Diagrammatics for real supergroups
Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 125-191.

We introduce two families of diagrammatic monoidal supercategories. The first family, depending on an associative superalgebra, generalizes the oriented Brauer category. The second, depending on an involutive superalgebra, generalizes the unoriented Brauer category. These two families of supercategories admit natural superfunctors to supercategories of supermodules over general linear supergroups and supergroups preserving superhermitian forms, respectively. We show that these superfunctors are full when the superalgebra is a central real division superalgebra. As a consequence, we obtain first fundamental theorems of invariant theory for all real forms of the general linear, orthosymplectic, periplectic, and isomeric supergroups. We also deduce equivalences between monoidal supercategories of tensor supermodules over the real forms of a complex supergroup.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.7
Classification: 18M05, 18M30, 17B10, 18M25
Keywords: Monoidal category, supercategory, supergroup, string diagram, invariant theory, Deligne category, interpolating category

Samchuck-Schnarch, Saima 1; Savage, Alistair 1

1 Department of Mathematics and Statistics, University of Ottawa STEM Building, 150 Louis-Pasteur Ottawa ON K1N 6N5 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_2_125_0,
     author = {Samchuck-Schnarch, Saima and Savage, Alistair},
     title = {Diagrammatics for real supergroups},
     journal = {Annals of Representation Theory},
     pages = {125--191},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {2},
     year = {2024},
     doi = {10.5802/art.7},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.7/}
}
TY  - JOUR
AU  - Samchuck-Schnarch, Saima
AU  - Savage, Alistair
TI  - Diagrammatics for real supergroups
JO  - Annals of Representation Theory
PY  - 2024
SP  - 125
EP  - 191
VL  - 1
IS  - 2
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.7/
DO  - 10.5802/art.7
LA  - en
ID  - ART_2024__1_2_125_0
ER  - 
%0 Journal Article
%A Samchuck-Schnarch, Saima
%A Savage, Alistair
%T Diagrammatics for real supergroups
%J Annals of Representation Theory
%D 2024
%P 125-191
%V 1
%N 2
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.7/
%R 10.5802/art.7
%G en
%F ART_2024__1_2_125_0
Samchuck-Schnarch, Saima; Savage, Alistair. Diagrammatics for real supergroups. Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 125-191. doi : 10.5802/art.7. https://art.centre-mersenne.org/articles/10.5802/art.7/

[1] Baez, John The tenfold way, Notices Am. Math. Soc., Volume November (2020), pp. 1599-1601 | DOI | MR | Zbl

[2] Brundan, Jonathan; Comes, Jonathan; Kujawa, Jonathan R. A basis theorem for the degenerate affine oriented Brauer-Clifford supercategory, Can. J. Math., Volume 71 (2019) no. 5, pp. 1061-1101 | DOI | MR | Zbl

[3] Brundan, Jonathan; Comes, Jonathan; Nash, David; Reynolds, Andrew A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., Volume 8 (2017) no. 1, pp. 75-112 | DOI | MR | Zbl

[4] Brundan, Jonathan; Ellis, Alexander P. Monoidal supercategories, Commun. Math. Phys., Volume 351 (2017) no. 3, pp. 1045-1089 | DOI | MR | Zbl

[5] Brundan, Jonathan; Savage, Alistair; Webster, Ben Foundations of Frobenius Heisenberg categories, J. Algebra, Volume 578 (2021), pp. 115-185 | DOI | MR | Zbl

[6] Brundan, Jonathan; Stroppel, Catharina Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math., Volume 231 (2012) no. 2, pp. 709-773 | DOI | MR | Zbl

[7] Calvert, Kieran Compact Schur–Weyl duality: real Lie groups and the cyclotomic Brauer algebra, J. Pure Appl. Algebra, Volume 226 (2022) no. 11, p. Paper No. 107082, 15 | DOI | MR | Zbl

[8] Comes, Jonathan; Heidersdorf, Thorsten Thick ideals in Deligne’s category Re ̲p(O δ ), J. Algebra, Volume 480 (2017), pp. 237-265 | DOI | MR | Zbl

[9] Comes, Jonathan; Wilson, Benjamin Deligne’s category Rep ̲(GL δ ) and representations of general linear supergroups, Represent. Theory, Volume 16 (2012), pp. 568-609 | DOI | MR | Zbl

[10] Coulembier, Kevin; Ehrig, Michael The periplectic Brauer algebra III: The Deligne category, Algebr. Represent. Theory, Volume 24 (2021) no. 4, pp. 993-1027 | DOI | MR | Zbl

[11] Deligne, Pierre La catégorie des représentations du groupe symétrique S t , lorsque t n’est pas un entier naturel, Algebraic groups and homogeneous spaces (Tata Institute of Fundamental Research Studies in Mathematics), Volume 19, Tata Institute of Fundamental Research, 2007, pp. 209-273 | MR | Zbl

[12] Deligne, Pierre; Lehrer, Gustav I.; Zhang, Rui Bin The first fundamental theorem of invariant theory for the orthosymplectic super group, Adv. Math., Volume 327 (2018), pp. 4-24 | DOI | MR | Zbl

[13] Deligne, Pierre; Morgan, John W. Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical Society, 1999, pp. 41-97 | MR | Zbl

[14] Ehrig, Michael; Stroppel, Catharina Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra, Math. Z., Volume 284 (2016) no. 1-2, pp. 595-613 | DOI | MR | Zbl

[15] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer, 1991 (Readings in Mathematics) | DOI | MR | Zbl

[16] Gavarini, Fabio A new equivalence between super Harish–Chandra pairs and Lie supergroups, Pac. J. Math., Volume 306 (2020) no. 2, pp. 451-485 | DOI | MR | Zbl

[17] Heidersdorf, Thorsten Mixed tensors of the general linear supergroup, J. Algebra, Volume 491 (2017), pp. 402-446 | DOI | MR | Zbl

[18] Đjoković, Dragomir Ž.; Hochschild, Gerhard Semisimplicity of 2-graded Lie algebras. II, Ill. J. Math., Volume 20 (1976) no. 1, pp. 134-143 | MR | Zbl

[19] Kelly, Gregory M. Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005) no. 10 (reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]) | MR | Zbl

[20] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002 | MR | Zbl

[21] Kujawa, Jonathan R.; Tharp, Benjamin C. The marked Brauer category, J. Lond. Math. Soc., Volume 95 (2017) no. 2, pp. 393-413 | DOI | MR | Zbl

[22] Lee Shader, Chanyoung; Moon, Dongho Mixed tensor representations and rational representations for the general linear Lie superalgebras, Commun. Algebra, Volume 30 (2002) no. 2, pp. 839-857 | DOI | MR | Zbl

[23] Lehrer, Gustav I.; Zhang, Rui Bin The Brauer category and invariant theory, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2311-2351 | DOI | MR | Zbl

[24] Lehrer, Gustav I.; Zhang, Rui Bin The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Commun. Math. Phys., Volume 349 (2017) no. 2, pp. 661-702 | DOI | MR | Zbl

[25] Lehrer, Gustav I.; Zhang, Rui Bin The second fundamental theorem of invariant theory for the orthosymplectic supergroup, Nagoya Math. J., Volume 242 (2021), pp. 52-76 | DOI | MR | Zbl

[26] Lewis, David W. The isometry classification of Hermitian forms over division algebras, Linear Algebra Appl., Volume 43 (1982), pp. 245-272 | DOI | MR | Zbl

[27] McSween, Alexandra; Savage, Alistair Affine oriented Frobenius Brauer categories, Commun. Algebra, Volume 51 (2023) no. 2, pp. 742-756 | DOI | MR | Zbl

[28] Moon, Dongho Tensor product representations of the Lie superalgebra 𝔭(n) and their centralizers, Commun. Algebra, Volume 31 (2003) no. 5, pp. 2095-2140 | DOI | MR | Zbl

[29] Pike, Jeffrey; Savage, Alistair Twisted Frobenius extensions of graded superrings, Algebr. Represent. Theory, Volume 19 (2016) no. 1, pp. 113-133 | DOI | MR | Zbl

[30] Rui, Hebing; Song, Linliang Affine Brauer category and parabolic category 𝒪 in types B, C, D, Math. Z., Volume 293 (2019) no. 1-2, pp. 503-550 | DOI | MR | Zbl

[31] Samchuck-Schnarch, Saima Frobenius Brauer categories, M.Sc. thesis, University of Ottawa, Canada (2022) | DOI

[32] Savage, Alistair Frobenius Heisenberg categorification, Algebr. Comb., Volume 2 (2019) no. 5, pp. 937-967 | DOI | Numdam | MR | Zbl

[33] Savage, Alistair; Westbury, Bruce Quantum diagrammatics for F 4 (2022) | arXiv

[34] Selinger, Peter A survey of graphical languages for monoidal categories, New structures for physics (Lecture Notes in Physics), Volume 813, Springer, 2011, pp. 289-355 | DOI | MR | Zbl

[35] Serganova, Vera V. Classification of simple real Lie superalgebras and symmetric superspaces, Funkts. Anal. Prilozh., Volume 17 (1983) no. 3, pp. 46-54 | MR | Zbl

[36] Wall, Charles T. C. Graded Brauer groups, J. Reine Angew. Math., Volume 213 (1963/64), pp. 187-199 | DOI | MR | Zbl

Cited by Sources: