We introduce two families of diagrammatic monoidal supercategories. The first family, depending on an associative superalgebra, generalizes the oriented Brauer category. The second, depending on an involutive superalgebra, generalizes the unoriented Brauer category. These two families of supercategories admit natural superfunctors to supercategories of supermodules over general linear supergroups and supergroups preserving superhermitian forms, respectively. We show that these superfunctors are full when the superalgebra is a central real division superalgebra. As a consequence, we obtain first fundamental theorems of invariant theory for all real forms of the general linear, orthosymplectic, periplectic, and isomeric supergroups. We also deduce equivalences between monoidal supercategories of tensor supermodules over the real forms of a complex supergroup.
Revised:
Accepted:
Published online:
Keywords: Monoidal category, supercategory, supergroup, string diagram, invariant theory, Deligne category, interpolating category
Samchuck-Schnarch, Saima 1; Savage, Alistair 1
@article{ART_2024__1_2_125_0, author = {Samchuck-Schnarch, Saima and Savage, Alistair}, title = {Diagrammatics for real supergroups}, journal = {Annals of Representation Theory}, pages = {125--191}, publisher = {The Publishers of ART}, volume = {1}, number = {2}, year = {2024}, doi = {10.5802/art.7}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.7/} }
TY - JOUR AU - Samchuck-Schnarch, Saima AU - Savage, Alistair TI - Diagrammatics for real supergroups JO - Annals of Representation Theory PY - 2024 SP - 125 EP - 191 VL - 1 IS - 2 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.7/ DO - 10.5802/art.7 LA - en ID - ART_2024__1_2_125_0 ER -
Samchuck-Schnarch, Saima; Savage, Alistair. Diagrammatics for real supergroups. Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 125-191. doi : 10.5802/art.7. https://art.centre-mersenne.org/articles/10.5802/art.7/
[1] The tenfold way, Notices Am. Math. Soc., Volume November (2020), pp. 1599-1601 | DOI | MR | Zbl
[2] A basis theorem for the degenerate affine oriented Brauer-Clifford supercategory, Can. J. Math., Volume 71 (2019) no. 5, pp. 1061-1101 | DOI | MR | Zbl
[3] A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., Volume 8 (2017) no. 1, pp. 75-112 | DOI | MR | Zbl
[4] Monoidal supercategories, Commun. Math. Phys., Volume 351 (2017) no. 3, pp. 1045-1089 | DOI | MR | Zbl
[5] Foundations of Frobenius Heisenberg categories, J. Algebra, Volume 578 (2021), pp. 115-185 | DOI | MR | Zbl
[6] Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math., Volume 231 (2012) no. 2, pp. 709-773 | DOI | MR | Zbl
[7] Compact Schur–Weyl duality: real Lie groups and the cyclotomic Brauer algebra, J. Pure Appl. Algebra, Volume 226 (2022) no. 11, p. Paper No. 107082, 15 | DOI | MR | Zbl
[8] Thick ideals in Deligne’s category , J. Algebra, Volume 480 (2017), pp. 237-265 | DOI | MR | Zbl
[9] Deligne’s category and representations of general linear supergroups, Represent. Theory, Volume 16 (2012), pp. 568-609 | DOI | MR | Zbl
[10] The periplectic Brauer algebra III: The Deligne category, Algebr. Represent. Theory, Volume 24 (2021) no. 4, pp. 993-1027 | DOI | MR | Zbl
[11] La catégorie des représentations du groupe symétrique , lorsque n’est pas un entier naturel, Algebraic groups and homogeneous spaces (Tata Institute of Fundamental Research Studies in Mathematics), Volume 19, Tata Institute of Fundamental Research, 2007, pp. 209-273 | MR | Zbl
[12] The first fundamental theorem of invariant theory for the orthosymplectic super group, Adv. Math., Volume 327 (2018), pp. 4-24 | DOI | MR | Zbl
[13] Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical Society, 1999, pp. 41-97 | MR | Zbl
[14] Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra, Math. Z., Volume 284 (2016) no. 1-2, pp. 595-613 | DOI | MR | Zbl
[15] Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer, 1991 (Readings in Mathematics) | DOI | MR | Zbl
[16] A new equivalence between super Harish–Chandra pairs and Lie supergroups, Pac. J. Math., Volume 306 (2020) no. 2, pp. 451-485 | DOI | MR | Zbl
[17] Mixed tensors of the general linear supergroup, J. Algebra, Volume 491 (2017), pp. 402-446 | DOI | MR | Zbl
[18] Semisimplicity of -graded Lie algebras. II, Ill. J. Math., Volume 20 (1976) no. 1, pp. 134-143 | MR | Zbl
[19] Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005) no. 10 (reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]) | MR | Zbl
[20] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002 | MR | Zbl
[21] The marked Brauer category, J. Lond. Math. Soc., Volume 95 (2017) no. 2, pp. 393-413 | DOI | MR | Zbl
[22] Mixed tensor representations and rational representations for the general linear Lie superalgebras, Commun. Algebra, Volume 30 (2002) no. 2, pp. 839-857 | DOI | MR | Zbl
[23] The Brauer category and invariant theory, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2311-2351 | DOI | MR | Zbl
[24] The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Commun. Math. Phys., Volume 349 (2017) no. 2, pp. 661-702 | DOI | MR | Zbl
[25] The second fundamental theorem of invariant theory for the orthosymplectic supergroup, Nagoya Math. J., Volume 242 (2021), pp. 52-76 | DOI | MR | Zbl
[26] The isometry classification of Hermitian forms over division algebras, Linear Algebra Appl., Volume 43 (1982), pp. 245-272 | DOI | MR | Zbl
[27] Affine oriented Frobenius Brauer categories, Commun. Algebra, Volume 51 (2023) no. 2, pp. 742-756 | DOI | MR | Zbl
[28] Tensor product representations of the Lie superalgebra and their centralizers, Commun. Algebra, Volume 31 (2003) no. 5, pp. 2095-2140 | DOI | MR | Zbl
[29] Twisted Frobenius extensions of graded superrings, Algebr. Represent. Theory, Volume 19 (2016) no. 1, pp. 113-133 | DOI | MR | Zbl
[30] Affine Brauer category and parabolic category in types , , , Math. Z., Volume 293 (2019) no. 1-2, pp. 503-550 | DOI | MR | Zbl
[31] Frobenius Brauer categories, M.Sc. thesis, University of Ottawa, Canada (2022) | DOI
[32] Frobenius Heisenberg categorification, Algebr. Comb., Volume 2 (2019) no. 5, pp. 937-967 | DOI | Numdam | MR | Zbl
[33] Quantum diagrammatics for (2022) | arXiv
[34] A survey of graphical languages for monoidal categories, New structures for physics (Lecture Notes in Physics), Volume 813, Springer, 2011, pp. 289-355 | DOI | MR | Zbl
[35] Classification of simple real Lie superalgebras and symmetric superspaces, Funkts. Anal. Prilozh., Volume 17 (1983) no. 3, pp. 46-54 | MR | Zbl
[36] Graded Brauer groups, J. Reine Angew. Math., Volume 213 (1963/64), pp. 187-199 | DOI | MR | Zbl
Cited by Sources: