, for the Coxeter system (W', S’) and its realization by (see (5.3)—(5.4)). Then the
category s (b, W') identifies in the natural way with a full subcategory of Fs(h, W),

in such a way that the objects ﬁu(s,t) and ﬁ,(t,s) in these two categories coincide. By full
faithfulness of Vi (see Theorem 5.1) there exists a unique morphism f,; as above such
that

“1
VW’(fs,t) = Yw(t,s) © Ps,t © (Vw(s,t)) ) (62)

which provides the desired morphism.

Obviously there is a problem with this definition, since it might depend on the extra
data we have introduced: the subset S’, and the data involved in the definition of V.
Our goal is exactly to prove that, in fact, it is not the case. Note that we could have
solved the problem of the dependence on the choice of S” by setting S” = {s,t}; however,
later we will need to use that (6.2) holds also for some other choices of S’.

6.2. Proof of independence. Our goal is therefore to prove the following claim.

Proposition 6.1. For any pair (s,t) of simple reflections generating a finite subgroup of
W, there exists a morphism

Jst  Tuw(s) = Tw(t,s)
which satisfies the following property. For any subset S’ C S containing s and t and
generating a finite subgroup W' of W, and for any choices (5.3)—(5.4) allowing to define a
monoidal functor Vyy as in §5.4 for the Cozeter system (W', S") and its realization b,
the equality (6.2) holds.

The proof of Proposition 6.1 will use the following preliminary result. Recall, for any
s € S, the morphism

& T — Ti(1) (6.3)
in Ips(h, W) constructed in [3, §5.3.4]. For an expression w = (s1,--- ,s,) we set
Cw =€ * - FEs, Ty — Till(w)). (6.4)
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Lemma 6.2. Let (s,t) be a pair of simple reflections generating a finite subgroup of W.
The k-vector space

Homymp,w) (%(s,t)a Ti(l(w(s, t))>)

is 1-dimensional, and is spanned by ForEM(Ew(S,t)). Moreover, for any subset S C S
generating a finite subgroup W' of W, and for any data (5.3)—(5.4) allowing to define a
monoidal functor Vyy: as in §5.4, if fe+ is the unique morphism which satisfies (6.2) we

have
FOVEM (gw(&t)) = ForLM ( wlt,s) © fst)

Proof. Keeping the notation introduced in the proof of Lemma 5.8, by (5.15) we have
Puy(s.) (V) = (Hoy(opy, Hy) = D dimy, (HomLM(h W) (%(s,m 7'1(n>)> v"

ne’

(In Section 5 it is assumed that W is finite, but this condition is not required for this
specific statement to hold.) On the other hand, using the formula in [12, Lemma 2.7] one
sees that the highest monomial appearing in p}U( sit) (v) is @) and that its coefficient
is 1; we deduce that

dimi. Homgngs,w) (T, 71 (Ew(s, 1)) = 1.

The argument in the proof of [4, Lemma 4.4] shows that Forf M (€w(s,t)) # 0; this morphism
is therefore a generator of Homymy,w(Tow(s,e), T1(€(w(s,1)))).

Let us now fix data as in the third sentence of the lemma, and consider the corresponding
morphism f;;. What we have shown above implies that there exists a € k such that

Forf M (?w(m) o fsi) =a - ForfM (?w(&t)) , (6.5)

and what we have to prove is that a = 1. For this, we will describe some morphisms in
different ways and then compare them.
We first compute the morphism

Vs (gw(t,s) o fs,t) (W’w(s,t) (uw(s,t)>) eV (Th) = Homewp,w) (75W/,7~‘1) ’

where Py is the object (5.3) we have chosen and, for any w € Exp(W’), Yw is the
isomorphism (5.14) obtained from our choice of morphism (5.4). Explicitly, we note that

Vi (€ut,s) © fs,t) © Yu(s,t) = Y (ﬁw(t s)) o Viyr(fs,t) © Vus,)
=V (gw(t,s)) O Yw(t,s) © Ps,t
by (6.2). Now we have
(VW’ (/E\w(t,s)) O Yuw(t,s) © 90871‘/) (uw(s,t)) = (gw(t,s)< - E(w(t’ S))>) © (’Yw(t75) (uw(t,s))) )
By definition, the morphism
V(t,s) (uw(t,s)> Pwr = Tu(t.s)
is the morphism
(GFC* - ) o gtwlst)—1

where we use the notation from (5.5) and where, for any n > 1, the morphism

6” : ﬁwl — 751/[//; ;ﬁwl

—_———

n + 1 times
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is the n'" comultiplication morphism for 75W', see Proposition 5.3. By definition of €, )
(see (6.4)), we deduce that

(VW’ (gw(t,s)) © Ya(t,s) © %,t) (uw(s,t))
= (@D Fe(=1)F ) o (GFRCF -+ ) o glwls))—1
= ((GoG(—1)) F (€0 (s(—1)) & --+) o sllwlst)-1

by the exchange law (4.12). Using (5.6) and the axioms of a coalgebra, we finally deduce
that

(VW/ (%\w(t,s)> © Yu(t,s) © %,t) (uw(s,t)> =¢,
hence that

(VW/ (gw(t,s) © fs,t) © '.Yw(s,t)) (Uw(s,t)> =¢.

Similar considerations show that V(€,(s)) ('yw(&t) (uw(s,t))> = ¢, which finally shows
that

§=Vyr (%\w(t7s) o fs,t) (’Yw(s,t) (Uw(sﬂf))) =V (Ew(s,t)) (Vw(s,t) (%@,t))) - (6.6)
Using (6.5), we deduce that

ForfM (&) = ForfM (€ ( (t,5) © fsit© (Vw(s ?) (uw(s t))))
= ForM (€u(ts) © fo) © Fort (Yu(ey (tu(en)))
= a - Forf M ( €u( ) o Forfm (ws t) (“w(&t)))
= a - Forf ( €w(s,t) © Yuw(s,t) (uw(s,t)>>
= a - ForfM ().

Since ForfM(¢€) # 0 (see the comments following (5.4)) this implies that a = 1, which
finishes the proof. O

Remark 6.3. The equalities in (6.6) and the fact that ForfM (&) # 0 also imply that
For{m (€u(s,)) # 0.

Proof of Proposition 6.1. What we have to prove is that if f; and f! + are two morphisms

constructed as in Lemma 6.2 then fs; = f. +- Now the k-vector space Homg (1) (T T)
is 1-dimensional, e.g. because it identifies with the space Hom g g+ w )(Bw(S t),B ) S))
which is 1-dimensional as explained in §6.1. This argument also shows that fs; and f;’t
are nonzero; hence there exists a € k such that f,, = a- fs;. Using Lemma 6.2 we then
obtain that ’

FO{M (gw(s,t)) = FO{M (Ew(t,s) © é,t) =a- FO{M (gw(t,s) o fs,t) =a- FOFEM (E\w(s,t))'

In view of Remark 6.3 this implies that a = 1, which finishes the proof of Lemma 6.2. [J

7. KOSZUL DUALITY

We continue with the setting of Section 6.
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7.1. Monoidal Koszul duality. The first formulation of our Koszul duality, which gen-
eralizes [4, Theorem 5.1}, is the following.

Theorem 7.1. There exists an equivalence of monoidal categories
@ Ips(h”, W) = Tis(h, W)
which satisfies ® o (1) = (1) o ® and ®(B,)) = Tw for any w € Exp(W).

The monoidal functor ® is constructed in §7.2-7.3. By definition it satisfies ® o (1) =
(1) o ® and ®(By) = Ty for any w € Exp(W); in particular, it induces a bijection
between the sets of objects in Zpg(h*, W) and in Ig(h, W). To prove that this functor

is an equivalence, it therefore suffices to prove that it is fully faithful, which will be done
in §7.5.

Remark 7.2. In the case when W is finite, Theorem 7.1 can be deduced from the com-
bination of Theorem 5.1 and Theorem 3.3 (applied to h*). The main point of the proof
given below is that it applies also to infinite Coxeter groups.

7.2. Construction of the functor ®. In view of the definition of Zgg(h*, W), to define a
monoidal functor from Zgg(h*, W) to Is(h, W) which satisfies ®o (1) = (1) o ® it suffices
to define the image of each object BZ (s € S), of each generating morphism, and then
to check that the images of these morphisms satisfy the defining relations of Zgg(h*, W)
(in Ts(h,W)), see §3.1. In this subsection we explain how to define the images of the
generating objects and morphisms, and in §7.3 we will show that these images satisfy the
required relations.

First, our functor ® will send B2 to 7~;, for any s € S. By monoidality, for any expression
w, the image of B/ will then be T,,.

7.2.1. Polynomials. As we noted in §4.5, we have a graded algebra morphism . RY —
Endem ey, w) (T1). Thus, for x € R}, we can set

7.2.2. Dot morphisms. Let s € S. Recall that we have considered a certain morphism €
in (6.3). Consider also the morphism

s ,7-1<_1> — 72
defined in [3, §5.3.4]. We set

@(i)::ﬁs and @(T)::’e\s.

7.2.3. Trivalent vertices. Let again s € S. We note that the proof of [4, Lemma 4.2] is
completely diagrammatic, hence that it also applies in our present context. It follows that
there exists a unique morphism

b To = To*To(—1), resp. bo: Ty 5T, — To(—1),
which satisfies
(idﬁ ?%\s) ogl = id7~_s, resp. 32 o (id7~2 iﬁs) = id7~;, (7.1)
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for any s € S. We set

@(Y):& and @(Sj\s):@.

7.2.4. 2mg-valent vertices. Let s,t € S be distinct simple reflections generating a finite
subgroup of W. We set

t s

o > :fs,ta

s t

where the right-hand side is as in Proposition 6.1.

7.3. The functor ¢ is well defined. To complete the construction of ® we now need to
check that the morphisms considered in §7.2 satisfy the defining relations of the category
s (b*, W). Our proof of this fact follows the same strategy as in [4, §4.3].

Let us fix an arbitrary relation to be checked. There exists a subset S’ C S generating
a finite subgroup W’ of W such that this relation involves only words in S’. (The subset
S’ has cardinality at most 3, but this will not be important for our purposes.) Replacing
(W, S) by (W', 58"), we can therefore assume that W is finite. Under this assumption we can
consider a functor V as in Section 5. Since this functor is fully faithful, the relation under
consideration holds in Zpg(h, W) if and only if it holds after applying V. To check this we
will first compute the images under V o & of our generating morphisms, see §7.3.1-7.3.5.
These computations will show that the isomorphisms 7, (see (5.14)) define an isomorphism
of monoidal functors between V o & and the functor F : Zps(h*, W) — as(h*, W)
considered in [1, §3.5]. The fact that the relation under consideration holds will then
follow from the fact that F is indeed well defined, see [1, Lemma 3.14].

7.3.1. Polynomials. If z € R}, then the morphism

is given by
[ pz () o f = fopg(x),
i.e. by the action of z on the R"-module V(7;) = R.

7.3.2. The upper dot. By definition we have that

S

Vocb(T) = V(&) :V(7~;)—>V<7~1<1>).

Recall the identification s : B) = V(7;) in (5.7), which satisfies vs(us) = (s. The
morphism
V(&) o7, : BY = V(T1(1)) = RN(1)
is a morphism of R"-modules, which sends the generator u, to
e(=1) oG =¢,
see (5.6), i.e. to yz(ug). It therefore coincides with the “multiplication” morphism

ms : BY — RM(1)
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defined by a ® b +— ab, see [2, §3.3].

7.3.3. The lower dot. We now analyze
Vod ( : ) = V(@) : V (Ti{-1)) = V(T).

By [3, Lemma 5.3.2 (1)] we have € o 75 = 1z (), and hence
V(&) o V(#s) = o) -id : V(T1) — V(T7).

The morphism 3. := v, 1oV(7)s) oy therefore satisfies mso3; = o -idgr. Now the k-vector
space HomﬂBS(h*7w)(R/\, B (1)) is 1-dimensional, and generated by the morphism 3, such
that 8s(1) = 6s ® 1 — 1 ® s(ds) where 65 € V is an element which satisfies (s, ds) = 1,
cf. (3.3). This generator is the unique vector such that mgso 8s = ) - idga, so that

ﬁs = /82
7.3.4. Trivalent vertices. Let s € S. The spaces
Hom, (v w) (BS By (1)) and  Homz e w) (B(s,), BA(-1))

are 1-dimensional by [2, Corollary 4.7] and an easy computation in the Hecke algebra. As
explained e.g. in [1, §3.5], we can take as generators of these spaces the morphisms

L:fRg—f®1®g and t2: fRg®h— fos(g9) ® h,
where we use the identification
B{y s = Bl @rn Bl = R" @ (grys R" ®(grys RN (=2),

and 0Oy is the Demazure operator associated with s, see [12, §3.3]
We have

(idBSA ®ms(—1)) oty = idBSA and tg(l) o (istA ®5s) = ing\ .
On the other hand, by definition (see (7.1)), we have
(idy 7, ®V@E)(=1)) 0 V(Br) =idy 7, and V(B2)(1) o (idy 7, @V(iL)) = idy 7, -
Using the descriptions in §§7.3.2-7.3.3, we deduce that

Voo ( Y ) :7(5,s)ot107;1

S

and

Voo ( )S\ ) :fysotgo(fy(&s))*l.

S S

7.3.5. 2mg-valent vertices. Let s,t € S be distinct simple reflections generating a finite
subgroup of W. By the very definition of fs; (see Lemma 6.1) we have

t s

o 1
Vod > = V(fs,t) = 'Yw(t,s) O @Ps,t © (’Yw(s,t)) .

s t
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7.4. Triangulated Koszul duality. We have now constructed a monoidal functor ®
as in Theorem 7.1. We will still denote by ® the induced functor from Zgg(h*, W) to
93%(6, W). In order to prove that this functor is an equivalence, we will first study a
variant of this functor obtained by “killing the right action of R" Namely, recall the
constructions of §4.4. By definition of Z5q(h*, W), there exists a unique additive functor

9 : zgs(b*v W) — TlltéLBM(hv W)
such that
ForfM o & = ® o ForBE.
Recall also the equivalence (4.10), which we will here denote by . Finally, recall that we
have an action of the monoidal category (Fis(h, W), * ) on the category Tilt_m(h, W), see

Remark 4.14 (4).
The following statement is an analogue of [4, Theorem 5.2 & Proposition 5.5].

Theorem 7.3. The functor
s =10 KP(®) : LE (h*, W) — LM(h, W)

is an equivalence of triangulated categories. It satisfies » o (1) = (1) o 2, and for any
v € Exp(W) and any w € W we have

%(ﬁ/y\) >~ Ty, w(AN) ~ Ay,  #(YD) ~ V.
Finally, for any F € .@gas(b*, W) and G € LE(b*, W) we have a canonical isomorphism
HFxG) = (O(F)#171(G)). (7.2)

Proof. The facts that 50 (1) = (1) 0 3 and that »(B.) = 7T, for any expression v are true
by construction. The isomorphism (7.2) is also clear by construction and monoidality of
®. Next we will prove that »(Al) ~ A, for any w € W, following the strategy of [4,
§5.2]. The proof that »(V.) ~ V,, is similar, and left to the reader.

First, for s € S we consider the functor

Cli=ro K" (Tox (=) 017"+ LM(h, W) = LM(b, ).

The same construction can be carried out with 7; instead of 7~’S, providing a functor
isomorphic to the identity. These constructions are functorial and we have a morphism of
functor € : C. — id(1) induced by the morphism €, see (6.3). As in [4, Lemma 5.3] one
sees that the morphism €5(A,,) : CL(Ay) = Ay(1) is nonzero for all w € W. On the other
hand, recall the functor considered in Lemma 4.7. As in [4], there exists an isomorphism
of functors _
Cl = Tox(—). (7.3)
Now we prove the desired claim by induction on ¢(w). For w = 1, this claim is true
because A7 = 5{\ and A; = Ty by definition. Let w € W and s € S such that sw < w,
and assume the claim is known for sw. By the explicit description of A2 in (4.1), we have
a distinguished triangle

AY = BN s At B
in BE(h, W) where the second morphism is given by the upper dot. Tensoring with A%,
on the right and using [6, Proposition 6.11], we obtain a distinguished triangle

AL B x AL, = AL (1) B,
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where the second morphism is the upper dot tensored by idas . Applying s o ForEEE and
using (7.2) and (7.3), we deduce a distinguished triangle

2 (AD) = Tad s (AD,) = 5 (A0,) (1) B,

where the second morphism is induced by €5 via the identification (7.3). Using the induc-
tive hypothesis, we can rewrite this triangle as

2 (AD) = TaF Ay 5 Ay (1) By

with f £ 0. We compare this triangle with the triangle

Ap = ToF A & Ay (1) 2 (7.4)

provided by Lemma 4.6 (1). Here we also have g # 0. We will prove below that
dimy Homy pp 1) (7~; ?Asw,Aswﬂ)) =1; (7.5)

this will imply that f and g are multiples of each other, hence that »(4A,) = A,,, which
will finish the proof.

In order to prove (7.5), we observe that

dimy Homy ) (Asw(l),Asw(l)) =1 and
Homymy,w) (Aw, Asw(1)) = 0= Hommpw) (Aw[1],Asw(l))

where the first two equalities follow from the properties of the standard objects in a
highest weight category, and the third one is a consequence of the axioms of a t-structure
as the standard objects belong to the heart. Therefore, we obtain (7.5) by applying
Homy pmep,wy (—,Asw(1)) to the triangle (7.4).

Finally, we prove that s is an equivalence of categories. For that, we first notice that,
for any v,w € W and n,m € W, s induces an isomorphism

Homy g+ w) (Aﬁ,,yﬁ(n) [m]) = Homy mp,w) (Aw, Viy(n)[m]) .

In fact these spaces are zero except when v = w and n = m = 0 in which case they
are 1-dimensional, cf. [6, (9.2)]. To prove the claim it therefore suffices to prove that if
g: A} — YV is a nonzero morphism then »(g) # 0. However, it follows from Lemma 4.1
that the cone of g belongs to the triangulated subcategory of LE(h*, W) generated by the
objects Al\(n) with v € W satisfying v < w and n € Z, hence the cone of »(g) belongs
to the triangulated subcategory of LM(h, W) generated by the objects A, (n) with v € W
satisfying v < w and n € Z. Since V,, ® A, [1] does not belong to this subcategory (again,
by the recollement formalism), it follows that s(g) # 0.

Now, recall that the objects (AL (n) : w € W, n € Z) generate the triangulated category
LE(h*, W), and similarly for the objects (V2 (n) : w € W, n € Z), see e.g. [6, Lemma 6.9].
In view of [4, Lemma 5.6] (a version of Beilinson’s lemma), the property checked above
therefore implies that s¢ is fully faithful. Since its essential image contains the objects
(Ay(n) : w € W, n € Z), which generate LM(h, W) as a triangulated category, this functor
is also essentially surjective, which finishes the proof of Theorem 7.3. O
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7.5. Full faithfulness of ®. As explained in §7.1, to complete the proof of Theorem 7.1
we only have to prove that @ is fully faithful, i.e. that for any expressions v, w this functor
induces an isomorphism of graded R"-modules

D Homap ) (B2, Bua(n) = @ Homgow) (7o Tuln)) -
nez nez

Now, both sides are graded free of finite rank over R" by [12, Corollary 6.14] and Propo-
sition 4.11. To prove the claim, using Lemma 2.2 it therefore suffices to prove that the
morphism obtained after applying (—) ®ga k is an isomorphism. However, by Proposi-
tion 4.11 the latter morphism identifies with the morphism

@ Homg, (v w) (BY Bu(n)) = @ Homrieyew) (To, Tu(n))
nez nez

induced by @®; hence it is an isomorphism by Theorem 7.3.

7.6. Self-duality. We now prove an analogue of [4, Theorem 5.7]. (This version is called
“self duality” because the right equivariant and left equivariant categories are canonically
equivalent, as explained in §4.4.) Recall the indecomposable objects B, € Zgs(h, W)
and B} € PDpg(h*, W) defined in §3.1 (for w € W), and the indecomposable objects
Tw € Tiltre(h, W) and T2 € Tilt g(h*, W) defined in §§4.3-4.4 (for w € W).

Theorem 7.4. There exists an equivalence of triangulated categories
k : RE(h, W) = LE(h*, W)
which satisfies ko (1) = (1) o k, and such that
K(Aw) = Ay, K(Vw) 2V, &(Bw) ~ Ty, K(Tw) = B,
for any w e W.

Proof. We define x as the inverse of the composition of equivalences Forg¥ o s, see (4.7)
and Theorem 7.3. By Theorem 7.3 this functor satisfies k(A,) ~ Al and k(V,) ~ V4
for any w € W. The fact that x(T,) ~ B, for w € W is also an immediate consequence
of the properties of s. Finally, the fact that (7 ,) =~ BJ for any w € W can be deduced
exactly as in the proof of [4, Theorem 5.7]. O

7.7. Application to the combinatorics of indecomposable tilting objects. There
are two families of Laurent polynomials parametrized by pairs of elements of W that one
can attach to the realization h. First, consider the split Grothendieck ring [Z(h, W)]e of
the monoidal category 2(bh, W), which we consider as a Z[v, v~1]-algebra with v acting via
the morphism induced by (1). Recall that, using the notation from the proof of Lemma 5.8
(but allowing now W not to be finite), there exists a unique Z[v, v~!]-algebra isomorphism

n:Hus) = [2(5,W)]a
which sends Hs + v to [Bs] for any s € S, see [12, Corollary 6.27]. For w € W we set
ﬂ?u = U_l([Bw])'

Then (H. 2; cw € W) is a basis of Hy, s), which we call the “canonical basis” attached to b.
We can obtain a first family of Laurent polynomials (hng sy, w € W) as the coefficients

Ann. Repr. Th. 1 (2024), 3, p. 335-374 https://doi.org/10.5802/art.10


https://doi.org/10.5802/art.10

372 Simon Riche & Cristian Vay

of the expansion of the elements of this basis in the standard basis (H, : y € W); namely

for w € W we have
H), = > hg,w'Hy'
yew

(The “p-canonical” basis studied in [15] is an example of this construction.)
On the other hand, consider the objects (T, : w € W) in Pre(h, W). Given y € W and
n € 7Z, we will denote by

(Tw: By(m))
the number of times A, (n) appears in a standard filtration of T,. (It is a standard fact

that this quantity does not depend on the choice of filtration.) We can then consider, for
y,w € W, the Laurent polynomial

t27w = Z (7w :Zy<n>) -~
nez
The next statement shows that these families are exchanged by passing from b to h*.

Corollary 7.5. For any y,w € W we have hZ,w = t?/,*w-

Proof. As explained in [6, §6.6], the natural functor 91?8([]7 W) — BE(h, W) induces an
isomorphism

(555 (0, W)] = [BE(h, W)
where the right-hand side is the Grothendieck group of the triangulated category BE(h, W),

and the composition of n with this isomorphism sends H,, to [A,] for any w € W. The
functor ForBE also induces an isomorphism

e.g. because it is t-exact and induces an isomorphism between the sets of isomorphism
classes of simple objects in the heart of the perverse t-structure on both sides. We deduce
an isomorphism

How,s) — [RE(h, W)]a

sending H,, to [A,] for any w € W. In view of the description of morphism spaces between
standard and costandard objects (see [6, (9.2)]), the inverse isomorphism sends the class
of an object M to

> > (1)  dimy Homge (g ) (M, Va(m)[n]) - 0™ Hy.
weWnmeZ
In particular, for y,w € W we have
By W(©) = 3 (=1)" dimy Homgeyw (Bu, Vy(m)[n]) - o™,
n,m 7
On the other hand, by Theorem 7.4, for any y,w € W and n,m € Z we have

Homgg ) (Eunvy(m) [n]) = Homy g(p+,w) (L%Y{)(TW [n]) -

Hence this k-vector space vanishes unless n = 0, and in this case its dimension is equal to
(T, A, (m)). We deduce that

B w(0) = 3 (T, AYm)) o™,
meZ
which finishes the proof. O
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Example 7.6. Consider the realization of Example 2.1(4). In this case, the main result
of [11] says that for any y,w € W the polynomial h;w is up to some factor the Kazhdan—
Lusztig polynomial [16] attached to (y,w); in the notation of [24] we have h?hw = hyw-
Since the dual of a Soergel realization is again a Soergel realization (see Example 2.3(2)),
we deduce that for any Soergel realization we have t?,,w = Ay -

Remark 7.7. antinuiwith the setting of Example 7.6. By [6, Proposition 8.13], for any
w € W we have B,, = %,,. As a consequence of Theorem 7.4 we therefore have

Homge(n,w) (Zws Lo (n)m]) =0 (7.6)

unless n = —m. Assume now that W is finite. Then the category Pre(h, W ) has enough
projective objects; if for w € W we denote by &, the projective cover of .Z,,, then setting

P = @ Py, A= @ Hom (ﬁ,@(n))
weW ne”z
we obtain a graded k-algebra A and an equivalence of categories between Pre(h, W) and
the category of finite-dimensional graded A-modules. Using (7.6) and the techniques of [20,
§9.2] one can prove that A is a Koszul ring in the sense of [8]. In case W is a finite dihedral
group and b is the geometric realization, one sees using Theorem 7.4 and Ringel duality
(see [6, Proposition 10.2]) that A is isomorphic to the graded ring studied in [22].
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