If is a definable category then it may contain no nonzero finitely presented objects but, by a result of Makkai, there is a -generating set of strictly -atomic modules in . These modules share some key properties with finitely presented modules.
We consider these modules in general and then in the case that is the category of modules of some fixed irrational slope over a tubular algebra.
Revised:
Accepted:
Published online:
Keywords: definable category, Mittag-Leffler module, atomic module, tubular algebra, definable closure
Prest, Mike 1
@article{ART_2024__1_2_299_0, author = {Prest, Mike}, title = {Strictly atomic modules in definable categories}, journal = {Annals of Representation Theory}, pages = {299--334}, publisher = {The Publishers of ART}, volume = {1}, number = {2}, year = {2024}, doi = {10.5802/art.9}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.9/} }
TY - JOUR AU - Prest, Mike TI - Strictly atomic modules in definable categories JO - Annals of Representation Theory PY - 2024 SP - 299 EP - 334 VL - 1 IS - 2 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.9/ DO - 10.5802/art.9 LA - en ID - ART_2024__1_2_299_0 ER -
Prest, Mike. Strictly atomic modules in definable categories. Annals of Representation Theory, Volume 1 (2024) no. 2, pp. 299-334. doi : 10.5802/art.9. https://art.centre-mersenne.org/articles/10.5802/art.9/
[1] Mittag-Leffler conditions on modules, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2459-2517 | DOI | MR | Zbl
[2] Simples in a cotilting heart (2022) | arXiv
[3] Silting modules over commutative rings, Int. Math. Res. Not., Volume 13 (2017), pp. 4131-4151 | Zbl
[4] Tilting and cotilting modules over concealed canonical algebras, Math. Z., Volume 285 (2017), pp. 821-850 | DOI | MR | Zbl
[5] Silting modules, Int. Math. Res. Not. (2016) no. 4, pp. 1251-1284 | MR | Zbl
[6] Titling preenvelopes and cotilting precovers, Algebr. Represent. Theory, Volume 4 (2001), pp. 155-170 | DOI | Zbl
[7] Locally pure-projective modules, Proceedings of the Conference in Honor of Goro Azumaya’s Seventieth Birthday held at Indiana University, Bloomington, Indiana, May 23–27, 1990 (Contemporary Mathematics), Volume 124, American Mathematical Society, 1992, pp. 17-22 | MR | Zbl
[8] Rings of definable scalars and biendomorphism rings, Model Theory of Groups and Automorphism Groups (London Mathematical Society Lecture Note Series), Volume 244, Cambridge University Press, 1992, pp. 188-201 | Zbl
[9] Regular categories & regular logic (1998) no. LS-98-2 (Technical report)
[10] Tilting objects in abelian categories and quasitilted rings, Trans. Am. Math. Soc., Volume 359 (2007), pp. 741-765 | DOI | MR | Zbl
[11] Covers in finitely accessible categories, Proc. Am. Math. Soc., Volume 138 (2010), pp. 1213-1221 | DOI | MR | Zbl
[12] Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2012 | DOI | Zbl
[13] Decidability of theories of modules over tubular algebras, Proc. Lond. Math. Soc., Volume 123 (2021), pp. 460-497 | DOI | MR | Zbl
[14] Strict Mittag-Leffler modules, Math. Log. Q., Volume 57 (2011), pp. 566-570 | MR | Zbl
[15] Pure-injective Modules over Tubular Algebras and String Algebras, Ph. D. Thesis, University of Manchester, United Kingdom (2011) (available at https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html)
[16] Modules with irrational slope over tubular algebras, Proc. Lond. Math. Soc., Volume 110 (2015), pp. 695-720 | DOI | MR | Zbl
[17] Elementary duality of modules, Trans. Am. Math. Soc., Volume 340 (1993), pp. 37-69 | DOI | MR | Zbl
[18] Definable categories, J. Pure Appl. Algebra, Volume 222 (2018), pp. 1006-1025 | DOI | MR | Zbl
[19] Pure-projective modules and positive constructibility, J. Symb. Log., Volume 65 (2000), pp. 103-110 | DOI | MR | Zbl
[20] Cotilting sheaves over weighted noncommutative regular projective curves, Doc. Math., Volume 25 (2020), pp. 1029-1077 | DOI | MR | Zbl
[21] Enriched regular theories, J. Pure Appl. Algebra, Volume 224 (2020), Paper no. 106268 | MR | Zbl
[22] Full continuous embeddings of toposes, Trans. Am. Math. Soc., Volume 269 (1982), pp. 167-196 | DOI | MR | Zbl
[23] A theorem on Barr-exact categories with an infinitary generalization, Ann. Pure Appl. Logic, Volume 47 (1990), pp. 225-268 | DOI | MR | Zbl
[24] Almost dual pairs and definable classes of modules, Commun. Algebra, Volume 43 (2015), pp. 1387-1397 | DOI | MR | Zbl
[25] Model Theory and Modules, London Mathematical Society Lecture Note Series, 130, Cambridge University Press, 1988 | DOI | Zbl
[26] The representation theories of elementarily equivalent rings, J. Symb. Log., Volume 63 (1998), pp. 439-450 | DOI | MR | Zbl
[27] Tensor product and theories of modules, J. Symb. Log., Volume 64 (1999), pp. 617-628 | DOI | MR | Zbl
[28] Purity, Spectra and Localisation, Encyclopedia of Mathematics and Its Applications, 121, Cambridge University Press, 2009 | DOI | Zbl
[29] Definable additive categories: purity and model theory, Memoirs of the American Mathematical Society, 210, American Mathematical Society, 2011 | Zbl
[30] Extensions of elementary duality, J. Pure Appl. Algebra, Volume 93 (1994), pp. 33-56 | DOI | MR | Zbl
[31] Pure-projective modules, J. Lond. Math. Soc., Volume 71 (2005), pp. 304-320 | DOI | MR | Zbl
[32] Rings characterized by (pre)envelopes and (pre)covers of their modules, Commun. Algebra, Volume 26 (1998) no. 3, pp. 899-912 | DOI | MR | Zbl
[33] Critères de platitude et de projectivité, Seconde partie, Invent. Math., Volume 13 (1971), pp. 52-89 | Zbl
[34] Infinite dimensional representations of canonical algebras, Can. J. Math., Volume 58 (2006), pp. 180-224 | DOI | MR | Zbl
[35] Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, 1099, Springer, 1984 | DOI | Zbl
[36] Mittag-Leffler Modules and Positive Atomicity, Ph. D. Thesis, Universität Kiel, Deutschland (1994) (Habilitationsschrift)
[37] Mittag-Leffler Modules, Ann. Pure Appl. Logic, Volume 88 (1997), pp. 227-239 | DOI | MR | Zbl
[38] Mittag-Leffler modules and definable subcategories, Model theory of modules, algebras and categories. International conference, Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Italy, July 28 – August 2, 2017 (Contemporary Mathematics), Volume 710, American Mathematical Society, 2019, pp. 171-196 | Zbl
[39] Strict Mittag-Leffler modules and purely generated classes, Categorical, homological and combinatorial methods in algebra. AMS special session in honor of S. K. Jain’s birthday, Ohio State University, Columbus, Ohio, March 16–18, 2018 (Contemporary Mathematics), Volume 751, American Mathematical Society, 2020, pp. 303-327 | MR | Zbl
[40] On the sparsity of representations of rings of pure global dimension zero, Trans. Am. Math. Soc., Volume 320 (1990), pp. 695-711 | DOI | MR | Zbl
Cited by Sources: