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ABSTRACT. We determine the representation type of cyclotomic quiver Hecke algebras of affine type C.
In the tame cases, we explicitly describe their basic algebras under the assumption chark # 2, relying
on the Morita invariance of cellularity.
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1. INTRODUCTION

Representation type serves as a fundamental tool in the representation theory of finite-
dimensional algebras, especially, over an algebraically closed field k. Here, we consider
the category of finitely generated left modules, so that all modules are assumed to be
finite-dimensional. Namely, representation type gives us criteria whether we can study
the module category in depth or we must be content with either, study of better be-
haved subcategories, or, study on the Grothendieck group of the module category, such as
character formulas for irreducible modules, etc.

A finite-dimensional k-algebra A is said to be representation-finite if it admits only
finitely many indecomposable modules up to isomorphism; otherwise, A is said to be
representation-infinite. A representation-infinite k-algebra A is said to be tame if all but
finitely many d-dimensional indecomposable A-modules can be organized in finitely many
one-parameter families, for each dimension d, and it is called wild if there is an exact
k-linear functor sending modules over the free associative algebra k(x,y) to modules over
A which preserves indecomposability and respects isomorphism classes. It is known as the
famous (Finite-)Tame-Wild Trichotomy([26]) that the representation type of any finite-
dimensional algebra over k is exactly one of representation-finite, tame! and wild.

It is a natural desire to find such criteria for well-known classes of algebras. The class of
path algebras is the most famous class of algebras, and Dynkin quivers of finite ADE and
affine ADE types appear beautifully in the criteria. Another important class of algebras
is the class of group algebras such as those of the symmetric groups.

The modular representation theory of the symmetric group has a long history. Class
of algebras which the group algebras of the symmetric group belong started with the
class of the group algebras of finite Coxeter groups. Then, the class was expanded to
their g-deformation, that is, the class of Iwahori-Hecke algebras, and then to the class of
cyclotomic Hecke algebras ([12, 18]) associated with complex reflection groups, in which
the algebras associated with complex reflection groups G(m, 1,n), so-called Ariki-Koike
algebras, received detailed study (e.g., [20, 25, 30, 40]). Currently, we study algebras in
the much wider class of cyclotomic quiver Hecke algebras ([35, 48]), which are associated
with Lie theoretic data: the Lie type determined by a symmetrizable (generalized) Cartan
matrix A, an element 5 in the positive cone @+ of the root lattice, and a dominant inte-
gral weight A in the weight lattice. Those data come from categorification theorems which
categorify weight spaces V(A)p_g of the integrable highest weight module V' (A) over the
Kac—Moody Lie algebra g(A) of the symmetrizable Cartan matrix. In our setting, the
module category over the cyclotomic quiver Hecke algebra R (B) categorifies the weight
space. For example, the group algebras of the symmetric group in positive characteristics
and Hecke algebras of type A at roots of unity are associated with level one dominant

integral weights of type Ay), and Hecke algebras of type B at roots of unity are associ-

ated with level two dominant integral weights of type Aél). The cyclotomic quiver Hecke
algebras are also called cyclotomic Khovanov-Lauda—Rouquier algebras, cyclotomic KLR
algebras for short.

Cyclotomic quiver Hecke algebras are graded algebras. In particular, the group al-
gebras of the symmetric group are graded algebras. This finding, due to Brundan and
Kleshchev [19], could not be seen by using Coxeter generators: their deep insight led

!Following Erdmann [27], our tame representation type, tame for short, excludes representation-finite
algebras.
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them to the finding of Khovanov-Lauda—Rouquier generators in the group algebras of the
symmetric group.
Recently, cyclotomic quiver Hecke algebras of affine type other than Agl) attracts re-

searchers in this field. For example, Park, Speyer and the first author [14] introduced
Specht modules for type Cél), Evseev and Mathas [29] proved and Mathas and Tubben-

hauer [42] reproved that the cyclotomic quiver Hecke algebras of type Cél) are graded
cellular algebras?. Some experimental calculations of the decomposition numbers have
been carried out by Chung, Mathas and Speyer [23].

In this article, we determine representation type for all cyclotomic quiver Hecke algebras
RM(B) of type Cél), where ¢ > 2. Since we already know representation type of R*(5)
when A is a fundamental weight, we assume that the level k of the dominant integral
weight A is greater than or equal to 2. We denote the set of weights of V(A) by P(A).
Recall that R (B) and RMA —wA +wp), for w € W, where W is the (affine) Weyl group,
have the same representation type, so that it suffices to consider those 8 € Q1 such that
A — B are dominant integral weights. Furthermore, A — 3 is not a maximal weight if and
only if there exists w € W such that w(A — ) is dominant but not maximal.

Main Theorem A. Suppose that the level of A is k > 2 and we write
A =moAg +miA1 + -+ +mpAy,

where mg, my,...,my € Z>o and mo+mq +---+my = k.

(1) If A — 3 is not a mazimal weight, then R™(B) is wild.
(2) Suppose that A — [ is a dominant maximal weight in P(A).
(a) RM(B) is of finite representation type if one of the following holds.
(f1) 8= ag, for0 <a </, and m, > 2.
(f2) B =ap+ a1, andmg>1, m; =0 or mg=my = 1.
(f3) B=ap_1+ ag, and my_1 =0, my > 1 ormy_1 =my = 1.
(fi) B = g+ -+ ap, for 1 <a<b< -1, and mj = §45 + O, for

a<i<b.

(f5) B =ap+2a1+ -+ 204 + agy1, for 0 < a <€ —2, and m; = 844, for
0<1<a+1.

(f6) B = ap—1 + 20 + -+ + 20y—1 + a, for 2 < b < L, and m; = oy, for
b—1<i</.

(b) RMN(B) is of tame representation type if one of the following holds.

(t1) B = ap + 21, mo =0 and m; = 2.

(t2) B =2ap_1+ g, my_1 =2 and my = 0.

(t3) B =ap+ a, mg>2 and my = 1.

(t4) B = ap_1 + oy, mg_1 =1 and my > 2.

(t5) B=ap+ - Fag, forl <a<l—1,mg>1andm; = b, for1 <i<a,
except for the case a =1 and my = 1, which is (f2).

(t6) B =g+ -+ ag for 1 <a<l—-1, my > 1 and m; = b4, for
a<i1</l—1, except fora =40 —1 and my; = 1, which is (f3).

(t7) B =ap+ ai, my=1 and m; = 2.

(t8) B = ay_1+ ag, my_1 =2 and my = 1.

(t9) B=ag+ - +ap, for 1l <a<b<{—1, either my > 2 and m; = 0z,
fora <i<b, ormy>2 and m; = 4, for a < i <b.

For the recent progress on cyclotomic quiver Hecke algebras of finite type, see [41].
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(t10) B = ap + «, for 2 <i <, mg=m; = 2.
(t11) B =+ ag, for0 <i<l—2, m; =my=2.
(t12) B = ap+ a1 +ay_1+ap where £ >4, mg =my =1 and m; = my_1 = 0.
(t13) B =ap+ a1+, for3<i <L, my=1, m; =0 and m; = 2.
(t14) p=a;+ a1+ ag, for0 <i<l—3, m; =2 and my_1 =0, my = 1.
(t15) B = ag—1 + 204 + Qgt1, for 2 < a < € —2, mg =2, mgtr1 = 0, and
chark # 2.

(t16) B =204 + gy, for 1 <a <l —2, mg =3,mey1 =0 and chark # 3.
(t17) B = ag—1 + 20, for2 <a <l —1, mg =3, mg_1 =0 and chark # 3.
(t18) B =g+ ap, for 1 <a<b<{—1 wherea <b—2, mg=mp=2.
(t19) B =20y, for1 <a<{—1, mg =4 and chark # 2.
(t20) B =209 + 21, mo =2, my =0 and chark # 2.
(t21) B =20y—1 + 2ay, my—1 =0, my = 2 and chark # 2.

(c) RM(B) is of wild representation type otherwise.

The proof of Main Theorem A uses the idea to introduce quiver structure on the set of
dominant maximal weights max™*(A), which was found and applied to type Agl) in [15].
However, we choose a different strategy than the [loc. cit.] after introducing the quiver of
dominant maximal weights. While we first fixed a certain neighborhood of the weight A,
which was found by consideration on the coefficients of 3, and started with showing that
those weights outside the neighborhood give us wild cyclotomic KLR algebras in [15], we
start with investigating dominant maximal weights A’ which can be reached by at most
one step, two steps, three steps from A one by one first, and determine representation
type of the associated cyclotomic KLR algebras RA(ﬁA/). Then, we reach the conclusion
that algebras which cannot be reached by less than or equal to three steps are wild. See
Section 4 for the details.

In the course of the proof, we obtain explicit presentations of non-wild algebras, see
Sections 6 and 7. In type A(l), all tame RA(ﬁA/) associated with dominant maximal
weights A’ are Brauer graph algebras. It implies that all tame cyclotomic KLR algebras

of type Agl) are Brauer graph algebras, and this fact allowed us to determine the Morita

equivalence classes® of tame cyclotomic KLR algebras of type Agl). In type Cél)
tame cyclotomic KLR algebras R* (8) which are not Brauer graph algebras. One already
appeared in [22, Lemma 3.1] as a level one cyclotomic KLR algebra, which is the algebra (5)
in [11, Theorem 1]. The other tame algebras appear as level three cyclotomic KLR algebras
in this paper, i.e., (t7) and (t8). For the former case, we need to recall Skowronski’s
classification of standard domestic symmetric algebras ([51]). However, since R*(B) is
cellular (see [29]), it is natural to assume that chark # 2 and utilize Morita invariance
of the cellularity. Then, the cyclotomic KLR algebras that are derived equivalent to the
algebra from [22] must appear in the list [11, Theorem 1], and one can check that other

, there are

algebras in the list do not appear as cyclotomic KLR algebras of type C’él) by excluding
Brauer graph algebras and those with a different number of simple modules in the list.
For the latter case, we may use silting theory to find Morita equivalence classes in the
derived equivalence class of the algebra (t7) (or equivalently, (t8)). See Theorem 2.23 for
the method, and see Proposition 2.26 for the Morita equivalence classes which are in the
derived equivalence class of (t7). Otherwise, tame cyclotomic KLR algebras of type Cél)
are Brauer graph algebras. As was shown in [15], their Brauer graphs are straight lines

3Precisely speaking, we need either chark # 2 or the cyclotomic KLR algebra being a basic algebra.
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except for one Brauer graph (i.e., the cases (t1) and (t2)), and we may read off the set of
multiplicities of vertices. Then, we assign the multiplicities to vertices. In the following,
we give Morita equivalence classes of finite and tame algebras R*(j) in explicit forms?.

Theorem B (Finite cases). Let RMfB) be a cyclotomic KLR algebra of type C’él) and
suppose that RM(B) is of finite representation type. If chark # 2, then RM(B) is Morita

equivalent to one of the following algebras®.

(a) Symmetric local algebra k[X]/(X™), for m > 2.
(b) Brauer tree algebra whose Brauer tree is a straight line.

Theorem C (Tame cases). Let R*(3) be a cyclotomic KLR algebra of type Cél) and
suppose that RM(B) is of tame representation type. If chark # 2, then RM(B) is Morita
equivalent to one of the following algebras.

(a) Symmetric local algebras (2), (3), (4) in [15, 8.2].

(b) Brauer graph algebra whose Brauer graph is a straight line and the multiset of the
multiplicities of vertices is {1,t,2t,...,2t}, for t > 1, {4,2,2} or Brauer graph
algebras (5), (7) in [15, 8.2], or the Brauer graph algebra without an exceptional
vertex whose Brauer graph is as follows.

(Co

(¢) The algebra kQ/J, where the quiver Q is

and the relations given by the admissible ideal J are
Ozﬁ:’yé:(), 066265:76:65:0’ 504262:67.

(d) The algebra kQ/J, where the quiver Q is

a C o ﬁu o Q B
and the relations given by the admissible ideal J are
o?=0, B*=vp, ap=upuB, Pv=ra.
(e) The algebra kQ/J, where the quiver Q is

o
«@ C o= V o Q B
and the relations given by the admissible ideal J are
o =pv, BP=vp, ap=pB, Pv=va, pvp=uvur=0.

As we mentioned, in general it is difficult to study the category of all finite-dimensional
modules and instead, we try to find nice subcategories. One such example is the repre-
sentation theory of quantum affine algebras, in which field researchers found good sub-
categories to study such as the Hernandez—Leclerc categories: these categories have been

“We do not know whether all the possible assignment of the given multiset of multiplicities to vertices
actually appear.
"These algebras already appeared in [15, 8.1].
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actively studied by cluster algebra techniques in recent years. We claim that the subcat-
egories of modules over tame R*(f)’s are also such nice subcategories, for which we have
more chance to tackle difficult problems like finding a dimension formula for irreducible
modules or decomposition numbers. Besides, in affine type A they are related to the
classical subject of affine Hecke algebras in type A: if we consider the Serre subcategory
consisting of modules whose composition factors belong to a given finite set of irreducible
modules, then one obtains a filtration of the Serre subcategory over the affine Hecke alge-
bra by the Serre subcategories over cyclotomic Hecke algebras which share the same set
of irreducible modules. Then one may use grading and results from [15].

Another fascinating aspect of this paper is that we connect the recently emerging theory
of Brauer graph algebras, 7-tilting theory and silting theory with the representation theory
of cyclotomic quiver Hecke algebras: in affine type A, all tame blocks are Brauer graph
algebras and we applied results by Opper and Zvonareva which they obtained by using
a version of Fukaya category, and, as we have explained in the previous page, we utilize
7-tilting theory to build a complete framework (see Theorem 2.23) for finding Morita
equivalence classes in the derived equivalence class of a given symmetric algebra. This will
benefit not only the study in other types, but also the research of symmetric algebras in
general.

Conventions. Set N := {1,2,...} and Z>¢ := {0,1,2,...}. For m,m' € Z, we write
m =9 m' if m —m’ is even, and m %o m’/ otherwise. We use left modules throughout the
paper. Hence, the basic algebra of an algebra A is End 4(P)°P, where P is a progenerator
which is basic.

2. PRELIMINARIES

We review some background materials which we need in this paper, including the defini-
tion of cyclotomic KLR algebras. Additionally, we provide several lemmas in this section
for later use.

2.1. Cartan datum in affine type C. Set I = {0,1,2,...,¢} with £ > 2. The affine
Cartan matriz A of type Cél) is defined by

2 —1 0 0 0 0
2 2 1 ... 0 0 0
0o -1 2 0 0 0
A=(ag)iger==1| *+ + . L]
0O 0 0 ... 2 -1 0
0o 0 0 ... -1 2 -2
0O 0 0 ... 0 -1 2

where the rows and the columns are labeled by 0,1, ..., ¢ in this order. If we drop the first
row and the first column of A, we obtain the Cartan matrix A’ of type Cj; in this case,
the simple roots are realized in the lattice Zey @ Zeo @ - - - @ Zey as

Q] =€ —€, Q=€ —€3,..., Qu_1=¢€_1—€, ay=2€,
and the root system is given by

{:|:2€Z’1§’L§€}U{:|:62:|:€J‘1SZ<]§£}
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We denote by A%n the set of positive or negative roots of the finite root system of type Cy.
Note that Ag, = —Agn. Since the highest root 8 = 23 + 2a2 + -+ 4+ 2ap—1 + ay (of

type Cp) and ag = § — 6, the null root in type Cél) is
5:a0+2a1—|—2oz2+---+2ag_1+ozg.
Then, the positive real root system A of type C’él) is given by

AL ={B+md|m>0,8eAf o Af+d}.

We denote by II := {a; | i € I} the set of simple roots of type C’él).

Let IIY := {o | @ € I} be the set of simple coroots such that (o, ;) = a5, for i,5 € I.
We may set a scaling element d by (d,ap) = 1 and (d,c;) = 0 for ¢ € I/{0}. Then,
{ay,of,...,af,d} forms a basis of the Cartan subalgebra of the Kac-Moody Lie algebra

g (associated with the Cartan datum of type Cél)). The canonical central element of g is
c=of +af + -+ . Moreover, we have (d,d) =1, and («/,d) =0, for i € I.

The fundamental weight A; (j € I) is defined by (o, Aj) = §;; and (d, A;) = 0. Then,
the weight lattice is P := ZAg @ ZA1 & --- ® ZN; & Z5. A weight A € P is said to be
dominant if (o), \) > 0, for i € I. Then, the set of dominant (integral) weights is given
by Pt = Z>oMNo & Z>oA1 @ -+ ® Z>oAy © Z6. Note that P contains the root lattice @
spanned by all simple roots, i.e., Q := Zag D Zo1 - - - B Zay. We denote the positive cone
of the root lattice by Q4 := Z>oag ® Z>oa1 & - - - @ Z>poy. For any 8 € @4, the height of
B =Y crmicy € Q4 is defined by 3| := 3,7 m;.

We define, for a natural number k£ > 1,

l

J4
m; > 0, Zml :k} C PT.
i=0

=0

Here, the word ¢l stands for the classical dominant integral weights. The value (¢, A) = k,
for A € Pchr,kv is called the level of A. Set w; := A; — Ag (¢ € I'\ {0}) as in Kac’s book [32,

(12.4.3)]; these are fundamental weights of sp(2¢,C). Fix A = Y ¢_ mA; € P(jl_,k:' Then,
Young-Hun Kim, Se-jin Oh and Young-Tak Oh introduced in [36, Proposition 2.1] the set

4 4
;| pi >0, Zpi <k, Z(pl —m;)(A) "ty € ZK},

i=1 i=1

11 1 .. 1 1 1
1 2 2 .. 2 2 2
) 1 2 3 .. 3 3 3
1 2 3 ... (-2 (-1 (-1
1/2 1 3/2 ... 0/2—1 ({—1)/2 /2

We say that A, A’ € P:lr’k, are equivalent if D(A) = D(A’), and we denote A ~ A’
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2.2. Dominant maximal weight. Let U,(g) be the quantum group of g. Given
a A € P, we denote by V(A) the integrable highest weight module with the highest
weight A and by P(A) the set of weights of V(A). A weight A\ € P(A) is said to be
mazximal if A\+3§ ¢ P(A). Let max(A) be the set of maximal weights in P(A). It is known
that

A€max(A)

The set of all dominant maximal weights of V(A) is defined as
max " (A) := max(A) N PT.

Let W be the Weyl group generated by {r;};cs acting on P by riu = u — (o, u)ay, for
p € Pand i€ I. Then, it is known (e.g., [32, Proposition 11.2(a)]) that any element in
max(A) is W-conjugate to an element in max™ (A).

2.3. Cyclotomic KLR algebra. Let k be an algebraically closed field. For any i,j € I,
we take a family Q; j(u,v) € klu,v] of polynomials such that Q;;(u,v) =0, Q; ;(u,v) =
Qj,i(v,u), and for any i < j,

u—v? ifi=0,7=1,

Qi i(u,0) U —v ifi£0,j=i+1,5#/,
i,j (U, V) = . .
" uw—v ifi=0-1,5=1¢,

1 otherwise.
We denote by &,, the symmetric group generated by elementary transpositions {s; |
1 <i <n—1}. Then, the action of &,, on I" is given by
S; (1/1,112, ey Vi Vi 1y - - ,I/n) = (l/l,VQ,. ey Vi1, Vi, . .,l/n).

Recall that, a finite-dimensional k-algebra A is said to be Z-graded if it is equipped with
a k-vector space decomposition A = ,,,c7 A, satisfying A,, A, C A4y Here, elements
in A, are called homogeneous of degree m € Z. Let g be an indeterminate. Then, the
graded dimension dim, A of A is defined by

dimg, A := Z (dim A,,)¢™ € Z>olg, ¢ Y.
meZ
Definition 2.1. Fix A € PC'Z .- Let RA(n) be the Z-graded k-algebra generated by
{e@)|v=(vi,v0,....v) € I"}, {z;|1<i<n}, {¢;|1<j<n-—1}
subject to
(1) e@)e(v) = e)dpprs yeme(v) =1, ziz; =z;m 3ie(v) = e(V)s,
2) Yie(v) = e(si(v)) i, Yithy =jbi if i — gl > 1, gy =z if j#i,i+1,
) %26(’/) = QV@',W-H (xia xi—i-l)e(y)a
) (Yimigr — xithi)e(v) = (wip1hi — izi)e(v) = e(V)0u,vy 1
) (Wir1¥ithiv1 — Yiiai)e(v)

{ Quy i1 (@i@ir1)—Quy vy (Tit2,Tit1) e(v)

(

(3
(4
(5

Ti—Tit2 if vi = viya,

0 otherwise,
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and the Z-grading on R*(n) is given by

deg(e(l/)) =0, deg(ajie(y)) = 2dVi7 deg(%’e(V)) = _dViaViyViJrl’
with (do,d1,...,ds_1,dg) = (2,1,...,1,2). We call RMn) the cyclotomic quiver Hecke
algebra of type Cél), and this algebra was introduced by Mikhail Khovanov and Aaron
Lauda [35]. Note that the (affine) quiver Hecke algebra R(n) obtained by omitting the
relation (6) was also introduced by Raphael Rouquier [48], independent of [35]. Thus,

the cyclotomic quiver Hecke algebra is also known as the cyclotomic Khovanov—Lauda—
Rouquier algebra.

Given a positive root 8 € Q4 with |3| = n, we set

e(p) = Z e(v) with I?:= {U = (v1,v9,...,vp) € I"

velb

Za,,i = ﬁ}.
i=1

This is a central idempotent of R*(n). We may distinguish the component of R*(n)
associated with e(/3) as follows.

Definition 2.2. We define R*(3) := R*(n)e(B).

We may define R*(3) with the same defining relations of R*(n), just by replacing I
with I,
Remark 2.3. Fix A = Y, ;mA; € Pc—;k' It is known, e.g., [48, p. 25] or [10, Lemma 3.2],
that R(n) or R*(n) (of type Cél)) does not depend on the choice of Q;;(u,v), up to

isomorphism. Let Rﬁ(n) be the cyclotomic KLR algebra of type Aél) whose definition uses

polynomials Q;4+1(u,v) =u —wv for i € Z/({ + 1)Z, and Q; j(u,v) = 1if j #pq 4,0 £ 1.
Suppose that

B € Lxoo1 @ L>ooa @ -+ - B L>o0y—1.
Then, f may be viewed as an element in the positive cone of the root lattice for the
type Agl). Under this circumstance, we have an isomorphism of algebras R (3) = Rﬁ“‘ (8),
where Aq = A —mgAg—meAy. In the rest of the paper, we write R4 () instead of Rgf‘ (B)
by abuse of notation.

Let o : I — I be the involution given by o(i) = ¢ —i. Given a dominant integral weight
A=>crmi; € P;{k and a positive root 3 =3,y ni0; € Q4+, we define

oA = ZmiAa(i) and of:= Zniaa(i). (2.2)
iel icl
Using Remark 2.3, we may assume that R*(f) and R°*(cf3) share the same family of
polynomials Q; ;j(u,v) € klu,v].

Proposition 2.4 ([7, Lemma 3.1]). There is an algebra isomorphism
RY(B) = R o).
There is a symmetric bilinear form (—, —) on the weight lattice P such that
(Ai; o) = djdij, (v, ;) = diagj.
with (do,dy,...,ds_1,dg) = (2,1,...,1,2). The defect of R*(j) is given by
defa(B) := (A, B) = (B,8)/2.
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We sometimes omit A from the subscript and write def(3) instead of defs(8). In level
one, we experienced the validity of Erdmann—Nakano type theorems, see [13, 22]. Hence,
it is of interest to list defect values here. In the representation-finite cases, the value is 1
except for the following three cases.

o (fl): def(f) =my—1if 1 <a <l—1, and def(f8) =2m, —2if a =0, (.

e (f2) or (f3): def(8) = 2 for mg =my =1 or my_1 = my =1, and def(5) = 2m; — 1

for i =0 or 4.

In the tame cases, the value is 2 only for 5 cases, and the other 16 cases may have different
values as listed below.

o (t3) or (t4): def(f8) =2m; >4 for i =0 or £.

e (t5) or (t6): def(8) =2m; > 2 for i =0 or £.

o (t7) or (t8): def(8) = 3.

o (t9): def(8) =m; >2fori=aorb.

e (t10) or (t11): def(,@’) =3ifi# ¢ or 0, and def(5) =4 if i = ¢ or 0.
o (t13) or (t14): def(B) =2if i # £ or 0, and def(8) =3 if i = £ or 0.
e (t16) or (t17): def(,@’) =3.

e (t19): def( )=

o (£20) or (t21): def(,B) =4

Let n > 1 be a natural number and A = (A1, Ae, ... ) a sequence of non-negative integers.
We call X a partition of n if |\ := A1+ X+~ =nand \y > X9 > - > 0. A k-
multipartition of n is an ordered k-tuple of partitions A = ()\(1), A )\(k)) such that
AD[ 4+ [A2] 4. + |]AF)| = n. We denote by Py, the set of all k-multipartitions of 7.

A Young diagram is considered as a realization of a partition. Here, the Young diagram
of a k-multipartition \ = ()\(1), A )\(k)) can be visualized as a column vector whose
entries are A()’s in increasing order from top to bottom. We say that a node of \ € Pin
is removable (resp., addable) if one obtains a new k-multipartition after removing (resp.,
adding) the node from (resp., to) A.

Let gy : Z — Z/2¢Z be the natural projection and we define fy : Z/2¢Z — I by

a ifo<a</¥,

207) =
fula+ 2t2) {2€—a if0+1<a<20-1.

For any m € Z, we set m := (fy 0 gs)(m) € I. In other words, the values periodically
repeatintheorder0f012...6—156—1 ,2 1.
Fix A = Ay, + Aj, +---+ Ay, € P, and = AL AR AR € Py, Let p be a

node in the a™ row and b column of )\(S). Then, the residue of p is defined by
resp:=b—a+is €1,

and p is said to be an i-node if resp = i. As A = (AD A® . AF)) can be visu-
alized as a column vector of Young diagrams, we say that A®) is below \®) if s > ¢.
We set #addableesp(A) as the number of addable (resp)-nodes of A below p, and set
#removableyes p(A) as the number of removable (res p)-nodes of A below p. If p is a remov-
able i-node of A\, we define

dp(N) :=d; - (#addableyesp(A) — F#removableyes p(A))

with (do,dq,...,dp_1,dp) =(2,1,...,1,2) as mentioned before.
A standard tableau T = (T(l) T® ..., T®)) of shape \ € Prn is given by bijectively
inserting the integers 1,2,...,n into the nodes of the Young diagram of A, such that
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each T is a standard tableau of A, i.e., the entries in T() are strictly increasing along
the rows from left to right and down the columns from top to bottom. We denote by
Std(A) the set of all standard tableaux of A\. The residue sequence of T is defined as
ir == (i1,42,...,1,) € I", such that i, = resp if the integer r is filled in the node p of .
We then define the degree of T (see [14, (1.4)]) inductively by

deg(T |n) +dp(N) ifn >0,

2.3
0 ifn =0, (2:3)

deg(T) = {

where T' |, is the tableau obtained by removing p from T and the integer n > 0 is filled
in the node p of .

Using values deg(T'), we may define the action of Chevalley generators on the Q[v, v~1]-
span of all k-multipartitions to make it into a module over the quantum group U,(g).
We call this U,(g)-module the level k deformed Fock space. We denote the empty k-
multipartiton by vy, which generates V(A) as a U,(g)-submodule. For the precise defini-
tion of the action when k = 1, see [13] or [22]. The level k deformed Fock space we use
here is the k-fold tensor product of level one deformed Fock spaces. The next theorem
follows from the computation in the level £ deformed Fock space.

Theorem 2.5 ([14, Theorem 2.5]). For any positive root € Q4 with |5 = n and
v,V € 1P, the graded dimension of e(v)R™(B)e(V') is

dim, e(v)R*(B)e(') = 3 gee(S)+deg(T)
STIES;:;( 1§ Ayepk R

Example 2.6. Let A = Ag + A; and £ = 2. We consider R(8) with § = ag + 2a1 + ao.
Set e := e(0121). Then, dim, eRM6)e = 1+ 2¢% + 3¢* + 2¢° + ¢8 due to the following

pattern:
(0,0)
|
([0, 0),
(11, 0), ), ([
| i |
(BN , @> ([, 112D,
0

o SN AN

(OITT2[T, 0), 0), (OITZ) ), ( ,w> (@) () ), (fom), @ e,
2 1 0

where the subscript number in each vertex gives the corresponding dp(\).

In the following, we are going to introduce the divided power induction functor fi(r)
(see [20, Section 4.6]) from the category of R*(3)-modules to the category of R(5+ra;)-
modules, for r € Z>g. Let R(f) be the (affine) KLR algebra, namely, the algebra defined

\

A
by dropping the cyclotomic condition $§%17 >e(u) = 0 from the defining relations of R*(3).
Then, the definition of fi(r) starts with the result in [35, Section 2.2] that the polynomial
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representation P(i(")) = k[z1,...,z,] over R(ra;), whose degree is given by

r(r2—1)>7

deg(zi™ ...a"") = di<2m1 +-- 4+ 2m, —

satisfies
R(ra;) = P(i")(di(1 = r)) @ P(i")(di(3 = r)) @ --- @ P(i"))(di(r — 1)),
where R(ra;) is the regular representation.

Example 2.7. R(2q;) is the k-algebra generated by z1, 22,1 of degree
degxy = degxo = 2d;, degvy = —2d;,
which are subject to
w1y = 2wy,  Yay — w1t =1 =29th — Yy, ¢* =0.
Then, R(2c;) = k[z1, x2] B Kk[z1, x2]tp. Define 1 = x91) and e = —tpz1. Then 1 = €1 + €9,
eser = dges, for s = 1,2. Since ¢ = ve; € R(2a;)e;, we have

P (i) (—d;) 2 k[z1, 220 = R(20)er, P(i?)(d;) = k[zy, 9] = R(20;)ez.

Using the R(ra;)-module P(i(")), we define the divided power induction functor fi(r) as
follows.

Definition 2.8. Let 6" (M) := Indp 575 (M @ P(i"))) for an R(5)-module M.

Based on [20, Lemma 4.4], we define
fi(T) ‘=pro 91(7") o Inﬂ<r2 —r(A—p, ai)>,

where pr is the tensor functor defined by the (R*(3+ra), R(3+ra))-bimodule R (8+4ra),
and Infl is the inflation functor from the category of R*(/)-modules to the category of
R(B)-modules with respect to the quotient algebra homomorphism R(S) — R*(j).

We need the following lemma proved in [20, Lemma 4.8].

Lemma 2.9. The divided power induction functor fi(r) is an exact functor and it sends
projective modules to projective modules.

Indeed, if 8 = Zj-:l nja;, for some n; € Z>o and i; € I, the element

N e N

i PR i

in the level k deformed Fock space of type Cél) uniquely determines the projective module
which is one of the direct summands of R*(3)e(v) where v = (i, i}2,...,i"), and all
the other direct summands are shifts of this projective module. This fact together with
Theorem 2.5 allows us to compute the graded dimension of the endomorphism algebra
of a certain well-chosen direct sum of indecomposable projective R* (8)-modules, and to

apply lemmas on graded dimensions in the next subsection to prove wildness of R*(3).

Remark 2.10. The divided restriction functor ez(»r) is also an exact functor and it sends
projective modules to projective modules.
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2.4. Some tame and wild algebras. We review a few tame and wild algebras in this
subsection. Besides, it is well-known that k[x]/(z") for any n > 2 is a representation-
finite local algebra. The wild algebras below will give us a reduction method for proving
wildness, because, if e is an idempotent of a finite-dimensional algebra A and a factor
algebra of eAe is wild, then A is wild.

Proposition 2.11. Let A =kQ/J be a local algebra with

Q: = C o Qy .
(1) If J = (2%, 9, 2y — yx), then A is tame.
(2) If J = (2% — 42,2y, yx), then A is wild.
(3) If J = (23,92, 2%y, 2y — yx), then A is wild.
(4) If J = (2™ — y", xy,yx) for some m,n >2 and m+n > 5, then A is tame.

Proof. See [47] for (1)—(3) and see [27, Theorem III.1(a)] for (4). O
Lemma 2.12. If the graded dimension of a graded local algebra A satisfies

dimg A —1—mg € ¢*Zxolg] or dimg A —1—mg* € ¢°Zxo[d],
for 3 <m € Zx>o, then A is wild.

Proof. Let J be the span of elements of degree greater than or equal to 2 or 3, respectively.
Then, J is a two-sided ideal of A, and we have

dimgA/J=14+mq or dimzA/J=1 + mg?,

respectively. In either case, A/J is the radical square zero local algebra whose Gabriel
quiver has at least 3 loops. Hence, A/J is wild by [27, 1.10.10(a)] or [47, (1.1)], and so
is A. O

Lemma 2.13. If the graded dimension of a graded local algebra A satisfies
dimg A — 1 — ¢ — mq® € ¢*Z0]q],
for 3 <m € Z>o, then A is wild.

Proof. There exists an x € A spanning the degree 1 part of A. If 22 = 0, then the degree 2
part of A has a basis {y1,%2, .-, Ym—1, Ym - If 2% # 0, we have a basis {22, y1, 92, .. ., Ym_1}
in the degree 2 part of A. In both cases, the Gabriel quiver of A has at least m > 3 loops.
Hence, A is wild. O

Lemma 2.14. If the graded dimension of a symmetric graded local algebra A satisfies
dimg A —1—miq— mgq2 € qSZZO[q],
for mi,mg € Z>o with my + mg > 5, then A is wild.

Proof. Note that Rad® A is contained in the span of elements of degree greater than or
equal to 3. It follows that

dim(Rad 4/ Rad® A) + dim (Rad? A/ Rad® A) > my +my > 5.

If dim(Rad A/ Rad? A) > 3, then the Gabriel quiver of A has at least 3 loops, and A
is wild. Otherwise, we have dim(Rad?A/Rad®A) > 3, and A is again wild by [27,
Theorem II1.4]. O
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Lemma 2.15. Let ey, ey be two different primitive idempotents of A. If
dimq eiAej — 51']‘ — mijq2 € quZO[Q]
for mj; € Z>q such that mi1 + maoz > 3 and my2 +ma1 > 2, then A is wild.

Proof. By [7, Lemma 1.3], the Gabriel quiver of (e + e2)A(e; + e2) has

() ()

O —>0O or O=<—0
as a subquiver. Then, A is wild by [31, Theorem 1]. O

Lemma 2.16. Let A =k[z]/(2?) and B =kQ/J be the algebra given by
Q: o 4){#0 and J : (prp,vuv).
Then, the tensor product algebra A ® B is wild.

Proof. By tensoring A with B, each vertex gets one loop. The tensor product A ® B has
the minimal wild algebra numbered 32 in [31, Table W] as a factor algebra. O

The next lemma by Kang and Kashiwara [33, Lemma 4.2] is stated for the cyclotomic
affine quiver Hecke algebra R(n), but the proof works for R*(3) (by applying M = R(p)
there).

Lemma 2.17. If v € I? satisfies v; = v;y1 and fe(v) = 0, for f € k[z1,...,x,], then
(0if)e(v) =0 and (s;f)e(v) =0, where 0;f = z‘j’_lefl
Proof. First we recall the following equation from [33, (3.7)]

(Wif = (sif)i)e(v) = (9if)e(v). (2.4)
Then, we have

T — zip1)Yife(v)i

(2.4

= (

= (i — 2 fibie(w) = (a5 — i) ((si)s + 0 ) iew)

= (zi — 2i11)(0; f)wz ( ) (since gfe(v) =0)

= (sif — f)hie(v) = (Wif = 0if — fi)e(v)
= (0;f)e(v) (since fe(v) =0).

Moreover, we also obtain (s;f)e(v) = fe(v) + (z; — xi+1)(0i f)e(v) = 0. O

The following tensor product lemma is useful. We prove the lemma only for Cél) here

by using the graded dimension formula, but the lemma holds for general Lie type by a
different argument [43]. See the appendix.

Lemma 2.18. Suppose that we have two intervals I; and Iy in I = {0,1,...,¢} which
satisfy a;j = 0 for (i,7) € Iy X Iz, and B = B1 + P2 with

b1 € Z Zzoai and (9 € Z ZZ()O[Z’.

i€l i€la
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We denote by vy * vy the concatenation of v € IPY and vy € IP2, and we define

e:= Z e(v1 * 19).

ulelﬁl,
I/2€IB2

Then, there is an isomorphism of graded algebras
eRM(B)e = R (B1) © RV (82)

such that N = Y ,cp (o), AYA; and A = Y ;cp (@), A)A;. Moreover, R*(B) is graded
Morita equivalent to RN (81) @ RN (Ba).

Proof. We define an algebra homomorphism .% : R (8;) ® RN (By) — eR*(B)e by the
following assignment:

1®l—e, e(v1) ® e(v2) — e(v1 * 12),
i @ 1 — 1y, 1 ® ¥i — Y8y |4
;1 — x;, 1 ®xi — 28, |44-

Indeed, it is clear that the images of e(11) ® 1, x; ® 1 and 1; ® 1 commute with the images
of 1®e(rg), 1 ® z; and 1 ® ;. Since e is the unit of eR*(B)e, the unit maps to the unit
and

e = Z ( Z e(vy * 1/2)) = Z ( Z F(e(v1) ® 6(1/2)))
el \velb2 v1 €191 \1pelP2

such that # (1®01) = >, 78 F (e(v1)®1) is satisfied. Similarly, #(1®1) =37, <18, F (1®

e(vg)) is satisfied. Then, the orthogonality relations among .7 (e(r;) ® 1) and among

Z (1 ® e(r2)) hold by the same rewriting of the unit 1.

It is also easy to see that other commutation relations among the generators of RV (B1)
and the generators of RM(By) hold on their images.

Now, let m :=|B1|, v1 = (i1, 42, . ..,im) and vy starts with 4 € I72. Then,
aV7AII . . . . a;/7AII . . . . .
xfn_f_l >1/)T2n€(11712, ey imy by ) = wmxfn >6(21,12, ey ey Tyl - - )Um
aY A" . . ..
:@bmxgnl >1/)72n—16(7’17"‘7Zm—1vll7lm7"‘)wm

\/7A// . . .
:wm...¢1x§a’ >e(z,zl,...,zm,...)w1...¢m:().
Here, the last equality uses (), A”) = (o, A). Hence, we have
\-/,A// V,AH
9(1 ® xﬁaz >e(1/2)) = Z xﬁjj_l >e(l/1 xvg) =0,
l/1€[51

and .Z induces an algebra homomorphism R (81) ® R (82) — eR™(B)e. We then
observe that eyy,e # 0 implies w = wywy with (wy, wy) € Sp,| X S)p,|- Hence, the algebra
homomorphism .Z is surjective.
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To show the injectivity of .%, we look at the graded dimensions. Let K(v,\) be the
sum of monomials ¢38(T) over standard tableaux T of A and iy = v. Then, we have

dimg RY(B) = Y. | Y. K@i, MK, |,

AF[B1] \ vy v elP

dim, R (B2) = Z Z K (v, \)K (v, \) |,

Ne|a] \vavhe 1

dimg eRMBle = Y > K(vrxve, K (V] * vy, A)
I8 | w1 opers
vo,vh€1P2

Since K(v1 * v9,\) # 0 only if the multipartition A with respect to A is a union of
multipartitions A\; with respect to A’ and Ay with respect to A”, we have

dim, eR*(B)e = > > K (v, MK (v2, ) K (], M) K (U, As) |
AE|Bi] | v ppelPt
)‘2}_|52| ]/271/é6162

which shows dim, eR™(3)e = dim, RN (8;) dim, R (B2).

Finally, we prove that R*(8) and RV (81) ® R (B2) are graded Morita equivalent. To
see this, it suffices to show that the indecomposable projective R*()-modules that appear
as direct summands of R*(B3)e(v), for any v € I, appear as direct summands of R*(f)e.
Let n1 := |B1], n2 := |Ba| and n := ny + ny. Each v € I? defines a black-white sequence
of length n with n; black entries and no white entries. Let w € &,, be the distinguished
right coset representative of (&,, x &,,)\&,, which changes the black-white sequence by
place permutation to the black-white sequence whose first n; entries are black and the
remaining ng entries are white. We choose a reduced expression of w and define ,,. Then,
there exist v; € I®1 and 1o € I such that we have an R*(f)-module homomorphism
RMB)e(v) — RMB)e(vy * 1o) defined by the right multiplication with t,,.

Using the same reduced expression but in the reversed order, we have another R*(3)-
module homomorphism R*(3)e(vy*15) — R*(B)e(v) by the right multiplication with 1),,-1.
We compute the composition: they are given by right multiplication with

e(v1 * 1) 1we(vy xva)  or  e(V)hyth,—1e(v).
Write 1/}11, = ¢i1¢i2 ce wir‘ Then,
e(V)Puthy-1 = e(V)iy .. W7 Py
= wzj e wirfle(sirfl I V)@/)ZZT@/)Z‘T71 e wl‘l.

By the minimality of the right coset representative w, the entries at ¢, and i,,+1 are neither
(white, white) nor (black, black). It follows that e(s;,_, ...s;V)¥? = e(si_, ...s;,V).
We continue the same argument. Then,

e(V)hwthy-1 = W)y .. b7 iy = = e(V)Y, = e(v),
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and e(vy * 1)y, —11Py, = e(v1 * 12). Hence, we have RM(B)e(v) = RM(B)e(vy * o), and this
suffices to see that R™(f) is graded Morita equivalent to RV (81) @ R (8s). O

2.5. Brauer graph algebra. It is well-known in the literature that Brauer tree algebras
are representation-finite, and other Brauer graph algebras, i.e., the remaining algebras
whose Brauer graph is either not a tree or with multiple exceptional vertices, are tame.
There is an in-depth introduction to Brauer graph algebras, see [49]. Besides, some of the
latest progress on the derived equivalence of Brauer graph algebras can be found in [6]
and [44]. We then will not review the definition of the Brauer graph and its associated
algebra. We use the same conventions in this paper as we have given in [15]. Although

any tame cyclotomic KLR algebra in type Aél) can be realized as a Brauer graph algebra

up to Morita equivalence, we point out that it is not always the case in type lel), as we
mentioned in the introduction.

We remark that, [22, Lemma 3.1] refers to [11] for the tame algebra R () with £ = 2,
because the assumption that chark # 2 in [11] is put only for guaranteeing Morita invariant
property of cellularity, and the bound quiver algebra mentioned there is tame in chark = 2
as well. Hence, as long as we are content with representation type, the characteristic of
the field k does not matter, but if we want to determine the Morita equivalent classes of a
cellular algebra, we must note that the basic algebra of a cellular algebra is not necessarily
cellular unless chark # 2 or the algebra itself is basic.

We give two examples of Brauer graph algebras in the following, which appear as tame

cyclotomic KLR algebras in type C’él).

Lemma 2.19. Suppose A = moAg + miA1 + -+ mpAy € P(jk. Then, RA(ao + 1) is
tame if mg > 2 and my = 1, namely (t3) in Main Theorem A. More precisely, it is Morita
equivalent to the Brauer graph algebra whose Brauer graph is displayed as

O
Proof. Let A := R ag + ay1). We define e; := ¢(01) and ey := ¢(10). Then,

mo ) mo—1 )
dimgejde; =1+ Zq2(2z—1) + Z 241 4 gm0,
i=1 i=1

mo mo
dimq egldeg =1+ Z q21, dimq e1dey = dimq esAe; = Z q2(2171)'
=1 i=1

We show that e;Ae; has a basis as follows.

e1de; = k—span{m‘fxgel ‘ 0<a<myg—1,0<b< 2},
eaAes = k-span{zjes |0 < a < mg},

e1Aes = k-span{¢1z5e2 |0 < a < mg — 1},

esAe; = k-span{y1xfe; |0 <a <mg—1}.

The required basis for esAes follows from zies = 0 and the graded dimension above.
Moreover, 1/1%61 = (z1 — x%)el implies that 0 = 1x1e991 = xor1e0Y1 = xgw%el =
zo(x1 — m%)el, and hence x%el = x1x9€1. This together with xTOel = 0 and the graded
dimensions imply the required bases for e; Aeq, e;Aes and esAey. For egAeq, apply the

anti-involution which fixes the generators ey, es, x1, 22,1 elementwise.
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Set a := xoeq, p:=1Yiez and v :=Y1e;. We have
ap = zohres = Yrr1e2 =0, va =1x2e1 = r190161 = 0.

Moreover, uv = yfe; = (r1—x3)e; = z1e1 —a? such that (uv)™ = —a?™. By comparing
dimensions, A is isomorphic to the Brauer graph algebra whose Brauer graph is

ery—@—0

proving the assertion. O

Lemma 2.20. Suppose A = Ay +tAy witht > 1 and 8 = ag + Qqy1 + -+ + oy, for
some 1 < a <0 —2. This is (t6) in Main Theorem A and the basic algebra of R*(B) is
isomorphic to the Brauer graph algebra whose Brauer graph is displayed as

O—O——C——  @—.

where the number of vertices is £ — a + 2.

Proof. Let b:=¢—a+1and e:=e; +e3 + -+ + ep, where ¢; = e(y;) for 1 <i < b, and

vi=(a,a+1l,a+2,....0—3,0—2,0—1,0),
vy =sp—1v1 = (a,a+1l,a+2,...,0—3,0—2,0,0—1),
v3 = Sp_18p—ov2 = (a,a+1l,a+2,....0—3,0,0—1,0—2),

Vp—1 = Sp—15p—2.--8382Vp—o2 = (a, 0,0 — 1,0 —2,....;a+2,a+ 1),
Vp = Sp—1Sp—2...8281p—1 = (L0 —1,0—2,...;a+2,a+ 1,a).

Write A := eR*()e. We may compute the graded dimensions as follows.

t
dimgejAe; =1+ Zq‘u,

i=1
20 -1
dimg epAes =1+ Z >+ Z q*,
i=1 i=t
260-1
dimge;Ae; =1+ Z 2¢% + ¢*, for3<i<b,
i=1

Zlgigt q4i_2 if (la]) = (17 2)3 (2’ 1)5
dimg ejAej = § Y cienr ¢® 1 i i —jl =1,i,5 > 2,
0 otherwise.

We then find that the basis of e; Ae; is given as
e1Ae; = k-span{zy'e; |0 < m < t},
egAey = k-span{zj_zj'e2 |0 < s <t —1,0 <m < 2},
e1Aes = k-span{zjiyp_1e2|0 <a <t —1},
eaAer = k-span{ip_1zfe; |0 < a <t —1},
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and for any 7 > 2,
eir1de;p1 = k-span{xy’ ei11, 2" jzpeipr |0 <m < 2t — 1},
e;jAeir1 = k-span{zj_ 27" Vo iWVp—it1 ... Yp—1€i41]0 < a <t —1,0 <m < 1},
eir1Ae; = k-span{ip_1¢p_o ... Yp_ir1thp_izh_j2p'e; |0 <a<t—1,0<m <1}

e z1e1 = 0 and 91 =0 for 1 <4 < b— 2 imply that xje; =0 for 2 < j <b—1.
Then, we have the required basis for e; Ae; by the graded dimension. Similarly,
we have

ziej=0 for 1<i<b—j, and zle,=0. (2.5)
Moreover, for any 1 < j < b, we have
Th_ji16j = Tp_ Vb jej = Yy jxh_ie(sp—jv) Py
=... (2.6)
= 'be—j e 1/12¢1.T§6(8152 . Sb_jl/j)ﬂ}ﬂﬁg N Q/Jb_j =0.
In particular, =} _;es = 0. On the other hand, xbwg_leg = Yp_1Tp_1€1Yp_1 = 0.
This implies
95262 = Tp—1Tp€2 (2.7)
and hence, the required basis for es Aes is obtained by the graded dimension.

e For j > 3, Ype; = 0 with b —j+1 < h <b— 2 implies (1‘2_342 — Tp_jy1)ej =
%37]416]‘ =0 and (zp41 — zp)e; = Yiej = 0 for b—j +2 < h < b — 2. Therefore,
by (2.6), and

rpe; = Ty_jq0e; for b—j+3<h<b—1 (2.9)

e For j > 3, we have

Tpp_iej = Uy_17p_1e(Sp_1V5)Vp—1

2
= Yp—12p—1Vp_9€(Sp—1V5)%b—1

= P 1Vp—2 - - Vb j 1 To—j+1€j—1Vb— 41 - - - Vb—2Vp—1

@25,

This implies that
x%ej = xprp_1e; for 3 <5 <D, (2.10)

and it gives the required basis of e;Ae; for 3 < j < b. Furthermore, the required
basis of e;Ae; with |i — j| = 1 follows from (2.5)—(2.9) and the graded dimensions.

We now are able to find the basic algebra of R*(f). For any 1 <i <b— 1, we set
Wi = Yo iVp—it1 .- Yp1€i41 € € Aeir1, Vi=Yp1thp2. . Ypir1¥p—iei € eiy1de,
and o := xpep € epAep. Then, g1 =0=v;1q1v; for 1 <i < b—2, and

2.5

N
S

avp—1 = TpPp—1Yp—2 . . . P1€p—1 = Yp_1Pp—2 ... P1T1€H—1 .
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We compute p;v; and v;p; as follows.
o Ui = w§7162 = (x% — xp_1)e2 and

(2:5)

fiavs = P2y 1 Pp—0€2 = Pp_2(Tp—1 — Tp)p_2es = —Tphp_ses = —Tpea.
This together with (2.7) and (2.8) imply (v1p1)! = —(uara)?.
e Similar computation shows that p;v; = —ape; for 3 < ¢ < b — 1, and vju; =
(xp—1 — @p)ejq1 for 2 < j < b— 1. This together with (2.8) and (2.10) imply that
(Vi,ui)zt = —(,uiHl/iH)Zt for2<i<b-—2, and (Vb_l,ub_l)zt = —a?.

We conclude that A is isomorphic to the Brauer graph algebra whose Brauer graph is

O—@©——~C—~=0 —

where the number of vertices is b+ 1. By the crystal computation, we see that the number
of simple modules of R*(3) is exactly b. Therefore, A is the basic algebra of RM(3). O

2.6. Tilting mutation and derived equivalence. In this subsection only, we denote by
mod A the category of finitely generated right A-modules and by proj A the full subcategory
of mod A consisting of projective A-modules. This is harmless when we apply the silting
theory to a cyclotomic quiver Hecke algebra, because the algebra admits an anti-involution
which fixes generators and relations, and the anti-involution swaps left modules and right
modules.

Let KP(proj A) be the homotopy category of bounded complexes of finitely generated
projective A-modules. We denote by DP(mod A) the derived category of mod A, which is
the localization of KP(proj A) with respect to quasi-isomorphisms. Both KP(proj A) and
DP(mod A) are triangulated categories. Two algebras A and B are said to be Morita
equivalent if there is a category equivalence mod A = mod B, while A and B are said
to be derived equivalent if there is a triangle equivalence between the derived categories
DP(mod A) and DP(mod B). If A is a local algebra, then the derived equivalence implies
Morita equivalence [53, Theorem 2.3]. The remarkable derived equivalences of algebras
are induced by classical tilting modules, and this area of study has developed into a very
extensive research direction now. We refer readers to the Handbook of Tilting Theory [5]
to find more details. In particular, it is proven in [45, Theorem 6.4] by Rickard that A
is derived equivalent to B if and only if there exists a tilting complex T in KP(proj A)
satisfying B = Endys (proj 4) (7). Further, KP(proj A) is triangle equivalent to K (proj B) if
and only if A and B are derived equivalent. Thus, it suffices to study tilting complexes in
KP(proj A) in order to understand the derived equivalence of A.

Let us review the silting theory, a generalization of tilting theory. Silting is also known
as half-tilting. A core concept in silting theory is silting mutation introduced by Aihara
and Iyama in [4]. In ideal cases, we can classify Morita equivalence classes of algebras in
the derived equivalence class of A by computing a finite number of tilting complexes by
mutation and their endomorphism algebras, as we will see below. We refer to [4] for more
definitions of silting theory.

Let silt A be the set of isomorphism classes of basic silting complexes in KP(proj A).
We construct a directed graph H(silt A) by drawing an arrow from 7 to S if S is an
irreducible left silting mutation of 7. On the other hand, we may regard silt A as a poset
concerning a partial order: T' > S if Homgp (proj 4) (T, S[i]) = 0 for any i > 0. Then, the
directed graph H(silt A) is exactly the Hasse quiver of the poset silt A. In other words, the
Hasse quiver of silt A realizes the left /right silting mutations of silting complexes.
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Since mutation produces strictly decreasing silting complexes with respect to the partial
order, H(silt A) is an infinite quiver in general. However, the set of endomorphism algebras
of silting complexes in silt A may not be infinite, due to the existence of a certain cyclic
phenomenon. Such a cyclic phenomenon has already appeared in the literature, e.g.,
[8, 16, 52]. To explain this, we start with the following proposition.

Proposition 2.21 ([16, Lemma 2.8]). Let A and B be two algebras with a triangle equiv-
alence 7 : D”(mod A) — DP(mod B). Then, the following statements hold.

(1) T sends silting/tilting complexes in KP(proj A) to that in KP(proj B).
(2) T preserves the partial order on the set of silting complexes.
(3) If T is a silting complez in KP(proj A), then T (ux(T)) = u}(x)(f(T)), where

px (T) is the irreducible left silting mutation for some direct summand X of T.

Let T = X1 ® X2 @ -+ ® X, be a tilting complex in KP(projA) and let B be the
endomorphism algebra of T'. We denote by @Q1,Qa, ..., ), the indecomposable projective
B-modules. Then, the triangle equivalence .7 : KP(projA) — KP(proj B) is induced by
mapping X; to @; for i = 1,2,...,n. We consider the following irreducible left silting
mutation:

T— 3 (T) € KP(proj A)

Bt

B——pg,(B) € K®(proj B).

Note that py (T') and uéi(B) are again silting but they are not necessarily tilting.
As 7 sends add(T'/X;)-approximation to add(B/Q;)-approximation, we have the fol-
lowing statement.

Corollary 2.22. We have Endyo (proj 4) Hx, (1) = Endyo (proj B) 1o, (B)-

We define 2-silt A := {T'| A > T > A[l]} C silt A, and elements in 2-silt A are called
2-term silting complexes. Then, 2-silt A is again a poset, so that its Hasse quiver H(2-silt A)
is a subquiver of H(silt A). It is also worth mentioning that there is a poset isomorphism
between 2-silt A and the set of support 7-tilting A-modules in the sense of 7-tilting theory,
see [1] for more details.

Symmetric algebras admit a nice feature in silting theory. Let A be a symmetric algebra.
It is proved in [2] that any silting complex in KP(proj A) is a tilting complex. Therefore,
silt A coincides with tilt A, the set of isomorphism classes of tilting complexes. We obtain
the following theorem for symmetric algebras.

Theorem 2.23. Let Ay, Ao, ..., As be finite-dimensional symmetric algebras which are
derived equivalent to each other and identify T = KP(proj A;) for all 1 < i < s. Suppose
the following conditions hold.
(1) The set 2-silt A; is finite®, for 1 <i < s.
(2) For each indecomposable projective direct summand X of the left reqular module
A;, for 1 <i<s, we have Endr(py(A;)) = Aj, for some 1 < j <s.

5This condition is equivalent to that the algebras A; are T-tilting finite or brick-finite, see [1, 24].
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Then, any finite-dimensional algebra B which has derived equivalence
DP(mod B) = D"(mod A1) (= D(mod A5) = ... = D(mod A,))
is Morita equivalent to A;, for some 1 <i < s.

Proof. We need the concept of silting-discreteness in silting theory: an algebra A is said
to be silting-discrete if there is a silting object T such that {S | T > S > T[k]} Csilt A is
a finite set, for any k € N. A nice property (see [2]) of a silting-discrete algebra A is that
each silting complex in silt A can be obtained by iterated irreducible left silting mutation
from a shift of the stalk complex A. It is then shown in [3, Theorem 16] that A is silting-
discrete if and only if there is a silting object T" € silt A such that {S | U > S > UJ1]} is
finite, for any iterated irreducible left silting mutation U of T'.

Note that silting-discreteness is equivalent to tilting-discreteness since A; is a symmetric
algebra. Let X be an indecomposable projective summand of A. We set

y 0 px (A) = iy (Endr px (4)),

where Y is an indecomposable projective summand of Endy iy (A).
Suppose that U is an iterated irreducible left silting mutation of A; € silt A;. Using
Corollary 2.22 repeatedly, we obtain

U= iy, 00 iy, o iy, (A1),

for some k € N and some indecomposable projective summands X;’s of Endy(U;_1), where
Ui = px, oo pux (A1) for 2 <i < k. Then, assumption (2) says that End7(U) = A4;
for some 1 < j < s. We assume that Endy(U;—1) = Ay, for some 1 < h < s, holds. Then,
Rickard’s Morita theorem implies that there is an auto-equivalence .7 : T = T providing
T (Ui—1) = Ap. See [37, Chapter 3|. Hence, we have

Endr(U;) = Endr(px, (Ui-1)) 2 Endr (7, (4n)).

In particular, .7 (X;) is an indecomposable projective direct summand of A;,. We deduce by
assumption (2) that Endr(U;) = A; for some 1 < j < s. It finally gives that End7(U) =
Aj for some 1 < j < 5. On the other hand, using Rickard’s Morita theorem again, the set
{S|1U > 8 > UJ1]} is in bijection with the set {S | A; > S > A;[1]}. By assumption (1),
we conclude that A; is tilting-discrete.

Let B be the algebra which is derived equivalent to A;. By Rickard’s Morita theorem,
there is a tilting complex T € KP(proj A;) such that B = End(T). Since A; is tilting-
discrete, T is obtained by iterated irreducible left silting mutation from a shift of the stalk
complex A;. Then, by the above argument, End7(7) = Aj, for some 1 < j <'s. O

2.7. The derived equivalence class of (t7). There is a tame Case (t7) of cyclotomic
KLR algebras in affine type C, which cannot be realized as a Brauer graph algebra. Then,
we may use Theorem 2.23 to find all Morita equivalence classes of algebras that are derived
equivalent to (t7). We consider the following quiver:

0 Cosze s,
and define

o A:=kQ/{ca®=0,8% =vp,an = pp, fv = va}.
o B:=kQ/{a® =y, $* = vy, ap = pp, fv = va, pwp = vpv = 0}.
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Here, A is the tame algebra (£7) (See Lemma 7.2) and B is a factor algebra of the tame
algebra numbered (21) in [31, Table T]. In this subsection, we refer to the arXiv version [9]
of this paper for most of the proofs.

Lemma 2.24. The algebras A and B are cellular.

Since the cyclotomic quiver Hecke algebra has an anti-involution which fixes generators
and relations, the category of left A-modules and the category of right A-modules are
equivalent. Thus, it is harmless to work with right A-modules instead of left A-modules
as we mentioned in Subsection 2.6, and we compute with right modules in this subsection.
Let P; be the indecomposable projective A-module at vertex i € {1,2}. We may read the
non-zero paths starting from e; and connect them using an undirected line. It gives the
structure of P; as follows.

e 1 = 2
oz/ 1\'u 1/ \2 ﬁ/ \I/ 2/ \1
P= N 7~ 2N /N L, P= D AN = N
! apu n 9" 1777 B\V\w Ty
~N ~ N/ AN e N/
auy 1 ﬂ]/u 2
It gives
Hom | 1 2
1 €1, Qu, WV, Qv v, Bv
2 e, cep 627/6”//’4)61//’&

By direct calculation, the Hasse quiver H(2-silt A) is given as

po (A) 1y (A)
T T
1y (g (A)) po (11 (A)),

where p; (=) := pp (=), X —{=Y means X — Y[1].
Proposition 2.25. We have Endgo (o 4) py (A) = B.

Let @Q; be the indecomposable projective B-module at vertex i € {1,2}. Then,

e
a’ 1\u 1/1\2 8w 2/2\1
— \\\\ = N = N \ =~ N
@ ap w Ny @ B\V\vu T
N e N N / N/
auy 1 Bylu 2

"We have not checked whether B appears as the basic algebra of some R* (B).
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The Hasse quiver H(2-silt B) is displayed as

pi3 (B) py (B)

\/, . \/‘f
A M

py (pz (B)) py (11 (B))

In particular, we have
Q1 ——— Q2 0———
py (B) = < and  py (B) = ©
0 Q2 Q2 ——

It gives Endyo (o) gy #1 (B) = B and Endgo (proj By 2 (B) = A.

Proposition 2.26. If a basic algebra C is derived equivalent to A, then C is isomorphic
to A or B.

Proof. By direct calculation, we have found that both 2-silt A and 2-silt B are finite. We
also obtained in the above that

® Ende(proj A) Ml_ (A) = B and Ende(proj A) ,uz_ (A) = A.
o Endyo (proj B) uy (B) = B and Endgo (proj B py (B) = A.
Then, the algebra C' is Morita equivalent to A or B by Theorem 2.23. ]

3. A CONNECTED QUIVER IN AFFINE TYPE C

Similar to the construction in [15], we may construct a connected quiver whose vertex
set is maxt(A). Let us start with the description of max™(A), which was introduced
in [36]. Given a dominant weight A € P, we define

Pi () = {N € P, ‘ A~ A

where the equivalence A ~ A’ was defined in Subsection 2.1. In Proposition 3.6 below, we
recall the bijection between P}, (A) and max™(A).

Definition 3.1. For any A = Zf:o m;\; € P:{k, we set
ev(A) :==m1 +mg+ -+ My -1)/2)+1-
Proposition 3.2 ([36, Theorem 2.14]). P}, (A) ={A’' € P;{jk | ev(A) —ev(A) € 2Z}.

The distinguished representatives DR(PJ p) = P;lr’ i/ ~ of the equivalence classes of P(i &
under ~ are given in [36, Table 2.2]. It follows that we have either P:lr’ (A) = PJ i (kAo)
or P(jl"k(A) = P;l_k((k —1)Ag+ Ay), for any A € P;l_,k'

Example 3.3. Set k =2, { = 4. Then,
PCJZQ(QAO) = {2Ao, 2A1,2M2,2A3,2A4, Ao + Ao, A1 + Ag, Ao + Ay, Ao + Ay}
and
PJQ(AO + A1) ={Ao+ A1, A1+ Ag, Ao+ Az, As + Ay, Ap + Az, Ay + Ay}
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For any X = (x9,21,...,2¢) € Zé‘%l, we define

min X :=min{z; |0 <i </} and maxX :=max{x;|0<i </}
Lemma 3.4. Suppose that Y = (yo,y1,...,y) € ZF1 satisfies
vo+y1+--+y=0 and y1+2y2+---+ Ly, € 27.

There exists a unique solution X = (xg,x1,...,2p) € 74 of AXt = Y?, such that
min{zg, z1,...,2¢} > 0 and min{xg — 1,21 — 2,..., 201 — 2,2y — 1} < 0.

Proof. We define X = (Zo, Z1,...,2¢) by

Zo=0, Z1=-Y, To=—2Y0—Yi,-.--,
Tp1=—l—1Dyo— (L —2)y1 — - —2yp-3 — Y2,
28 = —lyo— (L= V)yr — -+ = 2yp2 —yo—1 = y1 + 242 + - + Ly,

It is obvious that X € Z‘+L, By our assumption, one may easily check that AXt = Y.
Thus, the set of integral solutions of AX! = Y is X + 7(1,2,...,2,1). We may adjust
meZin X + m(1,2,...,2,1) to obtain the desired solution. It is also clear that such a
solution is unique. O

Definition 3.5. For any A € P, the hub of A is defined to be

hub(A) := ({ag, A), {af,A),..., (], A)).
In particular, if A = Y0 mA; € Pika then hub(A) = (mg, mq, ..., my).

Fix A = Zf:(] mil\; € Pc—;,k and A = Zf:o n;\; € P;jk(A). We define

Y/O = (y07 Y1, .- 7y€) = hUb(A) - hUb(A/)

Then,
¢ ¢
yotyit o tye=) mi—y ni=k—k=0,
i=0 i=0

and ev(A) — ev(A’) € 2Z implies
Y1+ 2y2 + - + Ly € ev(A) —ev(N) + 2Z C 27Z.

Hence, we may apply Lemma 3.4. Using the unique solution Xﬁ, = (zo,21,...,T¢) in
Lemma 3.4, we define

¢
ﬁj\\/ = inai €Q+.
=0

If there is no confusion of A, we will simply write X/, Yo, and Sp/ for X /1\\,’ Y[{X, and B//\\,,
respectively. Now, we are able to explain the bijection between P, (A) and max™(A).

Proposition 3.6. Let A € Pg}'k. Then, the correspondence A € PC‘Zk(A) — A — 55\\, €
A — Q4+ gives a bijection between Pik(A) and max™(A).

Proof. Since P =7ZAg ®ZA1 @ - -- ® ZAy & 76§, we may write

4
A =B =" niA; +nd,
=0
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for some ng,ny,...,ng,n € Z. We have (o, A) — n; = (o, 5£,>. On the other hand,
y4
(¥, A) — (o, XY = (o) = oY, ) (3.)
7=0

by the definition of Bf\\,. Hence, n; = (o, A’) for 0 < i < ¢, and they are nonnegative
integers due to A’ € P, (A). Therefore, (), A — B4,) >0 for 0 <i < ¢, and
A—pBY e Ptn(A—Qy) C P(A).

By the minimality of the solution X /‘/\\/ € Z"1, we also have A — ﬁj\\, +0 &€ A—-Qr. We
have proved that the correspondence defines a map from P, (A) to maxt(A).

Suppose A — Z?:o zja; € maxt(A). In particular, z;’s are nonnegative integers for
0 <j < /4. We may write

l 4
A — Z:Ujaj = ZmiAi + nd,

i=0
for some mg, mq,...,my,n € Z as before. We set A’ = Zf:o m; ;. Then,
J4
={(a)/, Ny = (o, A" +nd) = (o), A) — Z(aiv,aj>mj.
j=0
This implies that X = (g, z1,...,x¢) € Z5H! o is a solution of AX* = Y* for Y = hub(A) —

hub(A’). Since A’ + nd € max*(A) is a dominant integral weight, we have m; > 0 for
0 < i < {. Moreover, (1,1,...,1)A = (0,0,...,0) implies

l
(e, ) = Zmz— A)—Z(a}’,aﬁmj:(c,A)—(l,l,...,l)AXt:k.
i,j=0

Hence, A’ belongs to P;lr - By the maximality of A — Zf 0Tj oz], X is the unique solution

of AX! = Y in the sense of Lemma 3.4. We conclude that Z —oTjoy = ﬁﬁl. Therefore,
the map P, (A) — max"(A) is surjective.

If we have the same solution X € Zé‘%l for

= hub(A) — hub(A’) and Y” = hub(A) — hub(A”),
then Y/ = XA! = Y”. Thus, the map P;l_,k(A) — max ' (A) is injective. O
We have the following corollary immediately, and we leave the proof to readers.
Corollary 3.7. Suppose A = A + A with A € le'k, A€ P Lk and A € P Cl ke Then,
Piu®) + A C P A) and B =
for any N € Plk'(A)

A
BA’JJ\

Our task is to make max™(A) into a connected quiver in such a way that if there is an
arrow A’ — A" which corresponds to A —Y¢_ zhay; and A — 3¢ 2% ay, there is a sequence

% v
of simple coroots o, , ..., such that

4
v /
<ait,A—inai — oy, — Qy —---—ait1> >1,
i=0
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and Y2{_ whai + @iy + iy -+ @i, = Sigafay, for 1<t <s.

3.1. A connected graph of max"(A). Fix A € PJ,. Suppose A’ = A; + A e P (M)
for some i € I and A € P:lrk_l, we define

Ny=Ago+A if 0<i<i-2

Ao =No+ A if 2<i<C

Suppose A" = A; + A + A€ P (A) for some i,j € I and A€ Pr. . we define

2+7j+ = A;-+,i+ = A1+ A+ A
if0<i<j</f-1,and

A;—,j— = A;'—,i— = "=r" Aj_l + A

if1<i<j<Ct.
Suppose A" = A+ Aj+ A € P;lrk(A) for some 4,5 € [ and A € P;{k_g, we define

, —_—

im gt = ;"",i— =N+ Aj-‘rl + A
740,540 i—1#].

Note that A;+’(i+1)+ = A, for0<i</{—2andA_
It is obvious that Aj., Afs o, Ajx i+ € P i(A).

,(i41) /(i+1

Definition 3.8. Fix A € P, . Let C(A) be the undirected graph with vertex set Pt (A),
such that an edge between A’ and A" exists if A" = Al, or AL, j& or AL i+

Example 3.9. Set k = 2, { = 4. The graphs C(2A2) and C(A; + Ag) are displayed as

and

respectively.

Lemma 3.10. For any A, A" € P}, (A), there exists an undirected path from A’ to A" in
C(A). In particular, C(A) is a finite connected graph.

Ann. Repr. Th. 3 (2026), 1, p.27-97 https://doi.org/10.5802/art.34


https://doi.org/10.5802/art.34

54 Susumu Ariki et al.

Proof. 1t suffices to consider A € DR(P.,) = {kAo, (k — 1)Ag + A1}. If k = 1, then the
assertion is obviously true by level one case, as we will mention in Subsection 3.3 . Suppose
k > 2. We show that there is an undirected path from A to A’, for any A’ € P, (A).

Set A" = ,e;mili € P, (A). If mo = k, then A’ = A and the assertion is trivial.
If mg =4k —1, then A’ = (k — 1)Ag + A; for some i # 0. For i =5 0 (i.e., A = k), we
have an undirected path

kAo (k= 1)Ag + Ay | (k= 1)Ag + A

For i =51 (i.e., A= (k —1)Ag + A1), we have an undirected path
(k= DA + Ay f——— (k — 1) A + A (k= 1)Ao + A

Suppose mg < k — 2. Then, A’ :Ai—i—Aj—i—fX for some i < jel. Ifi=90o0rj =20,
then there is an undirected path from Ag to A; or Aj; this yields an undirected path from
Ao+ A + A or Ao+ A + A to A By the induction hypothesis on k£ — mg, we have an
undirected path from A to Ag + A; + A and Ao+ A + 1~X, so that there is an undirected
path from A to A’. If i =9 j =5 1, then j — i =5 0 and there is an undirected path

Hence, we have an undirected path from 2A¢ to A; 4+ A;; this yields an undirected path

from 2Ag + A to A By the induction hypothesis on k& — mg, we have an undirected path
from A to A’. O

In order to attach a direction to each edge in C'(A), we compare X, and X if there is
an edge between A’ and A", i.e., A" = AlL or Al_ j+ or Ay ;- To simplify the notation,

we will also denote § = (1,2,2,...,2,1) € Z'H1 if there is no confusion in the context.
For 0 <i</—2and2<j </ we define

Ape = (1,210,077 ) e 2, A = (071,127, 1) e 2

Then, we have

5 — Aﬁ- = A(i+2)—. (32)
Lemma 3.11. Suppose A’ = A; + Ac P:lr’k(A) for some 0 <i < /{—2 and Ac Pj,k_l.
Set A" := Al,.. Then, A/(,i+2)* = A’ and one of the following holds.

(1) If min(Xp +A;+ —6) <0, then Xpn = Xpr+A;+ and min(Xpr + A9~ —6) >0,
(2) If min(X s + A+ — 0) >0, then

Xpar = Xp — A(H_Q)f and min(XAu + A(H_Q)f — (5) < 0.

Proof. We have proved in Lemma 3.4 that X, is the unique solution of AX" = Y},
satisfying Xy, € Zg[)l and min(X,/ — d) < 0. We then find

, o\t
AXZ// - AX}S\/ - Y[f// - YK{ - (OZ7 17 07 —17 0£7172) - AAﬁ_Q_
This gives AX}, = A(X], + AfL,). Tt is obvious that X/ + A € Ze;al. If min(X,/ +

A;+ —0) <0, then Xpr» = X/ 4+ A+ by the uniqueness of the solution, and min(Xy» +
A(i+2)— - 6) = min(XA/) >0 by (32)

Ann. Repr. Th. 3 (2026), 1, p.27-97 https://doi.org/10.5802/art.34


https://doi.org/10.5802/art.34

Representation type of cyclotomic KLR algebras in affine type C 55

Suppose min(X,: + A;+ — ) > 0. Due to min(Xy — ) < 0 and A+ — 0 ¢ Z€>+017
have min(Xy + A+ — 28) < min(Xp — ) + max(A;+ — ) < 0. This implies

Xan = Xar+ Dgr — 6= Xpr — Ajiag)
by the uniqueness of the solution, and min(Xy» + A1)~ —6) = min(Xy —§) <0. O
Forany 0<i<j</{—1and1<s<t</ we define two vectors in Z*! as
Apejr = Djege = (1L,2,077007), A o= Ay o = (05,177,270 1),
It turns out that & — Ayt j+ = Agyp1)- (j+1)--
Lemma 3.12. Suppose N’ = A; + Aj+ = Pg’k(A) for some 0 < i< j<{¢—1 and

Ae Pc—;,k—Q' Set A" = A;ﬂﬁ. Then, A/(/erl) G- = A and one of the following holds.
(1) [f min(XA/ —+ Az’+,j+ — 5) < 0, then Xan = XA/ + Ai+,j+ and
Hlin(XAu —+ A(iJrl)—’(jJrl)— — 6) > 0.

(2) If min(XA/ + Aﬁ‘,j“’ - (5) > 0, then XA” = XA’ — A(i—l—l)*,(j—l—l)* and IIliIl(XA// +
A1), (j+1)- —6) <0.

Proof. Since Yy — Yy = (08,1, —1,0 1) 4 (07,1, —1,0°7~1) and
A(Oi-i—l, 11 1/2)t _ (0i7 -1, Loé—z‘—l)t’
we obtain
Xpr — Xy € —(oi“, 161 1/2) - <0j+1, 1631, 1/2) 175
= —A(ip)-,(j+1)- T 26 = Ay j+ + Z0.
Then, the proof is similar to that of Lemma 3.11. 0
For any 0 < i,j < £ with i # 0, # £ with i — 1 # j, we define two vectors in Z‘*! as

A {(oi, 1j—i+1,of—j) ifi <7,
+i- 1=

Apji = A, S
v 7 (1,2],1Z—J—1,24—1,1) ifi> 542

It gives that § — A;— i+ = Agjy1)- (i—1)+

Lemma 3.13. Suppose A’ = A; +A; +Ae P(Ik( ) for some 0 < i,5 < satisfying i # 0,
j# L i—1#jand A€ Py, . Set N =A_ .. Then, YA
the following holds.

(1) If min(XA/ =+ Ai*,j* — (5) < 0, then XA” = XA’ -+ Ai*,j* and

(-1t = A and one of

min(XAu + Agi)- (i)t — 5) > 0.
(2) If min(Xpr + Aj- j+ —6) > 0, then Xprw = Xpr — A1) (i—1y+ and
min(XAu + Agi1)- (-0t — (5) < 0.
Proof. Similar to the proof of Lemma 3.12, we obtain
Xpr — Xy € (o 14, 1/2) - (ojﬂ, 14=i-1, 1/2) V26 = Ay i + T8,
We omit the details. O
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One may also find the relation between Xy, and Xp» if A" = Al_ or A}, - or Al i
We list the corresponding lemmas below and leave the proofs to readers.
Lemma 3.14. Suppose A = A; + A € ij(A) for some 2 <1i </ and Ae P:lrk_l. Then,
(1) XA’; =Xpn + Ai_; ifmin(XA/ + Ai— — (5) < 0.
(2) XAL = Xpn — Ao, ifmin(XA/ + Ai— - 5) > 0.

Lemma 3.15. Suppose A = A; + Aj + A€ P;’k(A) with 1 < i < j </, A€ Pj’k_Q.
Then,
(1) XA;_J__ = Xpn + A -, if min(Xy + A;- ;- —6) <O0.
(2) XA;—,]-— = Xn — D+ -+ o min(Xy + A~ ;- —6) > 0.
The following lemma is a restatement of Lemma 3.13, if we observe that A;+ ;- = A, ;+
and A;- i+ = Ajt .
Lemma 3.16. Suppose ' = Ai—l—Aj—}—IX € P(j,k(A) for 0 <i,j </{ satisfyingi # L, j # 0,
j—1#iand A € P;{k_Z. Then,
(1) Xy, = Xy + Ape o, if min(Xy + A - —8) <0.
(2) XA;#j* =X\ — A(i+1)—,(j—1)+7 if min(Xar + Ajr j- —6) > 0.
For any A’ € Pc—}_’k(A), we set ‘XA/‘ = ‘BA": ie., ‘XA/’ = Zie] x; if Xpno = (z0, 21, ..., T0).

According to the above lemmas, we have either |Xa/| > | Xpv| or | Xp/| < |Xpn| if there is
an edge between A’ and A”. This leads to the following definition.

3.2. A connected quiver of max™(A). Fix A € PJ,.

Definition 3.17. We define C(A) to be the quiver having C(A) as its underlying graph,
and the orientation of an edge A" —— A” € C(A) is given as A’ — A" if | Xpn| > | Xa/],
or equivalently, Sa» — B € Q.

It is clear that the choice of the orientation of A’ — A” is always possible and unique.
We may explain the details of drawing arrows in C (A) as follows.

Fix A" € P}, (A). We draw an arrow A’ 2 AT f min(Xy + A —0) < 0, and then
Xar = Xp+ AL According to the lemmas we have given in the previous subsection, there
are only 5 choices for A, as listed below.

(1) For 0 <i < £—2 with (o, A') > 1, we set A" := A/, and
A=A = (1,271,071,

(2) For 2 <i < £ with (o, A') > 1, we set A” := A/_ and
A=A, = (0"—1,1,24—2‘,1).

(3) For 0 <4 < j < £ —1with i+ 1 # j, (of,A") > 1, (af,A) > 1, we set
A” = A;+7j+ — A;+,i+ and
A= Ai+,j+ = Aj+’z'+ = (1,2i, 1j_i,0€_j).
If i +1 =7, then A;.+7(Z.+1)+ = Al, and this coincides with Case (1).
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(4) For 1 <i<j</lwithi+1#j, (of,A) > 1, (a],A) > 1, weset A" :=A]_ . =

J
A _._ and
] 71
A = Ai_,j_ frd Aj_,i_ — (017 1j—i’2€_j’ 1)
If i +1 =7, then A’(j_l)_ - = A;._ and this coincides with Case (2).
(5) For 0 < i,j < £ with i # 0,5 # £,i — 1 # j, (o, A") > 1, (), ) > 1, we set
A” = A,/L, j+ — ‘,j+ i &I’Id

(oi, =it of—j) if i <7,

A=A =01, = o .
S (1,27, 0091 20 1) i i > G+ 2.

] 7Z

We remind the reader that it is still needed to check min(X,, + A — §) in each case.

Example 3.18. Set k = 2, £ = 4. The quiver C(2A3) associated with X/ is displayed as

(0,1,2,1,0) |

(2,4,3,1,0)
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Recall that Af, = {84+ md |m >0,8 € Af or § — AL } with
Al =26 |1<i<ufete|1<i<j<{y).

Wecall AL = {8eAf|B¢€ A or §—AfL ) the first layer of AfL. If an arrow A/ BN
defined in the above (1)—(5) exists (i.e., min(Xy + A — §) < 0), then A corresponds to a
certain element in Ajs. We then observe that all arrows in C (A) are labeled by elements

in E Let us check it case by case.
(1) A=A+ =(1,21,1,07771) = § — (€41 + €;42) for 0 < i < £ — 2. This gives

§—{ei+e|1<i<l—1} C AL
(2) A=A, = (011,29 1) = ¢;_1 + ¢ for 2 <4 < ¢. This gives
{e+e1|1<i<l—1} C AL
(3) A=Ap j+ =(1,2°,197%,07) for 0 <i < j < €—1withi+1%j. This gives
§—{ei+e|1<i<j<l—1i+1+j}CAL
(4) A=A j- = (01971279 1) for 1 <i < j < £ with i + 1 # j. This gives
{eite|l<i<j<t-1,i+1+j}CAL
(5) For 0 <i,j <€ withi#0,j#0i—1%#j,
’ (1,2ﬂ,1l j=1 ot 2,1):5—(%1—@) ifi>j42.
This gives
{ei—ej,é—(ei—Ej)ll§i<j§€—1}§r;2.
Remark 3.19. In type Aél),we have AL ={e; —¢; |1 <i<j<{+1} and
A ={ei—e,0—(ei—¢) | 1<i<j<l+1}).

Elements in A label all arrows in (A) of type Aél). More precisely, in [15, Section 3],
we draw an arrow

N =M+ Aj+ A9 N = A+ Ajar + A e G(A)

if i —1 #4411 j and min(Xp + A;; — ) < 0. Under this setting, 6 =ag+o1+ -+ oy =
(1,1,...,1) and Xy» = Xp/ + Ai,j with

(O’i’ ]_j—i-‘rlvoﬁ—j) =€ — €41 fo<i< j < l,
Ai,j = (1j+1’0€*]’):6—<€j+1_€£+1) 1f0:2§]§€—1,

(VL0711 ) =5 — (1 ) HO<j<i<L

Lemma 3.20. Suppose A € Pc—}_,k and A # N € Pc'zk(/\). Then, there is a directed path
from A to A in C(A).
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Proof. We prove the assertion by induction on |X,/|. More precisely, we may construct
a certain A” such that |Xj»| < |Xy/|. Using a suitable lemma given in the previous
subsection, we obtain a directed path displayed as A — --- — A” — A,

Write A/ = Zf:o m;A; and X = (zg,21,...,2¢). Since A’ # A, we have |X /| > 0.
Since min(X,/ — d) < 0, we have min X, € {0,1}. If moreover, min X,, = 1, we have
x; =1 for some 1 < ¢ < ¢ — 1. We divide the proof into the following 4 cases.

Case 1. Suppose that there are some 0 < ¢,57 < £ satisfying ¢ +1 < j, ; = z; = 0,
Tit1 = Tipa = --- = x;—1 > 1. Then, by (3.1), we have

<a;/,A — A/> = <a;/,BA/> <0, <a;-/,A — A/> = <a}/,ﬁA/> < 0.

This implies that m;,m; > 1 and A = A; + A; + A e Pik(A) for some A € ch;k—?
Since i < j — 1, A;,ﬁ is well-defined and A;- ;+ = (1,2%, 17711 267 1), Since ;41 =
Tiy2 = -+ = xj-1 > 1, we have min(Xp/ + A;- ;+ —§) > 0. By Lemma 3.13, we have
A;.,J.+ — A’ with

Xy = XA;_ﬁ_ —Aj 0= XA;__ L AG)- (-t

)i

In this case, we have A" := A;_ -

Case 2. Suppose x; =0 for some 0 <i</¢—1landx; > 1foralli+ 1<t </

i=4{—1. Then, (o) |,Bxr) < —2x¢ < —2 and hence, my_; > 2. We may write A’ =
2A¢—1 + A for some A € P, ,. Using min(Xa + Ay j+ — 6) > 0, we obtain an arrow

from A := A’(gil)Jr (—1)+ O A by Lemma 3.12.

i ={—2. Then, (a) ,,0x) < —1 and my_y > 1 such that A, is well-defined. Using
min(Xxs + A+ —6) > 0, we obtain an arrow from A” := A, to A’ by Lemma 3.11.

i <{—3 and xg—1 > 2z¢. Then, (), By) < 0 and (o), Bar) = 2x¢ — x4—1 < 0. It gives
m;,mg > 0 and Ay- ;1 is well-defined. We have A" := Aj_ . similar to Case 1.

i1 <l—3,2; <xjp1 < <xpq <220 and x5 > x5 for some i+ 2 < j <L —1. Then,
(af 1, Bar) = (w1 —wp-2) — (220 —x¢-1) < 0if j =L~ 1, and (o], Bpr) = (x5 — 2j-1) —
(j41 —xj) < 0if j < £ —1; in both cases, we have m; > 0. We also have m; > 0 due to
(), Bpr)y < 0. Thus, A;., .+ is well-defined and we may choose A" := A;, -

i <l—3 and rip1 < xiqo < - < wpog < 2wy,

o If ;11 > 2, then (o, By/) < —2 and Ay ;o is well-defined. We set A" := Aj,
due to min(XA/ + Ai+,i+ — 5) > 0.

e If 241 =242 =---=2x; =1 and xj41 > 2 for some 1 +2 < 5 < £ — 1, then
(o, Bar) < 0 and <Oé}/,ﬁ/y> < 0. It gives m;,m; > 0, such that A" := A;._J.Jr is
well-defined.

o If wi11 =xiyo =+ =xy =1, then (o) |,Bx) = —1 and my_1 > 1. It turns out
that A” := Al(efl)— .

Case 3. Suppose x; = 0 for some 1 < i <l and z; > 1 forall 0 <t <i—1. One may
check this case using a similar method as in Case 2.

Ann. Repr. Th. 3 (2026), 1, p.27-97 https://doi.org/10.5802/art.34


https://doi.org/10.5802/art.34

60 Susumu Ariki et al.

Case 4. Suppose min Xy = 1 (i.e., z; # 0 for all 0 < i < ¢). Since min(X, — ) < 0,
there must exist x; = 1 for some 1 < i < ¢ — 1. We denote by i (resp., j) the minimal
(resp., maximal) number in {1,2,...,¢—1} satisfying z; = 1 (resp., ; = 1). If i = j, then
(af,Bpr) < =2 and m; > 2. Tf i < j, then (a}f, ) < —1 and (o, Bar) < —1, such that
m;, mj > 1. In both cases, A" := A;,’ﬁ is well-defined and min(Xys + A;- j+ — ) > 0.

We have completed the proof of Lemma 3.20. O

We have a natural embedding of quivers from lower level to higher level as follows. We
omit the proof because it is easy to verify the assertion by the definition of arrows.

Corollary 3.21. Suppose A = A + A with A € ij, Ac ij, and A € P(;Jlrk—k" There is
a directed path

AWM A a@) AD AT ) ¢ F(R)
if and only if there is a directed path
AW LR AD A L R AT AT am) | R e G(a).

We are able to show that our quiver c (A) serves the same role as that for type Aél)

in [15].

Theorem 3.22. Suppose A — A" € C(A) and s := |Xpn| — | Xp/|. There is an element
i= (i1,i2,...,15) € I* and a sequence Srr = Po,P1,-..,0s = Par € Q+ such that By =
Bi—1 + a;, and <aivt,A —Bi—1) > 1, for1 <t <s.
Proof. We divide the proof into the following 5 cases.
Case 1: A" = Al,. By Definition 3.17, Xy» = Xp/ 4+ A+ for some 0 < i < £ —2. This
gives s = 2(Z + 1) and Bar = Bar + g + 201 + - - + 204 + a1 We set
(0,1) if § = 0,
(i,i—1,...,2,1,0,1,2,...,i—1,i+1,i) ifi=0.
We obviously obtain 8; = f;—1 + o, for 1 < ¢ < s. By (3.1), we have (o), A — ) =
(af, N'). We have (o) , A — Bp/) = (o, ) > 1 since A’ is of the form A; + A’ in this case.

(TR i1

For 2 <t < s, we have

t—1
<a7\j{57A_18t71> = <O[7X)A_ (ﬁo +Za7’]>>
j=1
t—1 t—1
= <O‘i\i7A/ - Zo‘i1> 2 —<0%vw2%>7
j=1 J=1

which implies (o, A — ;1) > 2if i = 0, and (o}, A — ;1) > 1 if i # 0.

Case 2: A" = A!_. In this case, Xy» = X +A;- for some 2 < i < . We have s = 2({—1)
and Spar = Bar + aic1 +2(a; + - -+ ap—1) + ay. Set

(it d,. . L= 1,001, . i+ 30 +2i—1,40) ifi#?,
(6,6—1) if i = 2.

We then omit the details since they are quite similar to the Case 1.
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Case 8: N = A}_ i+ Then, Xyr = Xpr + A j+ for some 0 <, 5 < £ with i # 0, j # £,
i—1#j. Ifi <j thens=j—i+1land fpr = By +ai+---+ay, weseti= (4,i+1,...,7).
Ifi>j4+2 thens=20+j—i+1and far =y + o +2(0q + -+ ;) + (ajp1 + -+
ai—1) +2(ci + -+ ap_1) + oy, we set
BN (0% PO T T A A T S SRNY S IF ) BT 2 A
~(0,1,...,0) ifi=¢.
for j =0,andi= (4,j—1,...,1,0,1,...,5 — 1,4+ 1,4, +2,...,a — 1L4,...,0 — 1,0,
¢—1,...,i+1,i) for j > 1. In both cases, we have 5 = f;_1 + «;, for 1 <t < s. Similar
to Case 1, we have (o), A — Bar) = (), A') or (o), A') > 1. For 2 <t < s, we have

-1 t—1
it gives (a wA Bi1) >2ifi=4,j =0, and < wA Bi—1) > 1 0therw1se

Case 4: N = AL, j+- Then, Xpn = Xp + Ajy j+ for some 0 <4 < j < £ — 1. The case of
j =i+ 1 has been proven in Case 1 since A+ 1)+ = Aj+.

Suppose i = j. We have s = 2i+ 1 and Sar = Bar + ap + 2(1 + - - + @), and we set

o (0) ifi =0,
o\ (G,i—1,...,1,0,1,...,4) ifi#O0.

It gives (o, A — Bar) = (@, A') > 2 by our assumption. For 2 < ¢t < s, we obtain

(af , A= Bi1) > — (), 302 1aZT>—11ft7és, and (o), A — Bi-1) = (o A)>21ft:s.
In fact, set t = s > 2, we have

s—1 s—1
(o, A= Bs—1) = <0<Z»V,A — <50 + Zom>> = <al\~/,A' - Zair>7
r=1 r=1

combining this with (oY, Y"1 o;.) = a11 + a0 = 0if i = 1 and (o), Y521 oy,) = as +

201y =0if2<i < L1, We obtain the result.
Suppose 1 + 2 > j. We have a path

AN — AN — (A +iya)- =4

Then, the statement holds by composing the results in Case 1 and Case 3.
Case 5: N = A’, _. Then, Xpn+A,- .~ forsome 1 <7 < j </, and the case of i = j—1

has been proven 1n Case 1 due to A;_; )_’]_ = A;-. If i =j, then s = 2(/ — j) + 1 and
6/&” _BA’+2(QJ+ —FO(@ 1)+Oé£, we set

10 ifj=¢,
G, =100 —1,. .. 5) ifj<d

One may show the statement using a similar analysis with Case 1. If 1 < j — 2, there is a
path
/ / / /i
AN — N — (Aj_)(i),,(j_2)+ =A".
Then, the statement follows from the results in Case 2 and 3.

We have completed the proof of Theorem 3.22. O
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3.3. Comparison with previous level one results. We may understand the construc-
tion of [13, 22] in our broader setting as follows.
In [13, Proposition 5.1}, it was shown that

max+(A0) = {Ao + w; — %5 ’ 0<i<{ i€ 2Z20},
where wq := 0 and

2

We remark that this is the solution of AX" = Y for Y = hub(A;) — hub(Ao) in the sense
of Lemma 3.4. Substituting this into our setting, we have

w; I=041+2a2+---+(l—1)ai—1+2<ai+ai+1+"'+0¢e1+ae)-

Ao L A
A = -0 — w;.

2

This gives an arrow A; — A; 42 in c (Ap) because

1+ 2 ]
< 5 5—wi+2> — <25—wi) :ai+1+20@+2+"'+20&g_1+afEQ+.

Thus, the quiver C(Ag) is displayed as

@ \Jﬂ Ao % Ay . Aojg2) | (3.3)

In [22, Proposition 2.8], the authors showed that, for 0 < s < ¢,

max+(As) = {As + 557:|:i — %(5 0<i1<¥, 1€ QZ>0},

where & ; = w;, and

. . S

i i , , .

55 — &= 500 + zZOzj + (i —Dasrr + (i —2)agyo + -+ - + gpii,
j=1

. /—1 .

i ) ) i

55 —&oi = Qg1 + 2052+ + (i — Dos_1 +0 ) _aj+ Fae
j=s

This leads to the identities

i )
/3//\\5 — 55 — §s,i and 52?_1 = 55 - 58,—i'

s+1i

Moreover, if we multiply A with coefficient vectors of 52;2. or B//\\:_i, we always obtain a
vector with exactly one 1 and one —1 while all other entries are 0. One may check that

s+1

1+ 2 i
< 5 0~ fs,i+2) - (25 - fs,i) =ap+2) o5+ sy € Qq,
j=1
. . -1
142 1
< 9 d— 58,12) - <25 — gs,i) =Qg_i—1+2 Z aj +ap € Q-
j=s—1
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Hence, there are arrows Agy; — Agyjio and Ay ; — As_; o in é(As). We conclude
that the quiver C'(A;) is displayed as

Ao

(3.4)
Aajg)2)
@
(3.5)

Agio H Asia } e Ag((e-1)/2)41

if s is odd.
4. PROOF STRATEGY FOR THE MAIN THEOREM A

In this section, we review some well-known features in the representation theory of
RM(B) in type Cél). We recall the results from [13] and [22] for level one cases. We
then focus on the case k > 2 and prove our main theorem given in the introduction: we
prove (1) of Main Theorem A in Section 5; we give the proofs for (2)(a) and (2)(b) of Main
Theorem A in Section 6 and Section 7 respectively; we prove (2)(c) of Main Theorem A in
the remaining sections. We also introduce some reduction lemmas to reduce the problem
on RA(p) to cases with small levels of A and small heights of 3, similar to the strategy
in [15] for type Agl) . These reduction methods play a crucial role in the proof process.

Let us start with the fact that R*(3) is a symmetric algebra (see [50, Appendix]). It
gives that the representation type of RA(ﬂ) is preserved under derived equivalence, see [38,
46]. Then, the problem we consider relies on figuring out when R*(3) and RA(5') are
derived equivalent. By Chuang and Rouquier’s result [21], we know that R™(3) is derived
equivalent to R*(’) if A — 8 and A — 3’ lie in the same W-orbit of P(A). Furthermore,
by (2.1) and Proposition 3.6, the representatives of W-orbits of P(A) with A € PC'Z &
are given by {A — Sy —md | A € PCJlr’k(A),m € Z>o}, where PCJlr’k(A) is defined at the
beginning of Section 3. All in all, it suffices to consider the representation type of R™(7)
for v € O(A), where

O(A) = { By +md \ N € PYy(A), m € Zxo ). (4.1)
Remark 4.1. If A’ = A, i.e., B = 0, then RY(By) =k is a simple algebra.

4.1. Results in level one cases. We have given the quiver C(A,) for 0 < s < £ in
the previous section, see (3.3), (3.4), (3.5). Then, the main results of [13, 22| can be
summarized as follows.

Theorem 4.2. Set A, € P:lil with 0 < s < € and A € PCJlr’l(As). Then, the cyclotomic

KLR algebra R™s(Brr 4+ mé) is representation-finite if m = 0 and A € {Ag, Ag_o, Agio},
tame if m =1, £ =2 and A" = A, wild otherwise.
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It implies that R (B + md) is wild for all m > 1 if By # 0, and for all m > 2
if By = 0. Then, the representation type of R (Bar) and RAS((S) are determined as in
Theorem 4.2.

4.2. Reduction methods. In [15, Section 5|, level lowering argument and the quiver

6(A) are used to show the wildness of RA(ﬂj\\, +mJd) in type Agl), for m > 140 A/, where
Op n is the Kronecker delta. Similarly, we have

Lemma 4.3. Suppose A = A + A for some A € P;{k, A€ PJk' and A € Pc‘lLk_k,.
Then, the representation-infiniteness (resp., wildness) ofRK(v) implies the representation-
infiniteness (resp., wildness) of RM(7).

Proof. This is similar to the proof of [15, Lemma 4.1]. O

Lemma 4.4. Suppose ' — A” in C(A). Then, the representation-infiniteness (resp.,
wildness) of RMByr + mé) implies the representation-infiniteness (resp., wildness) of
RM(Bpn 4+ md), for any m € Zy.

Proof. This is similar to the proof of [15, Lemma 4.2], by using Theorem 3.22, [28, Propo-
sition 2.3] and [33, Theorem 5.2]. O

Corollary 4.5. If RNy + md) for A’ € C(A) and m € Z>q is representation-infinite
(resp., wild) and there is a directed path from A’ to A" in C(A), then RM(Bpr + mé) is
also representation-infinite (resp., wild).

5. PROOF OF PART (1) OF MAIN THEOREM A

We are able to show the following result.

Theorem 5.1. Suppose A € P;{yk with k > 2. Then, RA(BA/ +mJd) is wild for any m > 1
and A" € P;l"k(A).

Proof. Set A = Ay + A with 0 < s < £. If m > 2, then R™ (md) is wild by Theorem 4.2,
and so is RM(md) by Lemma 4.3. Since there exists a directed path from A to any
A # A€ PJ(A), we deduce that RA(By +md) is wild for any m > 2 and A’ € P, (A),
by Corollary 4.5. If m = 1 and £ > 3, then R%s(§) is wild following Theorem 4.2, which
implies that R*(Bxs + 6) is wild for any A’ € Py, (A).

Suppose m = 1 and ¢ = 2. Then, § = ag + éal 4+ as. We have to consider the cases
A e {2A0, 2MA1,2M0, Ag + A1, A1 + Ao, Ag + AQ}.
Case 1. Set A := eR?20(8)e with e = e(0121). Then, dim, A = 1 + 2¢% + 2¢* + 2¢° + ¢%.
We show that A has a basis {z%e, 7374¢ | 0 < a < 3}. First, we have z?e = z?¢/ = 0, where
e :=e(V) = e(0112). Since e(s1v) = e(s1V') = e(sav) = 0, we have e = hge = 1€/ =0
and hence fe = 2e = e/ = 0. This implies z1e = z3e, 3¢ = 73e, so that we may
replace z1e and z3e with z3e, and z1¢’ = 23¢’. Let f = 1 — 23 and dof = % Then
Lemma 2.17 implies (02f)e’ = 0 since v4 = v4 and fe’ = 0. Hence, xze’ = —x9€’. This
implies that

Tatpatharhze = xatpae'thorhy = 3z tharhy = —watP3iarfze.

On the other hand, we have ¥3191h3e = (1312103 — ot)31hs)e = (2o + x4)e. Hence,

x4(1‘2 + x4)e = —:L'Q(sz + x4)e,
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and we may replace z3e with —(23 + 2wox4)e. Moreover, if e,e # 0, then we can

choose 1, = 1 or ¥y, = 1210315. The latter one can not happen since ¢se = 0. Therefore,
we obtain the required basis following the graded dimension. Further, we have a surjective
algebra homomorphism from A to B :=k[X,Y]/(X?3,Y?2, X2Y) sending x5 and x5 + 4 to
X and Y, respectively. Since B is a wild local algebra by Proposition 2.11, A is also wild.

Case 2. Set A := (e1 + ea) R*M (8)(e1 + e2) with e; = €(1210) and ey = ¢(1201). We have
dimg e1Ae; = dimgeg ey =1+ 2¢% + 2¢* +2¢° + ¢°,
dimg e1 Aey = dimg ep Aey = ¢+ 2¢* + ¢b.
Then, A is wild by Lemma 2.15.
Case 3. Set A := (e1 + ea) RMTA1(8)(ey + e2) with e; = €(0121) and ey = ¢(1201). Then,
dimge1Ae; =1+ 2¢% + 3¢* + 2¢° + ¢&,
dimg ez Aez = 1+ ¢* +2¢* + ¢° + ¢&,
dimg e1 Aey = dimg ep Aey = q2 + q4 + q6.
Then, A is wild by Lemma 2.15.
Case 4. Set A := eRM*T22(§)e with e = ¢(2101). We obtain
dimgede =1+ 3¢% + 4¢* + 3¢° + 5.
Then, A is wild by Lemma 2.12.

In the above 4 cases, R(0) is wild since we find an idempotent truncation of R*(&)
being wild. Using Proposition 2.4, we conclude that all the remaining cases are wild. [

Combining with the bijection between P, (A) and max™(A) as we mentioned in Propo-

sition 3.6, we conclude that R*(fB) is wild if A — 3 is not a maximal dominant weight.
This gives a proof of Main Theorem A (1). Now, in the case of k& > 2, we only need to
determine the representation type of R*(8y/) for A’ € P¥, (A). This will be accomplished
in the following sections. ’

6. PROOF OF THE SECOND PART—FINITE REPRESENTATION TYPE

In the Case (f1), R*(3) = k[X]/(X™a). For the first case in (f2), we have e; = e(01) = 1
by eg = €(10) = x§a1’m°A°>e(10) =0, and ¥ = ey = e = 0, (23 — x1)e; = Y?e; = 0,
so that RM(B) = k[X]/(X?™0). For the second case in (f2), we have x; = 0 and that
Py = (e1,vper, mae1,0%e1), Py = (eg,vea,1p%es) are indecomposable projective R™(j3)-
modules. Then, we see that RA(B) is a Brauer tree algebra whose Brauer tree is given

as
O—0O——0O

which is of finite representation type. By symmetry, we have the results for the Case (f3).
The Case (f4) is treated in [15, Proposition 6.8] and it is also a Brauer tree algebra. If
RA(B) is derived equivalent to this algebra, we recall that R () is a cellular algebra when
chark # 2 by [29, Theorem A] because we choose a special value for the parameter ¢ here
and Morita invariance of the cellularity holds when chark # 2. Thus, the Brauer tree is
the straight line with b — a + 2 vertices without an exceptional vertex. Hence, R*(3) is
Morita equivalent to this algebra when chark # 2 or RA (B) is a basic algebra.
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The remaining two cases follow from [13, Lemma 3.3(1)] and [22, Proposition 4.1,
Theorem 4.4]: in the Case (f5), RM(8) = R%(By,,,). It is the Brauer tree algebra whose
Brauer tree is the straight line with a 4+ 2 vertices without an exceptional vertex, and in
the Case (f6), R*(8) = R*(By,_,), which is the Brauer tree algebra whose Brauer tree is
the straight line with £ — b 4 2 vertices without exceptional vertex.

7. PROOF OF THE SECOND PART-TAME REPRESENTATION TYPE

In this section, we will omit most calculations to make this paper shorter, and one may
refer to the arXiv version [9] for more details. Before starting the proof for the tame cases,
we consider A = RtA‘*ﬁA‘(Oze,l + ay), for t > 2. Define

e1r=e(l—1,0), ey=e(l,l—1).

The graded dimensions are given as follows.
t—1
dimgejde; = 1+ ¢* + qum e s
=2
t+1
dimq €2A€2 = Z q27‘,
i=0

¢
dimg e; Aey = dimg ep Aey = Z ¢,
i=1

In particular, dim A = 5t + 2. Then, A is generated by eq, es, %, x1, z2 such that
e1de; = <:U‘1133361’0§a§t—1, 0<b< 1>, egAey = <xgeg‘0§b§t+1>
e1Aey = <sz3e2 ‘ 0<b<t— 1>, egAer = (Yafe; |0 <a <t—1).

If we set
a=umxie1, p=epes, v =exper, [=x2e0.
Then

o' =xle; =0,
ap — pf = e (x1Y —Yra)es =0, Pr —va = ex(x2) — Px)er = 0.

Moreover, {a, 3, u, v} generate A as an algebra.

B = ah ey =0, B2 —vp=ades — PPer =0,

Lemma 7.1. Let A’ be the algebra with two vertices 1,2, a loop o at vertex 1, a loop 3
at vertex 2, an arrow p from vertex 1 to vertex 2, an arrow v from vertex 2 to verter 1,
such that they satisfy the following relations

at=0, p? =0, B2 =vp, ap=pb, Bv=ra.
Ift > 3, then A’ is isomorphic to A. Moreover, A is wild.

Recall the wild algebra (31) from [31, Table W], which has the same quiver as A and is
bounded by

fr=va, BP=vp=pf=au=ac®=va®=0.
It is clear that if ¢ > 3 then the following relations hold in this algebra.
ot =0, p"2=0, fZ=vp, ap=ps, Bv=ra.
Hence, A has the wild algebra as a factor algebra, so that A is wild if ¢ > 3.
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Lemma 7.2. Let A’ be the algebra with two vertices 1,2, a loop o on vertex 1, a loop 3
on verter 2, an arrow p from vertexr 1 to vertex 2, an arrow v from vertex 2 to vertex 1,
such that they are bounded by the relations

o =0, B =vp, ap=pB, Bv=ra.
Ift =2, then A’ is isomorphic to A. Moreover, A is tame.

We observe that A/ Rad? A is a representation-infinite algebra, since its separated quiver
(see [17]) is not a disjoint union of Dynkin quivers. Since A is a symmetric algebra, inde-
composable A-modules are either indecomposable projective A-modules or indecomposable
(A/Soc A)-modules. Hence, tameness of A/ Soc A implies tameness of A. We then con-
clude that A is tame since A/Soc A = A/Rad® A degenerates to a factor algebra of the
algebra (18) in [31, Table TJ.

7.1. Proof of the tame cases. We are ready to prove part (b) in Main Theorem A (2).
The cases (t1)-(t9) will appear in R*(B/), for the first neighbor A’, that is, those A’ for
which there is an arrow A — A’. As we see below, they are Brauer graph algebra except
for (t7) and (t8). All the other cases will appear in R*(Bx~), for the second neighbor A",
namely those A” for which there is a directed path A — A’ — A”.

In the cases (t9), (£15)-(t19), we have the isomorphism of algebras R*(8) = RA(B).
Hence, the results follow from [15]. For the bound quiver presentation of the cases (t9)7
(t15)—(t19), see [15, 8.2]. Furthermore, it suffices to consider (t2), (t3), (t5), (t7), (t10),
(t12), (t13), (t20) in the remaining cases by symmetry. Cases except for (t2) and (t20)
are almost complete already.

(t3) This follows from Lemma 2.19.
(t5) We have RA(B) = Rmofotha(qg4- -4 ay), for 1 <a </¢—1. Ifa=1and my > 2,
it follows from Lemma 2.19. If 2 < a < /£ — 1, then it follows from Lemma 2.20.
(t7) This follows from Lemma 7.2.
(t10) By Lemma 2.18, R*(3) is Morita equivalent to

R2A0 (CVO) ® R2Ai(ai) o ]k[X, Y]/(XZ’ Y2>7

which is tame by Proposition 2.11.
(t12) Since ¢ > 4, we may apply Lemma 2.18. Hence, m; = my_; = 0 implies that
RA(B) is Morita equivalent to

R (g + a1) ® RM (a1 + ag) 2 K[X, Y]/(X27 YZ)'

Here, we use the proof of (f2) for each of R (ag + 1) and RM(ay_1 + ay) to
obtain k[X,Y]/(X?,Y?).

(t13) We apply Lemma 2.18 again. Then m; = 0 implies that R*(f) is Morita equivalent
to RM (o + a1) ® R*M (). Then, we use the proof of (£2) again to conclude that
R™(B) is Morita equivalent to k[X,Y]/(X?2,Y?).

In the next two subsections, we prove the remaining cases (t2) and (t20).

7.2. The Case (t2). Set A := R -1(2ay_1 + ay) with
e =e(l—1,0,0—1), es=e(l—1,0—1,0), e=mxoies.
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We then have the following graded dimensions.
dimgejde; =1+ 2¢% + ¢*,
dimg epdey = (¢ + q71)2(1 +q"),
dim, e; Aey = dimy eader = (¢+ ¢ 1) (¢ + ¢°).

Let P, := Ae; and Py := Aeh(1). By looking at the graded dimensions, we know that
Aeg = Pr(1) ® Pr(—1) and

dim, End(P) = 1+ 2¢* + ¢*, dim,End(P) =1+ ¢*,
dim, Hom(Py, Py) = dim, Hom(Ps, P1) = q + ¢°.

By crystal computation [39], We can calculate the number of simple modules, which is two.
Hence, the Gabriel quiver is
“w
—_—
[e% CO El, [0

and the relations are vy = o? = 0 and auv = uva.
We see that it is a special biserial algebra® Being a symmetric algebra, it is a Brauer
graph algebra, whose Brauer graph is as claimed.

7.3. The Case (t20). We show that the algebra (£20), namely A := R?20(2aq + 2a;) in
chark # 2, is tame. First of all, crystal computation shows that the number of simple

modules is two. Its basic algebra is B = End(P; @ P»)°P where
2) £(2 2
P =P 1o P= fof{? fova.
Let e; = e(0011) and e2 = e(0110) and ez = e(0101). Graded dimension formula computes
dimge;Ber =1+ @+ 2¢* + ¢% + &, dimg eaBeg =1+ 2¢* + ¢8,
dim, e1 Bea = dimg ea Bey = q2 + q6.

We set f1 = xoth1x4903e1 and fo = x31h9es. Then, P, = Af1(3) and P, = Afyo(1). Thus,
the graded dimensions of f;Afj, for 7,j = 1,2, are as follows.

dimy f1Afy = dimgHom 4 (Afi, Afs) = dim;Homy (P1<—3>7 P2<—1>)
= dim, Hom 4 (P, P»)(2) =q"+ 4,

dimg f2Af1 = dimg Homa(Afo, Af1) = dimg Homu (Py(—1), Pi(—3))
= dim, Homu(Py, P)(—2) =1+ ¢*,

dimg f1Af1 = dimgHomy (Af1, Af1) = dimgHoma (Pi(—3), P1(—3))
= dim, Homyu (P, P) =14+ ¢*+2¢* +¢° + &5,

dimy f2Afy = dim, Homy (Afo, Afs) = dimg Homy (Py(—1), Py(—1))
— dimy Homa(Py, Py) = 1+2¢ +¢°

Let f = f1 + fo. Then B is isomorphic to fAf as ungraded algebras, and we are
going to prove the tameness of A by obtaining the bound quiver presentation of fAf.
The computation is lengthy and not straightforward. We start with formulas we will use
in the computation. See the arXiv version [9] for the details.

8See [27] for the definition of special biserial algebra. It is known that symmetric special biserial algebras
are Brauer graph algebras and vice versa. See [49].
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Lemma 7.3. The following formulas hold.
(1) (x1+x2)e1 =0, (w3 +x3)ea =0, (z1 + 23)e3 = 0, z160 = T3e2 = T3en.
(2) xie1 =0, xies = 0, (23 + 2324 + 2323 + 23)e1 = 0, (z323 + 2327 + 2324) €1 = 0.
(3) fiv1 =0, farpa =0, freh3 = 0.
(4) (x3 +x4) f1 = f1(w3 + 24), 2324 f1 = fraszs, 21f2 = fox1 and zafo = fory.
(5) x1f1 =0, fizsfi =0, fizdfi = —zszafi, frxifi = —(x3 + za)T324f1.
(6) faxzfr =0.

Proposition 7.4. The bases of f;Af; (i, = 1,2) are given as follows.
fHiAfL = Span{flaa = (z3+z4) f1, & = 2324 f1, &, 0420/},
f2Afy =span{ fo, B = x1fo, B = a4 f2, BB = BB},

Jf1Afe = span{u = fraiPs fa, frevszy fo = pB},
f2Af1 = span{v = fosioth1 f1, fox1¥sarhr fi = Br}.

2
Moreover, o = 20 and o/* = o’ hold.

We can find relations among the generators «, o, 3, 8, i, v in order to obtain the bound
quiver presentation of R?20(2aq + 20r1). We leave the computation to the reader.

Proposition 7.5. Suppose that chark # 2. Then R*M (209 + 201) is Morita equivalent
to the following bound quiver algebra.

w
—_—
«Coame s
ap=va=0, (=0, o= (w)*=—-2uby,
pru=vup, vur+2v=0, prp+2uf=0.

In the above bound quiver presentation, we set v = vu + 23 and replace  with (y —
vp)/2. Then the bound quiver presentation becomes

n
GoZzo s
ap=va=0, yw=py=0, o =) +*=—(vp)?

We see that the algebra is special biserial. Hence, we have the following corollary.

Corollary 7.6. If chark # 2 then R*0(2aq + 20v) is Morita equivalent to the Brauer
graph algebra whose Brauer graph is

O——0—®.

8. REPRESENTATION TYPE IN LEVEL TWO CASES

The rest of our proof relies on the results when the level is two. In this section, we are
aiming to determine the representation type of R*(8y/) for A’ € P;{} o(A). There are only
two cases to consider: 2A,, for 0 < a </, and Ay + Ap, for 0 <a < b < /.

Before proceeding to the study of these two cases, we prove the existence of symmetry
on the quiver. Let Z be a set of level two dominant integral weights which is stable under
o Ng+ A= App+Apgsuchas Z = {20, | 0<a</l}or Z ={As+ Ay | a#b}
The lemma below implies that, if R*(8,/), for some A’ = A; + A;, has a unique common
representation type, for all A = A, + Ay € Z, then we may conclude that R*(3,/) and
RA(@,A/) have the same representation type for A € Z.
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Lemma 8.1. Let 0 <a <b</fland 0 <1i < j <l Then we have an isomorphism of
algebras

Apop Ay ~ pAatA
R (’BAéfj'i‘A[fi) =R b</8/\i+/\j)'

Proof. Let P be the permutation matrix which swaps ¢ and £ — ¢, for 0 < ¢ < ¢. Then
PAP = A. Hence, if X is the solution of AX? = Y in the sense of Lemma 3.4, then X P
is the solution of APX? = PY!. It implies UBAZ7j+ Ae; = Bas+a;- The result follows from
Proposition 2.4. O

8.1. The case 2A, (0 < a < /). Our aim in this subsection is to prove the next theorem.

Theorem 8.2. Suppose that A = 2A,, for 0 < a < /.

(1) If we have an arrow A — N, the representation type of RM(Bys) is given as follows.
(i') If N = 2A,_1, for 1 < a < £, then RM(Byr) is wild if 1 < a < £ — 2, tame if
a=¥¢—1, finite if a = 1.
(i") If N = 2Mqy41, for 0 < a < € —1, then RMByr) is wild if 2 < a < { —1, tame
if a =1, finite if a = 0.
(i) If N = Ag_1 + Agy1, for 1 < a <l —1, then R*(Bp/) is finite.
(iii") If N = Ag_o + Ao, for 2 < a </, then RMBps) is wild if 2 < a < £ —1, finite

ifa==4¢.
(iii") If N = Ay + Agyo, for 0 < a < £ —2, then RMBas) is wild if 1 < a < —2,
finite if a = 0.
(2) If N = Ay_o + Aaro, for 2 < a < £ —2, then RMByr) is tame if chark # 2, wild
if chark = 2.

(3) (i') If A = 2Aqg and A’ = 2o, then RM(Ba/) is tame if chark # 2, wild otherwise.
(i") If A = 2Ap and A' = 2A,_s, then RM(Bar) is tame if chark # 2, wild otherwise.
(4) Other RM(Br) are all wild.

Moreover, if RA(BA/) is finite or tame, then it is an algebra listed in Main Theorem A.

We first give the connected quiver C'/(2A,) (Figure 8.1). Once a is fixed, it is easy to
verify whether an arrow (or a vertex) exists or not by Definition 3.17.

In the quiver (Figure 8.1), the superscript in the upper right corner of each vertex
indicates the representation type of R*Ma(Bx/), i.e., the corresponding cyclotomic KLR
algebra. In particular, the dashed boxes in the quiver show the cases we have to analyze
one by one, and the boxes imply that the corresponding algebra is wild by Lemma 4.4.
Here, F means representation-finite, T' means tame and W means wild. Finally, all the
other remaining vertices of the quiver are wild by Corollary 4.5.

Theorem 8.2(2) is (t15) if chark # 2. If chark = 2, it is wild by [15, Theorem 4.6],
which refers to [7, Theorem B]. There, applying Dynkin automorphism to 2A¢ and A\ =
oy + 20 + a1, we obtain that RiA“(aa_l + 204 + gt1), for 2 < a < £ — 2, is wild when
chark = 2.

Proposition 8.3. Let A" = Ay,_3 + Agy3, for 3<a <{—3. Then RMBr/) is wild.

Proof. We have By = ag—o+204—1+30q+204+1+Qqr2. Applying Dynkin automorphism
to 2A¢ and A = ay_1 + 20y + 3ag + 2a1 + oo as above, we see that R*(By/) is wild by [15,
Theorem 4.6]. O

Proposition 8.3 has the following corollary by Lemma 4.4.
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FIGURE 8.1. The connected quiver C(2A,).

Corollary 8.4. If A" is one of Ag—1+ Aat3, Na—3+ANat1, Na—s+Na—1, Nay1+ Nasrs, for

3<a</l—3, then RMNByr) is wild.

Next, we prove Theorem 8.2(1). We start with (i’). Then we obtain (i”) by symmetry.
Since Bpr = 2aq + - -+ + 2a4_1 + oy, we have the following.

(1) If a = ¢, then By = ay and it is finite by (f1).

(2) If a =€ — 1, then Sy = 2ay_1 + a4 and it is tame by (t2).
Proposition 8.5. Let A = 2A, and A’ = 2A,_1, for 1 < a < £—2. Then RMBy/) is wild.
Proof. The readers may refer to the arXiv version [9] for the proof. U

The Case (ii) has By = ag, so that it is finite by (f1). We consider (iii’). Then (iii")
is obtained by symmetry. Then
Bar = g1 + 204 + - + 2001 + 0y

If a=1¢, By = ay—1 + oy and it is finite by (£3).
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Proposition 8.6. Let A = 2A, and N’ = Ay_9 + Ay, for 2 < a < ¢ —1. Then, R*(Bp)
15 wild.

Proof. If 2 < a < ¢ — 2, then R*(By/) is wild by Proposition 8.5 and Corollary 4.5 since
there is an arrow from 2A,_1 to Aq_9 + A,.
Ifa=¢—1, then By = ap_o +20p_1 +apand set e =e({ —1,4,{ —1,¢ —2). We have

dim, eRM(Ba)e =1+ 3¢% + 3¢* + 5.
Using Lemma 2.12, we deduce that R(3y/) is wild. O

Theorem 8.2(3) in the case chark # 2 is (t20) and (t21). When chark = 2, we use the
computation in the proof of Proposition 7.4 to show the wildness as follows.

Lemma 8.7. Let A = 2Ag and A’ = 2Ay. Then, R*(By:) is wild if chark = 2.
Proof. Bar = 2ap + 2a1. Let fi = woth124103¢(0011). Then Proposition 7.4 implies that
AAf 2 K[X, Y]/(X3 _9XY, XY2Y? - X%, Y3)

and it admits k[X,Y]/(X3, Y2 X2Y) as a quotient algebra when chark = 2. It follows
that R?A0(2aq + 2a1) in chark = 2 is wild, by Proposition 2.11. O

To prove the part (4) of Theorem 8.2, namely to prove that all the other RM(B,/) in

level two are wild, it suffices to prove the wildness for:

(1) NN =2A, 5, for 2<a </,

(2) N =2Agq9,for 0<a <{-—2,

(3) Ag—3+Ag41, fora=¢—2and a=/¢—1.
(4) Agys+Ag—1, for a =1 and a = 2,
(5) Aa+1 + Aa+3, for 0 <a< 2,
(6) Ag—z+Ag—1, for £ —2<a <V

Proposition 8.8. The algebra R* e (By/) is wild, if N = 2A4_o, for 2 <a < £ —1.
Proof. 1t follows from Proposition 8.6 and Lemma 4.4. O

By symmetry, R?Ae(8y/) is wild, if A’ = 2440, for 1 <a < £ —2.

The cases (3) and (4) are covered by Lemma 8.9 below. Then, the lemma covers the
cases (5) and (6), except for the case @ = 0 in (5) and the case a = ¢ in (6), respectively.
These two exceptions are covered by Lemma 8.10.

Lemma 8.9. The algebra R*(By/) is wild, if N = Aq_3 + Agy1, for 3<a <{—1, or
N=Ai3+As1, for1<a</l-3.

Proof. Suppose that A" = Ay_3 + Agyq for 3 < a < £ — 1. Then by Proposition 8.6
R*Ma(Bn) is wild for A” = A,_9 + A,. This implies R?2a(B,/) is wild since we have an
arrow from A” to A’. The other case holds by symmetry. O

When a = 0, there is an arrow Ay + A3 — 2A3. When a = /, there is an arrow
Ap—3 + Ap—1 — 2A4—3. Thus, the wildness of R?0(85,,) and R?A¢(By, ,) follow from

that of R2Mo (BA,+A4) and R2A£(5A4_3+A5_1)-

Lemma 8.10. Let A = 2Ag and A’ = Ay + As. Then RA(ﬁA/) s wild.
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Proof. We have By = 20 + 2a1 + aa. Let e = €(01201) and ey = ¢(01210). Then

dimg e1 R*(Bar)er = 1+ 2¢ + 3¢* + 3¢5 + 2¢° + ¢*°
dimg e2R*(Bar)es = 1+ ¢* + 2¢* + 2¢° + ¢® + ¢"°
dimg e1 R (Bar)ez = dimg e2R" (Ba)er = ¢* +q* +¢° + ¢,

By Lemma 2.15, RY(By/) is wild. O

8.2. The case A, + Ay (0 < a < b <¥). Our aim in this subsection is to prove the next
theorem.

Theorem 8.11. Suppose that A = Ay + Ay, for 0 <a<b< /.

(1) If we have an arrow A — A, the representation type of R™(Ba/) is given as follows.
(iv') If N = Ay_1 + Ay_q, for 1 < a < b < ¥, then RNByr) is wild if 1 < a < b <
0—1,tameif l<a<{l—-2,b=/{, finiteifa=0—1,b="1.
(") If N = A1 + Apy1, for 0 <a < b <Ll—1, then RMBa/) is wild if 1 < a <
b</l—1,tameifa=0,1<b</l—-1, finiteifa=0,b=1.
(v) If N = Ay 1+ Apy1, for 1 <a<b<l—1, then RNBy) is finite.
(vi) If N = Agy1 + Ay, for 0<a<b</{anda<b—2, then RMNBy) is wild.
(vit') If N = Ay + Ay_o, for 0 < a < b</l,a<b—2, then RMBy) = RAb(ﬁAbiz)
is finite.
(vii”) If N = Agyo + Ny, for 0 <a <b<la<b—2, then R*(Br) = R (Ba,.,)
is finite.
(viii') If N = Ay + Ayio, for 0 < a < b <€ —2, then RMNByr) is wild.
(viii") If N = Ng_o + Ay, for 2 < a < b < {, then RM(By) is wild.
(2) If N = Agyo+ Ay for 0 < a < b—4 <, then RMNBy) is tame if a = 0 and
b=~{. Otherwise, it is wild.
(3) All the other R™(Bas) in level two are wild.

Moreover, if RA(ﬁA/) is finite or tame, then it is an algebra listed in Main Theorem A.

Set A = A, + Ay with 0 < a < b </ We observe that each element in P;{Q(A) can be
written in the form A; +A; with 0 <¢ < j </land i+ j =2 a +b. We define

Cs(A) :=={Ai+A; |0<i<j<{ j—i=s,i+]=2a+b}CPJ,(A).

Then, PC'ZQ(A) = s> Cs(A). We draw C(A) on the plane by putting elements of C5(A) in
the same column and arranging Cs(A)’s as columns in increasing order from left to right.
In this way, the leftmost column of C/(A) is Co(A) if b—a =5 0 and Cy(A) if b—a =5 1.
Once a,b are fixed, it is easy to verify whether an arrow (or a vertex) exists or not by
Definition 3.17. Similar to the case of 2A,, the representation type of RY¥40(3,,) is
mentioned by the superscript in the upper right corner of each vertex. Also, all other
remaining cases are wild by Corollary 4.5.
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We start with (iv’) in Theorem 8.11(1). Then
ﬂA/ :Oéa—i-"‘—l-ab_l+20¢b+"‘+2014_1+0ég.
Ifa=¢—1landb="/{itis (f3). If 1 <a </l —2and b=/, it is (t6).

Proposition 8.12. Let A=Ay + Ay and N = Ay 1 +Ay_1, for 1 <a<b<{—1. Then,
RA(By) is wild.

Proof. Suppose 1 < a < b < £—1, we choose a suitable A := (e1 +ez) R4 (Br:)(e1 +€2)
that is wild. Recall that v, = (b,b+1,...,0—1,4,4—1,...,04+1,b,b—1).

e lfl1<a=b-1,b</{—1, we have £ > 3 and
Bar = ap—1 + 2(ap + -+ - + 1) + .

We set e :=e(1p) and ea :==e(b—1,b,b+1,...,0—1,0,0—1,...,b+1,b).
e lf1<a<b—2,b<{¢{—1, wehave ! >4 and

Bar =g+ Qa1+ o1+ 2(ap 4+ ap1) + g

We set €1 := e(a,a+1,...b—3,b—2,15) and ez := (a,a+1,...,0 =20 —1,¢,
0—1,...,b+1,b).

In both cases, we have
dimg ey Ae; = 1+¢° +¢*,
dimg eg ey =1+ 2¢% + ¢*,
dim, ej Aey = dimg ep ey = 7.

It gives that A is wild by Lemma 2.15. O

The Case (iv”) is obtained by symmetry. The Case (v) is Byr = agq + -+ + ap, for
1<a<b< -1 Thisis (f4). Now we show that (vi) is wild. If a > 0 and b < ¥,
then RA(B,/) is wild by Proposition 8.12 since there is an arrow from Ag_; + Ap_1 to
Ag+1 4+ Ap—1. Thus, we may assume a =0 or b = /£.

Proposition 8.13. Let A = Ay + Ay and N = Ay1 + Ap_1 with a =0 or b = {. Then,
RMByr) is wild.

Proof. We have three cases.
Case 1: a =0 and b = {. In this case, Sxr = ag+ a1 + - + ay.

Suppose £ > 2. Lete; :=¢€(0,1,2,...,0—=2,{—1,¢)and eg = ¢(0,¢,1,2,...,0—-3,0—2,(—1).
Then, we have

dimg er R (Bar)er = 1+ ¢* + ¢* + ¢°,
dimg ea R™(Bar)ea = 1+ 2¢° + 2¢" + ¢°,
dimg e1 R (B)es = dim ea R*(Bar)er = ¢* + ¢*.

We deduce that R*(Bx/) is wild by Lemma 2.15.
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Suppose £ = 2. Let e := e; + e1 + ez with e; = ¢(012), ez := ¢(021) and e3 := (210).
Then, we have
dim, eiRA<5A/)ei =1+¢+q"+4°
2 4 . . .
, ¢ +q ifli—jl=1,
dim; e;RM(Bpr)e; =
e (B )e; {0 otherwise.

This implies the quiver of R*(8y/) is of the form

Cl:(;:‘sf)

and hence, it is wild by [27, 1.10.8 (iv)]. O

Case 2: a >0 and b= {. In this case, fpnr = ap + 2(a1 + -+ + @q) + Qg1 + -+ + . If
a < b—4, then RM(B,/) is wild by Proposition 8.15 since there is an arrow from A, o+Ap_o
to Agt1 + Ap_1. It remains to considera=b—2=¢—2o0ora=b—3=/{¢—3.

Let O, = (a,a — 1,a —2,...,2,1). If a = ¢ — 2, we set e; := e(,,0,a + 1,0,,¢)
and eg 1= e(0y,0,0,a+ 1,0,). If a =€ — 3, we set e1 := (g, 0,a + 1,a + 2,0,,¢) and
€9 :=€e(0y,0,0,a+ 1,a+ 2,00,). In both cases, we have the following graded dimensions
such that R*(By/) is wild, see Lemma 2.15.

dimg ey R*(By)er = 1+ ¢% + ¢* + ¢°,
dimq GQRA(BA/)€2 =1+ 2q2 + 2q4 + q67
djmq elRA(ﬁA/)eg = dim GQRA(ﬂA/)el = q2 + q4.

Case 3: a =0 and b < £. In this case, fpr = ap+a1+-- -+ ap_1+2(ap+- -+ ap_1) +ay.
Using the isomorphism in Proposition 2.4, we conclude that R™(3,/) is wild.

We have completed the proof of Proposition 8.13. O

The Case (vii’) is (f6) because
Bar = ap—1+2ap + -+ 20p1 + .

The Case (vii”) is (f5). It remains to show that (viii”) is wild. The Case (viii’) is obtained
by symmetry.

Proposition 8.14. Let A = A, + Ay and A = Ao + Ay with2 < a < b < (. Then,
RA(ﬁA/) ’I:S ’U}Zld

Proof. If b < £, then R(B,/) is wild by Proposition 8.12 since there is an arrow from
Ao—1+Ap_1 to Ay + Ay. We assume b = £ in the following.

Case 1: a=¢—1 and b = L. In this case, Sy = ay_o + 2ap_1 + ap. We set
e1:=—-1,4,0—2,0—1) and eg:=(Ll—1,0—1,0-2).
Then,
Pi= foafeofefeal(0), Po= foaf®) foL(0).
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Then we may compute the graded dimensions as follows.
dim, End(P;) = 1+ ¢® + ¢* + ¢°,
dim, End(P) =1+ 2¢% + 2¢* + ¢°,
dim, Hom (P, Py) = dim, Hom(Ps, P1) = ¢°* + ¢*.
This implies that the algebra R(Bx/) is wild.
Case 2: a <€ —1 and b= {. In this case, frr = ag—1 + 2(vg + -+ + ay_1) + ay. Set
e=ell,l—1,....,a+2,a+1,a,a—1l,a,a+1,a+2,....0 —2{—1).
Then, dim, eRMBa)e = 1+ 3¢% + 3¢* + ¢% and RM(By) is wild by Lemma 2.12.
The proof is completed. U

Next, we prove Theorem 8.11(2). If a = 0 and b = ¢, then it is (t12), and we already
know that it is tame. Thus, we may assume a > 0 or b < /.

Proposition 8.15. Let A=A, + Ay and ' = Agio+ Ay o with0<a<b—4,4<b</
such that a > 0 or b < £. Then, R*(By:) is wild.

Proof. If a=0,b</{¢—1, then Sy = ap+ a1 +ap—1 +2(ap + - - + ay—1) + op. We define
e1 :=¢e(0,1,1) and ey := e(0,1, ;) with
vy = (bb+1,. .. 0—1,06—1,....b+10bb—1),
V= (bb—1,b41,b42,... . 6—1,0,0—1,...,b+1,b).
Setting A = eRM(By/)e with e = e; + ea. We obtain
dimge;Ae; =1+ 2¢> +¢* for i =1,2, dimg e; Aey = dimgep ey = g + ¢
Let k = 2(¢ — b) + 4. Direct computation as above shows that x1e; = z3e; = 0,1 = 1,2,
n
nd zje1 =0,xpe0 =0 for 3<j<l—-b+4+3,3<h</l—-b+4 (8.1)
We also show that
zje; =xre; =0 for i=1,23<j<k-1. (8.2)

Suppose that b = £ — 1. Then k = 6 and z2e; = 0 by tses = 0 and (8.1). Using
se; = 0 = hgeq shows that (z3 + x5)e; = 0 and hence z5e; = 0 by (8.1). Moreover,
Y2e1 = (x5 —x6)e1 and zgp2e; = 0 imply that x2e; = 0. This completes the proof of (8.2)
when b = ¢ — 1. The case b < £ — 1 can be checked similarly by using ¥y_pi0e1 = 0 =
Yo—prs3er and Yy_pisea = 0 = y_pyqea. Furthermore, e;1he; # 0 only if ¢, = 1. This
together with (8.2) implies that the basis of e; Aey, is given as follows.

eiAe; = k-span{zy'zie; |0 <m, n <1}, i=1,2,
e1Aeg = k-span{xy Y192 ... Pse2 |0 <m < 1},
eoAe; = k-span{zy' g ... Yp_othp_1e1 |0 <m < 1}.
By setting a = x9e1, § = x9e9, t = Yp_1WVk_o...Yges and v = Yy ...Yr_oti_1e1, A is
isomorphic to the bound quiver algebra defined by
Iz
@ C 1 ? 2 Q g and <a2,ﬁ2,w/,u, vuv, apu — uB, fr — ya>.

Then, A/(va) is a wild algebra by [31, (32)].
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Ifa>1,b=/¢ then By = g +2(a1+ -+ ag) + Qg1 + p—1 + . Similar to the case
of a =0,b<{— 1, one may show that R*(8,/) is wild.
Ifa>1,b</¢—1, then we have

Ba =0 +2(a1+ -+ ) + Qag1 + ap-1 +2(ap + -+ 1) + o
We choose e1 = e(vq, 1) and ez = e(v),, 1), where
Ve :=(a,a—1,...,1,0,1,...,a — 1,a,a + 1),
vi=(a,a+1,a—1,a—2,...,1,0,1,...,a — 1,a).
and vy, V4 are defined in the case of a = 0,b < £ — 1. Set A := R*(,/), we obtain
dimg e;Ae; =1+ 2¢> +¢* for i=1,2, dimg ej Aey = dimg egAey = Q.
Then, R*(By/) is wild by Lemma 2.15. O

In order to show that all the other cyclotomic KLR algebras in level two are wild, we
construct a neighborhood of A whose rim are all wild. For this, it suffices to show the
wildness for

A€ {Ag—2+ Mpr2, Aays + Aprry Aava + Ay, A+ Npg, Mgt + Ap3}
Proposition 8.16. Let A = Ay + Ay and N = Ag_o+ Apyo with2 < a <b<{—2. Then,
RM(Bar) s wild.

Proof. In this case, we have By = qq—1 + 20 + - - - + 20 + ap4-1. Then,
RMag—1+ 200 + -+ 200 + o) = RM (a1 + 200 + -+ + 20 + app1),
and the result follows from [15]. O

We prove the case A’ = A,_1 + Ap_3 as follows. The case Agt3 + Apyq is obtained by
symmetry.

Proposition 8.17. Let A=A, +Ap and N = Ay 1+ A3 with0<a<b—2,2<b< /.
Then, RMN(Byr) is wild.

Proof. Since b < £ — 3, Aq—1 + Ap_1 is wild by (iv’) of Theorem 8.11. Then the result
holds since we have an arrow Ag_1 + Ap_1 to Ag—1 + Ap_3. O

Finally, we consider the case A’ = Ay + Ap_4. The case A’ = Ay14 + Ay is obtained by
symmetry.

Proposition 8.18. Let A=Ay +Ap and N = Ay + Ap_g with0<a<b—4,4<b< /.
Then, R™(Bar) is wild.
Proof. In this case, we have

Bar = ap_3 + 2ap_9 + 3ap_1 + dap + - - - + day_1 + 2ay.
Thus, we have an isomorphism of algebras RM(f/) =2 R (Bys), and RM(By/) is wild by
Theorem 4.2. ([l

9. FIRST NEIGHBORS IN HIGHER LEVEL CASES

We consider higher level R*(By/), for the first neighbors A’ of A. We write A =
Zf:o m;\;. As we have completed level two in the previous section, we assume that
the level is &k > 3 hereafter.
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91. (i) A=2A,+A (1<a<?¢) and A =2A,_1 + A. In this case,
Bar =204 + - + 2001 + .

If 1 <a < ¢—2, then RM(By) is wild by Theorem 8.2(1)(i’). On the other hand, R*(B,)
s (f1) if a = ¢.

Suppose @ = £ — 1. Then B = 2ay_1 4+ oy and R*(2ap_1 + ay) is (t2) if my_; = 2 and
me = 0. We show that RM20y_1 + ap) is wild if my_; > 3 or my > 1. To see this, it
suffices to show that

R3A‘*—1(2ag_1 +ay) and R2A€—1+A"'(2ag_1 + ay)
are wild.
Lemma 9.1. The algebra R2A4*1+Af(2ag,1 + o) is wild.
Proof. Let A = R* -1t (20,_1 + ay) and e; = e(1;), for
n=l-10—-1,0), vrpb=(—-1,00-1), vs=(LL—-1,0—1).
By crystal computation, the number of simples is three. Moreover, computation of
Fef20,0,0),  foafefer(0,0,0), £ £(0,0,0)
shows that
dim, Endy(Py) =
dim, Homu (Py, P2) =
dim, Hom 4 (Py, P3) = 0,
dim, Enda(P) = 1+ 2¢* + 6¢* +2¢° + ¢,
dim, Hom (P, P3) = q + 2¢° + ¢° + 24°,
dim, Enda(Ps) = 1 +¢* + 2¢* + ¢° + ¢°.

Let e = e; + e5 and consider B = eAe. Then, we observe the following.

e There are two degree two homomorphisms in Homy (P, P») and they cannot be
linear combination of composition of two arrows of degree one.

e Next we consider End4(P,). There are two endomorphisms of degree two. The
composition of arrows P» — P53 and P; — P» of degree one gives one endomorphism
of degree two, but there exists another endomorphism of degree two which is not
linear combination of composition of two arrows of degree one.

Hence, the Gabriel quiver of B has a loop on vertex 2, and two arrows from vertex 1 to
vertex 2. Hence, A = R*M—1+8(20,_1 + o) is wild. a

Lemma 9.2. The algebra R3A4*1(2ag,1 + ay) is wild.
Proof. The readers may refer to the arXiv version [9] for the proof. O
9.2. (i"Y A=2A,+A (0<a<{—1)and A =2\, + A. In this case,
By =0+ 2(a1 + -+ + ag).
By symmetry, we obtain the result for Case (i”).

9.3. (ii)) A =2A, + A (1<a</l{—1)and N =As1+Agi1 + A. In this case, By = aq
and RA(5A1> is (fl)
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9.4. (ili”) A=2Aq+ A (0<a<¢—2) and A = A, + Agys + A. In this case,
ﬁA’ :a0+2a1+"'+2aa+aa+1.

If 1 <a</—2then RYBy) is wild by Theorem 8.2(1)(iii”). The case a = 0 follows
from the general result for R®(ag + a;) which we will give now.

Recall that R (ag + ) is (£2) if mg > 1 and my = 0, or mg = my = 1, and (t3) or (t7)
if mg > 2 and m; = 1, or mg = 1 and my = 2. Note that mg = 0 cannot happen because
(o, A —ap—ay) = =1 < 0. We show that RMag + aq) is wild if mg > 2 and m; > 2 or
mo = 1 and m; > 3.

Lemma 9.3. The algebra R*+2M (o 4 ) is wild.
Proof. Set A = R*M0+2M(qg + a1) and B = ¢(10)Ae(10). Then
dim, B = 1+ +¢* + ¢ + & + .
We have x2¢(10) = 0 and 22¢(01) = 0, which imply
0= —aie(01)Y) = —x3ie(10) = —x3 (27 — 22)e(10) = x3e(10).
This together with z3e(10) = 0, the graded dimension shows that B has a basis
{atabe(i0)[0<a<1,0<b <2},

Further, B/(z123¢(10)) = k[X,Y]/(X?,Y3, XY?) by sending z1e(10) and z2¢(10) to X
and Y, respectively. This implies B is wild and so is A. ]
Lemma 9.4. The algebra RT3 (ag + o) is wild.

Proof. Recall the algebra A’ in Lemma 7.1 which is isomorphic to RY3M (g + ). Tt
has the algebra (31) in [31, Table W] as a quotient algebra. The assertion follows. O

9.5. (iii’) A=2A, + A (2<a </) and A = Ay_s + A, + A. In this case,
Bar = g—1 + 20 + - + 2001 + 0.
By symmetry, we have the result for this case from (iii’) .
9.6. (iv) A=A+ A+ A (1<a<b</l) and A = Aq_; + Ay_1 + A. In this case,
Br =g+ -4+ ap1+2ap+ -+ 2051 + ay.

If 1 <a<b</{—1then R}By) is wild by Theorem 8.11 (iv').
Suppose 1 < a < ¢ —2and b= L. If m; = 0y, for a <i < £— 1, then R*(By/) is (£6).
We show that RA(ﬁA/) is wild if mgy > 2 or m; > 1, for some a < i < /.

Lemma 9.5. Suppose that A = 2A, + Ay and N = Ay 1 + Ay + Ag_1. Then RY(Ba/) is
wild.

Proof. Sete=e({ £—1 ... a+1a)and A = eR*(By)e. Then dim, A = 1424 +2¢* + 5.
We have z1e = 0 and ;e =0 for 1 <¢ < ¢ — a — 1. This implies that
x%e:(),xie:acge, for 3<i1 </l —a.
Therefore, the degree 2 and the degree 4 components of A have bases
{zoe,x¢_q11e} and {$2$g_a+16,$?_a+16},

respectively. We conclude that A/Rad® A 2 k[X,Y]/(X?, Y3, XY?), which is wild. O
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Lemma 9.6. Suppose that A = Ay +AN;+Ap and N = Ay_1+A;+Ap_q1 for somea < i < {.
Then RM(B) is wild.

Proof. Set A = eRM(B)e, where e = e; + ey with e; = e({,£ —1,...,a+ 1,a) and ey =
e(i, 0, 0—1,...i+1,i—1,i—2,...,a+1,a). Ifi < £—1, then dim, e; Ae; = 1+3¢*+3¢*+¢°.
If i =¢—1, then

dimg e1der = 1+ 2¢° +2¢* +¢°,  dimgesder =1+ ¢ +¢* + ¢°,
dimq e1deqy = dimq exAer = q2 + q4'

In any case, we have that A is wild. O

It remains to consider the case a = ¢ — 1 and b = £. If my > 2, it is already considered
in (iii”). Thus we assume my_; > 1 and my = 1. RMByr) is (3) if my_ = 1. It my_y > 2,
we have an isomorphism of algebras

RMBar) = R™ M8 (g + ).
This is the algebra we analyzed at the beginning of Section 7. Thus, it is (t8) if my—; = 2,
wild if my_1 > 3.
9.7. (iv") A=Ag+ Ny +A (0<a<b<l{—-1)and AN =Agt1 + Apsa + A. In this case,
,BA/ :a0+2a1+‘--+2aa+oza+1—|—---+ozb.

By symmetry, we have the result from Case (iv').

9.8. The cases (v), (vi), (viii"), (viii”).
(V) A=A+ A+ A(1<a<b<l—1)and A" = Ay_1 + Apy1 + A. In this case,

Brr = g + Qa1+ + .

Then the result from [15] for type Aél) shows that R™(Ba/) is
— finite if m; = 04 + Op;, for a < i < b, namely (f4),
— tame if my > 2 and m; = &, for a < i < b, or mp > 2 and m; = d,;, for
a < i < b, namely (t9),
— wild otherwise. B
(vi) FA=As+Ap+A (0<a<b<{l)and A'=Ayi1+Ap_1+A, where a < b—2, the
level two result Theorem 8.11 (vi) implies that R*(Ba/) is wild for 0 < a < b < £
witha #b—1. N
(vii") TA=Ag + Ay +A (0<a<b<{l—2)and A = A, + Apyo + A,

Bar = o+ 201 + -+ + 20 + apy-

Then RM(Ba/) is wild, for 0 < a <b < ¢— 2, by Theorem 8.11 (viii).
(vili”") A =As +Ap+A (2<a<b</{) and A" =As_2+ Ap + A, then

Bar = g1+ 204 + -+ + 2001 + Q.

By symmetry, Theorem 8.11 (viii”) implies that R*(8,) is wild, for 2 < a < b < L.
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9.9. The remaining cases.

(Vi) FA=As+A+A (0<a<b<lb>2)and A = Ay + Ap_y + A, it suffices to
assume a < b — 2, because if a = b — 1 then A, + Ay_o = Aq_1 + Ap_1 and it is
already treated in (iv’). We have

Bar = ap—1 + 20 + - + 2041 + .
If m; = Oy, for b—1<i < ¢, it is (f6). If mp_1 > 1, the arrow is
A=Ay 1+A+ AN — AN =Apo+Ayq+A,
and it is already treated in (iv’). If my > 2, the arrow is of the form
A=2Ap+ AN — A =Ap o+ Ay + A,
and it is already treated in (iii’). If m; > 1, for some b+ 1 <4 < /¢, the arrow is
A=Ay +A+N —N=Ao+A+AN,

and RA(By/) is wild by (viii”).

(Vii") EA=Ag+ A+ A (0<a<b<la<l—2) and A = Agis + Ay + A, we may
assume a < b — 2, because if a = b — 1 then Agyo + Ay = Agy1 + Apy1 and it is
already treated in (iv”). We have

Bar = o+ 201 + -+ + 204 + Qg1

Then, by symmetry, we see that no new non-wild algebra appears.

10. SECOND NEIGHBORS IN HIGHER LEVEL CASES

By the result on the first neighbors, it suffices to check the representation type of
RMBan) for A — A’ — A” in the following cases in the second neighbors.

(1) A:2Ag+/~x—>A’:2Ag,1+KandA:2Ao+K—>A/:2A1+1~X.

(2) A=2A11 +A— AN =20 5+ Aand A =2A; + A — A =2Ay + A.

(B) A=20 +A > N =Agy+ A1 +A(1<a<0-1).

() A=2A+A =N =Aro+A+Aand A=2Ag+A — AN = Ao+ Ay +A.
(5) A=Ag+ A+ A A=A 1 +Ar g +A(1<a<l—1)and

A=Ag+Ap+A—AN=A+A+AQ1<b<L-1).

6) A=Ag+ A+ A= AN =Ag 1+ A +A(1<a<b<l-1)
(M A=A+M+A=>N=As+MN 2+ A0<a<b</l, a<b-—2)and

A=Ag+ A +A—N=Aso+ A +A0<a<b<l a<b-—2).

The aim of this section is to show that no new non-wild algebra appears in the above
seven cases. Our strategy for the proof is that we check the wildness of the algebras case
by case. Basically, most algebras R™(Bx~) in each case will belong to the following three
patterns. Since we will use similar arguments repeatedly in each pattern, we adopt the
following style of writing in order to avoid repetition.

(I) A” is already in the first neighbors and hence already done in the previous section.
By the definition of arrows, it is easy to see that A” can be reached from A with
one move. We list A” in this pattern without further proof.
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(IT) A” is not in the first neighbors but there is an arrow Ay;q — A” such that we
may know that RA(BAmi o) is wild, by the results of the first neighbors or level two
results. Then R*(Ba~) is wild. In this pattern, we will write the arrow (or just
Amiq for each A”) and refer to the previous sections for the wildness of RA(ﬁAmi 1)

A variant of this argument is that RA(,B Apia) 18 DOt wild, but we know by results
in the previous sections that R*(f,~) is wild for the path Ay;q — A”.

(ITI) We may use Lemma 2.18(tensor product lemma) to show that R*(B,~) is Morita
equivalent to the tensor product of two algebras. Then the wildness of the tensor
product is easy to see. For this pattern, we will just write the tensor product of
two algebras without referring to Lemma 2.18 explicitly.

For the new non-wild algebras, we will see that they all belong to the tame cases listed
in Main Theorem A.

In the following, we only list the arguments for Case (5) to showcase an example of the
strategy. For the detailed arguments of the remaining cases, we refer to [9, Section 10].

10.1. Case (5). This case studies A = Ag + Ay + A — A = Ay + Ay + A — A”, for
].Sbgf—]_, andIBA/:aO_’_..._f_ab‘

10.1.1. The case of changing Ay + Api1. First, cases Apy1)—, Ar+ pp1)- and Ag— i)+
are in pattern (I). Second, for the remaining cases A1)+, A+ (p41)+, and Ag+ are all

in pattern (IT) with Apiq = Ao + Apyo + /~X, Ao+ Apyo + A and Ag+ Ay + INX, respectively.
For the first two, R (S, ) is wild by (viii’) in the first neighbors. Finally, R*(8y ) for
the last one is also wild since Theorem 4.2 shows that R20(8,,) is wild.

10.1.2. The case of changing A1 + A; or Api1 + A;. Here, we consider the path
A= AN =A+Ap1 +A+A— A
and we must change A;. First, we have cases in pattern (I):
i Ai—,(bJrl)—a Ai+,(b+1)w Ai_,l—v Ai+,l*>
e A,_for2=i<b-—1,ori=b+2,b+1,
° A1+7i_ forl<b=i—1l,orl=b=d,0ori=1,2<b<f—-1lori=2,3<b</l-1,
® Ayt~ for1<b=i—-2o0or1<b=i-1
Second, we have the following cases in pattern (II):
(A+) with 1 <i<0—2: Apig = Ao+ Nig2 + Ap + /N\, by (viii’) in the first neighbors.
(A;-) with2<i=bor3<i<b—1: Apig=ANo+Ap—2+Ap+Aand Ag+A;i—2+Ap+A,
respectively, by Theorem 8.2 (iii’) and Theorem 8.11 (viii”), respectively.
(A1+,i+) with 2 7'5 O,b or 2 <1 = b: Amid = AO + Ab+1 + Ai+1 + A and A() + 2Ab+1 + A,
respectively, by Theorem 8.11 (iv”), and by Theorem 8.2 (ii) respectively.
(Aps1)t,it) Amia = Ao+ Apra + A; + A, by (viii’) in the first neighbors.
(A=) with 1 <b <i—2and (Agpyq)+,-) with 1 < b <4 — 3. For both cases, Ayiq =
A+ Ap+Ai—1 + A, by (vi) in the first neighbors.
Other than patterns (I) and (II), we have the following cases.

(A;+) We have A” = Ay 4+ Apq +Ajpo+ A, for 0 < i < £—2. Here, it remains to consider
the following subcases.
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(i=0,2<b<l—1) We choose [P] = fofP £ f5... fyon € V(Ag) ® V(Ag) ® V(Ay). Then [P] =
f2f1(2)((1), (1), (15_2)) is obtained by applying fs to

(0,2, (72) +((12),(12),(172) + 2((1%). (2). 1°2))
+((2),(17), (1"72)) + ¢*((2),(2), 1" + ¢*((2,1), (1), 1*7?)).

Each 3-partition has three addable 2-nodes and no removable 2-node. Hence,

dim, End(P) = (1+ ¢+ ¢") (1 + ¢* + 2¢* + ¢® + ¢°)
=14 2¢% + 4¢* + 4¢° + 4¢® + 2¢'° + ¢'2,

and P = fo f1(2) f0(2) fa... fpRM0) is an indecomposable projective module.
We apply Lemma 2.14 to conclude that R?20+4(8,,) is wild.
(’i =0,b= 1) We have A = 2Ag + A1 + 7\ and A" = Aj + 2A5 + K, Bar = 209 + 2.
We already proved in Subsection 10.1.1 that this algebra is wild.
(A;-) We have A = A+ Apyr1 + Ao —H~X, for 2 <4 < £. It remains to consider the case
b+3<i<l Wehave A=Ay + App1 + Ai—y + A and

Bar=ag+ -+ ap+ a1+ 20+ + 2001 + .
Thus Lemma 2.18 implies that RM+Av+Ai(3,,) is Morita equivalent to
RM (g + - 4 ap) ® RY (o + 204 + -+ + 201 + ),

which is RA0+Ab(BA1+Ab+1) ® RY(By, ,). In [22, Proposition 4.1], it was proved
that R (B, ,) is the Brauer line algebra whose number of simple modules is ¢ —
i+ 1. Thus, we may choose an idempotent e such that eR(8,, ,)e = k[X]/(X?).

On the other hand, RA0+Ab(/8A1+Ab+1) is (t5) and the number of simples is
b+ 1 > 2. Thus, by considering the three leftmost vertices of the Brauer graph,
we may obtain an idempotent truncation whose Gabriel quiver is

o
= SL
14

Therefore, an idempotent truncation of RM+As+8i(5,,) has the Gabriel quiver
which is obtained by adding one loop to each vertex. Hence, RA0FAs+A: (Bar) is
wild, which implies that R*(Br) is wild.
(Ay+ +) Wehave A" = Ao+ Ajy1 + Ay + A. Then, the following are the remaining cases.
(i=0) A=2Ag+Ap+ A, A" = Ay + Ay + Appy + A, and

Bar = 2a0 + 201 + g + - - + .

If b = 1, we already showed that R*0+A1(200 + 204) is wild in (Ay). Thus,
we assume b > 2 and choose

1P) = fof P fa . fofovn € V(Ao) ® V(Ao) ® V(Ay).
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We then obtain [P] by applying fy to

2 _ _
A2((0), (1), (1) + ¢2((1), (0), (1*7H)
= ((0),(1%), (1) + ¢((0), (2), (1")) + ¢*((0), (2,1), (1*7H))
+¢%((12),(0),(1") +¢*((2), (0), 1")) + ¢* (2. 1), (0), 1*7)).
FEach 3-partition has two addable 0-nodes and no removable 0-node. Thus,
dim, End(P) = (14 ¢) (1 + ¢* + 2¢* + ¢* + ¢*)

1+ 43¢ +2¢° + 3¢5+ ¢10 + ¢

and we apply Lemma 2.13 to conclude that End(P) and RM(Bn) are wild.
(i=b=1) A = Ag+2A1 + A, AV = 3Ay + A and Brr = 209 + 3a3. We consider
RM+2M(20 4 3a) and choose [P] = fl(z)fé2)f1vA. Then
dimg End(P) =1+ 2¢% + 3¢* +3¢% + 2¢% + ¢'°

by the similar computation above. Hence, Lemma 2.14 applies.
(Apy1)t,i-) We have A" = Ay + Apo + Aj—1 + A. Then, we consider the following remaining
cases. N N
2<b=1i) A=Ag+20y+A - AN =A1 +Ap_1 + Ap2+ A and

Bar =g+ -+ ap_1 + 205 + apyr.
We choose [P] = fyfo—1--- fofor1fova € V(Ao) @ V(Ap) ® V(Ap). Then [P] is
obtained by applying f3fp—1 to
(1771, 00, 2)) + a((b — 1), (0), (2)) + g((1"™), (2). (0)) + ¢2((b = 1), (2), (0)).
Hence, we obtain
dim, End(P) = 1 +4¢* + 6¢* + 4¢° + ¢*

and RA(Bpn) is wild by Lemma 2.14.
(1 =b=14) This case is similar to the previous case. We choose [P] = faf1fofiva and
compute graded dimensions. Then,

dim, End(P) = (1+¢*) (1 +3¢* + 2¢* + 3¢° + ¢%)
=1+4¢> +5¢* +5¢% + 4¢® + ¢'°.

Hence, RM(Byn) is wild.
(1<i<b<{—1) In this case, we have

Bar = a4+ 4+ o1 + 205 + -+ 200 + app.
We choose [P] € V(Ag) @ V(A;) @ V(Ap) as
[P] = filfixr fi)(fiv2 - forr) (firr - fo)(fim1 oo fo)va-

Then, one can show
dim, End(P) = (14 ¢*) (1 + ¢* +2¢* + ¢° + ¢°)
=14 2¢* +3¢* + 3¢° +2¢° + ¢'°.
Hence, RM(Byr) is wild by Lemma 2.14.
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10.1.3. The case of changing A; + A;. Here, we consider A = Ag + Ay + A; + A + /~X, for
0 <i<j </ and the path
A—>A/:A1+Ab+1+Ai+Aj+f~\—>A”.

In the path, we must change A; + A; in the second step. Cases in pattern (I) are:
(A-j+)i=j=b+l,orl<i<j<{—landi=1l,orl1<i<j</{—landi=>b+1.
(Aj-j-)i=j=b=l—-1lori=j=b+1l=lori=b=landj=/lori=1<j</{-1.

Thus, their representation types have already been determined.

Next, we consider cases in pattern (II). Let Ap,iq be the dominant integral weight which
is obtained by changing A; +A; in A. We shall check when RMB A,iq) is wild, and whether
there is an arrow Apiq — A”.

The following is the list of Apiq such that R*(8y_,) is wild. Then, we check whether

Bag + (o + -+ ) — & Q, in order to know the existence of the arrow. The
numbering in the list follows Theorem 8.2 (1) and Theorem 8.11(1) as before.

(i,) A— Amid = 2Al — 2Ai_1, for 2 < ) :] < £ —2. Then,
Bhmia = 206 + -+ 2001 + .
Hence, we need to treat the cases i = j = £ — 1 and ¢ = 7 = £ below. Note that
1 =7 =1 implies A” = A and it does not occur.
(i”) A— Amid = 2Al — 2Ai+1, for 2 < ) :] < f—1. Then,
BAmid =ag+ 201 + - - + 20;4.
Hence, we need to treat the cases i = j = 0 and i = j = 1 below.
(iv) A=Amia =N — A1 +Aj — Aj_q, for 2 <i < j<{¢—1. Then,
Bhmia = (@i + -+ ap_1) + (a5 + -+ + 1) +

Hence, we need to treat the case 7 = £ below. Note that the arrow A’ — A” does
not exist when ¢ = 1.
(iV//) A—Apg=A; — Ai+1 + Aj — Aj+1, for 1 <i<j</{—1. Then,

Brma =0+ (1 4+ i) + (o1 + -+ + o).

Hence, we need to treat the case i = 0 < j below.
(Vi) A_Amid:Ai_Ai+1+Aj_Aj—la for0<i<j</landb,i<j—2.

Bayiq = (0 + 200 + - 4+ 205) + (01 + -+ oim1) + 2oy + - + 2001 + ).

We do not need to consider (iii’), (iii”), (viii’) and (viii”), because there are only three
changes. Below, we handle the cases that R*(8, ) is not wild.

(A__) (i) Suppose thati = j = ¢—1. Then, R*(S,,.,) is the Case (i’) withi = j = -1,
which is not wild.

A=Aog+Ay+2A0 1 +A, A=Ay +App1 + 2000+ A

and Bar = (a0 + -+ ap) + (2001 + ap) = Bar + Bag-
(1 <b<¢—3) Lemma 2.18 implies that RATA+2Ae—1(3,,) is Morita equivalent to

RMo+Ay (o +-+ap) ® R2Ae-1 (200—1 + ).

We know that R (ag + -+ + o) is the Brauer graph algebra such
that the Gabriel quiver of an idempotent truncation contains

=)
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and that R*M-1(2a,_; 4+ ay) has an indecomposable projective module
P with End(P)°P = k[X]/(X?). Thus, R4 +28—1(5,,) is wild.
=/(-1 e have Apig = (A1 + Np—2) + 2001 + A > 3 there is a pat
b=1/{ We have A A+ A 2A A If 2> 3 th h
A=No+3Ap 1+ A — Apig — A" = Ay +2A0p 5+ Ag+ A,
since Bp ., = oo + -+ oy_o + 2041 + ap and By = By, + 1.
Thus, it is wild because R (3 Ag) is wild. If £ = 2, we have the arrow
A=Ag+3A1 +A — A =2Ag+ Ay + Ay + A,

which is in the first neighbors and Sy~ = «1. Hence, it is (f1) if £ = 2.
(ii) Next, we consider the case i = j = ¢, for 1 < b < £ — 2. Then, R*(By/) is
from Case (i’) with ¢ = j = ¢, which is not wild. Recall
A=Ag+Ap+200+A, A" =A1+Apyq + 2001 + A

and Bar = (ag + - - + ap) + ap. Lemma 2.18 implies that RA+A+2Ae(5,,,) is
Morita equivalent to R0+ (g + - - + ap) @ B2 (ay), which is wild.

(A4+) (1) Suppose that i = j = 1. Then, R*(B,,.,) is the algebra from Case (i”) with
1 = j = 1, which is not wild. In this case,

A:A0+Ab+2/\1+1~\, A/,:A1+Ab+1+2A2+/~\
and there is a path
Ao+ AL +Ay — A —I—A2+Ab+1 — 2A2+Ab+1.

If2<b<(—1, RM+Me (BAs+Ay,,) is wild. If b = 1, then we already computed
in Case (5) (Ay4)(i = b= 1) that RM*+2M (20 + 3a;) is wild. To see this,
we computed dim, End(P), for [P] = £ £{%) fivx. Thus, RM(Byr) is wild.

(2) Next, we consider the case i = j = 0. This R*(S,/) is a non-wild algebra
from Case (i”) with i = j = 0. Then,

A:3A0+Ab+/~\, A//:3A1+Ab+1+/~\.

and fBpar = 200 + a1 + - + .
(b= 1) We consider projective R30+A1(2a4 4 aq)-modules [P] = f1fé2)vA and
[P2] = féZ)flvA in V(Ag)®® ® V(Ap). Then,
dimq End(Pl) =1 + q2 + 2q4 + 2q6 + 3q8 + 2q10 4 2q12 + q14 + q16’
dimq End(PQ) =1 + q4 + 2q8 + q12 + qu’
dim, Hom(Py, Py) = ¢* + ¢® + ¢'*.
Since dim, Hom(Py, P») = dim, Hom(P, P;) starts with degree 4, we

have one loop of degree 2 and one loop of degree 4 on vertex 1, one loop
of degree 4 on vertex 2. Hence, R¥+A1 (20 + ) is wild.

2<b<0—1)Set [P] = fy... fifPvr € V(A)®® @ V(Ay). Then
dim, End(P) =1+ 2¢% + 3¢ + 4¢° + 4¢% + 4¢'° + 3¢'% + 241 + ¢16.

Thus, Lemma 2.14 implies that R3A0+t2(2a0 + oy + - - - 4 ) is wild.
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(Ay_ = A_;) We consider the case 1 <i=j < ¢ —1 here. We have
A:A0+Ab+2[\i+1~\, A =AM+ N1 A +Ai+1+/~X.

and Byr = (g + - + ) + ;.
(b+2<i<{—1) By Lemma 2.18, RM*8+2i (qg ... + oy, + ;) is Morita equivalent to

RA0+Ab (040 4+ .4+ ab) X R2Ai (Oéi)7

which is wild.
(i = b) In this case, we have A — A" = (Ag + 3Ap) — (A1 + Ap—1 + 2Ap11) and
Bar =g+ -4+ ap_1 + 2ap. We set

[Pl = fo1... fofP oy € V(Ag) ® V(A,)Z3.
Then
Joz - JofyPoa = (171, (0), (1), (1)) + (b = 1),(0), (1), (1))
+q((1P7), (1), (0), (1)) + ¢*((b— 1), (1), (0), (1)
+¢2((1"7), (1), (1), (0)) + (b — 1), (1), (1), (0))

and each 4-partition has 3 addable (b — 1)-nodes and no removable
(b — 1)-node. Therefore,

dim, End(P) = (14 ¢* + ¢*) (1 + 2¢* + 2¢* + ¢°)
=14 3¢%+5¢* + 5¢° + 3¢® + ¢*°

and the Gabriel quiver of End(P) has three loops. Hence R*(Bpn) is
wild.

(1 S’Lgb—l) Bar =g+ + ;-1 + 204 + a1 + - - - + . We set
[P] = [P fic1. fofie1--. fsoa € V(Ao) ® V(A)®2 @ V(Ay).
Then fi—1... fofi+1--. fova is equal to

(1), (0), (0, (1)) + (1), (0), (1*77), (0)) + ¢*((17), (1), (0), (0))
+((0), (0), (0), (1)) + (), (0), (1), (0)) + ¢*( (), (1*77), (0), (0))

and each 4-partition has 4 addable i-nodes and no removable i-node.
Hence,

dimg End(P) = (14 ¢* +2¢* + ¢ + ¢*) (1 + 2¢* + 2¢* + ¢°)
=14 3¢% + 6g* + 8¢° + 8¢5 + 6¢'° + 3¢*2 + ¢

and it is wild.
(A__) We consider the case 2 < i < j = £. These R*(8x/) are the non-wild algebras
from Case (iv’). We have

A:Ao—l-Ab—&—Ai—l—Ag—l-]\, A/,:A1+Ab+1—|—Ai,1—|—Ag_1—|—/~\.
(i) First, we consider the case 1 <b <i— 2. We set

Amia = Ao + Appr 4+ Aoy + Ay + A
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Then, there is a path A — A;q — A” because
BApia = @0 + 201 + -+ + 205 + app1 + -+ + 205 + -+ 2001 + ay,
Bar =200+ 31+ +3ap + a1+ H oo+ 205+ + 2001 + .

Hence, the wildness of RM(f,r) follows. B
(ii) Second, we consider the case b =i and set Apig = A1 +2A,+Ap1 +A.
Then, we have

BAmid :a0++ag—1,
Bar =ao+ -+ ap_1 + 20 + a1+ oy

(iii) Third, we consider the case b =i + 1. In this case, we have
A= Ro+Ap-1+ Ay + Ag + A,
A=Ay + Ayo+ Apsr + A1 + A,
and
Bar =ag+ -+ ap—2 + 251 + 20 + ap1 + -+ ap
Define an indecomposable RA+As—1+A+Ae(3,,)-module P by
P)= K257 forr o fefoa o fovn € V(Ao) @ V(Apo1) @ V(M) @ V(Ar).
Then, fé2)fb+1 co fofo—a ... fovp is equal to

(771, 00, (1), ) g3 ((0 = 1), (0), (1), (171))
+ (1771, (0), (1), (€= b+ 1)) + " (b = 1), (0), (1), (£ = b+ 1)).

Each 4-partition has 4 addable (b — 1)-nodes and no removable (b — 1)-
node. Thus,

dim, End(P) = (14 2¢* + ¢®) (1 + ¢ + 2¢* + ¢® + ¢)
:1+q2+4q4+3q6+6q8+3q10+4q12+q14+q16,

and both Lemma 2.13 and Lemma 2.14 implies that it is wild.
(iv) Finally, we consider the case i +2 < b < ¢ — 1.

A—=N"= (Do — A+ Dy — Mpyr) + (A — Ay + Ap — Apn)

and Sar = (oo + -+ ap) + (o + - - + ag). Then, Lemma 2.18 implies
that RAo+HA+MFA(3, ) is Morita equivalent to

RM b (ag + - o) @ RM M (0 + -+ + ).

Both algebras are Brauer graph algebras we already computed, which
implies that RA+HA+MFA(B,,)) is wild.
(A;y) (1) We consider the case 1 < i < j = £ — 1. These R*(Bx/) are the non-wild
algebras from Case (iv”). We have

A=Ag+Ap+ A+ A+ A, A = Ay + Mpr + Aigr + Ay + A
We choose Apmig = Ao + Ap + Aip1 + Ajp1 + A. Then
Bagg = @0 + (1 + -+ 0ag) + (1 + - + o).
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Since A — Apig = A — Ai—i—l + Aj — Aj+1 and
A—A//ZA—Amid+A0—A1+Ab—Ab+1,

we have [Bpr = ﬁAmid + (Oéo + -4+ Oéb).
(2) Next we consider the case i = 0 < j = £ — 1. These R*(B,/) are the other
non-wild algebras from Case (iv”). We have

A=2Mg+Ap+Aj+ A, A =2A1 4+ Apyy + Ajy1 + A
Then, far =200 + (1 + -+ o) + (a1 + -+ - + ).
We define [P1], [P2] € V(Ag)®? @ V(Ap) ® V(A;) by
2 2 2 2
1P = 1217 1 5D iyt - Frnax )0

[PQ] = f(§2) 1(2) s fr(nQi)n(b’j)fmin(b,j)—s—l s fmax(b,j)vA-
Then, we have the following.
- [A] = £7((1), (1), (1), (1F7Y) and ((1),(1),(1*71), (1971)) has 6
addable 1-nodes and no removable 1-node.
— [P = £52((0),(0),(1%),(19)) and ((0),(0), (1%), (19)) has 4 addable 0-
nodes and no removable 0-node.
Then, we may find that

dimg End(Py) = 1+ ¢ + 2¢* 4 2¢° + 3¢® + 2¢"° + 2¢'2 + ¢** + ¢'F,
dimy End(P2) =1+ ¢ + 248 + ¢! + ¢S,
dimy, Hom(P;, P) = dim Hom(P», P;) = ¢.

Hence, there are 2 loops, one is of degree 2 and the other is of degree 4, on
vertex 1, and one loop of degree 4 on vertex 2. Thus, it is wild.
(A;- j+) We consider the case 2 <i < j = — 1. These R™(Bas) are the non-wild algebras
from Case (v). We have

A=A+ Ap+Mi+Aj+A A=A+ Ay +Ai 1 +Aj + A

and,BAu — (a0++ab)+(az++a])
(1 <b<i—2) In this case, RAoThe+AitA; (5, is Morita equivalent to

RA0+Ab(aD + .+ ab) ® RAH_Aj (ai +---+ aj)‘

Both are Brauer graph algebras which we have computed. Then, we see that
RMo+AstAitA;(5),)) is wild.
(i <b<¢—1) In this case, we have

A=Ag+ A+ A+ Aj+ A, A=A+ Mg+ Apr +Ajr + A,

Par = (a0 + -+ ai1) + (20% et 2amin(b,j)) + (amin(b,j)—l-l et amax(b,j))-
We define [P] € V(Ag) ® V(A;) @ V(Ap) @ V(A;) by
(Pl = F 82 2 fin o foFmino )1 - - - Frna(v.5)VA-
Then, one can show that
dim, End(P) = (1 + ¢* 4+ 2¢* + ¢® + ¢®) (1 + ¢*)
= 14?430+ 265 + 3¢5 + 0 + ¢'2.
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Lemma 2.13 implies that it is wild.
(A;+;-) We consider the case 0 < i < j = £, i < j —2. These R*(B)/) are the non-wild
algebras from Case (vi). We have

A:A0+Ab+Ai+AJ’+/~\, A”:A1+Ab+1+Ai+1+Ajfl+1~\-

Recall that the arrow A’ — A” does not exist if 1<j—1<0.
(1 <b<j-— 2) We choose Apig = Ag + Ay + Ai+1 + Aj—l + A. Then,

Bapa = (@0 +2a1 + -+ 20;) + (i1 + -+ ajo1) + (205 + - - - + 2001 + ay)
BA” = ﬁAmid —+ (Oéo + -+ Oéb).
Then, we see that R (B, _.,) is wild.

11. THIRD NEIGHBORS IN HIGHER LEVEL CASES

11.1. New non-wild cases in the second neighbors. Note that we do not need to
consider those non-wild algebras that have already appeared in the first neighbors as we
have treated them. Therefore, we only list the new non-wild cases in the second neighbors
(and not in the first neighbors). By the result of the second neighbors, we see that there
are no new non-wild algebras in Cases (2), (4), (5), and (6). So, the non-wild cases we
have to consider in this section are those listed in Sections 11.1.1, 11.1.2 and 11.1.3 below.
11.1.1. New non-wild cases in the second neighbors of Case (7).

() A=Ag+Ar+A N =A+A+A AN =Ay+ Ay + A with mg = myg =1,
m1 = my—_1 = 0 and £ > 4. In this case,

Bar = ap + a1 + ap_1 + ay.

(11) A:A0—|—2Al—|—]§, A/:A2+2AZ’+K, A//:A2+Ai—1+Az’+1 —I—KWlth mo =1,
m1 =0, m; =2 and 2 <i</{—1. In this case,

ﬁA// = + a1 + (678

(i) A =Ag+2Ar+ A, A=Ay +2A0+ A, A = Ay +2A,1 + A with mg =1, my =0,
my = 2 and £ > 3. In this case,

/BA” = g + a1 + ay.
11.1.2. New non-wild cases in the second neighbors of Case (1). The path we consider is
A=2Ag+A — AN =201 +A — A,

()A =200+ A +A = N =20 + Ay + A = A = 2A; + Ay o + A and
mg = 2,my_1 = 0, my = 1. In this case, Spr = a9 + ay_1 + ap. This also
appears in Case (7).

(ii) A:2A0+2Ag+[~\—>A/:2A1+2Ag+[~\—>AN =2MA1 +2A_1, mg=2=my. In
this case, Sar = ag + ay.

(i) A = 200+ 20; + A — A = 2A; + 2A; + A — A" = 2A; + Ajy + Aiyq + A,
2<i</f—1, my=m; =2. In this case, Sp» = ag + ;.
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(iv) A=2Ag+A = N =2A1 + 20 = A" =2A, + A, mo = 2,m; =0, chark # 2. In
this case, Srr = 2aqg + 20

(v) A=2Ap+A = N =2A; 1+2A > A" =2A; o+ A, mg=2,my_1 =0, chark # 2.
In this case, By» = 2ay_1 + 2. Note that by symmetry, this case is equivalent to
Case (1) (iv).
11.1.3. New non-wild cases in the second neighbors of Case (3).
(D)A=20+A >N =Ag 14+ A1 +A AN =N s+ Ao+ A 2<a<l—2,
Mg = 2, Mg—1 = Mqy1 = 0, chark # 2. We have Sar = aq—1 + 204 + Qq41.

(i) A=3Ag+A = AN =Ag1+Aq+Aap1+A > A =20 1+ Agia+A, 1< a< (-2,
mg = 3,Mqy1 = 0, chark £ 3. We have Byr = 204 + Qg11-

i) A=3Ag+A = AN =Ag1+Ag+Agi1+A = A = Ay o420 1+A,2<a<l-1,
+ +
mg = 3,Mq_1 = 0 and chark # 3. We have
Bar = g1+ 204.

This case is equivalent to Case (3) (ii) by symmetry.

(iv) A = 2Aa~—|— 2Ab—|—/~\—> N = Ag_q +Aa+1+2Ab+J~\ — N =Ao 1+ Ngr1+ A1+
A1 +A1<a<b—-1,b6<{l—1,mg=mp=2. We have Srr = aq + qp.

(V) A=4Ag+ A = A =Ag1+Agp1 280+ A = 201 + 20001 + A, 1 <a <01,
mg = 4 and chark # 2. We have Syr = 2ay,.

(Vi) A=20g + Mg+ A =N =Agq + A1+ Ao+ A — A=Ay + Ag_q + Agy1 + A,
3<a<tl—1,mg =2, my=1, m =0. In this case,
BA// = g+ a1 + Qq.
This case also appears in Case (7).
(Vi) A =2Ag+Ap+A =N =Ag 1+ Agp1 + A+ A — A = A1+ Mgy + Ags1 + A,
1<a<fl—-3 mqg=2,my=1,my_1 =0. In this case,
Bar = + g1 + ay.
This case also appears in Case (7).
(viii) A =2A0+20q+A — Ag_1+Aqs1+200+A = 201 +Ag 14+ Agp1+A, 2 < a < 01,
mgo = my, = 2. In this case,
Bar = ap + aqg.
This case also appears in Case (1).
(ix) A = 20 + 200 + A — Agq 4+ A1 + 200+ A — 2001 + Ay + Aagr + A,
1<a<?-2, my=mg=2. In this case,
Bar = oy + aq.

This case also appears in Case (1).
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We may show that the algebras associated with the third neighbors in these cases are
either wild or belong to the first or the second neighbors. Details may be found in [9,
Section 11].

APPENDIX A.

This is a proof of Lemma 2.18, which works for general Lie type [43]. We thank him
for the permission to include the proof.
Suppose that A = (a;;)s,jer is a symmetrizable Cartan matrix, and we have a partition
I = I, U I such that a;; = 0 for (¢, j) € I} x I, and we consider RM(B), for B = 1 + fa
with
Bre P Zzoei, B2 @ Zxo.

i€ly i€l
We want to show

e(B1 * B2) RM(B)e(Br * B2) = RM(B1) @ R (By),
where

A=Y (@, MA;, A= (), M)A,

i€l i€l

Lemma A.1. If Ly, Ly are a simple R(f31)-module and a simple R((2)-module, respec-
tively, then L1 o Ly is a simple R(3)-module.

Proof. Suppose e(f1 * f2)K # 0, for a submodule K of L; o Ly. Then

e(B1x B2) K Ce(B1* PBa)L1 0Ly = L1 ® Lo,
which implies that L; ® Ly generates K. Hence, e(f1%52) K = 0, for any proper submodule
of Ly o Ly. Since e(f1 * B2)L1 o Ly # 0, we may conclude that Top(L; o Ls) is a simple
module. In particular, Top(L; o La) = Soc(Lg o Ly).

From Kang-Kashiwara—Kim-Oh’s [34, 2.2], we have an R(f;) ® R(f2)-module homo-
morphism Ly ® Ly — Lz o Ly defined by u ® v = 9y[n, n,) (v @ u). Then, it induces
f:LioLyo— Loo Ly. Similarly, we have g : Lo o L1 — Lj o Ls. Now,

gf(u ® U) = g<¢w[n2,n1}(v ® u)) = ww[nz,m]g(v ® u) = wi[ng,nl}u ® v,

which implies gf = id by the assumption a;; = 0 for (i,5) € I; x Io. Hence f splits.
Since Top(Ls o L1) is simple, it implies that Ly o Ly = Ly o Ly. If Ly o L1 was not simple,
Im(f) € Rad(Lg o L), so that it would contradict gf = id. O

Remark A.2. By [39, Theorem 2.2]|, we have
(L1 Ly)" = Ly o Li((a, B)).

Lemma A.3. Every simple R(S)-module is isomorphic to Ly o Lo, for a simple R(B1)-
module Ly and a simple R([32)-module Lo.

Proof. Let n = |B], n1 = |B1], na = |B2|. Observe that L; ® Ly = e(f1 * f2)L1 ® Lo and
e(B1*B2)LioLy =Y e(f1*Ba)uk[z, ... ,znle(Br* B2)L1 ® Lo.

wESn
Since I1 N Iz = () implies that w € &,,, X &, if e(B1 * B2)we(B1 * f2) # 0,
e(f1* B2)L1 o Ly = L1 ® Lo.
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Hence, the map Irr(R(51)) x Irr(R(B2)) — Irr(R(B)) given by (Li, L2) — Ly o Lo, which
is well-defined by the previous lemma, is injective.
On the other hand, if we consider the span of

{fllfln ’Oéil + -t oy, :/3}7
the assumption a;; = 0, for (i,7) € I x I, and the categorification theorem implies
| Irr(R(B)| = dim U(g) -

= dim U(g)—ﬂl x dim U(g)—ﬂ2

= [Trr(R(B1)] x [ Irr(R(B2)].
Hence, the map Irr(R(51)) x Irr(R(B2)) — Irr(R(B)) is bijective. O
Lemma A.4. R(S)e(S1 * B2) = R(B1) o R(52) as (R(S), R(B1) ® R(B2))-bimodule.
Proof. Observe that

R(B)e(Br* B2) = o, Yuw(R(B1) ® R(B2)).

WESy /Snq X Sny
Hence, we have the equality. O

Lemma A.5. RMB)e(By * B2) is a progenerator of RMB) and
RA(B)e(Br + f2) = R™M(B1) o R**(B2)
as an (RMB), RM(B1) @ RM2(By))-bimodule.

Proof. The proof that RM(B)e(f; * f2) is a progenerator is the same as the proof of
Lemma 2.18. Next, we have a surjective R(f)-module homomorphism

R(B)e(Br * B2) — R(B1) © R(B2) ®r(py)mr(s) B (B1) @ R (B2)
= RM(B1) o R™(By)
= P vuRM(B) @ R (B).

WES, /Gy X Gy
Further, w='(1) = 1 or ny + 1 and the first entry of w™'v or the (n; + 1)™ entry is v,
respectively. Thus,
A M
xi ! > (V)ww :¢wx§u0111(1)> (w V) = 0.
It implies that R (53;) o RA2(Bs) is an R™(B)-module. We have obtained a surjective
R()-module homomorphism

RM(B)e(Br * B2) —» RM(Br) o RM2(Ba).

On the other hand, we have a surjective R(f)-module homomorphism

R(B1) o R(B2) = R(B)e(B1 * B2) — R (B)e(Br * Ba).
If vy € IP' and vy = (i,1') € I, then

al A aY A
e(vy * Vg)xfhﬁrl ) = e(v1 * 12)n, - . w1x§ g >¢1 cootbp, = 0.

It implies that R*(B)e(B1 * B2) is a right R (B1) ® R™2(B2)-module, so that we have a
surjective R(f)-module homomorphism

RM(B1) o R*2(By) — RA(B)e(B1 * Ba).
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Comparing dimensions, we have the desired isomorphism. O

Multiplying e(51 * 82) on the left of

RMN(B)e(Br * B2) = R™M(B1) o R (B),

we obtain

e(B1 # Ba) RN (B)e(Br * B2) = R™M (B1) @ R™ ().
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