We determine the representation type of cyclotomic quiver Hecke algebras of affine type C. In the tame cases, we explicitly describe their basic algebras under the assumption $\operatorname{char}\mathbb{k}\ne 2$, relying on the Morita invariance of cellularity.
Revised:
Accepted:
Published online:
Keywords: Cyclotomic KLR algebras, cyclotomic quiver Hecke algebras, representation type, Brauer graph algebras, silting theory, derived equivalence
Ariki, Susumu  1 ; Hudak, Berta  2 ; Song, Linliang  3 ; Wang, Qi  4
CC-BY 4.0
@article{ART_2026__3_1_27_0,
author = {Ariki, Susumu and Hudak, Berta and Song, Linliang and Wang, Qi},
title = {Representation type of higher level cyclotomic quiver {Hecke} algebras in affine type {C}},
journal = {Annals of Representation Theory},
pages = {27--97},
year = {2026},
publisher = {The Publishers of ART},
volume = {3},
number = {1},
doi = {10.5802/art.34},
language = {en},
url = {https://art.centre-mersenne.org/articles/10.5802/art.34/}
}
TY - JOUR AU - Ariki, Susumu AU - Hudak, Berta AU - Song, Linliang AU - Wang, Qi TI - Representation type of higher level cyclotomic quiver Hecke algebras in affine type C JO - Annals of Representation Theory PY - 2026 SP - 27 EP - 97 VL - 3 IS - 1 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.34/ DO - 10.5802/art.34 LA - en ID - ART_2026__3_1_27_0 ER -
%0 Journal Article %A Ariki, Susumu %A Hudak, Berta %A Song, Linliang %A Wang, Qi %T Representation type of higher level cyclotomic quiver Hecke algebras in affine type C %J Annals of Representation Theory %D 2026 %P 27-97 %V 3 %N 1 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.34/ %R 10.5802/art.34 %G en %F ART_2026__3_1_27_0
Ariki, Susumu; Hudak, Berta; Song, Linliang; Wang, Qi. Representation type of higher level cyclotomic quiver Hecke algebras in affine type C. Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 27-97. doi: 10.5802/art.34
[1] -tilting theory, Compos. Math., Volume 150 (2014) no. 3, pp. 415-452 | DOI | MR | Zbl
[2] Tilting-connected symmetric algebras, Algebr. Represent. Theory, Volume 16 (2013) no. 3, pp. 873-894 | DOI | MR | Zbl
[3] On silting-discrete triangulated categories, Proceedings of the 47th Symposium on Ring Theory and Representation Theory, Symposium on Ring Theory and Representation Theory Organizing Committee (2015), pp. 7-13 | MR
[4] Silting mutation in triangulated categories, J. Lond. Math. Soc. (2), Volume 85 (2012) no. 3, pp. 633-668 | DOI | MR | Zbl
[5] Handbook of Tilting Theory (Angeleri Hügel, Lidia; Happel, Dieter; Krause, Henning, eds.), London Mathematical Society Lecture Note Series, 332, Cambridge University Press, 2007 | DOI | MR | Zbl
[6] Brauer graph algebras are closed under derived equivalence, Math. Z., Volume 301 (2022) no. 2, pp. 1963-1981 | DOI | MR | Zbl
[7] Representation type for block algebras of Hecke algebras of classical type, Adv. Math., Volume 317 (2017), pp. 823-845 | DOI | MR | Zbl
[8] Tame block algebras of Hecke algebras of classical type, J. Aust. Math. Soc., Volume 111 (2021) no. 2, pp. 179-201 | DOI | MR | Zbl
[9] Representation type of higher level cyclotomic quiver Hecke algebras in affine type C (2024) | arXiv
[10] Representation type of finite quiver Hecke algebras of type for arbitrary parameters, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6070-6135 | DOI | MR | Zbl
[11] Self-injective cellular algebras whose representation type are tame of polynomial growth, Algebr. Represent. Theory, Volume 23 (2020) no. 3, pp. 833-871 | DOI | MR | Zbl
[12] A Hecke algebra of and construction of its irreducible representations, Adv. Math., Volume 106 (1994) no. 2, pp. 216-243 | DOI | MR | Zbl
[13] Representation type of finite quiver Hecke algebras of type , Osaka J. Math., Volume 53 (2016) no. 2, pp. 463-488 | MR | Zbl
[14] Specht modules for quiver Hecke algebras of type , Publ. Res. Inst. Math. Sci., Volume 55 (2019) no. 3, pp. 565-626 | DOI | MR | Zbl
[15] Representation type of cyclotomic quiver Hecke algebras of type , Adv. Math., Volume 434 (2023), Paper no. 109329, 68 pages | DOI | MR | Zbl
[16] On the finiteness of the derived equivalence classes of some stable endomorphism rings, Math. Z., Volume 296 (2020) no. 3-4, pp. 1157-1183 | DOI | MR | Zbl
[17] Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1995 | DOI | MR | Zbl
[18] Cyclotomic Hecke algebras [Zyklotomische Heckealgebren], Représentations unipotentes génériques et blocs des groupes réductifs finis (Astérisque), Volume 212, Société Mathématique de France, 1993, pp. 119-189 | MR | Zbl
[19] Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras, Invent. Math., Volume 178 (2009) no. 3, pp. 451-484 | DOI | MR | Zbl
[20] Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., Volume 222 (2009) no. 6, pp. 1883-1942 | DOI | MR | Zbl
[21] Derived equivalences for symmetric groups and -categorification, Ann. Math. (2), Volume 167 (2008) no. 1, pp. 245-298 | DOI | MR | Zbl
[22] Representation type of level 1 KLR algebras in type , Osaka J. Math., Volume 61 (2024) no. 4, pp. 509-528 | MR | Zbl
[23] Graded decomposition matrices of cyclotomic quiver Hecke algebras in type C for (in preparation)
[24] -tilting finite algebras, bricks, and -vectors, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 852-892 | DOI | MR | Zbl
[25] Cyclotomic -Schur algebras, Math. Z., Volume 229 (1998) no. 3, pp. 385-416 | DOI | MR | Zbl
[26] Tame and wild matrix problems, Proceedings of the Second International Conference on Representations of Algebras held at Carleton University, Ottawa, Ont., August 13–25, 1979) (Lecture Notes in Mathematics), Volume 832, Springer, 1980, pp. 242-258 | DOI | MR | Zbl
[27] Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, 1428, Springer, 1990 | DOI | MR | Zbl
[28] Representation type of Hecke algebras of type , Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 275-285 | DOI | MR | Zbl
[29] Content systems and deformations of cyclotomic KLR algebras of type and , Ann. Represent. Theory, Volume 1 (2024) no. 2, pp. 193-297 | DOI | MR | Zbl
[30] Weights of multipartitions and representations of Ariki-Koike algebras, Adv. Math., Volume 206 (2006) no. 1, pp. 112-144 | DOI | MR | Zbl
[31] Wild two-point algebras, J. Algebra, Volume 247 (2002) no. 1, pp. 57-77 | DOI | MR | Zbl
[32] Infinite-dimensional Lie algebras, Cambridge University Press, 1990 | DOI | MR | Zbl
[33] Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras, Invent. Math., Volume 190 (2012) no. 3, pp. 699-742 | DOI | MR | Zbl
[34] Monoidal categorification of cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 349-426 | DOI | Zbl | MR
[35] A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, Volume 13 (2009), pp. 309-347 | DOI | MR | Zbl
[36] Cyclic sieving phenomenon on dominant maximal weights over affine Kac–Moody algebras, Adv. Math., Volume 374 (2020), Paper no. 107336, 75 pages | DOI | MR | Zbl
[37] Derived equivalences for group rings, Lecture Notes in Mathematics, 1685, Springer, 1998 (with contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier) | DOI | MR | Zbl
[38] Representation type and stable equivalence of Morita type for finite-dimensional algebras, Math. Z., Volume 229 (1998) no. 4, pp. 601-606 | DOI | MR | Zbl
[39] Crystals from categorified quantum groups, Adv. Math., Volume 228 (2011) no. 2, pp. 803-861 | DOI | MR | Zbl
[40] Blocks of cyclotomic Hecke algebras, Adv. Math., Volume 216 (2007) no. 2, pp. 854-878 | DOI | MR | Zbl
[41] Cellularity of KLR and weighted KLRW algebras via crystals (2023) | arXiv
[42] Cellularity and subdivision of KLR and weighted KLRW algebras, Math. Ann., Volume 389 (2024) no. 3, pp. 3043-3122 | DOI | MR | Zbl
[43] Private communication (2024)
[44] Derived equivalence classification of Brauer graph algebras, Adv. Math., Volume 402 (2022), Paper no. 108341, 59 pages | DOI | MR | Zbl
[45] Morita theory for derived categories, J. Lond. Math. Soc. (2), Volume 39 (1989) no. 3, pp. 436-456 | DOI | MR | Zbl
[46] Derived equivalences as derived functors, J. Lond. Math. Soc. (2), Volume 43 (1991) no. 1, pp. 37-48 | DOI | MR | Zbl
[47] The representation type of local algebras, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) (Carleton Mathematical Lecture Notes), Volume 9, Carleton University (1974), pp. 282-305 | MR | Zbl
[48] 2-Kac–Moody algebras (2008) | arXiv | Zbl
[49] Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory, Homological methods, representation theory, and cluster algebras (CRM Short Courses), Springer; Centre de Recherches Mathématiques (CRM), 2018, pp. 177-223 | DOI | MR | Zbl
[50] On the center of quiver Hecke algebras, Duke Math. J., Volume 166 (2017) no. 6, pp. 1005-1101 | DOI | MR | Zbl
[51] Selfinjective algebras: finite and tame type, Trends in representation theory of algebras and related topics (Contemporary Mathematics), Volume 406, American Mathematical Society, 2006, pp. 169-238 | DOI | MR | Zbl
[52] -tilting finiteness of two-point algebras II, J. Algebra Appl., Volume 24 (2025) no. 2, Paper no. 2550054, 33 pages | DOI | MR | Zbl
[53] Dualizing complexes, Morita equivalence and the derived Picard group of a ring, J. Lond. Math. Soc. (2), Volume 60 (1999) no. 3, pp. 723-746 | DOI | MR | Zbl
Cited by Sources: