Strictly atomic modules in definable categories
Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 299-334.

If 𝒟 is a definable category then it may contain no nonzero finitely presented objects but, by a result of Makkai, there is a lim -generating set of strictly 𝒟-atomic modules in 𝒟. These modules share some key properties with finitely presented modules.

We consider these modules in general and then in the case that 𝒟 is the category of modules of some fixed irrational slope over a tubular algebra.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.9
Classification: 03C60, 16D90, 16G20, 18E08, 18E10
Keywords: definable category, Mittag-Leffler module, atomic module, tubular algebra, definable closure

Prest, Mike 1

1 Department of Mathematics University of Manchester Manchester M13 9PL (UK)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_2_299_0,
     author = {Prest, Mike},
     title = {Strictly atomic modules in definable categories},
     journal = {Annals of Representation Theory},
     pages = {299--334},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {2},
     year = {2024},
     doi = {10.5802/art.9},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.9/}
}
TY  - JOUR
AU  - Prest, Mike
TI  - Strictly atomic modules in definable categories
JO  - Annals of Representation Theory
PY  - 2024
SP  - 299
EP  - 334
VL  - 1
IS  - 2
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.9/
DO  - 10.5802/art.9
LA  - en
ID  - ART_2024__1_2_299_0
ER  - 
%0 Journal Article
%A Prest, Mike
%T Strictly atomic modules in definable categories
%J Annals of Representation Theory
%D 2024
%P 299-334
%V 1
%N 2
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.9/
%R 10.5802/art.9
%G en
%F ART_2024__1_2_299_0
Prest, Mike. Strictly atomic modules in definable categories. Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 299-334. doi : 10.5802/art.9. https://art.centre-mersenne.org/articles/10.5802/art.9/

[1] Angeleri Hügel, Lidia; Herbera, Dolors Mittag-Leffler conditions on modules, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2459-2517 | DOI | MR | Zbl

[2] Angeleri Hügel, Lidia; Herzog, Ivo; Laking, Rosanna Simples in a cotilting heart (2022) | arXiv

[3] Angeleri Hügel, Lidia; Hrbek, Michal Silting modules over commutative rings, Int. Math. Res. Not., Volume 13 (2017), pp. 4131-4151 | Zbl

[4] Angeleri Hügel, Lidia; Kussin, Dirk Tilting and cotilting modules over concealed canonical algebras, Math. Z., Volume 285 (2017), pp. 821-850 | DOI | MR | Zbl

[5] Angeleri Hügel, Lidia; Marks, Frederik; Vitória, Jorge Silting modules, Int. Math. Res. Not. (2016) no. 4, pp. 1251-1284 | MR | Zbl

[6] Angeleri Hügel, Lidia; Tonolo, Alberto; Trlifaj, Jan Titling preenvelopes and cotilting precovers, Algebr. Represent. Theory, Volume 4 (2001), pp. 155-170 | DOI | Zbl

[7] Azumaya, Goro Locally pure-projective modules, Proceedings of the Conference in Honor of Goro Azumaya’s Seventieth Birthday held at Indiana University, Bloomington, Indiana, May 23–27, 1990 (Contemporary Mathematics), Volume 124, American Mathematical Society, 1992, pp. 17-22 | MR | Zbl

[8] Burke, Kevin; Prest, Mike Rings of definable scalars and biendomorphism rings, Model Theory of Groups and Automorphism Groups (London Mathematical Society Lecture Note Series), Volume 244, Cambridge University Press, 1992, pp. 188-201 | Zbl

[9] Butz, Carsten Regular categories & regular logic (1998) no. LS-98-2 (Technical report)

[10] Colpi, R.; Fuller, K. R. Tilting objects in abelian categories and quasitilted rings, Trans. Am. Math. Soc., Volume 359 (2007), pp. 741-765 | DOI | MR | Zbl

[11] Crivei, Septimiu; Prest, Mike; Torrecillas, Blas Covers in finitely accessible categories, Proc. Am. Math. Soc., Volume 138 (2010), pp. 1213-1221 | DOI | MR | Zbl

[12] Göbel, Rüdiger; Trlifaj, Jan Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2012 | DOI | Zbl

[13] Gregory, Lorna Decidability of theories of modules over tubular algebras, Proc. Lond. Math. Soc., Volume 123 (2021), pp. 460-497 | DOI | MR | Zbl

[14] Guil Asensio, Pedro A.; Cortés-Izurdiaga, Manuel; Rothmaler, Philipp; Torrecillas, Blas Strict Mittag-Leffler modules, Math. Log. Q., Volume 57 (2011), pp. 566-570 | MR | Zbl

[15] Harland, Richard Pure-injective Modules over Tubular Algebras and String Algebras, Ph. D. Thesis, University of Manchester, United Kingdom (2011) (available at https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html)

[16] Harland, Richard; Prest, Mike Modules with irrational slope over tubular algebras, Proc. Lond. Math. Soc., Volume 110 (2015), pp. 695-720 | DOI | MR | Zbl

[17] Herzog, Ivo Elementary duality of modules, Trans. Am. Math. Soc., Volume 340 (1993), pp. 37-69 | DOI | MR | Zbl

[18] Kuber, Amit; Rosický, Jiří Definable categories, J. Pure Appl. Algebra, Volume 222 (2018), pp. 1006-1025 | DOI | MR | Zbl

[19] Kucera, Thomas G.; Rothmaler, Philipp Pure-projective modules and positive constructibility, J. Symb. Log., Volume 65 (2000), pp. 103-110 | DOI | MR | Zbl

[20] Kussin, Dirk; Laking, Rosanna Cotilting sheaves over weighted noncommutative regular projective curves, Doc. Math., Volume 25 (2020), pp. 1029-1077 | DOI | MR | Zbl

[21] Lack, Stephen; Tendas, Giacomo Enriched regular theories, J. Pure Appl. Algebra, Volume 224 (2020), Paper no. 106268 | MR | Zbl

[22] Makkai, Michael Full continuous embeddings of toposes, Trans. Am. Math. Soc., Volume 269 (1982), pp. 167-196 | DOI | MR | Zbl

[23] Makkai, Michael A theorem on Barr-exact categories with an infinitary generalization, Ann. Pure Appl. Logic, Volume 47 (1990), pp. 225-268 | DOI | MR | Zbl

[24] Mehdi, Akeel R.; Prest, Mike Almost dual pairs and definable classes of modules, Commun. Algebra, Volume 43 (2015), pp. 1387-1397 | DOI | MR | Zbl

[25] Prest, Mike Model Theory and Modules, London Mathematical Society Lecture Note Series, 130, Cambridge University Press, 1988 | DOI | Zbl

[26] Prest, Mike The representation theories of elementarily equivalent rings, J. Symb. Log., Volume 63 (1998), pp. 439-450 | DOI | MR | Zbl

[27] Prest, Mike Tensor product and theories of modules, J. Symb. Log., Volume 64 (1999), pp. 617-628 | DOI | MR | Zbl

[28] Prest, Mike Purity, Spectra and Localisation, Encyclopedia of Mathematics and Its Applications, 121, Cambridge University Press, 2009 | DOI | Zbl

[29] Prest, Mike Definable additive categories: purity and model theory, Memoirs of the American Mathematical Society, 210, American Mathematical Society, 2011 | Zbl

[30] Prest, Mike; Rothmaler, Phillip; Ziegler, Martin Extensions of elementary duality, J. Pure Appl. Algebra, Volume 93 (1994), pp. 33-56 | DOI | MR | Zbl

[31] Puninski, Gena; Rothmaler, Philipp Pure-projective modules, J. Lond. Math. Soc., Volume 71 (2005), pp. 304-320 | DOI | MR | Zbl

[32] Rada, Juan; Saorín, Manuel Rings characterized by (pre)envelopes and (pre)covers of their modules, Commun. Algebra, Volume 26 (1998) no. 3, pp. 899-912 | DOI | MR | Zbl

[33] Raynaud, Michel; Gruson, Laurent Critères de platitude et de projectivité, Seconde partie, Invent. Math., Volume 13 (1971), pp. 52-89 | Zbl

[34] Reiten, Idun; Ringel, Claus M. Infinite dimensional representations of canonical algebras, Can. J. Math., Volume 58 (2006), pp. 180-224 | DOI | MR | Zbl

[35] Ringel, Claus M. Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, 1099, Springer, 1984 | DOI | Zbl

[36] Rothmaler, Philipp Mittag-Leffler Modules and Positive Atomicity, Ph. D. Thesis, Universität Kiel, Deutschland (1994) (Habilitationsschrift)

[37] Rothmaler, Philipp Mittag-Leffler Modules, Ann. Pure Appl. Logic, Volume 88 (1997), pp. 227-239 | DOI | MR | Zbl

[38] Rothmaler, Philipp Mittag-Leffler modules and definable subcategories, Model theory of modules, algebras and categories. International conference, Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Italy, July 28 – August 2, 2017 (Contemporary Mathematics), Volume 710, American Mathematical Society, 2019, pp. 171-196 | Zbl

[39] Rothmaler, Philipp Strict Mittag-Leffler modules and purely generated classes, Categorical, homological and combinatorial methods in algebra. AMS special session in honor of S. K. Jain’s 80 th birthday, Ohio State University, Columbus, Ohio, March 16–18, 2018 (Contemporary Mathematics), Volume 751, American Mathematical Society, 2020, pp. 303-327 | MR | Zbl

[40] Zimmermann-Huisgen, Birge; Zimmermann, Wolfgang On the sparsity of representations of rings of pure global dimension zero, Trans. Am. Math. Soc., Volume 320 (1990), pp. 695-711 | DOI | MR | Zbl

Cited by Sources: