Representation type of higher level cyclotomic quiver Hecke algebras in affine type C
Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 27-97

We determine the representation type of cyclotomic quiver Hecke algebras of affine type C. In the tame cases, we explicitly describe their basic algebras under the assumption $\operatorname{char}\mathbb{k}\ne 2$, relying on the Morita invariance of cellularity.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.34
Classification: 20C08, 16G60, 17B65, 16G20
Keywords: Cyclotomic KLR algebras, cyclotomic quiver Hecke algebras, representation type, Brauer graph algebras, silting theory, derived equivalence

Ariki, Susumu  1 ; Hudak, Berta  2 ; Song, Linliang  3 ; Wang, Qi  4

1 Osaka University (retired)
2 Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
3 School of Mathematical Science & Key Laboratory of Intelligent Computing and Applications (Ministry of Education), Tongji University, Shanghai, 200092, China
4 School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2026__3_1_27_0,
     author = {Ariki, Susumu and Hudak, Berta and Song, Linliang and Wang, Qi},
     title = {Representation type of higher level cyclotomic quiver {Hecke} algebras in affine type {C}},
     journal = {Annals of Representation Theory},
     pages = {27--97},
     year = {2026},
     publisher = {The Publishers of ART},
     volume = {3},
     number = {1},
     doi = {10.5802/art.34},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.34/}
}
TY  - JOUR
AU  - Ariki, Susumu
AU  - Hudak, Berta
AU  - Song, Linliang
AU  - Wang, Qi
TI  - Representation type of higher level cyclotomic quiver Hecke algebras in affine type C
JO  - Annals of Representation Theory
PY  - 2026
SP  - 27
EP  - 97
VL  - 3
IS  - 1
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.34/
DO  - 10.5802/art.34
LA  - en
ID  - ART_2026__3_1_27_0
ER  - 
%0 Journal Article
%A Ariki, Susumu
%A Hudak, Berta
%A Song, Linliang
%A Wang, Qi
%T Representation type of higher level cyclotomic quiver Hecke algebras in affine type C
%J Annals of Representation Theory
%D 2026
%P 27-97
%V 3
%N 1
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.34/
%R 10.5802/art.34
%G en
%F ART_2026__3_1_27_0
Ariki, Susumu; Hudak, Berta; Song, Linliang; Wang, Qi. Representation type of higher level cyclotomic quiver Hecke algebras in affine type C. Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 27-97. doi: 10.5802/art.34

[1] Adachi, Takahide; Iyama, Osamu; Reiten, Idun τ-tilting theory, Compos. Math., Volume 150 (2014) no. 3, pp. 415-452 | DOI | MR | Zbl

[2] Aihara, Takuma Tilting-connected symmetric algebras, Algebr. Represent. Theory, Volume 16 (2013) no. 3, pp. 873-894 | DOI | MR | Zbl

[3] Aihara, Takuma On silting-discrete triangulated categories, Proceedings of the 47th Symposium on Ring Theory and Representation Theory, Symposium on Ring Theory and Representation Theory Organizing Committee (2015), pp. 7-13 | MR

[4] Aihara, Takuma; Iyama, Osamu Silting mutation in triangulated categories, J. Lond. Math. Soc. (2), Volume 85 (2012) no. 3, pp. 633-668 | DOI | MR | Zbl

[5] Handbook of Tilting Theory (Angeleri Hügel, Lidia; Happel, Dieter; Krause, Henning, eds.), London Mathematical Society Lecture Note Series, 332, Cambridge University Press, 2007 | DOI | MR | Zbl

[6] Antipov, Mikhail; Zvonareva, Alexandra Brauer graph algebras are closed under derived equivalence, Math. Z., Volume 301 (2022) no. 2, pp. 1963-1981 | DOI | MR | Zbl

[7] Ariki, Susumu Representation type for block algebras of Hecke algebras of classical type, Adv. Math., Volume 317 (2017), pp. 823-845 | DOI | MR | Zbl

[8] Ariki, Susumu Tame block algebras of Hecke algebras of classical type, J. Aust. Math. Soc., Volume 111 (2021) no. 2, pp. 179-201 | DOI | MR | Zbl

[9] Ariki, Susumu; Hudak, Berta; Song, Linliang; Wang, Qi Representation type of higher level cyclotomic quiver Hecke algebras in affine type C (2024) | arXiv

[10] Ariki, Susumu; Iijima, Kazuto; Park, Euiyong Representation type of finite quiver Hecke algebras of type A (1) for arbitrary parameters, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6070-6135 | DOI | MR | Zbl

[11] Ariki, Susumu; Kase, Ryoich; Miyamoto, Kengo; Wada, Kentaro Self-injective cellular algebras whose representation type are tame of polynomial growth, Algebr. Represent. Theory, Volume 23 (2020) no. 3, pp. 833-871 | DOI | MR | Zbl

[12] Ariki, Susumu; Koike, Kazuhiko A Hecke algebra of (/r)𝔖 n and construction of its irreducible representations, Adv. Math., Volume 106 (1994) no. 2, pp. 216-243 | DOI | MR | Zbl

[13] Ariki, Susumu; Park, Euiyong Representation type of finite quiver Hecke algebras of type C l (1) , Osaka J. Math., Volume 53 (2016) no. 2, pp. 463-488 | MR | Zbl

[14] Ariki, Susumu; Park, Euiyong; Speyer, Liron Specht modules for quiver Hecke algebras of type C, Publ. Res. Inst. Math. Sci., Volume 55 (2019) no. 3, pp. 565-626 | DOI | MR | Zbl

[15] Ariki, Susumu; Song, Linliang; Wang, Qi Representation type of cyclotomic quiver Hecke algebras of type A (1) , Adv. Math., Volume 434 (2023), Paper no. 109329, 68 pages | DOI | MR | Zbl

[16] August, Jenny On the finiteness of the derived equivalence classes of some stable endomorphism rings, Math. Z., Volume 296 (2020) no. 3-4, pp. 1157-1183 | DOI | MR | Zbl

[17] Auslander, Maurice; Reiten, Idun; Smalø, Sverre O. Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1995 | DOI | MR | Zbl

[18] Broué, Michel; Malle, Gunter Cyclotomic Hecke algebras [Zyklotomische Heckealgebren], Représentations unipotentes génériques et blocs des groupes réductifs finis (Astérisque), Volume 212, Société Mathématique de France, 1993, pp. 119-189 | MR | Zbl

[19] Brundan, Jonathan; Kleshchev, Alexander Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras, Invent. Math., Volume 178 (2009) no. 3, pp. 451-484 | DOI | MR | Zbl

[20] Brundan, Jonathan; Kleshchev, Alexander Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., Volume 222 (2009) no. 6, pp. 1883-1942 | DOI | MR | Zbl

[21] Chuang, Joseph; Rouquier, Raphaël Derived equivalences for symmetric groups and 𝔰𝔩 2 -categorification, Ann. Math. (2), Volume 167 (2008) no. 1, pp. 245-298 | DOI | MR | Zbl

[22] Chung, Christopher; Hudak, Berta Representation type of level 1 KLR algebras R Λ k (β) in type C, Osaka J. Math., Volume 61 (2024) no. 4, pp. 509-528 | MR | Zbl

[23] Chung, Christopher; Mathas, Andrew; Speyer, Liron Graded decomposition matrices of cyclotomic quiver Hecke algebras in type C for n12 (in preparation)

[24] Demonet, Laurent; Iyama, Osamu; Jasso, Gustavo τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 852-892 | DOI | MR | Zbl

[25] Dipper, Richard; James, Gordon; Mathas, Andrew Cyclotomic q-Schur algebras, Math. Z., Volume 229 (1998) no. 3, pp. 385-416 | DOI | MR | Zbl

[26] Drozd, Ju. A. Tame and wild matrix problems, Proceedings of the Second International Conference on Representations of Algebras held at Carleton University, Ottawa, Ont., August 13–25, 1979) (Lecture Notes in Mathematics), Volume 832, Springer, 1980, pp. 242-258 | DOI | MR | Zbl

[27] Erdmann, Karin Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, 1428, Springer, 1990 | DOI | MR | Zbl

[28] Erdmann, Karin; Nakano, Daniel K. Representation type of Hecke algebras of type A, Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 275-285 | DOI | MR | Zbl

[29] Evseev, Anton; Mathas, Andrew Content systems and deformations of cyclotomic KLR algebras of type A and C, Ann. Represent. Theory, Volume 1 (2024) no. 2, pp. 193-297 | DOI | MR | Zbl

[30] Fayers, Matthew Weights of multipartitions and representations of Ariki-Koike algebras, Adv. Math., Volume 206 (2006) no. 1, pp. 112-144 | DOI | MR | Zbl

[31] Han, Yang Wild two-point algebras, J. Algebra, Volume 247 (2002) no. 1, pp. 57-77 | DOI | MR | Zbl

[32] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, 1990 | DOI | MR | Zbl

[33] Kang, Seok-Jin; Kashiwara, Masaki Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras, Invent. Math., Volume 190 (2012) no. 3, pp. 699-742 | DOI | MR | Zbl

[34] Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho; Oh, Se-Jin Monoidal categorification of cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 349-426 | DOI | Zbl | MR

[35] Khovanov, Mikhail; Lauda, Aaron D. A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, Volume 13 (2009), pp. 309-347 | DOI | MR | Zbl

[36] Kim, Young-Hun; Oh, Se-Jin; Oh, Young-Tak Cyclic sieving phenomenon on dominant maximal weights over affine Kac–Moody algebras, Adv. Math., Volume 374 (2020), Paper no. 107336, 75 pages | DOI | MR | Zbl

[37] König, Steffen; Zimmermann, Alexander Derived equivalences for group rings, Lecture Notes in Mathematics, 1685, Springer, 1998 (with contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier) | DOI | MR | Zbl

[38] Krause, Henning Representation type and stable equivalence of Morita type for finite-dimensional algebras, Math. Z., Volume 229 (1998) no. 4, pp. 601-606 | DOI | MR | Zbl

[39] Lauda, Aaron D.; Vazirani, Monica Crystals from categorified quantum groups, Adv. Math., Volume 228 (2011) no. 2, pp. 803-861 | DOI | MR | Zbl

[40] Lyle, Sinéad; Mathas, Andrew Blocks of cyclotomic Hecke algebras, Adv. Math., Volume 216 (2007) no. 2, pp. 854-878 | DOI | MR | Zbl

[41] Mathas, Andrew; Tubbenhauer, Daniel Cellularity of KLR and weighted KLRW algebras via crystals (2023) | arXiv

[42] Mathas, Andrew; Tubbenhauer, Daniel Cellularity and subdivision of KLR and weighted KLRW algebras, Math. Ann., Volume 389 (2024) no. 3, pp. 3043-3122 | DOI | MR | Zbl

[43] Murata, Haruto Private communication (2024)

[44] Opper, Sebastian; Zvonareva, Alexandra Derived equivalence classification of Brauer graph algebras, Adv. Math., Volume 402 (2022), Paper no. 108341, 59 pages | DOI | MR | Zbl

[45] Rickard, Jeremy Morita theory for derived categories, J. Lond. Math. Soc. (2), Volume 39 (1989) no. 3, pp. 436-456 | DOI | MR | Zbl

[46] Rickard, Jeremy Derived equivalences as derived functors, J. Lond. Math. Soc. (2), Volume 43 (1991) no. 1, pp. 37-48 | DOI | MR | Zbl

[47] Ringel, Claus M. The representation type of local algebras, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) (Carleton Mathematical Lecture Notes), Volume 9, Carleton University (1974), pp. 282-305 | MR | Zbl

[48] Rouquier, Raphaël 2-Kac–Moody algebras (2008) | arXiv | Zbl

[49] Schroll, Sibylle Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory, Homological methods, representation theory, and cluster algebras (CRM Short Courses), Springer; Centre de Recherches Mathématiques (CRM), 2018, pp. 177-223 | DOI | MR | Zbl

[50] Shan, Peng; Varagnolo, Michela; Vasserot, Eric On the center of quiver Hecke algebras, Duke Math. J., Volume 166 (2017) no. 6, pp. 1005-1101 | DOI | MR | Zbl

[51] Skowroński, Andrzej Selfinjective algebras: finite and tame type, Trends in representation theory of algebras and related topics (Contemporary Mathematics), Volume 406, American Mathematical Society, 2006, pp. 169-238 | DOI | MR | Zbl

[52] Wang, Qi τ-tilting finiteness of two-point algebras II, J. Algebra Appl., Volume 24 (2025) no. 2, Paper no. 2550054, 33 pages | DOI | MR | Zbl

[53] Yekutieli, Amnon Dualizing complexes, Morita equivalence and the derived Picard group of a ring, J. Lond. Math. Soc. (2), Volume 60 (1999) no. 3, pp. 723-746 | DOI | MR | Zbl

Cited by Sources: