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Abstract. We determine the representation type of cyclotomic quiver Hecke algebras of affine type C.
In the tame cases, we explicitly describe their basic algebras under the assumption char k ̸= 2, relying
on the Morita invariance of cellularity.
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1. Introduction

Representation type serves as a fundamental tool in the representation theory of finite-
dimensional algebras, especially, over an algebraically closed field k. Here, we consider
the category of finitely generated left modules, so that all modules are assumed to be
finite-dimensional. Namely, representation type gives us criteria whether we can study
the module category in depth or we must be content with either, study of better be-
haved subcategories, or, study on the Grothendieck group of the module category, such as
character formulas for irreducible modules, etc.

A finite-dimensional k-algebra A is said to be representation-finite if it admits only
finitely many indecomposable modules up to isomorphism; otherwise, A is said to be
representation-infinite. A representation-infinite k-algebra A is said to be tame if all but
finitely many d-dimensional indecomposable A-modules can be organized in finitely many
one-parameter families, for each dimension d, and it is called wild if there is an exact
k-linear functor sending modules over the free associative algebra k⟨x, y⟩ to modules over
A which preserves indecomposability and respects isomorphism classes. It is known as the
famous (Finite-)Tame-Wild Trichotomy([26]) that the representation type of any finite-
dimensional algebra over k is exactly one of representation-finite, tame1 and wild.

It is a natural desire to find such criteria for well-known classes of algebras. The class of
path algebras is the most famous class of algebras, and Dynkin quivers of finite ADE and
affine ADE types appear beautifully in the criteria. Another important class of algebras
is the class of group algebras such as those of the symmetric groups.

The modular representation theory of the symmetric group has a long history. Class
of algebras which the group algebras of the symmetric group belong started with the
class of the group algebras of finite Coxeter groups. Then, the class was expanded to
their q-deformation, that is, the class of Iwahori–Hecke algebras, and then to the class of
cyclotomic Hecke algebras ([12, 18]) associated with complex reflection groups, in which
the algebras associated with complex reflection groups G(m, 1, n), so-called Ariki–Koike
algebras, received detailed study (e.g., [20, 25, 30, 40]). Currently, we study algebras in
the much wider class of cyclotomic quiver Hecke algebras ([35, 48]), which are associated
with Lie theoretic data: the Lie type determined by a symmetrizable (generalized) Cartan
matrix A, an element β in the positive cone Q+ of the root lattice, and a dominant inte-
gral weight Λ in the weight lattice. Those data come from categorification theorems which
categorify weight spaces V (Λ)Λ−β of the integrable highest weight module V (Λ) over the
Kac–Moody Lie algebra g(A) of the symmetrizable Cartan matrix. In our setting, the
module category over the cyclotomic quiver Hecke algebra RΛ(β) categorifies the weight
space. For example, the group algebras of the symmetric group in positive characteristics
and Hecke algebras of type A at roots of unity are associated with level one dominant
integral weights of type A(1)

ℓ , and Hecke algebras of type B at roots of unity are associ-
ated with level two dominant integral weights of type A(1)

ℓ . The cyclotomic quiver Hecke
algebras are also called cyclotomic Khovanov–Lauda–Rouquier algebras, cyclotomic KLR
algebras for short.

Cyclotomic quiver Hecke algebras are graded algebras. In particular, the group al-
gebras of the symmetric group are graded algebras. This finding, due to Brundan and
Kleshchev [19], could not be seen by using Coxeter generators: their deep insight led

1Following Erdmann [27], our tame representation type, tame for short, excludes representation-finite
algebras.
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them to the finding of Khovanov–Lauda–Rouquier generators in the group algebras of the
symmetric group.

Recently, cyclotomic quiver Hecke algebras of affine type other than A
(1)
ℓ attracts re-

searchers in this field. For example, Park, Speyer and the first author [14] introduced
Specht modules for type C(1)

ℓ , Evseev and Mathas [29] proved and Mathas and Tubben-
hauer [42] reproved that the cyclotomic quiver Hecke algebras of type C(1)

ℓ are graded
cellular algebras2. Some experimental calculations of the decomposition numbers have
been carried out by Chung, Mathas and Speyer [23].

In this article, we determine representation type for all cyclotomic quiver Hecke algebras
RΛ(β) of type C(1)

ℓ , where ℓ ≥ 2. Since we already know representation type of RΛ(β)
when Λ is a fundamental weight, we assume that the level k of the dominant integral
weight Λ is greater than or equal to 2. We denote the set of weights of V (Λ) by P (Λ).
Recall that RΛ(β) and RΛ(Λ−wΛ+wβ), for w ∈ W , where W is the (affine) Weyl group,
have the same representation type, so that it suffices to consider those β ∈ Q+ such that
Λ − β are dominant integral weights. Furthermore, Λ − β is not a maximal weight if and
only if there exists w ∈ W such that w(Λ − β) is dominant but not maximal.

Main Theorem A. Suppose that the level of Λ is k ≥ 2 and we write
Λ = m0Λ0 +m1Λ1 + · · · +mℓΛℓ,

where m0,m1, . . . ,mℓ ∈ Z≥0 and m0 +m1 + · · · +mℓ = k.
(1) If Λ − β is not a maximal weight, then RΛ(β) is wild.
(2) Suppose that Λ − β is a dominant maximal weight in P (Λ).

(a) RΛ(β) is of finite representation type if one of the following holds.
(f1) β = αa, for 0 ≤ a ≤ ℓ, and ma ≥ 2.
(f2) β = α0 + α1, and m0 ≥ 1, m1 = 0 or m0 = m1 = 1.
(f3) β = αℓ−1 + αℓ, and mℓ−1 = 0, mℓ ≥ 1 or mℓ−1 = mℓ = 1.
(f4) β = αa + · · · + αb, for 1 ≤ a < b ≤ ℓ − 1, and mi = δai + δbi, for

a ≤ i ≤ b.
(f5) β = α0 + 2α1 + · · · + 2αa + αa+1, for 0 ≤ a ≤ ℓ− 2, and mi = δai, for

0 ≤ i ≤ a+ 1.
(f6) β = αb−1 + 2αb + · · · + 2αℓ−1 + αℓ, for 2 ≤ b ≤ ℓ, and mi = δbi, for

b− 1 ≤ i ≤ ℓ.
(b) RΛ(β) is of tame representation type if one of the following holds.

(t1) β = α0 + 2α1, m0 = 0 and m1 = 2.
(t2) β = 2αℓ−1 + αℓ, mℓ−1 = 2 and mℓ = 0.
(t3) β = α0 + α1, m0 ≥ 2 and m1 = 1.
(t4) β = αℓ−1 + αℓ, mℓ−1 = 1 and mℓ ≥ 2.
(t5) β = α0 +· · ·+αa, for 1 ≤ a ≤ ℓ−1, m0 ≥ 1 and mi = δia, for 1 ≤ i ≤ a,

except for the case a = 1 and m0 = 1, which is (f2).
(t6) β = αa + · · · + αℓ, for 1 ≤ a ≤ ℓ − 1, mℓ ≥ 1 and mi = δai, for

a ≤ i ≤ ℓ− 1, except for a = ℓ− 1 and mℓ = 1, which is (f3).
(t7) β = α0 + α1, m0 = 1 and m1 = 2.
(t8) β = αℓ−1 + αℓ, mℓ−1 = 2 and mℓ = 1.
(t9) β = αa + · · · + αb, for 1 ≤ a < b ≤ ℓ − 1, either ma ≥ 2 and mi = δib,

for a < i ≤ b, or mb ≥ 2 and mi = δai, for a ≤ i < b.
2For the recent progress on cyclotomic quiver Hecke algebras of finite type, see [41].
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(t10) β = α0 + αi, for 2 ≤ i ≤ ℓ, m0 = mi = 2.
(t11) β = αi + αℓ, for 0 ≤ i ≤ ℓ− 2, mi = mℓ = 2.
(t12) β = α0 +α1 +αℓ−1 +αℓ where ℓ ≥ 4, m0 = mℓ = 1 and m1 = mℓ−1 = 0.
(t13) β = α0 + α1 + αi, for 3 ≤ i ≤ ℓ, m0 = 1, m1 = 0 and mi = 2.
(t14) β = αi + αℓ−1 + αℓ, for 0 ≤ i ≤ ℓ− 3, mi = 2 and mℓ−1 = 0, mℓ = 1.
(t15) β = αa−1 + 2αa + αa+1, for 2 ≤ a ≤ ℓ − 2, ma = 2, ma±1 = 0, and

char k ̸= 2.
(t16) β = 2αa + αa+1, for 1 ≤ a ≤ ℓ− 2, ma = 3,ma+1 = 0 and char k ̸= 3.
(t17) β = αa−1 + 2αa, for 2 ≤ a ≤ ℓ− 1, ma = 3, ma−1 = 0 and char k ̸= 3.
(t18) β = αa + αb, for 1 ≤ a < b ≤ ℓ− 1 where a ≤ b− 2, ma = mb = 2.
(t19) β = 2αa, for 1 ≤ a ≤ ℓ− 1, ma = 4 and char k ̸= 2.
(t20) β = 2α0 + 2α1, m0 = 2, m1 = 0 and char k ̸= 2.
(t21) β = 2αℓ−1 + 2αℓ, mℓ−1 = 0, mℓ = 2 and char k ̸= 2.

(c) RΛ(β) is of wild representation type otherwise.
The proof of Main Theorem A uses the idea to introduce quiver structure on the set of

dominant maximal weights max+(Λ), which was found and applied to type A(1)
ℓ in [15].

However, we choose a different strategy than the [loc. cit.] after introducing the quiver of
dominant maximal weights. While we first fixed a certain neighborhood of the weight Λ,
which was found by consideration on the coefficients of β, and started with showing that
those weights outside the neighborhood give us wild cyclotomic KLR algebras in [15], we
start with investigating dominant maximal weights Λ′ which can be reached by at most
one step, two steps, three steps from Λ one by one first, and determine representation
type of the associated cyclotomic KLR algebras RΛ(βΛ′). Then, we reach the conclusion
that algebras which cannot be reached by less than or equal to three steps are wild. See
Section 4 for the details.

In the course of the proof, we obtain explicit presentations of non-wild algebras, see
Sections 6 and 7. In type A

(1)
ℓ , all tame RΛ(βΛ′) associated with dominant maximal

weights Λ′ are Brauer graph algebras. It implies that all tame cyclotomic KLR algebras
of type A(1)

ℓ are Brauer graph algebras, and this fact allowed us to determine the Morita
equivalence classes3 of tame cyclotomic KLR algebras of type A(1)

ℓ . In type C(1)
ℓ , there are

tame cyclotomic KLR algebras RΛ(β) which are not Brauer graph algebras. One already
appeared in [22, Lemma 3.1] as a level one cyclotomic KLR algebra, which is the algebra (5)
in [11, Theorem 1]. The other tame algebras appear as level three cyclotomic KLR algebras
in this paper, i.e., (t7) and (t8). For the former case, we need to recall Skowroński’s
classification of standard domestic symmetric algebras ([51]). However, since RΛ(β) is
cellular (see [29]), it is natural to assume that char k ̸= 2 and utilize Morita invariance
of the cellularity. Then, the cyclotomic KLR algebras that are derived equivalent to the
algebra from [22] must appear in the list [11, Theorem 1], and one can check that other
algebras in the list do not appear as cyclotomic KLR algebras of type C(1)

ℓ by excluding
Brauer graph algebras and those with a different number of simple modules in the list.
For the latter case, we may use silting theory to find Morita equivalence classes in the
derived equivalence class of the algebra (t7) (or equivalently, (t8)). See Theorem 2.23 for
the method, and see Proposition 2.26 for the Morita equivalence classes which are in the
derived equivalence class of (t7). Otherwise, tame cyclotomic KLR algebras of type C(1)

ℓ
are Brauer graph algebras. As was shown in [15], their Brauer graphs are straight lines

3Precisely speaking, we need either char k ̸= 2 or the cyclotomic KLR algebra being a basic algebra.
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except for one Brauer graph (i.e., the cases (t1) and (t2)), and we may read off the set of
multiplicities of vertices. Then, we assign the multiplicities to vertices. In the following,
we give Morita equivalence classes of finite and tame algebras RΛ(β) in explicit forms4.

Theorem B (Finite cases). Let RΛ(β) be a cyclotomic KLR algebra of type C
(1)
ℓ and

suppose that RΛ(β) is of finite representation type. If char k ̸= 2, then RΛ(β) is Morita
equivalent to one of the following algebras5.

(a) Symmetric local algebra k[X]/(Xm), for m ≥ 2.
(b) Brauer tree algebra whose Brauer tree is a straight line.

Theorem C (Tame cases). Let RΛ(β) be a cyclotomic KLR algebra of type C
(1)
ℓ and

suppose that RΛ(β) is of tame representation type. If char k ̸= 2, then RΛ(β) is Morita
equivalent to one of the following algebras.

(a) Symmetric local algebras (2), (3), (4) in [15, 8.2].
(b) Brauer graph algebra whose Brauer graph is a straight line and the multiset of the

multiplicities of vertices is {1, t, 2t, . . . , 2t}, for t ≥ 1, {4, 2, 2} or Brauer graph
algebras (5), (7) in [15, 8.2], or the Brauer graph algebra without an exceptional
vertex whose Brauer graph is as follows.

◦ ◦
(c) The algebra kQ/J , where the quiver Q is

◦
α // ◦
δ

oo

ϵ

�� β // ◦
γ

oo

and the relations given by the admissible ideal J are
αβ = γδ = 0, αϵ = ϵβ = γϵ = ϵδ = 0, δα = ϵ2 = βγ.

(d) The algebra kQ/J , where the quiver Q is

◦
µ //

α
%%

◦
ν

oo βee

and the relations given by the admissible ideal J are
α2 = 0, β2 = νµ, αµ = µβ, βν = να.

(e) The algebra kQ/J , where the quiver Q is

◦
µ //

α
%%

◦
ν

oo βee

and the relations given by the admissible ideal J are
α2 = µν, β2 = νµ, αµ = µβ, βν = να, µνµ = νµν = 0.

As we mentioned, in general it is difficult to study the category of all finite-dimensional
modules and instead, we try to find nice subcategories. One such example is the repre-
sentation theory of quantum affine algebras, in which field researchers found good sub-
categories to study such as the Hernandez–Leclerc categories: these categories have been

4We do not know whether all the possible assignment of the given multiset of multiplicities to vertices
actually appear.

5These algebras already appeared in [15, 8.1].
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actively studied by cluster algebra techniques in recent years. We claim that the subcat-
egories of modules over tame RΛ(β)’s are also such nice subcategories, for which we have
more chance to tackle difficult problems like finding a dimension formula for irreducible
modules or decomposition numbers. Besides, in affine type A they are related to the
classical subject of affine Hecke algebras in type A: if we consider the Serre subcategory
consisting of modules whose composition factors belong to a given finite set of irreducible
modules, then one obtains a filtration of the Serre subcategory over the affine Hecke alge-
bra by the Serre subcategories over cyclotomic Hecke algebras which share the same set
of irreducible modules. Then one may use grading and results from [15].

Another fascinating aspect of this paper is that we connect the recently emerging theory
of Brauer graph algebras, τ -tilting theory and silting theory with the representation theory
of cyclotomic quiver Hecke algebras: in affine type A, all tame blocks are Brauer graph
algebras and we applied results by Opper and Zvonareva which they obtained by using
a version of Fukaya category, and, as we have explained in the previous page, we utilize
τ -tilting theory to build a complete framework (see Theorem 2.23) for finding Morita
equivalence classes in the derived equivalence class of a given symmetric algebra. This will
benefit not only the study in other types, but also the research of symmetric algebras in
general.

Conventions. Set N := {1, 2, . . . } and Z≥0 := {0, 1, 2, . . . }. For m,m′ ∈ Z, we write
m ≡2 m

′ if m−m′ is even, and m ̸≡2 m
′ otherwise. We use left modules throughout the

paper. Hence, the basic algebra of an algebra A is EndA(P )op, where P is a progenerator
which is basic.

2. Preliminaries

We review some background materials which we need in this paper, including the defini-
tion of cyclotomic KLR algebras. Additionally, we provide several lemmas in this section
for later use.

2.1. Cartan datum in affine type C. Set I = {0, 1, 2, . . . , ℓ} with ℓ ≥ 2. The affine
Cartan matrix A of type C(1)

ℓ is defined by

A = (aij)i,j∈I :=



2 −1 0 . . . 0 0 0
−2 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −2
0 0 0 . . . 0 −1 2


,

where the rows and the columns are labeled by 0, 1, . . . , ℓ in this order. If we drop the first
row and the first column of A, we obtain the Cartan matrix A′ of type Cℓ; in this case,
the simple roots are realized in the lattice Zϵ1 ⊕ Zϵ2 ⊕ · · · ⊕ Zϵℓ as

α1 = ϵ1 − ϵ2, α2 = ϵ2 − ϵ3, . . . , αℓ−1 = ϵℓ−1 − ϵℓ, αℓ = 2ϵℓ,

and the root system is given by

{±2ϵi | 1 ≤ i ≤ ℓ} ⊔ {±ϵi ± ϵj | 1 ≤ i < j ≤ ℓ}.
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We denote by ∆±
fin the set of positive or negative roots of the finite root system of type Cℓ.

Note that ∆−
fin = −∆+

fin. Since the highest root θ = 2α1 + 2α2 + · · · + 2αℓ−1 + αℓ (of
type Cℓ) and α0 = δ − θ, the null root in type C(1)

ℓ is

δ = α0 + 2α1 + 2α2 + · · · + 2αℓ−1 + αℓ.

Then, the positive real root system ∆+
re of type C(1)

ℓ is given by

∆+
re =

{
β +mδ

∣∣∣m ≥ 0, β ∈ ∆+
fin or ∆−

fin + δ
}
.

We denote by Π := {αi | i ∈ I} the set of simple roots of type C(1)
ℓ .

Let Π∨ := {α∨
i | i ∈ I} be the set of simple coroots such that ⟨α∨

i , αj⟩ = aij , for i, j ∈ I.
We may set a scaling element d by ⟨d, α0⟩ = 1 and ⟨d, αi⟩ = 0 for i ∈ I/{0}. Then,
{α∨

0 , α
∨
1 , . . . , α

∨
ℓ , d} forms a basis of the Cartan subalgebra of the Kac–Moody Lie algebra

g (associated with the Cartan datum of type C(1)
ℓ ). The canonical central element of g is

c = α∨
0 + α∨

1 + · · · + α∨
ℓ . Moreover, we have ⟨d, δ⟩ = 1, and ⟨α∨

i , δ⟩ = 0, for i ∈ I.
The fundamental weight Λj (j ∈ I) is defined by ⟨α∨

i ,Λj⟩ = δij and ⟨d,Λj⟩ = 0. Then,
the weight lattice is P := ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛℓ ⊕ Zδ. A weight λ ∈ P is said to be
dominant if ⟨α∨

i , λ⟩ ≥ 0, for i ∈ I. Then, the set of dominant (integral) weights is given
by P+ := Z≥0Λ0 ⊕ Z≥0Λ1 ⊕ · · · ⊕ Z≥0Λℓ ⊕ Zδ. Note that P contains the root lattice Q
spanned by all simple roots, i.e., Q := Zα0 ⊕Zα1 ⊕· · ·⊕Zαℓ. We denote the positive cone
of the root lattice by Q+ := Z≥0α0 ⊕Z≥0α1 ⊕ · · · ⊕Z≥0αℓ. For any β ∈ Q+, the height of
β =

∑
i∈I miαi ∈ Q+ is defined by |β| :=

∑
i∈I mi.

We define, for a natural number k ≥ 1,

P+
cl,k :=

{
ℓ∑

i=0
miΛi

∣∣∣∣∣mi ≥ 0,
ℓ∑

i=0
mi = k

}
⊆ P+.

Here, the word cl stands for the classical dominant integral weights. The value ⟨c,Λ⟩ = k,
for Λ ∈ P+

cl,k, is called the level of Λ. Set ϖi := Λi − Λ0 (i ∈ I \ {0}) as in Kac’s book [32,
(12.4.3)]; these are fundamental weights of sp(2ℓ,C). Fix Λ =

∑ℓ
i=0miΛi ∈ P+

cl,k. Then,
Young-Hun Kim, Se-jin Oh and Young-Tak Oh introduced in [36, Proposition 2.1] the set

D(Λ) :=
{

ℓ∑
i=1

piϖi

∣∣∣∣∣ pi ≥ 0,
ℓ∑

i=1
pi ≤ k,

ℓ∑
i=1

(pi −mi)(A′)−1ui ∈ Zℓ

}
,

where ui’s are unit vectors. The inverse (A′)−1 is easy to calculate:

(A′)−1 =



1 1 1 . . . 1 1 1
1 2 2 . . . 2 2 2
1 2 3 . . . 3 3 3
...

...
...

. . .
...

...
...

1 2 3 . . . ℓ− 2 ℓ− 1 ℓ− 1
1/2 1 3/2 . . . ℓ/2 − 1 (ℓ− 1)/2 ℓ/2


.

We say that Λ,Λ′ ∈ P+
cl,k are equivalent if D(Λ) = D(Λ′), and we denote Λ ∼ Λ′.
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2.2. Dominant maximal weight. Let Uv(g) be the quantum group of g. Given
a Λ ∈ P+, we denote by V (Λ) the integrable highest weight module with the highest
weight Λ and by P (Λ) the set of weights of V (Λ). A weight λ ∈ P (Λ) is said to be
maximal if λ+ δ /∈ P (Λ). Let max(Λ) be the set of maximal weights in P (Λ). It is known
that

P (Λ) =
⊔

λ∈max(Λ)
{λ−mδ | m ∈ Z≥0}. (2.1)

The set of all dominant maximal weights of V (Λ) is defined as

max+(Λ) := max(Λ) ∩ P+.

Let W be the Weyl group generated by {ri}i∈I acting on P by riµ = µ − ⟨α∨
i , µ⟩αi, for

µ ∈ P and i ∈ I. Then, it is known (e.g., [32, Proposition 11.2(a)]) that any element in
max(Λ) is W -conjugate to an element in max+(Λ).

2.3. Cyclotomic KLR algebra. Let k be an algebraically closed field. For any i, j ∈ I,
we take a family Qi,j(u, v) ∈ k[u, v] of polynomials such that Qi,i(u, v) = 0, Qi,j(u, v) =
Qj,i(v, u), and for any i < j,

Qi,j(u, v) =


u− v2 if i = 0, j = 1,
u− v if i ̸= 0, j = i+ 1, j ̸= ℓ,

u2 − v if i = ℓ− 1, j = ℓ,

1 otherwise.

We denote by Sn the symmetric group generated by elementary transpositions {si |
1 ≤ i ≤ n− 1}. Then, the action of Sn on In is given by

si · (ν1, ν2, . . . , νi, νi+1, . . . , νn) = (ν1, ν2, . . . , νi+1, νi, . . . , νn).

Recall that, a finite-dimensional k-algebra A is said to be Z-graded if it is equipped with
a k-vector space decomposition A =

⊕
m∈ZAm satisfying AmAn ⊆ Am+n. Here, elements

in Am are called homogeneous of degree m ∈ Z. Let q be an indeterminate. Then, the
graded dimension dimq A of A is defined by

dimq A :=
∑
m∈Z

(dimAm)qm ∈ Z≥0[q, q−1].

Definition 2.1. Fix Λ ∈ P+
cl,k. Let RΛ(n) be the Z-graded k-algebra generated by

{e(ν) | ν = (ν1, ν2, . . . , νn) ∈ In}, {xi | 1 ≤ i ≤ n}, {ψj | 1 ≤ j ≤ n− 1},

subject to
(1) e(ν)e(ν ′) = e(ν)δν,ν′ ,

∑
ν∈In e(ν) = 1, xixj = xjxi, xie(ν) = e(ν)xi,

(2) ψie(ν) = e(si(ν))ψi, ψiψj = ψjψi if |i− j| > 1, ψixj = xjψi if j ̸= i, i+ 1,
(3) ψ2

i e(ν) = Qνi,νi+1(xi, xi+1)e(ν),
(4) (ψixi+1 − xiψi)e(ν) = (xi+1ψi − ψixi)e(ν) = e(ν)δνi,νi+1 ,
(5) (ψi+1ψiψi+1 − ψiψi+1ψi)e(ν)

=


Qνi,νi+1 (xi,xi+1)−Qνi,νi+1 (xi+2,xi+1)

xi−xi+2
e(ν) if νi = νi+2,

0 otherwise,

(6) x
⟨α∨

ν1 ,Λ⟩
1 e(ν) = 0,
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and the Z-grading on RΛ(n) is given by
deg(e(ν)) = 0, deg(xie(ν)) = 2dνi , deg(ψie(ν)) = −dνiaνi,νi+1 ,

with (d0, d1, . . . , dℓ−1, dℓ) = (2, 1, . . . , 1, 2). We call RΛ(n) the cyclotomic quiver Hecke
algebra of type C(1)

ℓ , and this algebra was introduced by Mikhail Khovanov and Aaron
Lauda [35]. Note that the (affine) quiver Hecke algebra R(n) obtained by omitting the
relation (6) was also introduced by Raphael Rouquier [48], independent of [35]. Thus,
the cyclotomic quiver Hecke algebra is also known as the cyclotomic Khovanov–Lauda–
Rouquier algebra.

Given a positive root β ∈ Q+ with |β| = n, we set

e(β) :=
∑

ν∈Iβ

e(ν) with Iβ :=
{
ν = (ν1, ν2, . . . , νn) ∈ In

∣∣∣∣∣
n∑

i=1
ανi = β

}
.

This is a central idempotent of RΛ(n). We may distinguish the component of RΛ(n)
associated with e(β) as follows.

Definition 2.2. We define RΛ(β) := RΛ(n)e(β).

We may define RΛ(β) with the same defining relations of RΛ(n), just by replacing I
with Iβ.

Remark 2.3. Fix Λ =
∑

i∈I miΛi ∈ P+
cl,k. It is known, e.g., [48, p. 25] or [10, Lemma 3.2],

that R(n) or RΛ(n) (of type C
(1)
ℓ ) does not depend on the choice of Qi,j(u, v), up to

isomorphism. Let RΛ
A(n) be the cyclotomic KLR algebra of type A(1)

ℓ whose definition uses
polynomials Qi,i+1(u, v) = u − v for i ∈ Z/(ℓ + 1)Z, and Qi,j(u, v) = 1 if j ̸≡ℓ+1 i, i ± 1.
Suppose that

β ∈ Z≥0α1 ⊕ Z≥0α2 ⊕ · · · ⊕ Z≥0αℓ−1.

Then, β may be viewed as an element in the positive cone of the root lattice for the
type A(1)

ℓ . Under this circumstance, we have an isomorphism of algebras RΛ(β) ∼= RΛA
A (β),

where ΛA = Λ−m0Λ0 −mℓΛℓ. In the rest of the paper, we write RΛ
A(β) instead of RΛA

A (β)
by abuse of notation.

Let σ : I → I be the involution given by σ(i) = ℓ− i. Given a dominant integral weight
Λ =

∑
i∈I miΛi ∈ P+

cl,k and a positive root β =
∑

i∈I niαi ∈ Q+, we define

σΛ :=
∑
i∈I

miΛσ(i) and σβ :=
∑
i∈I

niασ(i). (2.2)

Using Remark 2.3, we may assume that RΛ(β) and RσΛ(σβ) share the same family of
polynomials Qi,j(u, v) ∈ k[u, v].

Proposition 2.4 ([7, Lemma 3.1]). There is an algebra isomorphism

RΛ(β) ∼= RσΛ(σβ).

There is a symmetric bilinear form (−,−) on the weight lattice P such that
(Λi, αj) = djδij , (αi, αj) = diaij .

with (d0, d1, . . . , dℓ−1, dℓ) = (2, 1, . . . , 1, 2). The defect of RΛ(β) is given by
defΛ(β) := (Λ, β) − (β, β)/2.
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We sometimes omit Λ from the subscript and write def(β) instead of defΛ(β). In level
one, we experienced the validity of Erdmann–Nakano type theorems, see [13, 22]. Hence,
it is of interest to list defect values here. In the representation-finite cases, the value is 1
except for the following three cases.

• (f1): def(β) = ma − 1 if 1 ≤ a ≤ ℓ− 1, and def(β) = 2ma − 2 if a = 0, ℓ.
• (f2) or (f3): def(β) = 2 for m0 = m1 = 1 or mℓ−1 = mℓ = 1, and def(β) = 2mi − 1

for i = 0 or ℓ.
In the tame cases, the value is 2 only for 5 cases, and the other 16 cases may have different
values as listed below.

• (t3) or (t4): def(β) = 2mi ≥ 4 for i = 0 or ℓ.
• (t5) or (t6): def(β) = 2mi ≥ 2 for i = 0 or ℓ.
• (t7) or (t8): def(β) = 3.
• (t9): def(β) = mi ≥ 2 for i = a or b.
• (t10) or (t11): def(β) = 3 if i ̸= ℓ or 0, and def(β) = 4 if i = ℓ or 0.
• (t13) or (t14): def(β) = 2 if i ̸= ℓ or 0, and def(β) = 3 if i = ℓ or 0.
• (t16) or (t17): def(β) = 3.
• (t19): def(β) = 4.
• (t20) or (t21): def(β) = 4.

Let n ≥ 1 be a natural number and λ = (λ1, λ2, . . . ) a sequence of non-negative integers.
We call λ a partition of n if |λ| := λ1 + λ2 + · · · = n and λ1 ≥ λ2 ≥ · · · ≥ 0. A k-
multipartition of n is an ordered k-tuple of partitions λ = (λ(1), λ(2), . . . , λ(k)) such that
|λ(1)| + |λ(2)| + · · · + |λ(k)| = n. We denote by Pk,n the set of all k-multipartitions of n.

A Young diagram is considered as a realization of a partition. Here, the Young diagram
of a k-multipartition λ = (λ(1), λ(2), . . . , λ(k)) can be visualized as a column vector whose
entries are λ(i)’s in increasing order from top to bottom. We say that a node of λ ∈ Pk,n

is removable (resp., addable) if one obtains a new k-multipartition after removing (resp.,
adding) the node from (resp., to) λ.

Let gℓ : Z → Z/2ℓZ be the natural projection and we define fℓ : Z/2ℓZ → I by

fℓ(a+ 2ℓZ) :=
{
a if 0 ≤ a ≤ ℓ,

2ℓ− a if ℓ+ 1 ≤ a ≤ 2ℓ− 1.

For any m ∈ Z, we set m := (fℓ ◦ gℓ)(m) ∈ I. In other words, the values periodically
repeat in the order of 0 1 2 . . . ℓ− 1 ℓ ℓ− 1, . . . , 2 1.

Fix Λ = Λi1 + Λi2 + · · · + Λik
∈ P+

cl,k and λ = (λ(1), λ(2), . . . , λ(k)) ∈ Pk,n. Let p be a
node in the ath row and bth column of λ(s). Then, the residue of p is defined by

res p := b− a+ is ∈ I,

and p is said to be an i-node if res p = i. As λ = (λ(1), λ(2), . . . , λ(k)) can be visu-
alized as a column vector of Young diagrams, we say that λ(s) is below λ(t) if s > t.
We set #addableres p(λ) as the number of addable (res p)-nodes of λ below p, and set
#removableres p(λ) as the number of removable (res p)-nodes of λ below p. If p is a remov-
able i-node of λ, we define

dp(λ) := di · (#addableres p(λ) − #removableres p(λ))
with (d0, d1, . . . , dℓ−1, dℓ) = (2, 1, . . . , 1, 2) as mentioned before.

A standard tableau T = (T (1), T (2), . . . , T (k)) of shape λ ∈ Pk,n is given by bijectively
inserting the integers 1, 2, . . . , n into the nodes of the Young diagram of λ, such that
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each T (i) is a standard tableau of λ(i), i.e., the entries in T (i) are strictly increasing along
the rows from left to right and down the columns from top to bottom. We denote by
Std(λ) the set of all standard tableaux of λ. The residue sequence of T is defined as
iT := (i1, i2, . . . , in) ∈ In, such that ir = res p if the integer r is filled in the node p of λ.
We then define the degree of T (see [14, (1.4)]) inductively by

deg(T ) :=
{

deg(T ↓n) + dp(λ) if n > 0,
0 if n = 0,

(2.3)

where T ↓n is the tableau obtained by removing p from T and the integer n > 0 is filled
in the node p of λ.

Using values deg(T ), we may define the action of Chevalley generators on the Q[v, v−1]-
span of all k-multipartitions to make it into a module over the quantum group Uv(g).
We call this Uv(g)-module the level k deformed Fock space. We denote the empty k-
multipartiton by vΛ, which generates V (Λ) as a Uv(g)-submodule. For the precise defini-
tion of the action when k = 1, see [13] or [22]. The level k deformed Fock space we use
here is the k-fold tensor product of level one deformed Fock spaces. The next theorem
follows from the computation in the level k deformed Fock space.

Theorem 2.5 ([14, Theorem 2.5]). For any positive root β ∈ Q+ with |β| = n and
ν, ν ′ ∈ Iβ, the graded dimension of e(ν)RΛ(β)e(ν ′) is

dimq e(ν)RΛ(β)e(ν ′) =
∑

iS=ν, iT =ν′,
S,T ∈Std(λ), λ∈Pk,n

qdeg(S)+deg(T ).

Example 2.6. Let Λ = Λ0 + Λ1 and ℓ = 2. We consider RΛ(δ) with δ = α0 + 2α1 + α2.
Set e := e(0121). Then, dimq eR

Λ(δ)e = 1 + 2q2 + 3q4 + 2q6 + q8 due to the following
pattern:

(∅, ∅)

��
( 0 , ∅)0

,,
��

rr
( 0 1 , ∅)2

��

(
0
1 , ∅

)
1

��

( 0 , 1 )0

��
( 0 1 2 , ∅)0

��|| ""

(
0
1
2
, ∅
)

0

������

( 0 , 1 2 )0

!!��}}
( 0 1 2 1 , ∅)2

(
0 1 2
1 , ∅

)
1

( 0 1 2 , 1 )0

(
0 1
1
2

, ∅
)

2

 0
1
2
1
, ∅


1

(
0
1
2
, 1

)
0

( 0 1 , 1 2 )2

(
0
1 , 1 2

)
1

( 0 , 1 2 1 )0

where the subscript number in each vertex gives the corresponding dp(λ).

In the following, we are going to introduce the divided power induction functor f (r)
i

(see [20, Section 4.6]) from the category of RΛ(β)-modules to the category of RΛ(β+rαi)-
modules, for r ∈ Z≥0. Let R(β) be the (affine) KLR algebra, namely, the algebra defined
by dropping the cyclotomic condition x

⟨α∨
ν1 ,Λ⟩

1 e(ν) = 0 from the defining relations of RΛ(β).
Then, the definition of f (r)

i starts with the result in [35, Section 2.2] that the polynomial
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representation P (i(r)) = k[x1, . . . , xr] over R(rαi), whose degree is given by

deg(xm1
1 . . . xmr

r ) = di

(
2m1 + · · · + 2mr − r(r − 1)

2

)
,

satisfies

R(rαi) ∼= P
(
i(r))⟨di(1 − r)⟩ ⊕ P

(
i(r))⟨di(3 − r)⟩ ⊕ · · · ⊕ P

(
i(r))⟨di(r − 1)⟩,

where R(rαi) is the regular representation.

Example 2.7. R(2αi) is the k-algebra generated by x1, x2, ψ of degree

deg x1 = deg x2 = 2di, degψ = −2di,

which are subject to

x1x2 = x2x1, ψx2 − x1ψ = 1 = x2ψ − ψx1, ψ2 = 0.

Then, R(2αi) = k[x1, x2] ⊕k[x1, x2]ψ. Define e1 = x2ψ and e2 = −ψx1. Then 1 = e1 + e2,
eset = δstes, for s = 1, 2. Since ψ = ψe1 ∈ R(2αi)e1, we have

P
(
i(2))⟨−di⟩ ∼= k[x1, x2]ψ = R(2αi)e1, P

(
i(2))⟨di⟩ ∼= k[x1, x2] = R(2αi)e2.

Using the R(rαi)-module P (i(r)), we define the divided power induction functor f (r)
i as

follows.

Definition 2.8. Let θ(r)
i (M) := IndR(β+rαi)

R(β)⊗R(rαi)(M ⊗ P (i(r))) for an R(β)-module M .
Based on [20, Lemma 4.4], we define

f
(r)
i := pr ◦ θ(r)

i ◦ Infl
〈
r2 − r(Λ − β, αi)

〉
,

where pr is the tensor functor defined by the (RΛ(β+rα), R(β+rα))-bimodule RΛ(β+rα),
and Infl is the inflation functor from the category of RΛ(β)-modules to the category of
R(β)-modules with respect to the quotient algebra homomorphism R(β) → RΛ(β).

We need the following lemma proved in [20, Lemma 4.8].

Lemma 2.9. The divided power induction functor f (r)
i is an exact functor and it sends

projective modules to projective modules.

Indeed, if β =
∑s

j=1 njαij for some nj ∈ Z≥0 and ij ∈ I, the element

f
(ns)
is

, . . . , f
(n2)
i2

f
(n1)
i1

vΛ

in the level k deformed Fock space of type C(1)
ℓ uniquely determines the projective module

which is one of the direct summands of RΛ(β)e(ν) where ν = (in1
1 , in2

2 , . . . , ins
s ), and all

the other direct summands are shifts of this projective module. This fact together with
Theorem 2.5 allows us to compute the graded dimension of the endomorphism algebra
of a certain well-chosen direct sum of indecomposable projective RΛ(β)-modules, and to
apply lemmas on graded dimensions in the next subsection to prove wildness of RΛ(β).

Remark 2.10. The divided restriction functor e(r)
i is also an exact functor and it sends

projective modules to projective modules.
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2.4. Some tame and wild algebras. We review a few tame and wild algebras in this
subsection. Besides, it is well-known that k[x]/(xn) for any n ≥ 2 is a representation-
finite local algebra. The wild algebras below will give us a reduction method for proving
wildness, because, if e is an idempotent of a finite-dimensional algebra A and a factor
algebra of eAe is wild, then A is wild.

Proposition 2.11. Let A = kQ/J be a local algebra with

Q : ◦x
%%

yee .

(1) If J =
〈
x2, y2, xy − yx

〉
, then A is tame.

(2) If J =
〈
x2 − y2, xy, yx

〉
, then A is wild.

(3) If J =
〈
x3, y2, x2y, xy − yx

〉
, then A is wild.

(4) If J = ⟨xm − yn, xy, yx⟩ for some m,n ≥ 2 and m+ n ≥ 5, then A is tame.

Proof. See [47] for (1)–(3) and see [27, Theorem III.1(a)] for (4). □

Lemma 2.12. If the graded dimension of a graded local algebra A satisfies

dimq A− 1 −mq ∈ q2Z≥0[q] or dimq A− 1 −mq2 ∈ q3Z≥0[q],

for 3 ≤ m ∈ Z≥0, then A is wild.

Proof. Let J be the span of elements of degree greater than or equal to 2 or 3, respectively.
Then, J is a two-sided ideal of A, and we have

dimq A/J = 1 +mq or dimq A/J = 1 +mq2,

respectively. In either case, A/J is the radical square zero local algebra whose Gabriel
quiver has at least 3 loops. Hence, A/J is wild by [27, I.10.10(a)] or [47, (1.1)], and so
is A. □

Lemma 2.13. If the graded dimension of a graded local algebra A satisfies

dimq A− 1 − q −mq2 ∈ q3Z≥0[q],

for 3 ≤ m ∈ Z≥0, then A is wild.

Proof. There exists an x ∈ A spanning the degree 1 part of A. If x2 = 0, then the degree 2
part of A has a basis {y1, y2, . . . , ym−1, ym}. If x2 ̸= 0, we have a basis {x2, y1, y2, . . . , ym−1}
in the degree 2 part of A. In both cases, the Gabriel quiver of A has at least m ≥ 3 loops.
Hence, A is wild. □

Lemma 2.14. If the graded dimension of a symmetric graded local algebra A satisfies

dimq A− 1 −m1q −m2q
2 ∈ q3Z≥0[q],

for m1,m2 ∈ Z≥0 with m1 +m2 ≥ 5, then A is wild.

Proof. Note that Rad3A is contained in the span of elements of degree greater than or
equal to 3. It follows that

dim
(
RadA/Rad2A

)
+ dim

(
Rad2A/Rad3A

)
≥ m1 +m2 ≥ 5.

If dim(RadA/Rad2A) ≥ 3, then the Gabriel quiver of A has at least 3 loops, and A
is wild. Otherwise, we have dim(Rad2A/Rad3A) ≥ 3, and A is again wild by [27,
Theorem III.4]. □
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Lemma 2.15. Let e1, e2 be two different primitive idempotents of A. If

dimq eiAej − δij −mijq
2 ∈ q3Z≥0[q]

for mij ∈ Z≥0 such that m11 +m22 ≥ 3 and m12 +m21 ≥ 2, then A is wild.

Proof. By [7, Lemma 1.3], the Gabriel quiver of (e1 + e2)A(e1 + e2) has

◦ // ◦
��
YY or ◦ ◦oo ��

YY

as a subquiver. Then, A is wild by [31, Theorem 1]. □

Lemma 2.16. Let A = k[x]/(x2) and B = kQ/J be the algebra given by

Q : ◦
µ // ◦
ν

oo and J : ⟨µνµ, νµν⟩.

Then, the tensor product algebra A⊗B is wild.

Proof. By tensoring A with B, each vertex gets one loop. The tensor product A⊗B has
the minimal wild algebra numbered 32 in [31, Table W] as a factor algebra. □

The next lemma by Kang and Kashiwara [33, Lemma 4.2] is stated for the cyclotomic
affine quiver Hecke algebra R(n), but the proof works for RΛ(β) (by applying M = RΛ(β)
there).

Lemma 2.17. If ν ∈ Iβ satisfies νi = νi+1 and fe(ν) = 0, for f ∈ k[x1, . . . , xn], then
(∂if)e(ν) = 0 and (sif)e(ν) = 0, where ∂if = sif−f

xi−xi+1
.

Proof. First we recall the following equation from [33, (3.7)](
ψif − (sif)ψi

)
e(ν) = (∂if)e(ν). (2.4)

Then, we have

0 = (xi − xi+1)ψife(ν)ψi

= (xi − xi+1)ψifψie(ν) (2.4)= (xi − xi+1)
(
(sif)ψi + ∂if

)
ψie(ν)

= (xi − xi+1)(∂if)ψie(ν)
(
since ψ2

i e(ν) = 0
)

= (sif − f)ψie(ν) (2.4)= (ψif − ∂if − fψi)e(ν)
= (∂if)e(ν) (since fe(ν) = 0).

Moreover, we also obtain (sif)e(ν) = fe(ν) + (xi − xi+1)(∂if)e(ν) = 0. □

The following tensor product lemma is useful. We prove the lemma only for C(1)
ℓ here

by using the graded dimension formula, but the lemma holds for general Lie type by a
different argument [43]. See the appendix.

Lemma 2.18. Suppose that we have two intervals I1 and I2 in I = {0, 1, . . . , ℓ} which
satisfy aij = 0 for (i, j) ∈ I1 × I2, and β = β1 + β2 with

β1 ∈
∑
i∈I1

Z≥0αi and β2 ∈
∑
i∈I2

Z≥0αi.
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We denote by ν1 ∗ ν2 the concatenation of ν1 ∈ Iβ1 and ν2 ∈ Iβ2, and we define

e :=
∑

ν1∈Iβ1 ,
ν2∈Iβ2

e(ν1 ∗ ν2).

Then, there is an isomorphism of graded algebras

eRΛ(β)e ∼= RΛ′(β1) ⊗RΛ′′(β2)

such that Λ′ =
∑

i∈I1⟨α∨
i ,Λ⟩Λi and Λ′′ =

∑
i∈I2⟨α∨

i ,Λ⟩Λi. Moreover, RΛ(β) is graded
Morita equivalent to RΛ′(β1) ⊗RΛ′′(β2).

Proof. We define an algebra homomorphism F : RΛ′(β1) ⊗ RΛ′′(β2) → eRΛ(β)e by the
following assignment:

1 ⊗ 1 7−→ e, e(ν1) ⊗ e(ν2) 7−→ e(ν1 ∗ ν2),
ψi ⊗ 1 7−→ ψi, 1 ⊗ ψi 7−→ ψ|β1|+i,

xi ⊗ 1 7−→ xi, 1 ⊗ xi 7−→ x|β1|+i.

Indeed, it is clear that the images of e(ν1) ⊗ 1, xi ⊗ 1 and ψi ⊗ 1 commute with the images
of 1 ⊗ e(ν2), 1 ⊗ xj and 1 ⊗ ψj . Since e is the unit of eRΛ(β)e, the unit maps to the unit
and

e =
∑

ν1∈Iβ1

 ∑
ν2∈Iβ2

e(ν1 ∗ ν2)

 =
∑

ν1∈Iβ1

 ∑
ν2∈Iβ2

F (e(ν1) ⊗ e(ν2))


such that F (1⊗1) =

∑
ν1∈Iβ1 F (e(ν1)⊗1) is satisfied. Similarly, F (1⊗1) =

∑
ν2∈Iβ2 F (1⊗

e(ν2)) is satisfied. Then, the orthogonality relations among F (e(ν1) ⊗ 1) and among
F (1 ⊗ e(ν2)) hold by the same rewriting of the unit 1.

It is also easy to see that other commutation relations among the generators of RΛ′(β1)
and the generators of RΛ′′(β2) hold on their images.

Now, let m := |β1|, ν1 = (i1, i2, . . . , im) and ν2 starts with i ∈ Iβ2 . Then,

x
⟨α∨

i ,Λ′′⟩
m+1 ψ2

me(i1, i2, . . . , im, i, . . . ) = ψmx
⟨α∨

i ,Λ′′⟩
m e(i1, i2, . . . , im−1, i, im, . . . )ψm

= ψmx
⟨α∨

i ,Λ′′⟩
m ψ2

m−1e(i1, . . . , im−1, i, im, . . . )ψm

= . . . . . .

= ψm . . . ψ1x
⟨α∨

i ,Λ′′⟩
1 e(i, i1, . . . , im, . . . )ψ1 . . . ψm = 0.

Here, the last equality uses ⟨α∨
i ,Λ′′⟩ = ⟨α∨

i ,Λ⟩. Hence, we have

F

(
1 ⊗ x

⟨α∨
i ,Λ′′⟩

1 e(ν2)
)

=
∑

ν1∈Iβ1

x
⟨α∨

i ,Λ′′⟩
m+1 e(ν1 ∗ ν2) = 0,

and F induces an algebra homomorphism RΛ′(β1) ⊗ RΛ′′(β2) → eRΛ(β)e. We then
observe that eψwe ̸= 0 implies w = w1w2 with (w1, w2) ∈ S|β1| ×S|β2|. Hence, the algebra
homomorphism F is surjective.
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To show the injectivity of F , we look at the graded dimensions. Let K(ν, λ) be the
sum of monomials qdeg(T ) over standard tableaux T of λ and iT = ν. Then, we have

dimq R
Λ′(β1) =

∑
λ⊢|β1|

 ∑
ν1,ν′

1∈Iβ1

K(ν1, λ)K
(
ν ′

1, λ
),

dimq R
Λ′′(β2) =

∑
λ⊢|β2|

 ∑
ν2,ν′

2∈Iβ2

K(ν2, λ)K
(
ν ′

2, λ
),

dimq eR
Λ(β)e =

∑
λ⊢|β|


∑

ν1,ν′
1∈Iβ1

ν2,ν′
2∈Iβ2

K(ν1 ∗ ν2, λ)K
(
ν ′

1 ∗ ν ′
2, λ

)
.

Since K(ν1 ∗ ν2, λ) ̸= 0 only if the multipartition λ with respect to Λ is a union of
multipartitions λ1 with respect to Λ′ and λ2 with respect to Λ′′, we have

dimq eR
Λ(β)e =

∑
λ1⊢|β1|
λ2⊢|β2|


∑

ν1,ν′
1∈Iβ1

ν2,ν′
2∈Iβ2

K(ν1, λ1)K(ν2, λ2)K
(
ν ′

1, λ1
)
K
(
ν ′

2, λ2
)
,

which shows dimq eR
Λ(β)e = dimq R

Λ′(β1) dimq R
Λ′′(β2).

Finally, we prove that RΛ(β) and RΛ′(β1) ⊗RΛ′′(β2) are graded Morita equivalent. To
see this, it suffices to show that the indecomposable projective RΛ(β)-modules that appear
as direct summands of RΛ(β)e(ν), for any ν ∈ Iβ, appear as direct summands of RΛ(β)e.
Let n1 := |β1|, n2 := |β2| and n := n1 + n2. Each ν ∈ Iβ defines a black-white sequence
of length n with n1 black entries and n2 white entries. Let w ∈ Sn be the distinguished
right coset representative of (Sn1 × Sn2)\Sn which changes the black-white sequence by
place permutation to the black-white sequence whose first n1 entries are black and the
remaining n2 entries are white. We choose a reduced expression of w and define ψw. Then,
there exist ν1 ∈ Iβ1 and ν2 ∈ Iβ2 such that we have an RΛ(β)-module homomorphism
RΛ(β)e(ν) → RΛ(β)e(ν1 ∗ ν2) defined by the right multiplication with ψw.

Using the same reduced expression but in the reversed order, we have another RΛ(β)-
module homomorphismRΛ(β)e(ν1∗ν2) →RΛ(β)e(ν) by the right multiplication with ψw−1 .
We compute the composition: they are given by right multiplication with

e(ν1 ∗ ν2)ψw−1ψwe(ν1 ∗ ν2) or e(ν)ψwψw−1e(ν).

Write ψw = ψi1ψi2 . . . ψir . Then,

e(ν)ψwψw−1 = e(ν)ψi1 . . . ψ
2
ir
. . . ψi1

= ψi1 . . . ψir−1e(sir−1 . . . si1ν)ψ2
ir
ψir−1 . . . ψi1 .

By the minimality of the right coset representative w, the entries at ir and ir+1 are neither
(white, white) nor (black, black). It follows that e(sir−1 . . . si1ν)ψ2

ir
= e(sir−1 . . . si1ν).

We continue the same argument. Then,

e(ν)ψwψw−1 = e(ν)ψi1 . . . ψ
2
ir−1 . . . ψi1 = · · · = e(ν)ψ2

i1 = e(ν),
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and e(ν1 ∗ ν2)ψw−1ψw = e(ν1 ∗ ν2). Hence, we have RΛ(β)e(ν) ∼= RΛ(β)e(ν1 ∗ ν2), and this
suffices to see that RΛ(β) is graded Morita equivalent to RΛ′(β1) ⊗RΛ′′(β2). □

2.5. Brauer graph algebra. It is well-known in the literature that Brauer tree algebras
are representation-finite, and other Brauer graph algebras, i.e., the remaining algebras
whose Brauer graph is either not a tree or with multiple exceptional vertices, are tame.
There is an in-depth introduction to Brauer graph algebras, see [49]. Besides, some of the
latest progress on the derived equivalence of Brauer graph algebras can be found in [6]
and [44]. We then will not review the definition of the Brauer graph and its associated
algebra. We use the same conventions in this paper as we have given in [15]. Although
any tame cyclotomic KLR algebra in type A(1)

ℓ can be realized as a Brauer graph algebra
up to Morita equivalence, we point out that it is not always the case in type C(1)

ℓ , as we
mentioned in the introduction.

We remark that, [22, Lemma 3.1] refers to [11] for the tame algebra RΛ1(δ) with ℓ = 2,
because the assumption that char k ̸= 2 in [11] is put only for guaranteeing Morita invariant
property of cellularity, and the bound quiver algebra mentioned there is tame in char k = 2
as well. Hence, as long as we are content with representation type, the characteristic of
the field k does not matter, but if we want to determine the Morita equivalent classes of a
cellular algebra, we must note that the basic algebra of a cellular algebra is not necessarily
cellular unless char k ̸= 2 or the algebra itself is basic.

We give two examples of Brauer graph algebras in the following, which appear as tame
cyclotomic KLR algebras in type C(1)

ℓ .

Lemma 2.19. Suppose Λ = m0Λ0 + m1Λ1 + · · · + mℓΛℓ ∈ P+
cl,k. Then, RΛ(α0 + α1) is

tame if m0 ≥ 2 and m1 = 1, namely (t3) in Main Theorem A. More precisely, it is Morita
equivalent to the Brauer graph algebra whose Brauer graph is displayed as

2m0 m0

Proof. Let A := RΛ(α0 + α1). We define e1 := e(01) and e2 := e(10). Then,

dimq e1Ae1 = 1 +
m0∑
i=1

q2(2i−1) +
m0−1∑
i=1

2q4i + q4m0 ,

dimq e2Ae2 = 1 +
m0∑
i=1

q2i, dimq e1Ae2 = dimq e2Ae1 =
m0∑
i=1

q2(2i−1).

We show that eiAej has a basis as follows.

e1Ae1 = k-span
{
xa

1x
b
2e1

∣∣∣ 0 ≤ a ≤ m0 − 1, 0 ≤ b ≤ 2
}
,

e2Ae2 = k-span{xa
2e2 | 0 ≤ a ≤ m0},

e1Ae2 = k-span{ψ1x
a
2e2 | 0 ≤ a ≤ m0 − 1},

e2Ae1 = k-span{ψ1x
a
1e1 | 0 ≤ a ≤ m0 − 1}.

The required basis for e2Ae2 follows from x1e2 = 0 and the graded dimension above.
Moreover, ψ2

1e1 = (x1 − x2
2)e1 implies that 0 = ψ1x1e2ψ1 = x2ψ1e2ψ1 = x2ψ

2
1e1 =

x2(x1 − x2
2)e1, and hence x3

2e1 = x1x2e1. This together with xm0
1 e1 = 0 and the graded

dimensions imply the required bases for e1Ae1, e1Ae2 and e2Ae1. For e2Ae1, apply the
anti-involution which fixes the generators e1, e2, x1, x2, ψ1 elementwise.
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Set α := x2e1, µ := ψ1e2 and ν := ψ1e1. We have

αµ = x2ψ1e2 = ψ1x1e2 = 0, να = ψ1x2e1 = x1ψ1e1 = 0.

Moreover, µν = ψ2
1e1 = (x1 −x2

2)e1 = x1e1 −α2 such that (µν)m0 = −α2m0 . By comparing
dimensions, A is isomorphic to the Brauer graph algebra whose Brauer graph is

2m0 m0

proving the assertion. □

Lemma 2.20. Suppose Λ = Λa + tΛℓ with t ≥ 1 and β = αa + αa+1 + · · · + αℓ, for
some 1 ≤ a ≤ ℓ − 2. This is (t6) in Main Theorem A and the basic algebra of RΛ(β) is
isomorphic to the Brauer graph algebra whose Brauer graph is displayed as

t 2t 2t 2t 2t ,

where the number of vertices is ℓ− a+ 2.

Proof. Let b := ℓ− a+ 1 and e := e1 + e2 + · · · + eb, where ei = e(νi) for 1 ≤ i ≤ b, and

ν1 = (a, a+ 1, a+ 2, . . . , ℓ− 3, ℓ− 2, ℓ− 1, ℓ),
ν2 = sb−1ν1 = (a, a+ 1, a+ 2, . . . , ℓ− 3, ℓ− 2, ℓ, ℓ− 1),
ν3 = sb−1sb−2ν2 = (a, a+ 1, a+ 2, . . . , ℓ− 3, ℓ, ℓ− 1, ℓ− 2),
. . .

νb−1 = sb−1sb−2 . . . s3s2νb−2 = (a, ℓ, ℓ− 1, ℓ− 2, . . . , a+ 2, a+ 1),
νb = sb−1sb−2 . . . s2s1νb−1 = (ℓ, ℓ− 1, ℓ− 2, . . . , a+ 2, a+ 1, a).

Write A := eRΛ(β)e. We may compute the graded dimensions as follows.

dimq e1Ae1 = 1 +
t∑

i=1
q4i,

dimq e2Ae2 = 1 +
2t∑

i=1
q2i +

t−1∑
i=t

q4i,

dimq eiAei = 1 +
2t−1∑
i=1

2q2i + q4t, for 3 ≤ i ≤ b,

dimq eiAej =


∑

1≤i≤t q
4i−2 if (i, j) = (1, 2), (2, 1),∑

1≤i≤2t q
2i−1 if |i− j| = 1, i, j ≥ 2,

0 otherwise.

We then find that the basis of eiAej is given as

e1Ae1 = k-span{xm
b e1 | 0 ≤ m ≤ t},

e2Ae2 = k-span
{
xs

b−1x
m
b e2

∣∣ 0 ≤ s ≤ t− 1, 0 ≤ m ≤ 2
}
,

e1Ae2 = k-span{xa
bψb−1e2 | 0 ≤ a ≤ t− 1},

e2Ae1 = k-span{ψb−1x
a
be1 | 0 ≤ a ≤ t− 1},
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and for any i ≥ 2,
ei+1Aei+1 = k-span

{
xm

b−1ei+1, x
m
b−1xbei+1

∣∣ 0 ≤ m ≤ 2t− 1
}
,

eiAei+1 = k-span
{
xa

b−1x
m
b ψb−iψb−i+1 . . . ψb−1ei+1

∣∣ 0 ≤ a ≤ t− 1, 0 ≤ m ≤ 1
}
,

ei+1Aei = k-span
{
ψb−1ψb−2 . . . ψb−i+1ψb−ix

a
b−1x

m
b ei

∣∣ 0 ≤ a ≤ t− 1, 0 ≤ m ≤ 1
}
.

• x1e1 = 0 and ψie1 = 0 for 1 ≤ i ≤ b − 2 imply that xje1 = 0 for 2 ≤ j ≤ b − 1.
Then, we have the required basis for e1Ae1 by the graded dimension. Similarly,
we have

xiej = 0 for 1 ≤ i ≤ b− j, and xt
1eb = 0. (2.5)

Moreover, for any 1 ≤ j ≤ b, we have
xt

b−j+1ej = xt
b−j+1ψ

2
b−jej = ψb−jx

t
b−je(sb−jνj)ψb−j

= . . .

= ψb−j . . . ψ2ψ1x
t
1e(s1s2 . . . sb−jνj)ψ1ψ2 . . . ψb−j = 0.

(2.6)

In particular, xt
b−1e2 = 0. On the other hand, xbψ

2
b−1e2 = ψb−1xb−1e1ψb−1 = 0.

This implies
x3

be2 = xb−1xbe2 (2.7)
and hence, the required basis for e2Ae2 is obtained by the graded dimension.

• For j ≥ 3, ψhej = 0 with b − j + 1 ≤ h ≤ b − 2 implies (x2
b−j+2 − xb−j+1)ej =

ψ2
b−j+1ej = 0 and (xh+1 − xh)ej = ψ2

hej = 0 for b− j + 2 ≤ h ≤ b− 2. Therefore,

x2t
b−j+2ej = 0 (2.8)

by (2.6), and
xhej = xb−j+2ej for b− j + 3 ≤ h ≤ b− 1. (2.9)

• For j ≥ 3, we have
xbψ

2
b−1ej = ψb−1xb−1e(sb−1νj)ψb−1

= ψb−1xb−1ψ
2
b−2e(sb−1νj)ψb−1

= . . .

= ψb−1ψb−2 . . . ψb−j+1xb−j+1ej−1ψb−j+1 . . . ψb−2ψb−1

(2.5)= 0.
This implies that

x2
bej = xbxb−1ej for 3 ≤ j ≤ b, (2.10)

and it gives the required basis of ejAej for 3 ≤ j ≤ b. Furthermore, the required
basis of eiAej with |i− j| = 1 follows from (2.5)–(2.9) and the graded dimensions.

We now are able to find the basic algebra of RΛ(β). For any 1 ≤ i ≤ b− 1, we set
µi := ψb−iψb−i+1 . . . ψb−1ei+1 ∈ eiAei+1, νi := ψb−1ψb−2 . . . ψb−i+1ψb−iei ∈ ei+1Aei,

and α := xbeb ∈ ebAeb. Then, µiµi+1 = 0 = νi+1νi for 1 ≤ i ≤ b− 2, and

µb−1α = ψ1ψ2 . . . ψb−1xbeb = x1ψ1ψ2 . . . ψb−1eb
(2.5)= 0,

ανb−1 = xbψb−1ψb−2 . . . ψ1eb−1 = ψb−1ψb−2 . . . ψ1x1eb−1
(2.5)= 0.
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We compute µiνi and νiµi as follows.
• ν1µ1 = ψ2

b−1e2 = (x2
b − xb−1)e2 and

µ2ν2 = ψb−2ψ
2
b−1ψb−2e2 = ψb−2(xb−1 − xb)ψb−2e2

(2.5)= −xbψ
2
b−2e2 = −xbe2.

This together with (2.7) and (2.8) imply (ν1µ1)t = −(µ2ν2)2t.
• Similar computation shows that µiνi = −xbei for 3 ≤ i ≤ b − 1, and νjµj =

(xb−1 − xb)ej+1 for 2 ≤ j ≤ b− 1. This together with (2.8) and (2.10) imply that

(νiµi)2t = −(µi+1νi+1)2t for 2 ≤ i ≤ b− 2, and (νb−1µb−1)2t = −α2t.

We conclude that A is isomorphic to the Brauer graph algebra whose Brauer graph is

t 2t 2t 2t 2t ,
where the number of vertices is b+1. By the crystal computation, we see that the number
of simple modules of RΛ(β) is exactly b. Therefore, A is the basic algebra of RΛ(β). □

2.6. Tilting mutation and derived equivalence. In this subsection only, we denote by
modA the category of finitely generated right A-modules and by projA the full subcategory
of modA consisting of projective A-modules. This is harmless when we apply the silting
theory to a cyclotomic quiver Hecke algebra, because the algebra admits an anti-involution
which fixes generators and relations, and the anti-involution swaps left modules and right
modules.

Let Kb(projA) be the homotopy category of bounded complexes of finitely generated
projective A-modules. We denote by Db(modA) the derived category of modA, which is
the localization of Kb(projA) with respect to quasi-isomorphisms. Both Kb(projA) and
Db(modA) are triangulated categories. Two algebras A and B are said to be Morita
equivalent if there is a category equivalence modA ∼= modB, while A and B are said
to be derived equivalent if there is a triangle equivalence between the derived categories
Db(modA) and Db(modB). If A is a local algebra, then the derived equivalence implies
Morita equivalence [53, Theorem 2.3]. The remarkable derived equivalences of algebras
are induced by classical tilting modules, and this area of study has developed into a very
extensive research direction now. We refer readers to the Handbook of Tilting Theory [5]
to find more details. In particular, it is proven in [45, Theorem 6.4] by Rickard that A
is derived equivalent to B if and only if there exists a tilting complex T in Kb(projA)
satisfying B ∼= EndKb(proj A)(T ). Further, Kb(projA) is triangle equivalent to Kb(projB) if
and only if A and B are derived equivalent. Thus, it suffices to study tilting complexes in
Kb(projA) in order to understand the derived equivalence of A.

Let us review the silting theory, a generalization of tilting theory. Silting is also known
as half-tilting. A core concept in silting theory is silting mutation introduced by Aihara
and Iyama in [4]. In ideal cases, we can classify Morita equivalence classes of algebras in
the derived equivalence class of A by computing a finite number of tilting complexes by
mutation and their endomorphism algebras, as we will see below. We refer to [4] for more
definitions of silting theory.

Let siltA be the set of isomorphism classes of basic silting complexes in Kb(projA).
We construct a directed graph H(siltA) by drawing an arrow from T to S if S is an
irreducible left silting mutation of T . On the other hand, we may regard siltA as a poset
concerning a partial order: T ⩾ S if HomKb(proj A)(T, S[i]) = 0 for any i > 0. Then, the
directed graph H(siltA) is exactly the Hasse quiver of the poset siltA. In other words, the
Hasse quiver of siltA realizes the left/right silting mutations of silting complexes.
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Since mutation produces strictly decreasing silting complexes with respect to the partial
order, H(siltA) is an infinite quiver in general. However, the set of endomorphism algebras
of silting complexes in siltA may not be infinite, due to the existence of a certain cyclic
phenomenon. Such a cyclic phenomenon has already appeared in the literature, e.g.,
[8, 16, 52]. To explain this, we start with the following proposition.

Proposition 2.21 ([16, Lemma 2.8]). Let A and B be two algebras with a triangle equiv-
alence T : Db(modA) → Db(modB). Then, the following statements hold.

(1) T sends silting/tilting complexes in Kb(projA) to that in Kb(projB).
(2) T preserves the partial order on the set of silting complexes.
(3) If T is a silting complex in Kb(projA), then T (µ−

X(T )) ∼= µ−
T (X)(T (T )), where

µ−
X(T ) is the irreducible left silting mutation for some direct summand X of T .

Let T = X1 ⊕ X2 ⊕ · · · ⊕ Xn be a tilting complex in Kb(projA) and let B be the
endomorphism algebra of T . We denote by Q1, Q2, . . . , Qn the indecomposable projective
B-modules. Then, the triangle equivalence T : Kb(projA) → Kb(projB) is induced by
mapping Xi to Qi for i = 1, 2, . . . , n. We consider the following irreducible left silting
mutation:

T //

T

��

µ−
Xi

(T )

T

��

∈ Kb(projA)

B // µ−
Qi

(B) ∈ Kb(projB).

Note that µ−
Xi

(T ) and µ−
Qi

(B) are again silting but they are not necessarily tilting.
As T sends add(T/Xi)-approximation to add(B/Qi)-approximation, we have the fol-

lowing statement.

Corollary 2.22. We have EndKb(proj A) µ
−
Xi

(T ) ∼= EndKb(proj B) µ
−
Qi

(B).

We define 2- siltA := {T | A ≥ T ≥ A[1]} ⊂ siltA, and elements in 2- siltA are called
2-term silting complexes. Then, 2- siltA is again a poset, so that its Hasse quiver H(2- siltA)
is a subquiver of H(siltA). It is also worth mentioning that there is a poset isomorphism
between 2- siltA and the set of support τ -tilting A-modules in the sense of τ -tilting theory,
see [1] for more details.

Symmetric algebras admit a nice feature in silting theory. Let A be a symmetric algebra.
It is proved in [2] that any silting complex in Kb(projA) is a tilting complex. Therefore,
siltA coincides with tiltA, the set of isomorphism classes of tilting complexes. We obtain
the following theorem for symmetric algebras.

Theorem 2.23. Let A1, A2, . . . , As be finite-dimensional symmetric algebras which are
derived equivalent to each other and identify T = Kb(projAi) for all 1 ≤ i ≤ s. Suppose
the following conditions hold.

(1) The set 2- siltAi is finite6, for 1 ≤ i ≤ s.
(2) For each indecomposable projective direct summand X of the left regular module

Ai, for 1 ≤ i ≤ s, we have EndT (µ−
X(Ai)) ∼= Aj, for some 1 ≤ j ≤ s.

6This condition is equivalent to that the algebras Ai are τ -tilting finite or brick-finite, see [1, 24].
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Then, any finite-dimensional algebra B which has derived equivalence

Db(modB) ∼= Db(modA1)
(
∼= Db(modA2) ∼= . . . ∼= Db(modAs)

)
is Morita equivalent to Ai, for some 1 ≤ i ≤ s.

Proof. We need the concept of silting-discreteness in silting theory: an algebra A is said
to be silting-discrete if there is a silting object T such that {S | T ≥ S ≥ T [k]} ⊂ siltA is
a finite set, for any k ∈ N. A nice property (see [2]) of a silting-discrete algebra A is that
each silting complex in siltA can be obtained by iterated irreducible left silting mutation
from a shift of the stalk complex A. It is then shown in [3, Theorem 16] that A is silting-
discrete if and only if there is a silting object T ∈ siltA such that {S | U ≥ S ≥ U [1]} is
finite, for any iterated irreducible left silting mutation U of T .

Note that silting-discreteness is equivalent to tilting-discreteness since A1 is a symmetric
algebra. Let X be an indecomposable projective summand of A. We set

µ−
Y ◦ µ−

X(A) := µ−
Y

(
EndT µ

−
X(A)

)
,

where Y is an indecomposable projective summand of EndT µ
−
X(A).

Suppose that U is an iterated irreducible left silting mutation of A1 ∈ siltA1. Using
Corollary 2.22 repeatedly, we obtain

U ∼= µ−
Xk

◦ · · · ◦ µ−
X2

◦ µ−
X1

(A1),

for some k ∈ N and some indecomposable projective summands Xi’s of EndT (Ui−1), where
Ui := µ−

Xi
◦ · · · ◦ µ−

X1
(A1) for 2 ≤ i ≤ k. Then, assumption (2) says that EndT (U1) ∼= Aj

for some 1 ≤ j ≤ s. We assume that EndT (Ui−1) ∼= Ah, for some 1 ≤ h ≤ s, holds. Then,
Rickard’s Morita theorem implies that there is an auto-equivalence T : T ∼= T providing
T (Ui−1) = Ah. See [37, Chapter 3]. Hence, we have

EndT (Ui) = EndT (µXi(Ui−1)) ∼= EndT
(
µT (Xi)(Ah)

)
.

In particular, T (Xi) is an indecomposable projective direct summand of Ah. We deduce by
assumption (2) that EndT (Ui) ∼= Aj for some 1 ≤ j ≤ s. It finally gives that EndT (U) ∼=
Aj for some 1 ≤ j ≤ s. On the other hand, using Rickard’s Morita theorem again, the set
{S | U ≥ S ≥ U [1]} is in bijection with the set {S | Aj ≥ S ≥ Aj [1]}. By assumption (1),
we conclude that A1 is tilting-discrete.

Let B be the algebra which is derived equivalent to A1. By Rickard’s Morita theorem,
there is a tilting complex T ∈ Kb(projA1) such that B ∼= EndT (T ). Since A1 is tilting-
discrete, T is obtained by iterated irreducible left silting mutation from a shift of the stalk
complex A1. Then, by the above argument, EndT (T ) ∼= Aj , for some 1 ≤ j ≤ s. □

2.7. The derived equivalence class of (t7). There is a tame Case (t7) of cyclotomic
KLR algebras in affine type C, which cannot be realized as a Brauer graph algebra. Then,
we may use Theorem 2.23 to find all Morita equivalence classes of algebras that are derived
equivalent to (t7). We consider the following quiver:

Q : ◦
µ //

α
%%

◦
ν

oo βee ,

and define
• A := kQ/{α2 = 0, β2 = νµ, αµ = µβ, βν = να}.
• B := kQ/{α2 = µν, β2 = νµ, αµ = µβ, βν = να, µνµ = νµν = 0}.
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Here, A is the tame algebra (t7) (See Lemma 7.2) and B7 is a factor algebra of the tame
algebra numbered (21) in [31, Table T]. In this subsection, we refer to the arXiv version [9]
of this paper for most of the proofs.

Lemma 2.24. The algebras A and B are cellular.

Since the cyclotomic quiver Hecke algebra has an anti-involution which fixes generators
and relations, the category of left A-modules and the category of right A-modules are
equivalent. Thus, it is harmless to work with right A-modules instead of left A-modules
as we mentioned in Subsection 2.6, and we compute with right modules in this subsection.
Let Pi be the indecomposable projective A-module at vertex i ∈ {1, 2}. We may read the
non-zero paths starting from ei and connect them using an undirected line. It gives the
structure of Pi as follows.

P1 =

e1

α µ

αµ µν

αµν

∼=

1
1 2

2 1
1

, P2 =

e2

β ν

βν νµ

βνµ

∼=

2
2 1

1 2
2

.

It gives

Hom 1 2
1 e1, α, µν, αµν ν, βν
2 µ, αµ e2, β, νµ, βνµ

By direct calculation, the Hasse quiver H(2- siltA) is given as

µ−
2 (A)

��

µ−
1 (A)

��

A

66hh

µ−
1 (µ−

2 (A))

[1]
77

µ−
2 (µ−

1 (A)),

[1]
hh

where µ−
i (−) := µ−

Pi
(−), X [1] // Y means X → Y [1].

Proposition 2.25. We have EndKb(proj A) µ
−
1 (A) ∼= B.

Let Qi be the indecomposable projective B-module at vertex i ∈ {1, 2}. Then,

Q1 =

e1

α µ

αµ µν

αµν

∼=

1
1 2

2 1
1

, Q2 =

e2

β ν

βν νµ

βνµ

∼=

2
2 1

1 2
2

.

7We have not checked whether B appears as the basic algebra of some RΛ(β).
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The Hasse quiver H(2- siltB) is displayed as

µ−
2 (B)

��

µ−
1 (B)

��

B

66hh

µ−
1 (µ−

2 (B))

[1]
66

µ−
2 (µ−

1 (B))

[1]
hh

.

In particular, we have

µ−
1 (B) =

 Q1
ν // Q2
⊕

0 // Q2

 and µ−
2 (B) =


0 // Q1

⊕
Q2

µ // Q1

.
It gives EndKb(proj B) µ

−
1 (B) ∼= B and EndKb(proj B) µ

−
2 (B) ∼= A.

Proposition 2.26. If a basic algebra C is derived equivalent to A, then C is isomorphic
to A or B.

Proof. By direct calculation, we have found that both 2- siltA and 2- siltB are finite. We
also obtained in the above that

• EndKb(proj A) µ
−
1 (A) ∼= B and EndKb(proj A) µ

−
2 (A) ∼= A.

• EndKb(proj B) µ
−
1 (B) ∼= B and EndKb(proj B) µ

−
2 (B) ∼= A.

Then, the algebra C is Morita equivalent to A or B by Theorem 2.23. □

3. A connected quiver in affine type C

Similar to the construction in [15], we may construct a connected quiver whose vertex
set is max+(Λ). Let us start with the description of max+(Λ), which was introduced
in [36]. Given a dominant weight Λ ∈ P+

cl,k, we define

P+
cl,k(Λ) :=

{
Λ′ ∈ P+

cl,k

∣∣∣Λ ∼ Λ′
}
,

where the equivalence Λ ∼ Λ′ was defined in Subsection 2.1. In Proposition 3.6 below, we
recall the bijection between P+

cl,k(Λ) and max+(Λ).

Definition 3.1. For any Λ =
∑ℓ

i=0miΛi ∈ P+
cl,k, we set

ev(Λ) := m1 +m3 + · · · +m2⌊(ℓ−1)/2⌋+1.

Proposition 3.2 ([36, Theorem 2.14]). P+
cl,k(Λ) = {Λ′ ∈ P+

cl,k | ev(Λ) − ev(Λ′) ∈ 2Z}.

The distinguished representatives DR(P+
cl,k) = P+

cl,k/ ∼ of the equivalence classes of P+
cl,k

under ∼ are given in [36, Table 2.2]. It follows that we have either P+
cl,k(Λ) = P+

cl,k(kΛ0)
or P+

cl,k(Λ) = P+
cl,k((k − 1)Λ0 + Λ1), for any Λ ∈ P+

cl,k.

Example 3.3. Set k = 2, ℓ = 4. Then,
P+

cl,2(2Λ0) = {2Λ0, 2Λ1, 2Λ2, 2Λ3, 2Λ4,Λ0 + Λ2,Λ1 + Λ3,Λ2 + Λ4,Λ0 + Λ4}

and
P+

cl,2(Λ0 + Λ1) = {Λ0 + Λ1,Λ1 + Λ2,Λ2 + Λ3,Λ3 + Λ4,Λ0 + Λ3,Λ1 + Λ4}.
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For any X = (x0, x1, . . . , xℓ) ∈ Zℓ+1
≥0 , we define

minX := min{xi | 0 ≤ i ≤ ℓ} and maxX := max{xi | 0 ≤ i ≤ ℓ}.

Lemma 3.4. Suppose that Y = (y0, y1, . . . , yℓ) ∈ Zℓ+1 satisfies
y0 + y1 + · · · + yℓ = 0 and y1 + 2y2 + · · · + ℓyℓ ∈ 2Z.

There exists a unique solution X = (x0, x1, . . . , xℓ) ∈ Zℓ+1 of AXt = Y t, such that
min{x0, x1, . . . , xℓ} ≥ 0 and min{x0 − 1, x1 − 2, . . . , xℓ−1 − 2, xℓ − 1} < 0.

Proof. We define X̂ = (x̂0, x̂1, . . . , x̂ℓ) by
x̂0 = 0, x̂1 = −y0, x̂2 = −2y0 − y1, . . . ,

x̂ℓ−1 = −(ℓ− 1)y0 − (ℓ− 2)y1 − · · · − 2yℓ−3 − yℓ−2,

2x̂ℓ = −ℓy0 − (ℓ− 1)y1 − · · · − 2yℓ−2 − yℓ−1 = y1 + 2y2 + · · · + ℓyℓ.

It is obvious that X̂ ∈ Zℓ+1. By our assumption, one may easily check that AX̂t = Y t.
Thus, the set of integral solutions of AXt = Y t is X̂ + Z(1, 2, . . . , 2, 1). We may adjust
m ∈ Z in X̂ + m(1, 2, . . . , 2, 1) to obtain the desired solution. It is also clear that such a
solution is unique. □

Definition 3.5. For any Λ ∈ P , the hub of Λ is defined to be
hub(Λ) :=

(〈
α∨

0 ,Λ
〉
,
〈
α∨

1 ,Λ
〉
, . . . ,

〈
α∨

ℓ ,Λ
〉)
.

In particular, if Λ =
∑ℓ

i=0miΛi ∈ P+
cl,k, then hub(Λ) = (m0,m1, . . . ,mℓ).

Fix Λ =
∑ℓ

i=0miΛi ∈ P+
cl,k and Λ′ =

∑ℓ
i=0 niΛi ∈ P+

cl,k(Λ). We define

Y Λ
Λ′ = (y0, y1, . . . , yℓ) := hub(Λ) − hub(Λ′).

Then,

y0 + y1 + · · · + yℓ =
ℓ∑

i=0
mi −

ℓ∑
i=0

ni = k − k = 0,

and ev(Λ) − ev(Λ′) ∈ 2Z implies
y1 + 2y2 + · · · + ℓyℓ ∈ ev(Λ) − ev(Λ′) + 2Z ⊆ 2Z.

Hence, we may apply Lemma 3.4. Using the unique solution XΛ
Λ′ := (x0, x1, . . . , xℓ) in

Lemma 3.4, we define

βΛ
Λ′ :=

ℓ∑
i=0

xiαi ∈ Q+.

If there is no confusion of Λ, we will simply write XΛ′ , YΛ′ and βΛ′ for XΛ
Λ′ , Y Λ

Λ′ and βΛ
Λ′ ,

respectively. Now, we are able to explain the bijection between P+
cl,k(Λ) and max+(Λ).

Proposition 3.6. Let Λ ∈ P+
cl,k. Then, the correspondence Λ′ ∈ P+

cl,k(Λ) 7→ Λ − βΛ
Λ′ ∈

Λ −Q+ gives a bijection between P+
cl,k(Λ) and max+(Λ).

Proof. Since P = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛℓ ⊕ Zδ, we may write

Λ − βΛ
Λ′ =

ℓ∑
i=0

niΛi + nδ,
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for some n0, n1, . . . , nℓ, n ∈ Z. We have ⟨α∨
i ,Λ⟩ − ni = ⟨α∨

i , β
Λ
Λ′⟩. On the other hand,

〈
α∨

i ,Λ
〉

−
〈
α∨

i ,Λ′〉 =
ℓ∑

j=0

〈
α∨

i , αj
〉
xj =

〈
α∨

i , β
Λ
Λ′

〉
(3.1)

by the definition of βΛ
Λ′ . Hence, ni = ⟨α∨

i ,Λ′⟩ for 0 ≤ i ≤ ℓ, and they are nonnegative
integers due to Λ′ ∈ P+

cl,k(Λ). Therefore, ⟨α∨
i ,Λ − βΛ

Λ′⟩ ≥ 0 for 0 ≤ i ≤ ℓ, and

Λ − βΛ
Λ′ ∈ P+ ∩ (Λ −Q+) ⊆ P (Λ).

By the minimality of the solution XΛ
Λ′ ∈ Zℓ+1, we also have Λ − βΛ

Λ′ + δ ̸∈ Λ − Q+. We
have proved that the correspondence defines a map from P+

cl,k(Λ) to max+(Λ).
Suppose Λ −

∑ℓ
j=0 xjαj ∈ max+(Λ). In particular, xj ’s are nonnegative integers for

0 ≤ j ≤ ℓ. We may write

Λ −
ℓ∑

j=0
xjαj =

ℓ∑
i=0

miΛi + nδ,

for some m0,m1, . . . ,mℓ, n ∈ Z as before. We set Λ′ =
∑ℓ

i=0miΛi. Then,

mi =
〈
α∨

i ,Λ′〉 =
〈
α∨

i ,Λ′ + nδ
〉

=
〈
α∨

i ,Λ
〉

−
ℓ∑

j=0

〈
α∨

i , αj
〉
xj .

This implies that X = (x0, x1, . . . , xℓ) ∈ Zℓ+1
≥0 is a solution of AXt = Y t for Y = hub(Λ) −

hub(Λ′). Since Λ′ + nδ ∈ max+(Λ) is a dominant integral weight, we have mi ≥ 0 for
0 ≤ i ≤ ℓ. Moreover, (1, 1, . . . , 1)A = (0, 0, . . . , 0) implies

⟨c,Λ′⟩ =
ℓ∑

i=0
mi = ⟨c,Λ⟩ −

ℓ∑
i,j=0

〈
α∨

i , αj
〉
xj = ⟨c,Λ⟩ − (1, 1, . . . , 1)AXt = k.

Hence, Λ′ belongs to P+
cl,k. By the maximality of Λ −

∑ℓ
j=0 xjαj , X is the unique solution

of AXt = Y t in the sense of Lemma 3.4. We conclude that
∑ℓ

j=0 xjαj = βΛ
Λ′ . Therefore,

the map P+
cl,k(Λ) → max+(Λ) is surjective.

If we have the same solution X ∈ Zℓ+1
≥0 for

Y ′ = hub(Λ) − hub(Λ′) and Y ′′ = hub(Λ) − hub(Λ′′),
then Y ′ = XAt = Y ′′. Thus, the map P+

cl,k(Λ) → max+(Λ) is injective. □

We have the following corollary immediately, and we leave the proof to readers.

Corollary 3.7. Suppose Λ = Λ + Λ̃ with Λ ∈ P+
cl,k, Λ ∈ P+

cl,k′ and Λ̃ ∈ P+
cl,k−k′. Then,

P+
cl,k′(Λ) + Λ̃ ⊂ P+

cl,k(Λ) and βΛ
Λ′ = βΛ

Λ′+Λ̃

for any Λ′ ∈ P+
cl,k′(Λ).

Our task is to make max+(Λ) into a connected quiver in such a way that if there is an
arrow Λ′ → Λ′′ which corresponds to Λ−

∑ℓ
i=0 x

′
iαi and Λ−

∑ℓ
i=0 x

′′
i αi, there is a sequence

of simple coroots α∨
i1 , α

∨
i1 , . . . , α

∨
is

such that〈
α∨

it
,Λ −

ℓ∑
i=0

x′
iαi − αi1 − αi2 − · · · − αit−1

〉
≥ 1,
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and
∑ℓ

i=0 x
′
iαi + αi1 + αi2 + · · · + αis =

∑ℓ
i=0 x

′′
i αi, for 1 ≤ t ≤ s.

3.1. A connected graph of max+(Λ). Fix Λ ∈ P+
cl,k. Suppose Λ′ = Λi + Λ̃ ∈ P+

cl,k(Λ)
for some i ∈ I and Λ̃ ∈ P+

cl,k−1, we define

Λ′
i+ := Λi+2 + Λ̃ if 0 ≤ i ≤ ℓ− 2,

Λ′
i− := Λi−2 + Λ̃ if 2 ≤ i ≤ ℓ.

Suppose Λ′ = Λi + Λj + Λ̃ ∈ P+
cl,k(Λ) for some i, j ∈ I and Λ̃ ∈ P+

cl,k−2, we define

Λ′
i+,j+ = Λ′

j+,i+ := Λi+1 + Λj+1 + Λ̃

if 0 ≤ i ≤ j ≤ ℓ− 1, and

Λ′
i−,j− = Λ′

j−,i− := Λi−1 + Λj−1 + Λ̃

if 1 ≤ i ≤ j ≤ ℓ.
Suppose Λ′ = Λi + Λj + Λ̃ ∈ P+

cl,k(Λ) for some i, j ∈ I and Λ̃ ∈ P+
cl,k−2, we define

Λ′
i−,j+ = Λ′

j+,i− := Λi−1 + Λj+1 + Λ̃

if i ̸= 0, j ̸= ℓ, i− 1 ̸= j.
Note that Λ′

i+,(i+1)+ = Λ′
i+ for 0 ≤ i ≤ ℓ− 2 and Λ′

i−,(i+1)− = Λ′
(i+1)− for 1 ≤ i ≤ ℓ− 1.

It is obvious that Λ′
i± , Λ′

i±,j± , Λ′
i±,j∓ ∈ P+

cl,k(Λ).

Definition 3.8. Fix Λ ∈ P+
cl,k. Let C(Λ) be the undirected graph with vertex set P+

cl,k(Λ),
such that an edge between Λ′ and Λ′′ exists if Λ′′ = Λ′

i± or Λ′
i±,j± or Λ′

i−,j+ .

Example 3.9. Set k = 2, ℓ = 4. The graphs C(2Λ2) and C(Λ1 + Λ2) are displayed as

2Λ0

2Λ1 Λ0 + Λ2

2Λ2 Λ1 + Λ3 Λ0 + Λ4

2Λ3 Λ2 + Λ4

2Λ4

and

Λ0 + Λ1

Λ1 + Λ2 Λ0 + Λ3

Λ2 + Λ3 Λ1 + Λ4

Λ3 + Λ4

respectively.

Lemma 3.10. For any Λ′,Λ′′ ∈ P+
cl,k(Λ), there exists an undirected path from Λ′ to Λ′′ in

C(Λ). In particular, C(Λ) is a finite connected graph.
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Proof. It suffices to consider Λ ∈ DR(P+
cl,k) = {kΛ0, (k − 1)Λ0 + Λ1}. If k = 1, then the

assertion is obviously true by level one case, as we will mention in Subsection 3.3 . Suppose
k ≥ 2. We show that there is an undirected path from Λ to Λ′, for any Λ′ ∈ P+

cl,k(Λ).
Set Λ′ =

∑
i∈I miΛi ∈ P+

cl,k(Λ). If m0 = k, then Λ′ = Λ and the assertion is trivial.
If m0 = k − 1, then Λ′ = (k − 1)Λ0 + Λi for some i ̸= 0. For i ≡2 0 (i.e., Λ = kΛ0), we

have an undirected path

kΛ0 (k − 1)Λ0 + Λ2 · · · (k − 1)Λ0 + Λi .

For i ≡2 1 (i.e., Λ = (k − 1)Λ0 + Λ1), we have an undirected path

(k − 1)Λ0 + Λ1 (k − 1)Λ0 + Λ3 · · · (k − 1)Λ0 + Λi .

Suppose m0 ≤ k − 2. Then, Λ′ = Λi + Λj + Λ̃ for some i ≤ j ∈ I. If i ≡2 0 or j ≡2 0,
then there is an undirected path from Λ0 to Λi or Λj ; this yields an undirected path from
Λ0 + Λj + Λ̃ or Λ0 + Λi + Λ̃ to Λ′. By the induction hypothesis on k − m0, we have an
undirected path from Λ to Λ0 + Λj + Λ̃ and Λ0 + Λi + Λ̃, so that there is an undirected
path from Λ to Λ′. If i ≡2 j ≡2 1, then j − i ≡2 0 and there is an undirected path

2Λi Λi + Λi+2 · · · Λi + Λj .

Hence, we have an undirected path from 2Λ0 to Λi + Λj ; this yields an undirected path
from 2Λ0 + Λ̃ to Λ′. By the induction hypothesis on k −m0, we have an undirected path
from Λ to Λ′. □

In order to attach a direction to each edge in C(Λ), we compare XΛ′ and XΛ′′ if there is
an edge between Λ′ and Λ′′, i.e., Λ′′ = Λ′

i± or Λ′
i−,j+ or Λ′

i±,j± . To simplify the notation,
we will also denote δ = (1, 2, 2, . . . , 2, 1) ∈ Zℓ+1 if there is no confusion in the context.

For 0 ≤ i ≤ ℓ− 2 and 2 ≤ j ≤ ℓ, we define

∆i+ =
(
1, 2i, 1, 0ℓ−i−1

)
∈ Zℓ+1, ∆j− =

(
0j−1, 1, 2ℓ−j , 1

)
∈ Zℓ+1.

Then, we have
δ − ∆i+ = ∆(i+2)− . (3.2)

Lemma 3.11. Suppose Λ′ = Λi + Λ̃ ∈ P+
cl,k(Λ) for some 0 ≤ i ≤ ℓ − 2 and Λ̃ ∈ P+

cl,k−1.
Set Λ′′ := Λ′

i+. Then, Λ′′
(i+2)− = Λ′ and one of the following holds.

(1) If min(XΛ′ +∆i+ −δ) < 0, then XΛ′′ = XΛ′ +∆i+ and min(XΛ′′ +∆(i+2)− −δ) ≥ 0,
(2) If min(XΛ′ + ∆i+ − δ) ≥ 0, then

XΛ′′ = XΛ′ − ∆(i+2)− and min
(
XΛ′′ + ∆(i+2)− − δ

)
< 0.

Proof. We have proved in Lemma 3.4 that XΛ′ is the unique solution of AXt = Y t
Λ′ ,

satisfying XΛ′ ∈ Zℓ+1
≥0 and min(XΛ′ − δ) < 0. We then find

AXt
Λ′′ − AXt

Λ′ = Y t
Λ′′ − Y t

Λ′ =
(
0i, 1, 0,−1, 0ℓ−i−2

)t
= A∆t

i+ .

This gives AXt
Λ′′ = A(Xt

Λ′ + ∆t
i+). It is obvious that XΛ′ + ∆i+ ∈ Zℓ+1

≥0 . If min(XΛ′ +
∆i+ − δ) < 0, then XΛ′′ = XΛ′ + ∆i+ by the uniqueness of the solution, and min(XΛ′′ +
∆(i+2)− − δ) = min(XΛ′) ≥ 0 by (3.2).
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Suppose min(XΛ′ + ∆i+ − δ) ≥ 0. Due to min(XΛ′ − δ) < 0 and ∆i+ − δ /∈ Zℓ+1
≥0 , we

have min(XΛ′ + ∆i+ − 2δ) ≤ min(XΛ′ − δ) + max(∆i+ − δ) < 0. This implies
XΛ′′ = XΛ′ + ∆i+ − δ = XΛ′ − ∆(i+2)−

by the uniqueness of the solution, and min(XΛ′′ + ∆(i+2)− − δ) = min(XΛ′ − δ) < 0. □

For any 0 ≤ i ≤ j ≤ ℓ− 1 and 1 ≤ s ≤ t ≤ ℓ, we define two vectors in Zℓ+1 as

∆i+,j+ = ∆j+,i+ =
(
1, 2i, 1j−i, 0ℓ−j

)
, ∆s−,t− = ∆t−,s− =

(
0s, 1t−s, 2ℓ−t, 1

)
.

It turns out that δ − ∆i+,j+ = ∆(i+1)−,(j+1)− .

Lemma 3.12. Suppose Λ′ = Λi + Λj + Λ̃ ∈ P+
cl,k(Λ) for some 0 ≤ i ≤ j ≤ ℓ − 1 and

Λ̃ ∈ P+
cl,k−2. Set Λ′′ := Λ′

i+,j+. Then, Λ′′
(i+1)−,(j+1)− = Λ′ and one of the following holds.

(1) If min(XΛ′ + ∆i+,j+ − δ) < 0, then XΛ′′ = XΛ′ + ∆i+,j+ and

min
(
XΛ′′ + ∆(i+1)−,(j+1)− − δ

)
≥ 0.

(2) If min(XΛ′ + ∆i+,j+ − δ) ≥ 0, then XΛ′′ = XΛ′ − ∆(i+1)−,(j+1)− and min(XΛ′′ +
∆(i+1)−,(j+1)− − δ) < 0.

Proof. Since YΛ′′ − YΛ′ = (0i, 1,−1, 0ℓ−i−1) + (0j , 1,−1, 0ℓ−j−1) and

A
(
0i+1, 1ℓ−i−1, 1/2

)t
=
(
0i,−1, 1, 0ℓ−i−1

)t
,

we obtain

XΛ′′ −XΛ′ ∈ −
(
0i+1, 1ℓ−i−1, 1/2

)
−
(
0j+1, 1ℓ−j−1, 1/2

)
+ Zδ

= −∆(i+1)−,(j+1)− + Zδ = ∆i+,j+ + Zδ.
Then, the proof is similar to that of Lemma 3.11. □

For any 0 ≤ i, j ≤ ℓ with i ̸= 0, j ̸= ℓ with i− 1 ̸= j, we define two vectors in Zℓ+1 as

∆i−,j+ = ∆j+,i− :=


(
0i, 1j−i+1, 0ℓ−j

)
if i ≤ j,(

1, 2j , 1i−j−1, 2ℓ−i, 1
)

if i ≥ j + 2.

It gives that δ − ∆i−,j+ = ∆(j+1)−,(i−1)+ .

Lemma 3.13. Suppose Λ′ = Λi + Λj + Λ̃ ∈ P+
cl,k(Λ) for some 0 ≤ i, j ≤ ℓ satisfying i ̸= 0,

j ̸= ℓ, i − 1 ̸= j and Λ̃ ∈ P+
cl,k−2. Set Λ′′ = Λ′

i−,j+. Then, Λ′′
(j+1)−,(i−1)+ = Λ′ and one of

the following holds.
(1) If min(XΛ′ + ∆i−,j+ − δ) < 0, then XΛ′′ = XΛ′ + ∆i−,j+ and

min
(
XΛ′′ + ∆(j+1)−,(i−1)+ − δ

)
≥ 0.

(2) If min(XΛ′ + ∆i−,j+ − δ) ≥ 0, then XΛ′′ = XΛ′ − ∆(j+1)−,(i−1)+ and

min
(
XΛ′′ + ∆(j+1)−,(i−1)+ − δ

)
< 0.

Proof. Similar to the proof of Lemma 3.12, we obtain

XΛ′′ −XΛ′ ∈
(
0i, 1ℓ−i, 1/2

)
−
(
0j+1, 1ℓ−j−1, 1/2

)
+ Zδ = ∆i−,j+ + Zδ.

We omit the details. □
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One may also find the relation between XΛ′ and XΛ′′ if Λ′′ = Λ′
i− or Λ′

i+,j− or Λ′
i−,j− .

We list the corresponding lemmas below and leave the proofs to readers.

Lemma 3.14. Suppose Λ′ = Λi + Λ̃ ∈ P+
cl,k(Λ) for some 2 ≤ i ≤ ℓ and Λ̃ ∈ P+

cl,k−1. Then,
(1) XΛ′

i−
= XΛ′ + ∆i−, if min(XΛ′ + ∆i− − δ) < 0.

(2) XΛ′
i−

= XΛ′ − ∆i−2, if min(XΛ′ + ∆i− − δ) ≥ 0.

Lemma 3.15. Suppose Λ′ = Λi + Λj + Λ̃ ∈ P+
cl,k(Λ) with 1 ≤ i ≤ j ≤ ℓ, Λ̃ ∈ P+

cl,k−2.
Then,

(1) XΛ′
i−,j−

= XΛ′ + ∆i−,j−, if min(XΛ′ + ∆i−,j− − δ) < 0.
(2) XΛ′

i−,j−
= XΛ′ − ∆(i−1)+,(j−1)+, if min(XΛ′ + ∆i−,j− − δ) ≥ 0.

The following lemma is a restatement of Lemma 3.13, if we observe that Λi+,j− = Λj−,i+

and ∆i−,j+ = ∆j+,i− .

Lemma 3.16. Suppose Λ′ = Λi +Λj +Λ̃ ∈ P+
cl,k(Λ) for 0 ≤ i, j ≤ ℓ satisfying i ̸= ℓ, j ̸= 0,

j − 1 ̸= i and Λ̃ ∈ P+
cl,k−2. Then,

(1) XΛ′
i+,j−

= XΛ′ + ∆i+,j−, if min(XΛ′ + ∆i+,j− − δ) < 0.
(2) XΛ′

i+,j−
= XΛ′ − ∆(i+1)−,(j−1)+, if min(XΛ′ + ∆i+,j− − δ) ≥ 0.

For any Λ′ ∈ P+
cl,k(Λ), we set |XΛ′ | := |βΛ′ |, i.e., |XΛ′ | =

∑
i∈I xi ifXΛ′ = (x0, x1, . . . , xℓ).

According to the above lemmas, we have either |XΛ′ | > |XΛ′′ | or |XΛ′ | < |XΛ′′ | if there is
an edge between Λ′ and Λ′′. This leads to the following definition.

3.2. A connected quiver of max+(Λ). Fix Λ ∈ P+
cl,k.

Definition 3.17. We define C⃗(Λ) to be the quiver having C(Λ) as its underlying graph,
and the orientation of an edge Λ′ Λ′′ ∈ C(Λ) is given as Λ′ −→ Λ′′ if |XΛ′′ | > |XΛ′ |,
or equivalently, βΛ′′ − βΛ′ ∈ Q+.

It is clear that the choice of the orientation of Λ′ Λ′′ is always possible and unique.
We may explain the details of drawing arrows in C⃗(Λ) as follows.

Fix Λ′ ∈ P+
cl,k(Λ). We draw an arrow Λ′ ∆−→ Λ′′ if min(XΛ′ + ∆ − δ) < 0, and then

XΛ′′ = XΛ′ + ∆. According to the lemmas we have given in the previous subsection, there
are only 5 choices for ∆, as listed below.

(1) For 0 ≤ i ≤ ℓ− 2 with ⟨α∨
i ,Λ′⟩ ≥ 1, we set Λ′′ := Λ′

i+ and

∆ := ∆i+ =
(
1, 2i, 1, 0ℓ−i−1

)
.

(2) For 2 ≤ i ≤ ℓ with ⟨α∨
i ,Λ′⟩ ≥ 1, we set Λ′′ := Λ′

i− and

∆ := ∆i− =
(
0i−1, 1, 2ℓ−i, 1

)
.

(3) For 0 ≤ i ≤ j ≤ ℓ − 1 with i + 1 ̸= j, ⟨α∨
i ,Λ′⟩ ≥ 1, ⟨α∨

j ,Λ′⟩ ≥ 1, we set
Λ′′ := Λ′

i+,j+ = Λ′
j+,i+ and

∆ := ∆i+,j+ = ∆j+,i+ =
(
1, 2i, 1j−i, 0ℓ−j

)
.

If i+ 1 = j, then Λ′
i+,(i+1)+ = Λ′

i+ and this coincides with Case (1).
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(4) For 1 ≤ i ≤ j ≤ ℓ with i+ 1 ̸= j, ⟨α∨
i ,Λ′⟩ ≥ 1, ⟨α∨

j ,Λ′⟩ ≥ 1, we set Λ′′ := Λ′
i−,j− =

Λ′
j−,i− and

∆ := ∆i−,j− = ∆j−,i− =
(
0i, 1j−i, 2ℓ−j , 1

)
.

If i+ 1 = j, then Λ′
(j−1)−,j− = Λ′

j− and this coincides with Case (2).
(5) For 0 ≤ i, j ≤ ℓ with i ̸= 0, j ̸= ℓ, i − 1 ̸= j, ⟨α∨

i ,Λ′⟩ ≥ 1, ⟨α∨
j ,Λ′⟩ ≥ 1, we set

Λ′′ := Λ′
i−,j+ = Λ′

j+,i− and

∆ := ∆i−,j+ = ∆j+,i− =


(
0i, 1j−i+1, 0ℓ−j

)
if i ≤ j,(

1, 2j , 1i−j−1, 2ℓ−i, 1
)

if i ≥ j + 2.

We remind the reader that it is still needed to check min(XΛ′ + ∆ − δ) in each case.

Example 3.18. Set k = 2, ℓ = 4. The quiver C⃗(2Λ2) associated with XΛ′ is displayed as

2Λ0

2Λ1
∆1−,1+

//

∆1−,1−

OO

Λ0 + Λ2

∆2−

cc

2Λ2
∆2−,2+

//

##

;;

∆2+,2+

��

∆2−,2−

OO

Λ1 + Λ3
∆1−,3+

//

∆1+,3+

��

∆1−,3−

OOcc

{{

Λ0 + Λ4

∆4−

dd

∆0+

zz
2Λ3

∆3−,3+
//

∆3+,3+

��

Λ2 + Λ4

∆2+

{{
2Λ4

⇐⇒

(0, 2, 42, 2)

(02, 22, 1)
∆1−,1+

//

∆1−,1−

OO

(0, 1, 22, 1)

∆2−

ee

(05)
∆2−,2+

//

%%

99

∆2+,2+

��

∆2−,2−

OO

(02, 1, 02)
∆1−,3+

//

∆1+,3+

��

∆1−,3−

OOee

yy

(0, 1, 2, 1, 0)

∆4−

ee

∆0+

yy
(1, 22, 02)

∆3−,3+
//

∆3+,3+

��

(1, 22, 1, 0)

∆2+

yy
(2, 42, 2, 0)

.

Besides, the quiver C⃗(Λ1 + Λ2) associated with XΛ′ is displayed as

Λ0 + Λ1

Λ1 + Λ2

%%

∆1−,2+
//

∆1+

��

∆2−

OO

Λ0 + Λ3

∆3−

ee

yy

∆0+,3+

��
Λ2 + Λ3

∆2−,3+
//

∆2+

��

Λ1 + Λ4

∆1+

yy
Λ3 + Λ4

⇐⇒

(0, 1, 22, 1)

(05)

&&

∆1−,2+
//

∆1+

��

∆2−

OO

(0, 12, 02)

∆3−

ff

xx

∆0+,3+

��
(1, 2, 1, 02)

∆2−,3+
//

∆2+

��

(1, 22, 1, 0)

∆1+

xx
(2, 4, 3, 1, 0)

.
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Recall that ∆+
re = {β +mδ | m ≥ 0, β ∈ ∆+

fin or δ − ∆+
fin} with

∆+
fin = {2ϵi | 1 ≤ i ≤ ℓ} ⊔ {ϵi ± ϵj | 1 ≤ i < j ≤ ℓ}.

We call ∆+
re := {β ∈ ∆+

re | β ∈ ∆+
fin or δ−∆+

fin} the first layer of ∆+
re. If an arrow Λ′ ∆−→ Λ′′

defined in the above (1)–(5) exists (i.e., min(XΛ′ + ∆ − δ) < 0), then ∆ corresponds to a
certain element in ∆+

re. We then observe that all arrows in C⃗(Λ) are labeled by elements
in ∆+

re. Let us check it case by case.
(1) ∆ = ∆i+ = (1, 2i, 1, 0ℓ−i−1) = δ − (ϵi+1 + ϵi+2) for 0 ≤ i ≤ ℓ− 2. This gives

δ − {ϵi + ϵi+1 | 1 ≤ i ≤ ℓ− 1} ⊆ ∆+
re.

(2) ∆ = ∆i− = (0i−1, 1, 2ℓ−i, 1) = ϵi−1 + ϵi for 2 ≤ i ≤ ℓ. This gives

{ϵi + ϵi+1 | 1 ≤ i ≤ ℓ− 1} ⊆ ∆+
re.

(3) ∆ = ∆i+,j+ = (1, 2i, 1j−i, 0ℓ−j) for 0 ≤ i ≤ j ≤ ℓ− 1 with i+ 1 ̸= j. This gives

δ − {ϵi + ϵj | 1 ≤ i ≤ j ≤ ℓ− 1, i+ 1 ̸= j} ⊆ ∆+
re.

(4) ∆ = ∆i−,j− = (0i, 1j−i, 2ℓ−j , 1) for 1 ≤ i ≤ j ≤ ℓ with i+ 1 ̸= j. This gives

{ϵi + ϵj | 1 ≤ i ≤ j ≤ ℓ− 1, i+ 1 ̸= j} ⊆ ∆+
re.

(5) For 0 ≤ i, j ≤ ℓ with i ̸= 0, j ̸= ℓ, i− 1 ̸= j,

∆ = ∆i−,j+ =


(
0i, 1j−i+1, 0ℓ−j

)
= ϵi − ϵj+1 if i ≤ j,(

1, 2j , 1i−j−1, 2ℓ−i, 1
)

= δ − (ϵj+1 − ϵi) if i ≥ j + 2.

This gives

{ϵi − ϵj , δ − (ϵi − ϵj) | 1 ≤ i < j ≤ ℓ− 1} ⊆ ∆+
re.

Remark 3.19. In type A(1)
ℓ , we have ∆+

fin = {ϵi − ϵj | 1 ≤ i < j ≤ ℓ+ 1} and

∆+
re = {ϵi − ϵj , δ − (ϵi − ϵj) | 1 ≤ i < j ≤ ℓ+ 1}.

Elements in ∆+
re label all arrows in C⃗(Λ) of type A(1)

ℓ . More precisely, in [15, Section 3],
we draw an arrow

Λ′ = Λi + Λj + Λ̃ ∆i,j−−→ Λ′′ = Λi−1 + Λj+1 + Λ̃ ∈ C⃗(Λ)

if i− 1 ̸≡ℓ+1 j and min(XΛ′ + ∆i,j − δ) < 0. Under this setting, δ = α0 + α1 + · · · + αℓ =
(1, 1, . . . , 1) and XΛ′′ = XΛ′ + ∆i,j with

∆i,j :=


(
0i, 1j−i+1, 0ℓ−j

)
= ϵi − ϵj+1 if 0 < i ≤ j ≤ ℓ,(

1j+1, 0ℓ−j
)

= δ − (ϵj+1 − ϵℓ+1) if 0 = i ≤ j ≤ ℓ− 1,(
1j+1, 0i−j−1, 1ℓ−i+1

)
= δ − (ϵj+1 − ϵi) if 0 ≤ j < i ≤ ℓ.

Lemma 3.20. Suppose Λ ∈ P+
cl,k and Λ ̸= Λ′ ∈ P+

cl,k(Λ). Then, there is a directed path
from Λ to Λ′ in C⃗(Λ).
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Proof. We prove the assertion by induction on |XΛ′ |. More precisely, we may construct
a certain Λ′′ such that |XΛ′′ | < |XΛ′ |. Using a suitable lemma given in the previous
subsection, we obtain a directed path displayed as Λ −→ · · · −→ Λ′′ −→ Λ′.

Write Λ′ =
∑ℓ

i=0miΛi and XΛ′ = (x0, x1, . . . , xℓ). Since Λ′ ̸= Λ, we have |XΛ′ | > 0.
Since min(XΛ′ − δ) < 0, we have minXΛ′ ∈ {0, 1}. If moreover, minXΛ′ = 1, we have
xi = 1 for some 1 ≤ i ≤ ℓ− 1. We divide the proof into the following 4 cases.

Case 1. Suppose that there are some 0 ≤ i, j ≤ ℓ satisfying i + 1 < j, xi = xj = 0,
xi+1 = xi+2 = · · · = xj−1 ≥ 1. Then, by (3.1), we have〈

α∨
i ,Λ − Λ′〉 =

〈
α∨

i , βΛ′
〉
< 0,

〈
α∨

j ,Λ − Λ′
〉

=
〈
α∨

j , βΛ′

〉
< 0.

This implies that mi,mj ≥ 1 and Λ′ = Λi + Λj + Λ̃ ∈ P+
cl,k(Λ) for some Λ̃ ∈ P+

cl,k−2.
Since i < j − 1, Λ′

j−,i+ is well-defined and ∆j−,i+ = (1, 2i, 1j−i−1, 2ℓ−j , 1). Since xi+1 =
xi+2 = · · · = xj−1 ≥ 1, we have min(XΛ′ + ∆j−,i+ − δ) ≥ 0. By Lemma 3.13, we have
Λ′

j−,i+ −→ Λ′ with

XΛ′ = XΛ′
j−,i+

− ∆j−,i+ + δ = XΛ′
j−,i+

+ ∆(i+1)−,(j−1)+ .

In this case, we have Λ′′ := Λ′
j−,i+ .

Case 2. Suppose xi = 0 for some 0 ≤ i ≤ ℓ− 1 and xt ≥ 1 for all i+ 1 ≤ t ≤ ℓ.

i = ℓ− 1. Then, ⟨α∨
ℓ−1, βΛ′⟩ ≤ −2xℓ ≤ −2 and hence, mℓ−1 ≥ 2. We may write Λ′ =

2Λℓ−1 + Λ̃ for some Λ̃ ∈ P+
cl,k−2. Using min(XΛ′ + ∆i+,i+ − δ) ≥ 0, we obtain an arrow

from Λ′′ := Λ′
(ℓ−1)+,(ℓ−1)+ to Λ′ by Lemma 3.12.

i = ℓ− 2. Then, ⟨α∨
ℓ−2, βΛ′⟩ ≤ −1 and mℓ−2 ≥ 1 such that Λ′

i+ is well-defined. Using
min(XΛ′ + ∆i+ − δ) ≥ 0, we obtain an arrow from Λ′′ := Λ′

i+ to Λ′ by Lemma 3.11.

i ≤ ℓ− 3 and xℓ−1 > 2xℓ. Then, ⟨α∨
i , βΛ′⟩ < 0 and ⟨α∨

ℓ , βΛ′⟩ = 2xℓ − xℓ−1 < 0. It gives
mi,mℓ > 0 and Λℓ−,i+ is well-defined. We have Λ′′ := Λ′

ℓ−,i+ similar to Case 1.

i ≤ ℓ− 3, xj ≤ xj+1 ≤ · · · ≤ xℓ−1 ≤ 2xℓ and xj−1 > xj for some i+ 2 ≤ j ≤ ℓ− 1. Then,
⟨α∨

ℓ−1, βΛ′⟩ = (xℓ−1 − xℓ−2) − (2xℓ − xℓ−1) < 0 if j = ℓ− 1, and ⟨α∨
j , βΛ′⟩ = (xj − xj−1) −

(xj+1 − xj) < 0 if j < ℓ− 1; in both cases, we have mj > 0. We also have mi > 0 due to
⟨α∨

i , βΛ′⟩ < 0. Thus, Λ′
j−,i+ is well-defined and we may choose Λ′′ := Λ′

j−,i+ .

i ≤ ℓ− 3 and xi+1 ≤ xi+2 ≤ · · · ≤ xℓ−1 ≤ 2xℓ.
• If xi+1 ≥ 2, then ⟨α∨

i , βΛ′⟩ ≤ −2 and Λ′
i+,i+ is well-defined. We set Λ′′ := Λ′

i+,i+

due to min(XΛ′ + ∆i+,i+ − δ) ≥ 0.
• If xi+1 = xi+2 = · · · = xj = 1 and xj+1 ≥ 2 for some i + 2 ≤ j ≤ ℓ − 1, then

⟨α∨
i , βΛ′⟩ < 0 and ⟨α∨

j , βΛ′⟩ < 0. It gives mi,mj > 0, such that Λ′′ := Λ′
j−,i+ is

well-defined.
• If xi+1 = xi+2 = · · · = xℓ = 1, then ⟨α∨

ℓ−1, βΛ′⟩ = −1 and mℓ−1 ≥ 1. It turns out
that Λ′′ := Λ′

(ℓ−1)−,i+ .

Case 3. Suppose xi = 0 for some 1 ≤ i ≤ ℓ and xt ≥ 1 for all 0 ≤ t ≤ i − 1. One may
check this case using a similar method as in Case 2.
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Case 4. Suppose minXΛ′ = 1 (i.e., xi ̸= 0 for all 0 ≤ i ≤ ℓ). Since min(XΛ′ − δ) < 0,
there must exist xi = 1 for some 1 ≤ i ≤ ℓ − 1. We denote by i (resp., j) the minimal
(resp., maximal) number in {1, 2, . . . , ℓ−1} satisfying xi = 1 (resp., xj = 1). If i = j, then
⟨α∨

i , βΛ′⟩ ≤ −2 and mi ≥ 2. If i < j, then ⟨α∨
i , βΛ′⟩ ≤ −1 and ⟨α∨

j , βΛ′⟩ ≤ −1, such that
mi,mj ≥ 1. In both cases, Λ′′ := Λ′

i−,j+ is well-defined and min(XΛ′ + ∆i−,j+ − δ) ≥ 0.

We have completed the proof of Lemma 3.20. □

We have a natural embedding of quivers from lower level to higher level as follows. We
omit the proof because it is easy to verify the assertion by the definition of arrows.

Corollary 3.21. Suppose Λ = Λ + Λ̃ with Λ ∈ P+
cl,k,Λ ∈ P+

cl,k′ and Λ̃ ∈ P+
cl,k−k′. There is

a directed path
Λ(1) ∆(1)

−−−→ Λ(2) ∆(2)
−−−→ . . .

∆(m−1)
−−−−−→ Λ(m) ∈ C⃗(Λ)

if and only if there is a directed path

Λ(1) + Λ̃ ∆(1)
−−−→ Λ(2) + Λ̃ ∆(2)

−−−→ . . .
∆(m−1)
−−−−−→ Λ(m) + Λ̃ ∈ C⃗(Λ).

We are able to show that our quiver C⃗(Λ) serves the same role as that for type A(1)
ℓ

in [15].

Theorem 3.22. Suppose Λ′ → Λ′′ ∈ C⃗(Λ) and s := |XΛ′′ | − |XΛ′ |. There is an element
i = (i1, i2, . . . , is) ∈ Is and a sequence βΛ′ = β0, β1, . . . , βs = βΛ′′ ∈ Q+ such that βt =
βt−1 + αit and ⟨α∨

it
,Λ − βt−1⟩ ≥ 1, for 1 ≤ t ≤ s.

Proof. We divide the proof into the following 5 cases.

Case 1: Λ′′ = Λ′
i+. By Definition 3.17, XΛ′′ = XΛ′ + ∆i+ for some 0 ≤ i ≤ ℓ − 2. This

gives s = 2(i+ 1) and βΛ′′ = βΛ′ + α0 + 2α1 + · · · + 2αi + αi+1. We set

i =
{

(0, 1) if i = 0,
(i, i− 1, . . . , 2, 1, 0, 1, 2, . . . , i− 1, i+ 1, i) if i ̸= 0.

We obviously obtain βt = βt−1 + αit for 1 ≤ t ≤ s. By (3.1), we have ⟨α∨
it
,Λ − βΛ′⟩ =

⟨α∨
it
,Λ′⟩. We have ⟨α∨

i1 ,Λ −βΛ′⟩ = ⟨α∨
i ,Λ′⟩ ≥ 1 since Λ′ is of the form Λi + Λ̃′ in this case.

For 2 ≤ t ≤ s, we have

〈
α∨

it
,Λ − βt−1

〉
=
〈
α∨

it
,Λ −

(
β0 +

t−1∑
j=1

αij

)〉

=
〈
α∨

it
,Λ′ −

t−1∑
j=1

αij

〉
≥ −

〈
α∨

it
,

t−1∑
j=1

αij

〉
,

which implies ⟨α∨
it
,Λ − βt−1⟩ ≥ 2 if i = 0, and ⟨α∨

it
,Λ − βt−1⟩ ≥ 1 if i ̸= 0.

Case 2: Λ′′ = Λ′
i−. In this case, XΛ′′ = XΛ′ +∆i− for some 2 ≤ i ≤ ℓ. We have s = 2(ℓ−i)

and βΛ′′ = βΛ′ + αi−1 + 2(αi + · · · + αℓ−1) + αℓ. Set

i =
{

(i, i+ 1, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , i+ 3, i+ 2, i− 1, i) if i ̸= ℓ,

(ℓ, ℓ− 1) if i = ℓ.

We then omit the details since they are quite similar to the Case 1.
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Case 3: Λ′′ = Λ′
i−,j+. Then, XΛ′′ = XΛ′ + ∆i−,j+ for some 0 ≤ i, j ≤ ℓ with i ̸= 0, j ̸= ℓ,

i−1 ̸= j. If i ≤ j, then s = j−i+1 and βΛ′′ = βΛ′ +αi +· · ·+αj , we set i = (i, i+1, . . . , j).
If i ≥ j + 2, then s = 2ℓ+ j − i+ 1 and βΛ′′ = βΛ′ + α0 + 2(α1 + · · · + αj) + (αj+1 + · · · +
αi−1) + 2(αi + · · · + αℓ−1) + αℓ, we set

i =
{

(0, 1, . . . , i− 1, i, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , i+ 1, i) if i ̸= ℓ,

(0, 1, . . . , ℓ) if i = ℓ.

for j = 0, and i = (j, j − 1, . . . , 1, 0, 1, . . . , j − 1, j + 1, j, j + 2, . . . , i − 1, i, . . . , ℓ − 1, ℓ,
ℓ− 1, . . . , i+ 1, i) for j ≥ 1. In both cases, we have βt = βt−1 + αit for 1 ≤ t ≤ s. Similar
to Case 1, we have ⟨α∨

i1 ,Λ − βΛ′⟩ = ⟨α∨
i ,Λ′⟩ or ⟨α∨

j ,Λ′⟩ ≥ 1. For 2 ≤ t ≤ s, we have

〈
α∨

it
,Λ − βt−1

〉
=
〈
α∨

it
,Λ′ −

t−1∑
r=1

αir

〉
≥ −

〈
α∨

it
,

t−1∑
r=1

αir

〉
,

it gives ⟨α∨
it
,Λ − βt−1⟩ ≥ 2 if i = ℓ, j = 0, and ⟨α∨

it
,Λ − βt−1⟩ ≥ 1 otherwise.

Case 4: Λ′′ = Λ′
i+,j+. Then, XΛ′′ = XΛ′ + ∆i+,j+ for some 0 ≤ i ≤ j ≤ ℓ− 1. The case of

j = i+ 1 has been proven in Case 1 since ∆i+,(i+1)+ = ∆i+ .

Suppose i = j. We have s = 2i+ 1 and βΛ′′ = βΛ′ + α0 + 2(α1 + · · · + αi), and we set

i =
{

(0) if i = 0,
(i, i− 1, . . . , 1, 0, 1, . . . , i) if i ̸= 0.

It gives ⟨α∨
i1 ,Λ − βΛ′⟩ = ⟨α∨

i ,Λ′⟩ ≥ 2 by our assumption. For 2 ≤ t ≤ s, we obtain
⟨α∨

it
,Λ − βt−1⟩ ≥ −⟨α∨

it
,
∑t−1

r=1 αir ⟩ = 1 if t ̸= s, and ⟨α∨
it
,Λ − βt−1⟩ = ⟨α∨

i ,Λ′⟩ ≥ 2 if t = s.
In fact, set t = s ≥ 2, we have〈

α∨
is
,Λ − βs−1

〉
=
〈
α∨

i ,Λ −
(
β0 +

s−1∑
r=1

αir

)〉
=
〈
α∨

i ,Λ′ −
s−1∑
r=1

αir

〉
,

combining this with ⟨α∨
1 ,
∑s−1

r=1 αir ⟩ = a11 + a10 = 0 if i = 1 and ⟨α∨
i ,
∑s−1

r=1 αir ⟩ = aii +
2ai(i−1) = 0 if 2 ≤ i ≤ ℓ− 1, we obtain the result.

Suppose i+ 2 ≥ j. We have a path
Λ′ −→ Λ′

i+ −→
(
Λ′

i+
)

(i+2)−,j+ = Λ′′.

Then, the statement holds by composing the results in Case 1 and Case 3.

Case 5: Λ′′ = Λ′
i−,j−. Then, XΛ′′ +∆i−,j− for some 1 ≤ i ≤ j ≤ ℓ, and the case of i = j−1

has been proven in Case 1 due to ∆(j−1)−,j− = ∆j− . If i = j, then s = 2(ℓ − j) + 1 and
βΛ′′ = βΛ′ + 2(αj + · · · + αℓ−1) + αℓ, we set

i =
{

(ℓ) if j = ℓ,

(j, j + 1, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , j) if j < ℓ.

One may show the statement using a similar analysis with Case 1. If i ≤ j − 2, there is a
path

Λ′ −→ Λ′
j− −→

(
Λ′

j−
)

(i)−,(j−2)+ = Λ′′.

Then, the statement follows from the results in Case 2 and 3.

We have completed the proof of Theorem 3.22. □
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3.3. Comparison with previous level one results. We may understand the construc-
tion of [13, 22] in our broader setting as follows.

In [13, Proposition 5.1], it was shown that

max+(Λ0) =
{

Λ0 +ϖi − i

2δ
∣∣∣∣ 0 ≤ i ≤ ℓ, i ∈ 2Z≥0

}
,

where ϖ0 := 0 and

ϖi := α1 + 2α2 + · · · + (i− 1)αi−1 + i

(
αi + αi+1 + · · · + αℓ−1 + i

2αℓ

)
.

We remark that this is the solution of AXt = Y t for Y = hub(Λi) − hub(Λ0) in the sense
of Lemma 3.4. Substituting this into our setting, we have

βΛ0
Λi

= i

2δ −ϖi.

This gives an arrow Λi −→ Λi+2 in C⃗(Λ0) because(
i+ 2

2 δ −ϖi+2

)
−
(
i

2δ −ϖi

)
= αi+1 + 2αi+2 + · · · + 2αℓ−1 + αℓ ∈ Q+.

Thus, the quiver C⃗(Λ0) is displayed as

Λ0 // Λ2 // Λ4 // . . . // Λ2⌊ℓ/2⌋ . (3.3)

In [22, Proposition 2.8], the authors showed that, for 0 ≤ s ≤ ℓ,

max+(Λs) =
{

Λs + ξs,±i − i

2δ
∣∣∣∣ 0 ≤ i ≤ ℓ, i ∈ 2Z≥0

}
,

where ξ0,i = ϖi, and

i

2δ − ξs,i = i

2α0 + i
s∑

j=1
αj + (i− 1)αs+1 + (i− 2)αs+2 + · · · + αs+i−1,

i

2δ − ξs,−i = αs−i+1 + 2αs−i+2 + · · · + (i− 1)αs−1 + i
ℓ−1∑
j=s

αj + i

2αℓ.

This leads to the identities

βΛs
Λs+i

= i

2δ − ξs,i and βΛs
Λs−i

= i

2δ − ξs,−i.

Moreover, if we multiply A with coefficient vectors of βΛs
Λs+i

or βΛs
Λs−i

, we always obtain a
vector with exactly one 1 and one −1 while all other entries are 0. One may check that(

i+ 2
2 δ − ξs,i+2

)
−
(
i

2δ − ξs,i

)
= α0 + 2

s+i∑
j=1

αj + αs+i+1 ∈ Q+,

(
i+ 2

2 δ − ξs,−i−2

)
−
(
i

2δ − ξs,−i

)
= αs−i−1 + 2

ℓ−1∑
j=s−i

αj + αℓ ∈ Q+.
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Hence, there are arrows Λs+i −→ Λs+i+2 and Λs−i −→ Λs−i−2 in C⃗(Λs). We conclude
that the quiver C⃗(Λs) is displayed as

Λs−2 // · · · // Λ2 //// Λ0

Λs

77

''
Λs+2 // Λs+4 // · · · // Λ2⌊ℓ/2⌋

(3.4)

if s is even, and

Λs−2 // · · · // Λ3 //// Λ1

Λs

77

''
Λs+2 // Λs+4 // · · · // Λ2⌊(ℓ−1)/2⌋+1

(3.5)

if s is odd.

4. Proof strategy for the Main Theorem A

In this section, we review some well-known features in the representation theory of
RΛ(β) in type C

(1)
ℓ . We recall the results from [13] and [22] for level one cases. We

then focus on the case k ≥ 2 and prove our main theorem given in the introduction: we
prove (1) of Main Theorem A in Section 5; we give the proofs for (2)(a) and (2)(b) of Main
Theorem A in Section 6 and Section 7 respectively; we prove (2)(c) of Main Theorem A in
the remaining sections. We also introduce some reduction lemmas to reduce the problem
on RΛ(β) to cases with small levels of Λ and small heights of β, similar to the strategy
in [15] for type A(1)

ℓ . These reduction methods play a crucial role in the proof process.
Let us start with the fact that RΛ(β) is a symmetric algebra (see [50, Appendix]). It

gives that the representation type of RΛ(β) is preserved under derived equivalence, see [38,
46]. Then, the problem we consider relies on figuring out when RΛ(β) and RΛ(β′) are
derived equivalent. By Chuang and Rouquier’s result [21], we know that RΛ(β) is derived
equivalent to RΛ(β′) if Λ − β and Λ − β′ lie in the same W -orbit of P (Λ). Furthermore,
by (2.1) and Proposition 3.6, the representatives of W -orbits of P (Λ) with Λ ∈ P+

cl,k

are given by {Λ − βΛ′ − mδ | Λ′ ∈ P+
cl,k(Λ),m ∈ Z≥0}, where P+

cl,k(Λ) is defined at the
beginning of Section 3. All in all, it suffices to consider the representation type of RΛ(γ)
for γ ∈ O(Λ), where

O(Λ) :=
{
βΛ′ +mδ

∣∣∣Λ′ ∈ P+
cl,k(Λ), m ∈ Z≥0

}
. (4.1)

Remark 4.1. If Λ′ = Λ, i.e., βΛ′ = 0, then RΛ(βΛ) ∼= k is a simple algebra.

4.1. Results in level one cases. We have given the quiver C⃗(Λs) for 0 ≤ s ≤ ℓ in
the previous section, see (3.3), (3.4), (3.5). Then, the main results of [13, 22] can be
summarized as follows.

Theorem 4.2. Set Λs ∈ P+
cl,1 with 0 ≤ s ≤ ℓ and Λ′ ∈ P+

cl,1(Λs). Then, the cyclotomic
KLR algebra RΛs(βΛ′ + mδ) is representation-finite if m = 0 and Λ′ ∈ {Λs,Λs−2,Λs+2},
tame if m = 1, ℓ = 2 and Λ′ = Λs, wild otherwise.
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It implies that RΛs(βΛ′ + mδ) is wild for all m ≥ 1 if βΛ′ ̸= 0, and for all m ≥ 2
if βΛ′ = 0. Then, the representation type of RΛs(βΛ′) and RΛs(δ) are determined as in
Theorem 4.2.

4.2. Reduction methods. In [15, Section 5], level lowering argument and the quiver
C⃗(Λ) are used to show the wildness of RΛ(βΛ

Λ′ +mδ) in type A(1)
ℓ , for m ≥ 1+δΛ,Λ′ , where

δΛ,Λ′ is the Kronecker delta. Similarly, we have

Lemma 4.3. Suppose Λ = Λ + Λ̃ for some Λ ∈ P+
cl,k, Λ ∈ P+

cl,k′ and Λ̃ ∈ P+
cl,k−k′.

Then, the representation-infiniteness (resp., wildness) of RΛ(γ) implies the representation-
infiniteness (resp., wildness) of RΛ(γ).

Proof. This is similar to the proof of [15, Lemma 4.1]. □

Lemma 4.4. Suppose Λ′ −→ Λ′′ in C⃗(Λ). Then, the representation-infiniteness (resp.,
wildness) of RΛ(βΛ′ + mδ) implies the representation-infiniteness (resp., wildness) of
RΛ(βΛ′′ +mδ), for any m ∈ Z≥0.

Proof. This is similar to the proof of [15, Lemma 4.2], by using Theorem 3.22, [28, Propo-
sition 2.3] and [33, Theorem 5.2]. □

Corollary 4.5. If RΛ(βΛ′ + mδ) for Λ′ ∈ C⃗(Λ) and m ∈ Z≥0 is representation-infinite
(resp., wild) and there is a directed path from Λ′ to Λ′′ in C⃗(Λ), then RΛ(βΛ′′ + mδ) is
also representation-infinite (resp., wild).

5. Proof of part (1) of Main Theorem A

We are able to show the following result.

Theorem 5.1. Suppose Λ ∈ P+
cl,k with k ≥ 2. Then, RΛ(βΛ′ +mδ) is wild for any m ≥ 1

and Λ′ ∈ P+
cl,k(Λ).

Proof. Set Λ = Λs + Λ̃ with 0 ≤ s ≤ ℓ. If m ≥ 2, then RΛs(mδ) is wild by Theorem 4.2,
and so is RΛ(mδ) by Lemma 4.3. Since there exists a directed path from Λ to any
Λ ̸= Λ′ ∈ P+

cl,k(Λ), we deduce that RΛ(βΛ′ +mδ) is wild for any m ≥ 2 and Λ′ ∈ P+
cl,k(Λ),

by Corollary 4.5. If m = 1 and ℓ ≥ 3, then RΛs(δ) is wild following Theorem 4.2, which
implies that RΛ(βΛ′ + δ) is wild for any Λ′ ∈ P+

cl,k(Λ).
Suppose m = 1 and ℓ = 2. Then, δ = α0 + 2α1 + α2. We have to consider the cases

Λ ∈ {2Λ0, 2Λ1, 2Λ2,Λ0 + Λ1,Λ1 + Λ2,Λ0 + Λ2}.

Case 1. Set A := eR2Λ0(δ)e with e = e(0121). Then, dimq A = 1 + 2q2 + 2q4 + 2q6 + q8.
We show that A has a basis {xa

2e, x
a
2x4e | 0 ≤ a ≤ 3}. First, we have x2

1e = x2
1e

′ = 0, where
e′ := e(ν ′) = e(0112). Since e(s1ν) = e(s1ν

′) = e(s2ν) = 0, we have ψ1e = ψ2e = ψ1e
′ = 0

and hence ψ2
1e = ψ2

2e = ψ2
1e

′ = 0. This implies x1e = x2
2e, x3e = x2

2e, so that we may
replace x1e and x3e with x2

2e, and x1e
′ = x2

2e
′. Let f = x1 − x2

2 and ∂2f = s2f−f
x2−x3

. Then
Lemma 2.17 implies (∂2f)e′ = 0 since ν ′

2 = ν ′
3 and fe′ = 0. Hence, x3e

′ = −x2e
′. This

implies that
x4ψ3ψ2ψ3e = x4ψ3e

′ψ2ψ3 = ψ3x3e
′ψ2ψ3 = −x2ψ3ψ2ψ3e.

On the other hand, we have ψ3ψ2ψ3e = (ψ3ψ2ψ3 − ψ2ψ3ψ2)e = (x2 + x4)e. Hence,
x4(x2 + x4)e = −x2(x2 + x4)e,
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and we may replace x2
4e with −(x2

2 + 2x2x4)e. Moreover, if eψwe ̸= 0, then we can
choose ψw = 1 or ψw = ψ2ψ3ψ2. The latter one can not happen since ψ2e = 0. Therefore,
we obtain the required basis following the graded dimension. Further, we have a surjective
algebra homomorphism from A to B := k[X,Y ]/(X3, Y 2, X2Y ) sending x2 and x2 +x4 to
X and Y , respectively. Since B is a wild local algebra by Proposition 2.11, A is also wild.

Case 2. Set A := (e1 + e2)R2Λ1(δ)(e1 + e2) with e1 = e(1210) and e2 = e(1201). We have

dimq e1Ae1 = dimq e2Ae2 = 1 + 2q2 + 2q4 + 2q6 + q8,

dimq e1Ae2 = dimq e2Ae1 = q2 + 2q4 + q6.

Then, A is wild by Lemma 2.15.

Case 3. Set A := (e1 + e2)RΛ0+Λ1(δ)(e1 + e2) with e1 = e(0121) and e2 = e(1201). Then,

dimq e1Ae1 = 1 + 2q2 + 3q4 + 2q6 + q8,

dimq e2Ae2 = 1 + q2 + 2q4 + q6 + q8,

dimq e1Ae2 = dimq e2Ae1 = q2 + q4 + q6.

Then, A is wild by Lemma 2.15.

Case 4. Set A := eRΛ0+Λ2(δ)e with e = e(2101). We obtain

dimq eAe = 1 + 3q2 + 4q4 + 3q6 + q8.

Then, A is wild by Lemma 2.12.

In the above 4 cases, RΛ(δ) is wild since we find an idempotent truncation of RΛ(δ)
being wild. Using Proposition 2.4, we conclude that all the remaining cases are wild. □

Combining with the bijection between P+
cl,k(Λ) and max+(Λ) as we mentioned in Propo-

sition 3.6, we conclude that RΛ(β) is wild if Λ − β is not a maximal dominant weight.
This gives a proof of Main Theorem A(1). Now, in the case of k ≥ 2, we only need to
determine the representation type of RΛ(βΛ′) for Λ′ ∈ P+

cl,k(Λ). This will be accomplished
in the following sections.

6. Proof of the second part–finite representation type

In the Case (f1), RΛ(β) ∼= k[X]/(Xma). For the first case in (f2), we have e1 = e(01) = 1
by e2 = e(10) = x

⟨α1,m0Λ0⟩
1 e(10) = 0, and ψ = ψe2 = e1ψ = 0, (x2

2 − x1)e1 = ψ2e1 = 0,
so that RΛ(β) ∼= k[X]/(X2m0). For the second case in (f2), we have x1 = 0 and that
P1 = ⟨e1, ψe1, x2e1, ψ

2e1⟩, P2 = ⟨e2, ψe2, ψ
2e2⟩ are indecomposable projective RΛ(β)-

modules. Then, we see that RΛ(β) is a Brauer tree algebra whose Brauer tree is given
as

2 ,

which is of finite representation type. By symmetry, we have the results for the Case (f3).
The Case (f4) is treated in [15, Proposition 6.8] and it is also a Brauer tree algebra. If
RΛ(β) is derived equivalent to this algebra, we recall that RΛ(β) is a cellular algebra when
char k ̸= 2 by [29, Theorem A] because we choose a special value for the parameter t here
and Morita invariance of the cellularity holds when char k ̸= 2. Thus, the Brauer tree is
the straight line with b − a + 2 vertices without an exceptional vertex. Hence, RΛ(β) is
Morita equivalent to this algebra when char k ̸= 2 or RΛ(β) is a basic algebra.
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The remaining two cases follow from [13, Lemma 3.3(1)] and [22, Proposition 4.1,
Theorem 4.4]: in the Case (f5), RΛ(β) ∼= RΛa(βΛa+2). It is the Brauer tree algebra whose
Brauer tree is the straight line with a + 2 vertices without an exceptional vertex, and in
the Case (f6), RΛ(β) ∼= RΛb(βΛb−2), which is the Brauer tree algebra whose Brauer tree is
the straight line with ℓ− b+ 2 vertices without exceptional vertex.

7. Proof of the second part–tame representation type

In this section, we will omit most calculations to make this paper shorter, and one may
refer to the arXiv version [9] for more details. Before starting the proof for the tame cases,
we consider A = RtΛℓ−1+Λℓ(αℓ−1 + αℓ), for t ≥ 2. Define

e1 = e(ℓ− 1, ℓ), e2 = e(ℓ, ℓ− 1).
The graded dimensions are given as follows.

dimq e1Ae1 = 1 + q2 + 2
t−1∑
i=2

q2i + q2t + q2t+2,

dimq e2Ae2 =
t+1∑
i=0

q2i,

dimq e1Ae2 = dimq e2Ae1 =
t∑

i=1
q2i.

In particular, dimA = 5t+ 2. Then, A is generated by e1, e2, ψ, x1, x2 such that

e1Ae1 =
〈
xa

1x
b
2e1

∣∣∣ 0 ≤ a ≤ t− 1, 0 ≤ b ≤ 1
〉
, e2Ae2 =

〈
xb

2e2
∣∣∣ 0 ≤ b ≤ t+ 1

〉
e1Ae2 =

〈
ψxb

2e2
∣∣∣ 0 ≤ b ≤ t− 1

〉
, e2Ae1 = ⟨ψxa

1e1 | 0 ≤ a ≤ t− 1⟩.

If we set
α = x1e1, µ = e1ψe2, ν = e2ψe1, β = x2e2.

Then
αt = xt

1e1 = 0, βt+2 = xt+2
2 e2 = 0, β2 − νµ = x2

2e2 − ψ2e2 = 0,
αµ− µβ = e1(x1ψ − ψx2)e2 = 0, βν − να = e2(x2ψ − ψx1)e1 = 0.

Moreover, {α, β, µ, ν} generate A as an algebra.

Lemma 7.1. Let A′ be the algebra with two vertices 1, 2, a loop α at vertex 1, a loop β
at vertex 2, an arrow µ from vertex 1 to vertex 2, an arrow ν from vertex 2 to vertex 1,
such that they satisfy the following relations

αt = 0, βt+2 = 0, β2 = νµ, αµ = µβ, βν = να.

If t ≥ 3, then A′ is isomorphic to A. Moreover, A is wild.

Recall the wild algebra (31) from [31, Table W], which has the same quiver as A and is
bounded by

βν = να, β2 = νµ = µβ = αµ = α3 = να2 = 0.
It is clear that if t ≥ 3 then the following relations hold in this algebra.

αt = 0, βt+2 = 0, β2 = νµ, αµ = µβ, βν = να.

Hence, A has the wild algebra as a factor algebra, so that A is wild if t ≥ 3.
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Lemma 7.2. Let A′ be the algebra with two vertices 1, 2, a loop α on vertex 1, a loop β
on vertex 2, an arrow µ from vertex 1 to vertex 2, an arrow ν from vertex 2 to vertex 1,
such that they are bounded by the relations

α2 = 0, β2 = νµ, αµ = µβ, βν = να.

If t = 2, then A′ is isomorphic to A. Moreover, A is tame.

We observe that A/Rad2A is a representation-infinite algebra, since its separated quiver
(see [17]) is not a disjoint union of Dynkin quivers. Since A is a symmetric algebra, inde-
composable A-modules are either indecomposable projective A-modules or indecomposable
(A/ SocA)-modules. Hence, tameness of A/SocA implies tameness of A. We then con-
clude that A is tame since A/ SocA = A/Rad3A degenerates to a factor algebra of the
algebra (18) in [31, Table T].

7.1. Proof of the tame cases. We are ready to prove part (b) in Main Theorem A(2).
The cases (t1)–(t9) will appear in RΛ(βΛ′), for the first neighbor Λ′, that is, those Λ′ for
which there is an arrow Λ → Λ′. As we see below, they are Brauer graph algebra except
for (t7) and (t8). All the other cases will appear in RΛ(βΛ′′), for the second neighbor Λ′′,
namely those Λ′′ for which there is a directed path Λ → Λ′ → Λ′′.

In the cases (t9), (t15)–(t19), we have the isomorphism of algebras RΛ(β) ∼= RΛ
A(β).

Hence, the results follow from [15]. For the bound quiver presentation of the cases (t9),
(t15)–(t19), see [15, 8.2]. Furthermore, it suffices to consider (t2), (t3), (t5), (t7), (t10),
(t12), (t13), (t20) in the remaining cases by symmetry. Cases except for (t2) and (t20)
are almost complete already.

(t3) This follows from Lemma 2.19.
(t5) We have RΛ(β) ∼= Rm0Λ0+Λa(α0 + · · ·+αa), for 1 ≤ a ≤ ℓ−1. If a = 1 and m0 ≥ 2,

it follows from Lemma 2.19. If 2 ≤ a ≤ ℓ− 1, then it follows from Lemma 2.20.
(t7) This follows from Lemma 7.2.

(t10) By Lemma 2.18, RΛ(β) is Morita equivalent to

R2Λ0(α0) ⊗R2Λi(αi) ∼= k[X,Y ]/
(
X2, Y 2

)
,

which is tame by Proposition 2.11.
(t12) Since ℓ ≥ 4, we may apply Lemma 2.18. Hence, m1 = mℓ−1 = 0 implies that

RΛ(β) is Morita equivalent to

RΛ0(α0 + α1) ⊗RΛℓ(αℓ−1 + αℓ) ∼= k[X,Y ]/
(
X2, Y 2

)
.

Here, we use the proof of (f2) for each of RΛ0(α0 + α1) and RΛℓ(αℓ−1 + αℓ) to
obtain k[X,Y ]/(X2, Y 2).

(t13) We apply Lemma 2.18 again. Then m1 = 0 implies that RΛ(β) is Morita equivalent
to RΛ0(α0 +α1) ⊗R2Λi(αi). Then, we use the proof of (f2) again to conclude that
RΛ(β) is Morita equivalent to k[X,Y ]/(X2, Y 2).

In the next two subsections, we prove the remaining cases (t2) and (t20).

7.2. The Case (t2). Set A := R2Λℓ−1(2αℓ−1 + αℓ) with

e1 = e(ℓ− 1, ℓ, ℓ− 1), e2 = e(ℓ− 1, ℓ− 1, ℓ), e′
2 = x2ψ1e2.
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We then have the following graded dimensions.
dimq e1Ae1 = 1 + 2q2 + q4,

dimq e2Ae2 =
(
q + q−1)2(1 + q4),

dimq e1Ae2 = dimq e2Ae1 =
(
q + q−1)(q + q3).

Let P1 := Ae1 and P2 := Ae′
2⟨1⟩. By looking at the graded dimensions, we know that

Ae2 = P2⟨1⟩ ⊕ P2⟨−1⟩ and
dimq End(P1) = 1 + 2q2 + q4, dimq End(P2) = 1 + q4,

dimq Hom(P1, P2) = dimq Hom(P2, P1) = q + q3.

By crystal computation [39], We can calculate the number of simple modules, which is two.
Hence, the Gabriel quiver is

◦ ◦α 99
µ //
ν
oo

and the relations are νµ = α2 = 0 and αµν = µνα.
We see that it is a special biserial algebra8 Being a symmetric algebra, it is a Brauer

graph algebra, whose Brauer graph is as claimed.

7.3. The Case (t20). We show that the algebra (t20), namely A := R2Λ0(2α0 + 2α1) in
char k ̸= 2, is tame. First of all, crystal computation shows that the number of simple
modules is two. Its basic algebra is B = End(P1 ⊕ P2)op where

P1 = f
(2)
1 f

(2)
0 vΛ, P2 = f0f

(2)
1 f0vΛ.

Let e1 = e(0011) and e2 = e(0110) and e3 = e(0101). Graded dimension formula computes
dimq e1Be1 = 1 + q2 + 2q4 + q6 + q8, dimq e2Be2 = 1 + 2q4 + q8,

dimq e1Be2 = dimq e2Be1 = q2 + q6.

We set f1 = x2ψ1x4ψ3e1 and f2 = x3ψ2e2. Then, P1 = Af1⟨3⟩ and P2 = Af2⟨1⟩. Thus,
the graded dimensions of fiAfj , for i, j = 1, 2, are as follows.

dimq f1Af2 = dimq HomA(Af1, Af2) = dimq HomA

(
P1⟨−3⟩, P2⟨−1⟩

)
= dimq HomA(P1, P2)⟨2⟩ = q4 + q8,

dimq f2Af1 = dimq HomA(Af2, Af1) = dimq HomA

(
P2⟨−1⟩, P1⟨−3⟩

)
= dimq HomA(P2, P1)⟨−2⟩ = 1 + q4,

dimq f1Af1 = dimq HomA(Af1, Af1) = dimq HomA

(
P1⟨−3⟩, P1⟨−3⟩

)
= dimq HomA(P1, P1) = 1 + q2 + 2q4 + q6 + q8,

dimq f2Af2 = dimq HomA(Af2, Af2) = dimq HomA

(
P2⟨−1⟩, P2⟨−1⟩

)
= dimq HomA(P2, P2) = 1 + 2q4 + q8.

Let f = f1 + f2. Then B is isomorphic to fAf as ungraded algebras, and we are
going to prove the tameness of A by obtaining the bound quiver presentation of fAf .
The computation is lengthy and not straightforward. We start with formulas we will use
in the computation. See the arXiv version [9] for the details.

8See [27] for the definition of special biserial algebra. It is known that symmetric special biserial algebras
are Brauer graph algebras and vice versa. See [49].
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Lemma 7.3. The following formulas hold.
(1) (x1 + x2)e1 = 0, (x2 + x3)e2 = 0, (x1 + x3)e3 = 0, x1e2 = x2

2e2 = x2
3e2.

(2) x4
3e1 = 0, x2

4e2 = 0,
(
x3

3 + x2
3x4 + x3x

2
4 + x3

4
)
e1 = 0,

(
x3x

3
4 + x2

3x
2
4 + x3

3x4
)
e1 = 0.

(3) f1ψ1 = 0, f2ψ2 = 0, f1ψ3 = 0.
(4) (x3 + x4)f1 = f1(x3 + x4), x3x4f1 = f1x3x4, x1f2 = f2x1 and x4f2 = f2x4.
(5) x1f1 = 0, f1x3f1 = 0, f1x

2
3f1 = −x3x4f1, f1x

3
3f1 = −(x3 + x4)x3x4f1.

(6) f2x3f2 = 0.
Proposition 7.4. The bases of fiAfj (i, j = 1, 2) are given as follows.

f1Af1 = span
{
f1, α = (x3 + x4)f1, α

′ = x3x4f1, α
2, αα′, α2α′

}
,

f2Af2 = span
{
f2, β = x1f2, β

′ = x4f2, ββ
′ = β′β

}
,

f1Af2 = span{µ = f1ψ2ψ3f2, f1ψ2ψ3x1f2 = µβ},
f2Af1 = span{ν = f2ψ3ψ2ψ1f1, f2x1ψ3ψ2ψ1f1 = βν}.

Moreover, α3 = 2αα′ and α′2 = α2α′ hold.
We can find relations among the generators α, α′, β, β′, µ, ν in order to obtain the bound

quiver presentation of R2Λ0(2α0 + 2α1). We leave the computation to the reader.
Proposition 7.5. Suppose that char k ̸= 2. Then R2Λ0(2α0 + 2α1) is Morita equivalent
to the following bound quiver algebra.

◦ ◦α 99
µ //
ν
oo βee

αµ = να = 0, β2 = 0, α4 = (µν)2 = −2µβν,
βνµ = νµβ, νµν + 2βν = 0, µνµ+ 2µβ = 0.

In the above bound quiver presentation, we set γ = νµ + 2β and replace β with (γ −
νµ)/2. Then the bound quiver presentation becomes

◦ ◦α 99
µ //
ν
oo γee

αµ = να = 0, γν = µγ = 0, α4 = (µν)2, γ2 = −(νµ)2.

We see that the algebra is special biserial. Hence, we have the following corollary.
Corollary 7.6. If char k ̸= 2 then R2Λ0(2α0 + 2α1) is Morita equivalent to the Brauer
graph algebra whose Brauer graph is

4 2 2 .

8. Representation type in level two cases

The rest of our proof relies on the results when the level is two. In this section, we are
aiming to determine the representation type of RΛ(βΛ′) for Λ′ ∈ P+

cl,2(Λ). There are only
two cases to consider: 2Λa, for 0 ≤ a ≤ ℓ, and Λa + Λb, for 0 ≤ a < b ≤ ℓ.

Before proceeding to the study of these two cases, we prove the existence of symmetry
on the quiver. Let Z be a set of level two dominant integral weights which is stable under
σ : Λa + Λb 7→ Λℓ−b + Λℓ−a such as Z = {2Λa | 0 ≤ a ≤ ℓ} or Z = {Λa + Λb | a ̸= b}.
The lemma below implies that, if RΛ(βΛ′), for some Λ′ = Λi + Λj , has a unique common
representation type, for all Λ = Λa + Λb ∈ Z, then we may conclude that RΛ(βΛ′) and
RΛ(βσΛ′) have the same representation type for Λ ∈ Z.
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Lemma 8.1. Let 0 ≤ a ≤ b ≤ ℓ and 0 ≤ i ≤ j ≤ ℓ. Then we have an isomorphism of
algebras

RΛℓ−b+Λℓ−a

(
βΛℓ−j+Λℓ−i

)
∼= RΛa+Λb

(
βΛi+Λj

)
.

Proof. Let P be the permutation matrix which swaps i and ℓ − i, for 0 ≤ i ≤ ℓ. Then
PAP = A. Hence, if X is the solution of AXt = Y t in the sense of Lemma 3.4, then XP
is the solution of APXt = PY t. It implies σβΛℓ−j+Λℓ−i

= βΛi+Λj
. The result follows from

Proposition 2.4. □

8.1. The case 2Λa (0 ≤ a ≤ ℓ). Our aim in this subsection is to prove the next theorem.

Theorem 8.2. Suppose that Λ = 2Λa, for 0 ≤ a ≤ ℓ.
(1) If we have an arrow Λ → Λ′, the representation type of RΛ(βΛ′) is given as follows.

(i ′) If Λ′ = 2Λa−1, for 1 ≤ a ≤ ℓ, then RΛ(βΛ′) is wild if 1 ≤ a ≤ ℓ − 2, tame if
a = ℓ− 1, finite if a = ℓ.

(i ′′) If Λ′ = 2Λa+1, for 0 ≤ a ≤ ℓ− 1, then RΛ(βΛ′) is wild if 2 ≤ a ≤ ℓ− 1, tame
if a = 1, finite if a = 0.

(ii) If Λ′ = Λa−1 + Λa+1, for 1 ≤ a ≤ ℓ− 1, then RΛ(βΛ′) is finite.
(iii ′) If Λ′ = Λa−2 + Λa, for 2 ≤ a ≤ ℓ, then RΛ(βΛ′) is wild if 2 ≤ a ≤ ℓ− 1, finite

if a = ℓ.
(iii ′′) If Λ′ = Λa + Λa+2, for 0 ≤ a ≤ ℓ − 2, then RΛ(βΛ′) is wild if 1 ≤ a ≤ ℓ − 2,

finite if a = 0.
(2) If Λ′ = Λa−2 + Λa+2, for 2 ≤ a ≤ ℓ − 2, then RΛ(βΛ′) is tame if char k ̸= 2, wild

if char k = 2.
(3) (i ′) If Λ = 2Λ0 and Λ′ = 2Λ2, then RΛ(βΛ′) is tame if char k ̸= 2, wild otherwise.

(i ′′) If Λ = 2Λℓ and Λ′ = 2Λℓ−2, then RΛ(βΛ′) is tame if char k ̸= 2, wild otherwise.
(4) Other RΛ(βΛ′) are all wild.

Moreover, if RΛ(βΛ′) is finite or tame, then it is an algebra listed in Main Theorem A.

We first give the connected quiver C⃗(2Λa) (Figure 8.1). Once a is fixed, it is easy to
verify whether an arrow (or a vertex) exists or not by Definition 3.17.

In the quiver (Figure 8.1), the superscript in the upper right corner of each vertex
indicates the representation type of R2Λa(βΛ′), i.e., the corresponding cyclotomic KLR
algebra. In particular, the dashed boxes in the quiver show the cases we have to analyze
one by one, and the boxes imply that the corresponding algebra is wild by Lemma 4.4.
Here, F means representation-finite, T means tame and W means wild. Finally, all the
other remaining vertices of the quiver are wild by Corollary 4.5.

Theorem 8.2(2) is (t15) if char k ̸= 2. If char k = 2, it is wild by [15, Theorem 4.6],
which refers to [7, Theorem B]. There, applying Dynkin automorphism to 2Λ0 and λ0

2 =
αℓ + 2α0 + α1, we obtain that R2Λa

A (αa−1 + 2αa + αa+1), for 2 ≤ a ≤ ℓ− 2, is wild when
char k = 2.

Proposition 8.3. Let Λ′ = Λa−3 + Λa+3, for 3 ≤ a ≤ ℓ− 3. Then RΛ(βΛ′) is wild.

Proof. We have βΛ′ = αa−2+2αa−1+3αa+2αa+1+αa+2. Applying Dynkin automorphism
to 2Λ0 and λ0

3 = αℓ−1 + 2αℓ + 3α0 + 2α1 +α2 as above, we see that RΛ(βΛ′) is wild by [15,
Theorem 4.6]. □

Proposition 8.3 has the following corollary by Lemma 4.4.
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Figure 8.1. The connected quiver C⃗(2Λa).

Corollary 8.4. If Λ′ is one of Λa−1 + Λa+3, Λa−3 + Λa+1, Λa−3 + Λa−1, Λa+1 + Λa+3, for
3 ≤ a ≤ ℓ− 3, then RΛ(βΛ′) is wild.

Next, we prove Theorem 8.2(1). We start with (i ′). Then we obtain (i ′′) by symmetry.
Since βΛ′ = 2αa + · · · + 2αℓ−1 + αℓ, we have the following.

(1) If a = ℓ, then βΛ′ = αℓ and it is finite by (f1).
(2) If a = ℓ− 1, then βΛ′ = 2αℓ−1 + αℓ and it is tame by (t2).

Proposition 8.5. Let Λ = 2Λa and Λ′ = 2Λa−1, for 1 ≤ a ≤ ℓ−2. Then RΛ(βΛ′) is wild.

Proof. The readers may refer to the arXiv version [9] for the proof. □

The Case (ii) has βΛ′ = αa, so that it is finite by (f1). We consider (iii ′). Then (iii ′′)
is obtained by symmetry. Then

βΛ′ = αa−1 + 2αa + · · · + 2αℓ−1 + αℓ.

If a = ℓ, βΛ′ = αℓ−1 + αℓ and it is finite by (f3).
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Proposition 8.6. Let Λ = 2Λa and Λ′ = Λa−2 + Λa, for 2 ≤ a ≤ ℓ − 1. Then, RΛ(βΛ′)
is wild.

Proof. If 2 ≤ a ≤ ℓ − 2, then RΛ(βΛ′) is wild by Proposition 8.5 and Corollary 4.5 since
there is an arrow from 2Λa−1 to Λa−2 + Λa.

If a = ℓ− 1, then βΛ′ = αℓ−2 + 2αℓ−1 + αℓ and set e = e(ℓ− 1, ℓ, ℓ− 1, ℓ− 2). We have

dimq eR
Λ(βΛ′)e = 1 + 3q2 + 3q4 + q6.

Using Lemma 2.12, we deduce that RΛ(βΛ′) is wild. □

Theorem 8.2(3) in the case char k ̸= 2 is (t20) and (t21). When char k = 2, we use the
computation in the proof of Proposition 7.4 to show the wildness as follows.

Lemma 8.7. Let Λ = 2Λ0 and Λ′ = 2Λ2. Then, RΛ(βΛ′) is wild if char k = 2.

Proof. βΛ′ = 2α0 + 2α1. Let f1 = x2ψ1x4ψ3e(0011). Then Proposition 7.4 implies that

f1Af1 ∼= k[X,Y ]/
(
X3 − 2XY,XY 2, Y 2 −X2Y, Y 3

)
and it admits k[X,Y ]/(X3, Y 2, X2Y ) as a quotient algebra when char k = 2. It follows
that R2Λ0(2α0 + 2α1) in char k = 2 is wild, by Proposition 2.11. □

To prove the part (4) of Theorem 8.2, namely to prove that all the other RΛ(βΛ′) in
level two are wild, it suffices to prove the wildness for:

(1) Λ′ = 2Λa−2, for 2 ≤ a ≤ ℓ,
(2) Λ′ = 2Λa+2, for 0 ≤ a ≤ ℓ− 2,
(3) Λa−3 + Λa+1, for a = ℓ− 2 and a = ℓ− 1.
(4) Λa+3 + Λa−1, for a = 1 and a = 2,
(5) Λa+1 + Λa+3, for 0 ≤ a ≤ 2,
(6) Λa−3 + Λa−1, for ℓ− 2 ≤ a ≤ ℓ.

Proposition 8.8. The algebra R2Λa(βΛ′) is wild, if Λ′ = 2Λa−2, for 2 ≤ a ≤ ℓ− 1.

Proof. It follows from Proposition 8.6 and Lemma 4.4. □

By symmetry, R2Λa(βΛ′) is wild, if Λ′ = 2Λa+2, for 1 ≤ a ≤ ℓ− 2.
The cases (3) and (4) are covered by Lemma 8.9 below. Then, the lemma covers the

cases (5) and (6), except for the case a = 0 in (5) and the case a = ℓ in (6), respectively.
These two exceptions are covered by Lemma 8.10.

Lemma 8.9. The algebra R2Λa(βΛ′) is wild, if Λ′ = Λa−3 + Λa+1, for 3 ≤ a ≤ ℓ − 1, or
Λ′ = Λa+3 + Λa−1, for 1 ≤ a ≤ ℓ− 3.

Proof. Suppose that Λ′ = Λa−3 + Λa+1 for 3 ≤ a ≤ ℓ − 1. Then by Proposition 8.6
R2Λa(βΛ′′) is wild for Λ′′ = Λa−2 + Λa. This implies R2Λa(βΛ′) is wild since we have an
arrow from Λ′′ to Λ′. The other case holds by symmetry. □

When a = 0, there is an arrow Λ1 + Λ3 → 2Λ3. When a = ℓ, there is an arrow
Λℓ−3 + Λℓ−1 → 2Λℓ−3. Thus, the wildness of R2Λ0(β2Λ3) and R2Λℓ(β2Λℓ−3) follow from
that of R2Λ0(βΛ1+Λ3) and R2Λℓ(βΛℓ−3+Λℓ−1).

Lemma 8.10. Let Λ = 2Λ0 and Λ′ = Λ1 + Λ3. Then RΛ(βΛ′) is wild.

Ann. Repr. Th. 3 (2026), 1, p. 27–97 https://doi.org/10.5802/art.34

https://doi.org/10.5802/art.34


Representation type of cyclotomic KLR algebras in affine type C 73

Proof. We have βΛ′ = 2α0 + 2α1 + α2. Let e1 = e(01201) and e2 = e(01210). Then

dimq e1R
Λ(βΛ′)e1 = 1 + 2q2 + 3q4 + 3q6 + 2q8 + q10

dimq e2R
Λ(βΛ′)e2 = 1 + q2 + 2q4 + 2q6 + q8 + q10

dimq e1R
Λ(βΛ′)e2 = dimq e2R

Λ(βΛ′)e1 = q2 + q4 + q6 + q8.

By Lemma 2.15, RΛ(βΛ′) is wild. □

8.2. The case Λa + Λb (0 ≤ a < b ≤ ℓ). Our aim in this subsection is to prove the next
theorem.

Theorem 8.11. Suppose that Λ = Λa + Λb, for 0 ≤ a < b ≤ ℓ.

(1) If we have an arrow Λ → Λ′, the representation type of RΛ(βΛ′) is given as follows.
(iv ′) If Λ′ = Λa−1 + Λb−1, for 1 ≤ a < b ≤ ℓ, then RΛ(βΛ′) is wild if 1 ≤ a < b ≤

ℓ− 1, tame if 1 ≤ a ≤ ℓ− 2, b = ℓ, finite if a = ℓ− 1, b = ℓ.
(iv ′′) If Λ′ = Λa+1 + Λb+1, for 0 ≤ a < b ≤ ℓ − 1, then RΛ(βΛ′) is wild if 1 ≤ a <

b ≤ ℓ− 1, tame if a = 0, 1 ≤ b ≤ ℓ− 1, finite if a = 0, b = 1.
(v) If Λ′ = Λa−1 + Λb+1, for 1 ≤ a < b ≤ ℓ− 1, then RΛ(βΛ′) is finite.

(vi) If Λ′ = Λa+1 + Λb−1, for 0 ≤ a < b ≤ ℓ and a ≤ b− 2, then RΛ(βΛ′) is wild.
(vii ′) If Λ′ = Λa + Λb−2, for 0 ≤ a < b ≤ ℓ, a ≤ b − 2, then RΛ(βΛ′) ∼= RΛb(βΛb−2)

is finite.
(vii ′′) If Λ′ = Λa+2 + Λb, for 0 ≤ a < b ≤ ℓ, a ≤ b − 2, then RΛ(βΛ′) ∼= RΛa(βΛa+2)

is finite.
(viii ′) If Λ′ = Λa + Λb+2, for 0 ≤ a < b ≤ ℓ− 2, then RΛ(βΛ′) is wild.
(viii ′′) If Λ′ = Λa−2 + Λb, for 2 ≤ a < b ≤ ℓ, then RΛ(βΛ′) is wild.

(2) If Λ′ = Λa+2 + Λb−2 for 0 ≤ a ≤ b − 4 ≤ ℓ, then RΛ(βΛ′) is tame if a = 0 and
b = ℓ. Otherwise, it is wild.

(3) All the other RΛ(βΛ′) in level two are wild.

Moreover, if RΛ(βΛ′) is finite or tame, then it is an algebra listed in Main Theorem A.

Set Λ = Λa + Λb with 0 ≤ a < b ≤ ℓ. We observe that each element in P+
cl,2(Λ) can be

written in the form Λi + Λj with 0 ≤ i ≤ j ≤ ℓ and i+ j ≡2 a+ b. We define

Cs(Λ) := {Λi + Λj | 0 ≤ i ≤ j ≤ ℓ, j − i = s, i+ j ≡2 a+ b} ⊆ P+
cl,2(Λ).

Then, P+
cl,2(Λ) =

⊔
s≥0Cs(Λ). We draw C⃗(Λ) on the plane by putting elements of Cs(Λ) in

the same column and arranging Cs(Λ)’s as columns in increasing order from left to right.
In this way, the leftmost column of C⃗(Λ) is C0(Λ) if b − a ≡2 0 and C1(Λ) if b − a ≡2 1.
Once a, b are fixed, it is easy to verify whether an arrow (or a vertex) exists or not by
Definition 3.17. Similar to the case of 2Λa, the representation type of RΛa+Λb(βΛ′) is
mentioned by the superscript in the upper right corner of each vertex. Also, all other
remaining cases are wild by Corollary 4.5.
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We start with (iv ′) in Theorem 8.11(1). Then

βΛ′ = αa + · · · + αb−1 + 2αb + · · · + 2αℓ−1 + αℓ.

If a = ℓ− 1 and b = ℓ, it is (f3). If 1 ≤ a ≤ ℓ− 2 and b = ℓ, it is (t6).

Proposition 8.12. Let Λ = Λa + Λb and Λ′ = Λa−1 + Λb−1, for 1 ≤ a < b ≤ ℓ− 1. Then,
RΛ(βΛ′) is wild.

Proof. Suppose 1 ≤ a < b ≤ ℓ−1, we choose a suitable A := (e1 +e2)RΛa+Λb(βΛ′)(e1 +e2)
that is wild. Recall that νb = (b, b+ 1, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , b+ 1, b, b− 1).

• If 1 ≤ a = b− 1, b ≤ ℓ− 1, we have ℓ ≥ 3 and

βΛ′ = αb−1 + 2(αb + · · · + αℓ−1) + αℓ.

We set e1 := e(νb) and e2 := e(b− 1, b, b+ 1, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , b+ 1, b).
• If 1 ≤ a ≤ b− 2, b ≤ ℓ− 1, we have ℓ ≥ 4 and

βΛ′ = αa + αa+1 + · · · + αb−1 + 2(αb + · · · + αℓ−1) + αℓ.

We set e1 := e(a, a + 1, . . . b − 3, b − 2, νb) and e2 := (a, a + 1, . . . , ℓ − 2, ℓ − 1, ℓ,
ℓ− 1, . . . , b+ 1, b).

In both cases, we have

dimq e1Ae1 = 1 + q2 + q4,

dimq e2Ae2 = 1 + 2q2 + q4,

dimq e1Ae2 = dimq e2Ae1 = q2.

It gives that A is wild by Lemma 2.15. □

The Case (iv ′′) is obtained by symmetry. The Case (v) is βΛ′ = αa + · · · + αb, for
1 ≤ a < b ≤ ℓ − 1. This is (f4). Now we show that (vi) is wild. If a > 0 and b < ℓ,
then RΛ(βΛ′) is wild by Proposition 8.12 since there is an arrow from Λa−1 + Λb−1 to
Λa+1 + Λb−1. Thus, we may assume a = 0 or b = ℓ.

Proposition 8.13. Let Λ = Λa + Λb and Λ′ = Λa+1 + Λb−1 with a = 0 or b = ℓ. Then,
RΛ(βΛ′) is wild.

Proof. We have three cases.

Case 1: a = 0 and b = ℓ. In this case, βΛ′ = α0 + α1 + · · · + αℓ.

Suppose ℓ > 2. Let e1 := e(0, 1, 2, . . . , ℓ−2, ℓ−1, ℓ) and e2 = e(0, ℓ, 1, 2, . . . , ℓ−3, ℓ−2, ℓ−1).
Then, we have

dimq e1R
Λ(βΛ′)e1 = 1 + q2 + q4 + q6,

dimq e2R
Λ(βΛ′)e2 = 1 + 2q2 + 2q4 + q6,

dimq e1R
Λ(βΛ′)e2 = dim e2R

Λ(βΛ′)e1 = q2 + q4.

We deduce that RΛ(βΛ′) is wild by Lemma 2.15.
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Suppose ℓ = 2. Let e := e1 + e1 + e3 with e1 := e(012), e2 := e(021) and e3 := (210).
Then, we have

dimq eiR
Λ(βΛ′)ei = 1 + q2 + q4 + q6,

dim1 eiR
Λ(βΛ′)ej =

{
q2 + q4 if |i− j| = 1,
0 otherwise.

This implies the quiver of RΛ(βΛ′) is of the form

1 //%%
2 //oo
��

3oo
yy

and hence, it is wild by [27, I.10.8(iv)]. □

Case 2: a > 0 and b = ℓ. In this case, βΛ′ = α0 + 2(α1 + · · · + αa) + αa+1 + · · · + αℓ. If
a ≤ b−4, then RΛ(βΛ′) is wild by Proposition 8.15 since there is an arrow from Λa+2+Λb−2
to Λa+1 + Λb−1. It remains to consider a = b− 2 = ℓ− 2 or a = b− 3 = ℓ− 3.

Let □a := (a, a − 1, a − 2, . . . , 2, 1). If a = ℓ − 2, we set e1 := e(□a, 0, a + 1,□a, ℓ)
and e2 := e(□a, 0, ℓ, a + 1,□a). If a = ℓ − 3, we set e1 := e(□a, 0, a + 1, a + 2,□a, ℓ) and
e2 := e(□a, 0, ℓ, a+ 1, a+ 2,□a). In both cases, we have the following graded dimensions
such that RΛ(βΛ′) is wild, see Lemma 2.15.

dimq e1R
Λ(βΛ′)e1 = 1 + q2 + q4 + q6,

dimq e2R
Λ(βΛ′)e2 = 1 + 2q2 + 2q4 + q6,

dimq e1R
Λ(βΛ′)e2 = dim e2R

Λ(βΛ′)e1 = q2 + q4.

Case 3: a = 0 and b < ℓ. In this case, βΛ′ = α0 +α1 + · · ·+αb−1 +2(αb + · · ·+αℓ−1)+αℓ.
Using the isomorphism in Proposition 2.4, we conclude that RΛ(βΛ′) is wild.

We have completed the proof of Proposition 8.13. □

The Case (vii ′) is (f6) because

βΛ′ = αb−1 + 2αb + · · · + 2αℓ−1 + αℓ.

The Case (vii ′′) is (f5). It remains to show that (viii ′′) is wild. The Case (viii ′) is obtained
by symmetry.

Proposition 8.14. Let Λ = Λa + Λb and Λ′ = Λa−2 + Λb with 2 ≤ a < b ≤ ℓ. Then,
RΛ(βΛ′) is wild.

Proof. If b < ℓ, then RΛ(βΛ′) is wild by Proposition 8.12 since there is an arrow from
Λa−1 + Λb−1 to Λa−2 + Λb. We assume b = ℓ in the following.

Case 1: a = ℓ− 1 and b = ℓ. In this case, βΛ′ = αℓ−2 + 2αℓ−1 + αℓ. We set

e1 := (ℓ− 1, ℓ, ℓ− 2, ℓ− 1) and e2 := (ℓ, ℓ− 1, ℓ− 1, ℓ− 2).

Then,
P1 = fℓ−1fℓ−2fℓfℓ−1L(0), P2 = fℓ−2f

(2)
ℓ−1fℓL(0).
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Then we may compute the graded dimensions as follows.
dimq End(P1) = 1 + q2 + q4 + q6,

dimq End(P2) = 1 + 2q2 + 2q4 + q6,

dimq Hom(P1, P2) = dimq Hom(P2, P1) = q2 + q4.

This implies that the algebra RΛ(βΛ′) is wild.

Case 2: a < ℓ− 1 and b = ℓ. In this case, βΛ′ = αa−1 + 2(αa + · · · + αℓ−1) + αℓ. Set
e := e(ℓ, ℓ− 1, . . . , a+ 2, a+ 1, a, a− 1, a, a+ 1, a+ 2, . . . , ℓ− 2, ℓ− 1).

Then, dimq eR
Λ(βΛ′)e = 1 + 3q2 + 3q4 + q6 and RΛ(βΛ′) is wild by Lemma 2.12.

The proof is completed. □

Next, we prove Theorem 8.11(2). If a = 0 and b = ℓ, then it is (t12), and we already
know that it is tame. Thus, we may assume a > 0 or b < ℓ.

Proposition 8.15. Let Λ = Λa + Λb and Λ′ = Λa+2 + Λb−2 with 0 ≤ a ≤ b− 4, 4 ≤ b ≤ ℓ
such that a > 0 or b < ℓ. Then, RΛ(βΛ′) is wild.

Proof. If a = 0, b ≤ ℓ− 1, then βΛ′ = α0 +α1 +αb−1 + 2(αb + · · · +αℓ−1) +αℓ. We define
e1 := e(0, 1, νb) and e2 := e(0, 1, ν ′

b) with
νb := (b, b+ 1, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , b+ 1, b, b− 1),
ν ′

b := (b, b− 1, b+ 1, b+ 2, . . . , ℓ− 1, ℓ, ℓ− 1, . . . , b+ 1, b).

Setting A = eRΛ(βΛ′)e with e = e1 + e2. We obtain
dimq eiAei = 1 + 2q2 + q4 for i = 1, 2, dimq e1Ae2 = dimq e2Ae1 = q + q3.

Let k = 2(ℓ− b) + 4. Direct computation as above shows that x1ei = x2
2ei = 0, i = 1, 2,

and
xje1 = 0, xhe2 = 0 for 3 ≤ j ≤ ℓ− b+ 3, 3 ≤ h ≤ ℓ− b+ 4. (8.1)

We also show that
xjei = x2

kei = 0 for i = 1, 2, 3 ≤ j ≤ k − 1. (8.2)
Suppose that b = ℓ − 1. Then k = 6 and x2

6e2 = 0 by ψ5e2 = 0 and (8.1). Using
ψ3e1 = 0 = ψ4e1 shows that (x3 + x5)e1 = 0 and hence x5e1 = 0 by (8.1). Moreover,
ψ2

5e1 = (x5 −x6)e1 and x6ψ
2
5e1 = 0 imply that x2

6e1 = 0. This completes the proof of (8.2)
when b = ℓ − 1. The case b < ℓ − 1 can be checked similarly by using ψℓ−b+2e1 = 0 =
ψℓ−b+3e1 and ψℓ−b+3e2 = 0 = ψℓ−b+4e2. Furthermore, eiψwei ̸= 0 only if ψw = 1. This
together with (8.2) implies that the basis of eiAeh is given as follows.

eiAei = k-span{xm
2 x

n
kei | 0 ≤ m, n ≤ 1}, i = 1, 2,

e1Ae2 = k-span{xm
2 ψk−1ψk−2 . . . ψ4e2 | 0 ≤ m ≤ 1},

e2Ae1 = k-span{xm
2 ψ4 . . . ψk−2ψk−1e1 | 0 ≤ m ≤ 1}.

By setting α = x2e1, β = x2e2, µ = ψk−1ψk−2 . . . ψ4e2 and ν = ψ4 . . . ψk−2ψk−1e1, A is
isomorphic to the bound quiver algebra defined by

1
µ //

α
%%

2
ν
oo βee and

〈
α2, β2, µνµ, νµν, αµ− µβ, βν − να

〉
.

Then, A/⟨να⟩ is a wild algebra by [31, (32)].
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If a ≥ 1, b = ℓ, then βΛ′ = α0 + 2(α1 + · · · +αa) +αa+1 +αℓ−1 +αℓ. Similar to the case
of a = 0, b ≤ ℓ− 1, one may show that RΛ(βΛ′) is wild.

If a ≥ 1, b ≤ ℓ− 1, then we have
βΛ′ = α0 + 2(α1 + · · · + αa) + αa+1 + αb−1 + 2(αb + · · · + αℓ−1) + αℓ.

We choose e1 = e(νa, νb) and e2 = e(ν ′
a, ν

′
b), where

νa := (a, a− 1, . . . , 1, 0, 1, . . . , a− 1, a, a+ 1),
ν ′

a := (a, a+ 1, a− 1, a− 2, . . . , 1, 0, 1, . . . , a− 1, a).

and νb, ν
′
b are defined in the case of a = 0, b ≤ ℓ− 1. Set A := RΛ(βΛ′), we obtain
dimq eiAei = 1 + 2q2 + q4 for i = 1, 2, dimq e1Ae2 = dimq e2Ae1 = q2.

Then, RΛ(βΛ′) is wild by Lemma 2.15. □

In order to show that all the other cyclotomic KLR algebras in level two are wild, we
construct a neighborhood of Λ whose rim are all wild. For this, it suffices to show the
wildness for

Λ′ ∈ {Λa−2 + Λb+2, Λa+3 + Λb+1, Λa+4 + Λb, Λa + Λb−4, Λa−1 + Λb−3}.

Proposition 8.16. Let Λ = Λa + Λb and Λ′ = Λa−2 + Λb+2 with 2 ≤ a < b ≤ ℓ− 2. Then,
RΛ(βΛ′) is wild.

Proof. In this case, we have βΛ′ = αa−1 + 2αa + · · · + 2αb + αb+1. Then,
RΛ(αa−1 + 2αa + · · · + 2αb + αb+1) ∼= RΛA(αa−1 + 2αa + · · · + 2αb + αb+1),

and the result follows from [15]. □

We prove the case Λ′ = Λa−1 + Λb−3 as follows. The case Λa+3 + Λb+1 is obtained by
symmetry.

Proposition 8.17. Let Λ = Λa + Λb and Λ′ = Λa−1 + Λb−3 with 0 ≤ a ≤ b− 2, 2 ≤ b ≤ ℓ.
Then, RΛ(βΛ′) is wild.

Proof. Since b ≤ ℓ − 3, Λa−1 + Λb−1 is wild by (iv ′) of Theorem 8.11. Then the result
holds since we have an arrow Λa−1 + Λb−1 to Λa−1 + Λb−3. □

Finally, we consider the case Λ′ = Λa + Λb−4. The case Λ′ = Λa+4 + Λb is obtained by
symmetry.

Proposition 8.18. Let Λ = Λa + Λb and Λ′ = Λa + Λb−4 with 0 ≤ a ≤ b− 4, 4 ≤ b ≤ ℓ.
Then, RΛ(βΛ′) is wild.

Proof. In this case, we have
βΛ′ = αb−3 + 2αb−2 + 3αb−1 + 4αb + · · · + 4αℓ−1 + 2αℓ.

Thus, we have an isomorphism of algebras RΛ(βΛ′) ∼= RΛb(βΛ′), and RΛ(βΛ′) is wild by
Theorem 4.2. □

9. First neighbors in higher level cases

We consider higher level RΛ(βΛ′), for the first neighbors Λ′ of Λ. We write Λ =∑ℓ
i=0miΛi. As we have completed level two in the previous section, we assume that

the level is k ≥ 3 hereafter.
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9.1. (i ′) Λ = 2Λa + Λ̃ (1 ≤ a ≤ ℓ) and Λ′ = 2Λa−1 + Λ̃. In this case,
βΛ′ = 2αa + · · · + 2αℓ−1 + αℓ.

If 1 ≤ a ≤ ℓ− 2, then RΛ(βΛ′) is wild by Theorem 8.2(1)(i ′). On the other hand, RΛ(βΛ′)
is (f1) if a = ℓ.

Suppose a = ℓ − 1. Then β = 2αℓ−1 + αℓ and RΛ(2αℓ−1 + αℓ) is (t2) if mℓ−1 = 2 and
mℓ = 0. We show that RΛ(2αℓ−1 + αℓ) is wild if mℓ−1 ≥ 3 or mℓ ≥ 1. To see this, it
suffices to show that

R3Λℓ−1(2αℓ−1 + αℓ) and R2Λℓ−1+Λℓ(2αℓ−1 + αℓ)
are wild.

Lemma 9.1. The algebra R2Λℓ−1+Λℓ(2αℓ−1 + αℓ) is wild.

Proof. Let A = R2Λℓ−1+Λℓ(2αℓ−1 + αℓ) and ei = e(νi), for
ν1 = (ℓ− 1, ℓ− 1, ℓ), ν2 = (ℓ− 1, ℓ, ℓ− 1), ν3 = (ℓ, ℓ− 1, ℓ− 1).

By crystal computation, the number of simples is three. Moreover, computation of

fℓf
(2)
ℓ−1(∅, ∅, ∅), fℓ−1fℓfℓ−1(∅, ∅, ∅), f

(2)
ℓ−1fℓ(∅, ∅, ∅)

shows that
dimq EndA(P1) = 1 + q4 + q8,

dimq HomA(P1, P2) = 2q2 + q5 + q7,

dimq HomA(P1, P3) = 0,
dimq EndA(P2) = 1 + 2q2 + 6q4 + 2q6 + q8,

dimq HomA(P2, P3) = q + 2q3 + q5 + 2q6,

dimq EndA(P3) = 1 + q2 + 2q4 + q6 + q8.

Let e = e1 + e2 and consider B = eAe. Then, we observe the following.
• There are two degree two homomorphisms in HomA(P1, P2) and they cannot be

linear combination of composition of two arrows of degree one.
• Next we consider EndA(P2). There are two endomorphisms of degree two. The

composition of arrows P2 → P3 and P3 → P2 of degree one gives one endomorphism
of degree two, but there exists another endomorphism of degree two which is not
linear combination of composition of two arrows of degree one.

Hence, the Gabriel quiver of B has a loop on vertex 2, and two arrows from vertex 1 to
vertex 2. Hence, A = R2Λℓ−1+Λℓ(2αℓ−1 + αℓ) is wild. □

Lemma 9.2. The algebra R3Λℓ−1(2αℓ−1 + αℓ) is wild.

Proof. The readers may refer to the arXiv version [9] for the proof. □

9.2. (i ′′) Λ = 2Λa + Λ̃ (0 ≤ a ≤ ℓ− 1) and Λ′ = 2Λa+1 + Λ̃. In this case,
βΛ′ = α0 + 2(α1 + · · · + αa).

By symmetry, we obtain the result for Case (i ′′).

9.3. (ii) Λ = 2Λa + Λ̃ (1 ≤ a ≤ ℓ− 1) and Λ′ = Λa−1 + Λa+1 + Λ̃. In this case, βΛ′ = αa

and RΛ(βΛ′) is (f1).
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9.4. (iii ′′) Λ = 2Λa + Λ̃ (0 ≤ a ≤ ℓ− 2) and Λ′ = Λa + Λa+2 + Λ̃. In this case,
βΛ′ = α0 + 2α1 + · · · + 2αa + αa+1.

If 1 ≤ a ≤ ℓ − 2 then RΛ(βΛ′) is wild by Theorem 8.2(1)(iii ′′). The case a = 0 follows
from the general result for RΛ(α0 + α1) which we will give now.

Recall that RΛ(α0 +α1) is (f2) if m0 ≥ 1 and m1 = 0, or m0 = m1 = 1, and (t3) or (t7)
if m0 ≥ 2 and m1 = 1, or m0 = 1 and m1 = 2. Note that m0 = 0 cannot happen because
⟨α∨

0 ,Λ − α0 − α1⟩ = −1 < 0. We show that RΛ(α0 + α1) is wild if m0 ≥ 2 and m1 ≥ 2 or
m0 = 1 and m1 ≥ 3.

Lemma 9.3. The algebra R2Λ0+2Λ1(α0 + α1) is wild.

Proof. Set A = R2Λ0+2Λ1(α0 + α1) and B = e(10)Ae(10). Then
dimq B = 1 + q2 + q4 + q6 + q8 + q10.

We have x2
1e(10) = 0 and x2

1e(01) = 0, which imply
0 = −ψ1x

2
1e(01)ψ1 = −x2

2ψ
2
1e(10) = −x2

2
(
x2

1 − x2
)
e(10) = x3

2e(10).

This together with x2
1e(10) = 0, the graded dimension shows that B has a basis{

xa
1x

b
2e(10)

∣∣∣ 0 ≤ a ≤ 1, 0 ≤ b ≤ 2
}
.

Further, B/(x1x
2
2e(10)) ∼= k[X,Y ]/(X2, Y 3, XY 2) by sending x1e(10) and x2e(10) to X

and Y , respectively. This implies B is wild and so is A. □

Lemma 9.4. The algebra RΛ0+3Λ1(α0 + α1) is wild.

Proof. Recall the algebra A′ in Lemma 7.1 which is isomorphic to RΛ0+3Λ1(α0 + α1). It
has the algebra (31) in [31, Table W] as a quotient algebra. The assertion follows. □

9.5. (iii ′) Λ = 2Λa + Λ̃ (2 ≤ a ≤ ℓ) and Λ′ = Λa−2 + Λa + Λ̃. In this case,
βΛ′ = αa−1 + 2αa + · · · + 2αℓ−1 + αℓ.

By symmetry, we have the result for this case from (iii ′) .

9.6. (iv ′) Λ = Λa + Λb + Λ̃ (1 ≤ a < b ≤ ℓ) and Λ′ = Λa−1 + Λb−1 + Λ̃. In this case,
βΛ′ = αa + · · · + αb−1 + 2αb + · · · + 2αℓ−1 + αℓ.

If 1 ≤ a < b ≤ ℓ− 1 then RΛ(βΛ′) is wild by Theorem 8.11(iv ′).
Suppose 1 ≤ a ≤ ℓ − 2 and b = ℓ. If mi = δai, for a ≤ i ≤ ℓ − 1, then RΛ(βΛ′) is (t6).

We show that RΛ(βΛ′) is wild if ma ≥ 2 or mi ≥ 1, for some a < i < ℓ.

Lemma 9.5. Suppose that Λ = 2Λa + Λℓ and Λ′ = Λa−1 + Λa + Λℓ−1. Then RΛ(βΛ′) is
wild.

Proof. Set e = e(ℓ ℓ−1 . . . a+1 a) and A = eRΛ(βΛ′)e. Then dimq A = 1+2q2 +2q4 +q6.
We have x1e = 0 and ψie = 0 for 1 ≤ i ≤ ℓ− a− 1. This implies that

x2
2e = 0, xie = x2e, for 3 ≤ i ≤ ℓ− a.

Therefore, the degree 2 and the degree 4 components of A have bases

{x2e, xℓ−a+1e} and
{
x2xℓ−a+1e, x

2
ℓ−a+1e

}
,

respectively. We conclude that A/Rad3A ∼= k[X,Y ]/(X2, Y 3, XY 2), which is wild. □
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Lemma 9.6. Suppose that Λ = Λa+Λi+Λℓ and Λ′ = Λa−1+Λi+Λℓ−1 for some a < i < ℓ.
Then RΛ(β) is wild.

Proof. Set A = eRΛ(β)e, where e = e1 + e2 with e1 = e(ℓ, ℓ − 1, . . . , a + 1, a) and e2 =
e(i, ℓ, ℓ−1, . . . , i+1, i−1, i−2, . . . , a+1, a). If i < ℓ−1, then dimq e1Ae1 = 1+3q2+3q4+q6.
If i = ℓ− 1, then

dimq e1Ae1 = 1 + 2q2 + 2q4 + q6, dimq e2Ae2 = 1 + q2 + q4 + q6,

dimq e1Ae2 = dimq e2Ae1 = q2 + q4.

In any case, we have that A is wild. □

It remains to consider the case a = ℓ− 1 and b = ℓ. If mℓ ≥ 2, it is already considered
in (iii ′). Thus we assume mℓ−1 ≥ 1 and mℓ = 1. RΛ(βΛ′) is (f3) if mℓ−1 = 1. If mℓ−1 ≥ 2,
we have an isomorphism of algebras

RΛ(βΛ′) ∼= Rmℓ−1Λℓ−1+Λℓ(αℓ−1 + αℓ).

This is the algebra we analyzed at the beginning of Section 7. Thus, it is (t8) if mℓ−1 = 2,
wild if mℓ−1 ≥ 3.

9.7. (iv ′′) Λ = Λa + Λb + Λ̃ (0 ≤ a < b ≤ ℓ− 1) and Λ′ = Λa+1 + Λb+1 + Λ̃. In this case,

βΛ′ = α0 + 2α1 + · · · + 2αa + αa+1 + · · · + αb.

By symmetry, we have the result from Case (iv ′).

9.8. The cases (v), (vi), (viii ′), (viii ′′).

(v) Λ = Λa + Λb + Λ̃ (1 ≤ a < b ≤ ℓ− 1) and Λ′ = Λa−1 + Λb+1 + Λ̃. In this case,

βΛ′ = αa + αa+1 + · · · + αb.

Then the result from [15] for type A(1)
ℓ shows that RΛ(βΛ′) is

– finite if mi = δai + δbi, for a ≤ i ≤ b, namely (f4),
– tame if ma ≥ 2 and mi = δbi, for a < i ≤ b, or mb ≥ 2 and mi = δai, for
a ≤ i < b, namely (t9),

– wild otherwise.
(vi) If Λ = Λa +Λb +Λ̃ (0 ≤ a < b ≤ ℓ) and Λ′ = Λa+1 +Λb−1 +Λ̃, where a ≤ b−2, the

level two result Theorem 8.11(vi) implies that RΛ(βΛ′) is wild for 0 ≤ a < b ≤ ℓ
with a ̸= b− 1.

(viii ′) If Λ = Λa + Λb + Λ̃ (0 ≤ a < b ≤ ℓ− 2) and Λ′ = Λa + Λb+2 + Λ̃,

βΛ′ = α0 + 2α1 + · · · + 2αb + αb+1.

Then RΛ(βΛ′) is wild, for 0 ≤ a < b ≤ ℓ− 2, by Theorem 8.11(viii ′).
(viii ′′) If Λ = Λa + Λb + Λ̃ (2 ≤ a < b ≤ ℓ) and Λ′ = Λa−2 + Λb + Λ̃, then

βΛ′ = αa−1 + 2αa + · · · + 2αℓ−1 + αℓ.

By symmetry, Theorem 8.11(viii ′′) implies that RΛ(βΛ′) is wild, for 2 ≤ a < b ≤ ℓ.
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9.9. The remaining cases.
(vii ′) If Λ = Λa + Λb + Λ̃ (0 ≤ a < b ≤ ℓ, b ≥ 2) and Λ′ = Λa + Λb−2 + Λ̃, it suffices to

assume a ≤ b − 2, because if a = b − 1 then Λa + Λb−2 = Λa−1 + Λb−1 and it is
already treated in (iv ′). We have

βΛ′ = αb−1 + 2αb + · · · + 2αℓ−1 + αℓ.

If mi = δbi, for b− 1 ≤ i ≤ ℓ, it is (f6). If mb−1 ≥ 1, the arrow is

Λ = Λb−1 + Λb + Λ̃′ −→ Λ′ = Λb−2 + Λb−1 + Λ̃′,

and it is already treated in (iv ′). If mb ≥ 2, the arrow is of the form

Λ = 2Λb + Λ̃′ −→ Λ′ = Λb−2 + Λb + Λ̃′,

and it is already treated in (iii ′). If mi ≥ 1, for some b+ 1 ≤ i ≤ ℓ, the arrow is

Λ = Λb + Λi + Λ̃′ −→ Λ′ = Λb−2 + Λi + Λ̃′,

and RΛ(βΛ′) is wild by (viii ′′).
(vii ′′) If Λ = Λa + Λb + Λ̃ (0 ≤ a < b ≤ ℓ, a ≤ ℓ − 2) and Λ′ = Λa+2 + Λb + Λ̃, we may

assume a ≤ b − 2, because if a = b − 1 then Λa+2 + Λb = Λa+1 + Λb+1 and it is
already treated in (iv ′′). We have

βΛ′ = α0 + 2α1 + · · · + 2αa + αa+1.

Then, by symmetry, we see that no new non-wild algebra appears.

10. Second neighbors in higher level cases

By the result on the first neighbors, it suffices to check the representation type of
RΛ(βΛ′′) for Λ → Λ′ → Λ′′ in the following cases in the second neighbors.

(1) Λ = 2Λℓ + Λ̃ → Λ′ = 2Λℓ−1 + Λ̃ and Λ = 2Λ0 + Λ̃ → Λ′ = 2Λ1 + Λ̃.
(2) Λ = 2Λℓ−1 + Λ̃ → Λ′ = 2Λℓ−2 + Λ̃ and Λ = 2Λ1 + Λ̃ → Λ′ = 2Λ2 + Λ̃.
(3) Λ = 2Λa + Λ̃ → Λ′ = Λa−1 + Λa+1 + Λ̃ (1 ≤ a ≤ ℓ− 1).
(4) Λ = 2Λℓ + Λ̃ → Λ′ = Λℓ−2 + Λℓ + Λ̃ and Λ = 2Λ0 + Λ̃ → Λ′ = Λ0 + Λ2 + Λ̃.
(5) Λ = Λa + Λℓ + Λ̃ → Λ′ = Λa−1 + Λℓ−1 + Λ̃ (1 ≤ a ≤ ℓ− 1) and

Λ = Λ0 + Λb + Λ̃ −→ Λ′ = Λ1 + Λb+1 + Λ̃(1 ≤ b ≤ ℓ− 1).

(6) Λ = Λa + Λb + Λ̃ → Λ′ = Λa−1 + Λb+1 + Λ̃ (1 ≤ a < b ≤ ℓ− 1).
(7) Λ = Λa + Λb + Λ̃ → Λ′ = Λa + Λb−2 + Λ̃ (0 ≤ a < b ≤ ℓ, a ≤ b− 2) and

Λ = Λa + Λb + Λ̃ −→ Λ′ = Λa+2 + Λb + Λ̃(0 ≤ a < b ≤ ℓ, a ≤ b− 2).

The aim of this section is to show that no new non-wild algebra appears in the above
seven cases. Our strategy for the proof is that we check the wildness of the algebras case
by case. Basically, most algebras RΛ(βΛ′′) in each case will belong to the following three
patterns. Since we will use similar arguments repeatedly in each pattern, we adopt the
following style of writing in order to avoid repetition.

(I) Λ′′ is already in the first neighbors and hence already done in the previous section.
By the definition of arrows, it is easy to see that Λ′′ can be reached from Λ with
one move. We list Λ′′ in this pattern without further proof.
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(II) Λ′′ is not in the first neighbors but there is an arrow Λmid → Λ′′ such that we
may know that RΛ(βΛmid) is wild, by the results of the first neighbors or level two
results. Then RΛ(βΛ′′) is wild. In this pattern, we will write the arrow (or just
Λmid for each Λ′′) and refer to the previous sections for the wildness of RΛ(βΛmid).

A variant of this argument is that RΛ(βΛmid) is not wild, but we know by results
in the previous sections that RΛ(βΛ′′) is wild for the path Λmid → Λ′′.

(III) We may use Lemma 2.18(tensor product lemma) to show that RΛ(βΛ′′) is Morita
equivalent to the tensor product of two algebras. Then the wildness of the tensor
product is easy to see. For this pattern, we will just write the tensor product of
two algebras without referring to Lemma 2.18 explicitly.

For the new non-wild algebras, we will see that they all belong to the tame cases listed
in Main Theorem A.

In the following, we only list the arguments for Case (5) to showcase an example of the
strategy. For the detailed arguments of the remaining cases, we refer to [9, Section 10].

10.1. Case (5). This case studies Λ = Λ0 + Λb + Λ̃ → Λ′ = Λ1 + Λb+1 + Λ̃ → Λ′′, for
1 ≤ b ≤ ℓ− 1, and βΛ′ = α0 + · · · + αb.

10.1.1. The case of changing Λ1 + Λb+1. First, cases ∆(b+1)− , ∆1+,(b+1)− and ∆1−,(b+1)+

are in pattern (I). Second, for the remaining cases ∆(b+1)+ , ∆1+,(b+1)+ , and ∆1+ are all
in pattern (II) with Λmid = Λ0 + Λb+2 + Λ̃, Λ0 + Λb+2 + Λ̃ and Λ4 + Λb + Λ̃, respectively.
For the first two, RΛ(βΛmid) is wild by (viii ′) in the first neighbors. Finally, RΛ(βΛmid) for
the last one is also wild since Theorem 4.2 shows that RΛ0(βΛ4) is wild.

10.1.2. The case of changing Λ1 + Λi or Λb+1 + Λi. Here, we consider the path

Λ −→ Λ′ = Λ1 + Λb+1 + Λi + Λ̃ −→ Λ′′

and we must change Λi. First, we have cases in pattern (I):
• ∆i−,(b+1)− , ∆i+,(b+1)− , ∆i−,1− , ∆i+,1− ,
• ∆i− for 2 = i ≤ b− 1, or i = b+ 2, b+ 1,
• ∆1+,i− for 1 ≤ b = i−1, or 1 = b = i, or i = 1, 2 ≤ b ≤ ℓ−1 or i = 2, 3 ≤ b ≤ ℓ−1,
• ∆(b+1)+,i− for 1 ≤ b = i− 2 or 1 ≤ b = i− 1.

Second, we have the following cases in pattern (II):

(∆i+) with 1 ≤ i ≤ ℓ− 2: Λmid = Λ0 + Λi+2 + Λb + Λ̃, by (viii ′) in the first neighbors.
(∆i−) with 2 ≤ i = b or 3 ≤ i ≤ b−1: Λmid = Λ0 +Λb−2 +Λb +Λ̃ and Λ0 +Λi−2 +Λb +Λ̃,

respectively, by Theorem 8.2(iii ′) and Theorem 8.11(viii ′′), respectively.
(∆1+,i+) with i ̸= 0, b or 2 ≤ i = b: Λmid = Λ0 + Λb+1 + Λi+1 + Λ̃ and Λ0 + 2Λb+1 + Λ̃,

respectively, by Theorem 8.11 (iv ′′), and by Theorem 8.2(ii) respectively.
(∆(b+1)+,i+) Λmid = Λ0 + Λb+2 + Λi + Λ̃, by (viii ′) in the first neighbors.

(∆1+,i−) with 1 ≤ b ≤ i − 2 and (∆(b+1)+,i−) with 1 ≤ b ≤ i − 3. For both cases, Λmid =
Λ1 + Λb + Λi−1 + Λ̃, by (vi) in the first neighbors.

Other than patterns (I) and (II), we have the following cases.

(∆i+) We have Λ′′ = Λ1 +Λb+1 +Λi+2 +Λ̃, for 0 ≤ i ≤ ℓ−2. Here, it remains to consider
the following subcases.
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(i = 0, 2 ≤ b ≤ ℓ− 1) We choose [P ] = f2f
(2)
1 f

(2)
0 f3 . . . fbvΛ ∈ V (Λ0) ⊗ V (Λ0) ⊗ V (Λb). Then [P ] =

f2f
(2)
1 ((1), (1), (1b−2)) is obtained by applying f2 to

(
(1), (2, 1), (1b−2)

)
+ q

(
(12), (12), (1b−2)

)
+ q2

(
(12), (2), (1b−2)

)
+ q2

(
(2), (12), (1b−2)

)
+ q3

(
(2), (2), (1b−2)

)
+ q4

(
(2, 1), (1), (1b−2)

)
.

Each 3-partition has three addable 2-nodes and no removable 2-node. Hence,

dimq End(P ) =
(
1 + q2 + q4)(1 + q2 + 2q4 + q6 + q8)

= 1 + 2q2 + 4q4 + 4q6 + 4q8 + 2q10 + q12,

and P = f2f
(2)
1 f

(2)
0 f3 . . . fbR

Λ(0) is an indecomposable projective module.
We apply Lemma 2.14 to conclude that R2Λ0+Λb(βΛ′′) is wild.

(i = 0, b = 1) We have Λ = 2Λ0 + Λ1 + Λ̃ and Λ′′ = Λ1 + 2Λ2 + Λ̃, βΛ′′ = 2α0 + 2α1.
We already proved in Subsection 10.1.1 that this algebra is wild.

(∆i−) We have Λ′′ = Λ1 + Λb+1 + Λi−2 + Λ̃, for 2 ≤ i ≤ ℓ. It remains to consider the case
b+ 3 ≤ i ≤ ℓ. We have Λ′′ = Λ1 + Λb+1 + Λi−2 + Λ̃ and

βΛ′′ = α0 + · · · + αb + αi−1 + 2αi + · · · + 2αℓ−1 + αℓ.

Thus Lemma 2.18 implies that RΛ0+Λb+Λi(βΛ′′) is Morita equivalent to

RΛ0+Λb(α0 + · · · + αb) ⊗RΛi(αi−1 + 2αi + · · · + 2αℓ−1 + αℓ),

which is RΛ0+Λb(βΛ1+Λb+1) ⊗ RΛi(βΛi−2). In [22, Proposition 4.1], it was proved
that RΛi(βΛi−2) is the Brauer line algebra whose number of simple modules is ℓ−
i+1. Thus, we may choose an idempotent e such that eRΛi(βΛi−2)e ∼= k[X]/(X2).

On the other hand, RΛ0+Λb(βΛ1+Λb+1) is (t5) and the number of simples is
b + 1 ≥ 2. Thus, by considering the three leftmost vertices of the Brauer graph,
we may obtain an idempotent truncation whose Gabriel quiver is

◦ ◦ βbb
µ //
ν

oo

Therefore, an idempotent truncation of RΛ0+Λb+Λi(βΛ′′) has the Gabriel quiver
which is obtained by adding one loop to each vertex. Hence, RΛ0+Λb+Λi(βΛ′′) is
wild, which implies that RΛ(βΛ′′) is wild.

(∆1+,i+) We have Λ′′ = Λ2 + Λi+1 + Λb+1 + Λ̃. Then, the following are the remaining cases.
(i = 0) Λ = 2Λ0 + Λb + Λ̃, Λ′′ = Λ1 + Λ2 + Λb+1 + Λ̃, and

βΛ′′ = 2α0 + 2α1 + α2 + · · · + αb.

If b = 1, we already showed that R2Λ0+Λ1(2α0 + 2α1) is wild in (∆+). Thus,
we assume b ≥ 2 and choose

[P ] = f0f
(2)
1 f2 . . . fbf0vΛ ∈ V (Λ0) ⊗ V (Λ0) ⊗ V (Λb).
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We then obtain [P ] by applying f0 to

f
(2)
1

(
(0), (1), (1b−1)

)
+ q2

(
(1), (0), (1b−1)

)
=
(
(0), (12), (1b)

)
+ q

(
(0), (2), (1b)

)
+ q2

(
(0), (2, 1), (1b−1)

)
+ q2

(
(12), (0), (1b)

)
+ q3

(
(2), (0), (1b)

)
+ q4

(
(2, 1), (0), (1b−1)

)
.

Each 3-partition has two addable 0-nodes and no removable 0-node. Thus,
dimq End(P ) =

(
1 + q4)(1 + q2 + 2q4 + q6 + q8)

= 1 + q2 + 3q4 + 2q6 + 3q8 + q10 + q12

and we apply Lemma 2.13 to conclude that End(P ) and RΛ(βΛ′′) are wild.
(i = b = 1) Λ = Λ0 + 2Λ1 + Λ̃, Λ′′ = 3Λ2 + Λ̃ and βΛ′′ = 2α0 + 3α1. We consider

RΛ0+2Λ1(2α0 + 3α1) and choose [P ] = f
(2)
1 f

(2)
0 f1vΛ. Then

dimq End(P ) = 1 + 2q2 + 3q4 + 3q6 + 2q8 + q10

by the similar computation above. Hence, Lemma 2.14 applies.
(∆(b+1)+,i−) We have Λ′′ = Λ1 + Λb+2 + Λi−1 + Λ̃. Then, we consider the following remaining

cases.
(2 ≤ b = i) Λ = Λ0 + 2Λb + Λ̃ → Λ′′ = Λ1 + Λb−1 + Λb+2 + Λ̃ and

βΛ′′ = α0 + · · · + αb−1 + 2αb + αb+1.

We choose [P ] = fbfb−1 . . . f0fb+1fbvΛ ∈ V (Λ0) ⊗V (Λb) ⊗V (Λb). Then [P ] is
obtained by applying fbfb−1 to(

(1b−1), (0), (2)
)

+ q((b− 1), (0), (2)) + q
(
(1b−1), (2), (0)

)
+ q2((b− 1), (2), (0)).

Hence, we obtain
dimq End(P ) = 1 + 4q2 + 6q4 + 4q6 + q8

and RΛ(βΛ′′) is wild by Lemma 2.14.
(1 = b = i) This case is similar to the previous case. We choose [P ] = f2f1f0f1vΛ and

compute graded dimensions. Then,
dimq End(P ) =

(
1 + q2)(1 + 3q2 + 2q4 + 3q6 + q8)

= 1 + 4q2 + 5q4 + 5q6 + 4q8 + q10.

Hence, RΛ(βΛ′′) is wild.
(1 ≤ i < b ≤ ℓ− 1) In this case, we have

βΛ′′ = α0 + · · · + αi−1 + 2αi + · · · + 2αb + αb+1.

We choose [P ] ∈ V (Λ0) ⊗ V (Λi) ⊗ V (Λb) as
[P ] = fi(fi+1fi)(fi+2 . . . fb+1)(fi+1 . . . fb)(fi−1 . . . f0)vΛ.

Then, one can show
dimq End(P ) =

(
1 + q2)(1 + q2 + 2q4 + q6 + q8)

= 1 + 2q2 + 3q4 + 3q6 + 2q8 + q10.

Hence, RΛ(βΛ′′) is wild by Lemma 2.14.
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10.1.3. The case of changing Λi + Λj. Here, we consider Λ = Λ0 + Λb + Λi + Λj + Λ̃, for
0 ≤ i ≤ j ≤ ℓ, and the path

Λ −→ Λ′ = Λ1 + Λb+1 + Λi + Λj + Λ̃ −→ Λ′′.

In the path, we must change Λi + Λj in the second step. Cases in pattern (I) are:
(∆i−.j+) i = j = b+ 1, or 1 ≤ i < j ≤ ℓ− 1 and i = 1, or 1 ≤ i < j ≤ ℓ− 1 and i = b+ 1.
(∆i−,j−) i = j = b = ℓ− 1, or i = j = b+ 1 = ℓ, or i = b = 1 and j = ℓ, or i = 1 < j ≤ ℓ− 1.

Thus, their representation types have already been determined.
Next, we consider cases in pattern (II). Let Λmid be the dominant integral weight which

is obtained by changing Λi +Λj in Λ. We shall check when RΛ(βΛmid) is wild, and whether
there is an arrow Λmid → Λ′′.

The following is the list of Λmid such that RΛ(βΛmid) is wild. Then, we check whether
βΛmid + (α0 + · · · + αb) − δ ̸∈ Q+, in order to know the existence of the arrow. The
numbering in the list follows Theorem 8.2(1) and Theorem 8.11(1) as before.

(i ′) Λ − Λmid = 2Λi − 2Λi−1, for 2 ≤ i = j ≤ ℓ− 2. Then,
βΛmid = 2αi + · · · + 2αℓ−1 + αℓ.

Hence, we need to treat the cases i = j = ℓ − 1 and i = j = ℓ below. Note that
i = j = 1 implies Λ′′ = Λ and it does not occur.

(i ′′) Λ − Λmid = 2Λi − 2Λi+1, for 2 ≤ i = j ≤ ℓ− 1. Then,
βΛmid = α0 + 2α1 + · · · + 2αi.

Hence, we need to treat the cases i = j = 0 and i = j = 1 below.
(iv ′) Λ − Λmid = Λi − Λi−1 + Λj − Λj−1, for 2 ≤ i < j ≤ ℓ− 1. Then,

βΛmid = (αi + · · · + αℓ−1) + (αj + · · · + αℓ−1) + αℓ.

Hence, we need to treat the case j = ℓ below. Note that the arrow Λ′ → Λ′′ does
not exist when i = 1.

(iv ′′) Λ − Λmid = Λi − Λi+1 + Λj − Λj+1, for 1 ≤ i < j ≤ ℓ− 1. Then,
βΛmid = α0 + (α1 + · · · + αi) + (α1 + · · · + αj).

Hence, we need to treat the case i = 0 < j below.
(vi) Λ − Λmid = Λi − Λi+1 + Λj − Λj−1, for 0 ≤ i < j ≤ ℓ and b, i ≤ j − 2.
βΛmid = (α0 + 2α1 + · · · + 2αi) + (αi+1 + · · · + αj−1) + (2αj + · · · + 2αℓ−1 + αℓ).

We do not need to consider (iii ′), (iii ′′), (viii ′) and (viii ′′), because there are only three
changes. Below, we handle the cases that RΛ(βΛmid) is not wild.
(∆−−) (i) Suppose that i = j = ℓ−1. Then, RΛ(βΛmid) is the Case (i ′) with i = j = ℓ−1,

which is not wild.
Λ = Λ0 + Λb + 2Λℓ−1 + Λ̃, Λ′′ = Λ1 + Λb+1 + 2Λℓ−2 + Λ̃

and βΛ′′ = (α0 + · · · + αb) + (2αℓ−1 + αℓ) = βΛ′ + βΛmid .
(1 ≤ b ≤ ℓ− 3) Lemma 2.18 implies that RΛ0+Λb+2Λℓ−1(βΛ′′) is Morita equivalent to

RΛ0+Λb(α0 + · · · + αb) ⊗R2Λℓ−1(2αℓ−1 + αℓ).
We know that RΛ0+Λb(α0 + · · · + αb) is the Brauer graph algebra such
that the Gabriel quiver of an idempotent truncation contains

◦ ◦bb//oo
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and that R2Λℓ−1(2αℓ−1 + αℓ) has an indecomposable projective module
P with End(P )op ∼= k[X]/(X2). Thus, RΛ0+Λb+2Λℓ−1(βΛ′′) is wild.

(b = ℓ− 1) We have Λmid = (Λ1 + Λℓ−2) + 2Λℓ−1 + Λ̃. If ℓ ≥ 3 there is a path

Λ = Λ0 + 3Λℓ−1 + Λ̃ −→ Λmid −→ Λ′′ = Λ1 + 2Λℓ−2 + Λℓ + Λ̃,

since βΛmid = α0 + · · · + αℓ−2 + 2αℓ−1 + αℓ and βΛ′′ = βΛmid + αℓ−1.
Thus, it is wild because RΛ(βΛmid) is wild. If ℓ = 2, we have the arrow

Λ = Λ0 + 3Λ1 + Λ̃ −→ Λ′′ = 2Λ0 + Λ1 + Λ2 + Λ̃,

which is in the first neighbors and βΛ′′ = α1. Hence, it is (f1) if ℓ = 2.
(ii) Next, we consider the case i = j = ℓ, for 1 ≤ b ≤ ℓ − 2. Then, RΛ(βΛ′) is

from Case (i ′) with i = j = ℓ, which is not wild. Recall

Λ = Λ0 + Λb + 2Λℓ + Λ̃, Λ′′ = Λ1 + Λb+1 + 2Λℓ−1 + Λ̃

and βΛ′′ = (α0 + · · · +αb) +αℓ. Lemma 2.18 implies that RΛ0+Λb+2Λℓ(βΛ′′) is
Morita equivalent to RΛ0+Λb(α0 + · · · + αb) ⊗R2Λℓ(αℓ), which is wild.

(∆++) (1) Suppose that i = j = 1. Then, RΛ(βΛmid) is the algebra from Case (i ′′) with
i = j = 1, which is not wild. In this case,

Λ = Λ0 + Λb + 2Λ1 + Λ̃, Λ′′ = Λ1 + Λb+1 + 2Λ2 + Λ̃

and there is a path

Λ0 + Λ1 + Λb −→ Λ0 + Λ2 + Λb+1 −→ 2Λ2 + Λb+1.

If 2 ≤ b ≤ ℓ−1, RΛ1+Λb(βΛ2+Λb+1) is wild. If b = 1, then we already computed
in Case (5) (∆++)(i = b = 1) that RΛ0+2Λ1(2α0 + 3α1) is wild. To see this,
we computed dimq End(P ), for [P ] = f

(2)
1 f

(2)
0 f1vΛ. Thus, RΛ(βΛ′′) is wild.

(2) Next, we consider the case i = j = 0. This RΛ(βΛ′) is a non-wild algebra
from Case (i ′′) with i = j = 0. Then,

Λ = 3Λ0 + Λb + Λ̃, Λ′′ = 3Λ1 + Λb+1 + Λ̃.

and βΛ′′ = 2α0 + α1 + · · · + αb.
(b = 1) We consider projective R3Λ0+Λ1(2α0 +α1)-modules [P1] = f1f

(2)
0 vΛ and

[P2] = f
(2)
0 f1vΛ in V (Λ0)⊗3 ⊗ V (Λb). Then,

dimq End(P1) = 1 + q2 + 2q4 + 2q6 + 3q8 + 2q10 + 2q12 + q14 + q16,

dimq End(P2) = 1 + q4 + 2q8 + q12 + q16,

dimq Hom(P1, P2) = q4 + q8 + q12.

Since dimq Hom(P1, P2) = dimq Hom(P2, P1) starts with degree 4, we
have one loop of degree 2 and one loop of degree 4 on vertex 1, one loop
of degree 4 on vertex 2. Hence, R3Λ0+Λ1(2α0 + α1) is wild.

(2 ≤ b ≤ ℓ− 1) Set [P ] = fb . . . f1f
(2)
0 vΛ ∈ V (Λ0)⊗3 ⊗ V (Λb). Then

dimq End(P ) = 1 + 2q2 + 3q4 + 4q6 + 4q8 + 4q10 + 3q12 + 2q14 + q16.

Thus, Lemma 2.14 implies that R3Λ0+Λb(2α0 + α1 + · · · + αb) is wild.
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(∆+− = ∆−+) We consider the case 1 ≤ i = j ≤ ℓ− 1 here. We have

Λ = Λ0 + Λb + 2Λi + Λ̃, Λ′′ = Λ1 + Λb+1 + Λi−1 + Λi+1 + Λ̃.

and βΛ′′ = (α0 + · · · + αb) + αi.
(b+ 2 ≤ i ≤ ℓ− 1) By Lemma 2.18, RΛ0+Λb+2Λi(α0 + · · · +αb +αi) is Morita equivalent to

RΛ0+Λb(α0 + · · · + αb) ⊗R2Λi(αi),

which is wild.
(i = b) In this case, we have Λ − Λ′′ = (Λ0 + 3Λb) − (Λ1 + Λb−1 + 2Λb+1) and

βΛ′′ = α0 + · · · + αb−1 + 2αb. We set

[P ] = fb−1 . . . f0f
(2)
b vΛ ∈ V (Λ0) ⊗ V (Λb)⊗3.

Then

fb−2 . . . f0f
(2)
b vΛ =

((
1b−1), (0), (1), (1)

)
+ q((b− 1), (0), (1), (1))

+ q
((

1b−1), (1), (0), (1)
)

+ q2((b− 1), (1), (0), (1))

+ q2
((

1b−1), (1), (1), (0)
)

+ q3((b− 1), (1), (1), (0))

and each 4-partition has 3 addable (b − 1)-nodes and no removable
(b− 1)-node. Therefore,

dimq End(P ) =
(
1 + q2 + q4)(1 + 2q2 + 2q4 + q6)

= 1 + 3q2 + 5q4 + 5q6 + 3q8 + q10

and the Gabriel quiver of End(P ) has three loops. Hence RΛ(βΛ′′) is
wild.

(1 ≤ i ≤ b− 1) βΛ′′ = α0 + · · · + αi−1 + 2αi + αi+1 + · · · + αb. We set

[P ] = f
(2)
i fi−1 . . . f0fi+1 . . . fbvΛ ∈ V (Λ0) ⊗ V (Λi)⊗2 ⊗ V (Λb).

Then fi−1 . . . f0fi+1 . . . fbvΛ is equal to(
(1i), (0), (0), (1b−i)

)
+ q

(
(1i), (0), (1b−i), (0)

)
+ q2

(
(1i), (1b−i), (0), (0)

)
+ q

(
(i), (0), (0), (1b−i)

)
+ q2

(
(i), (0), (1b−i), (0)

)
+ q3

(
(i), (1b−i), (0), (0)

)
and each 4-partition has 4 addable i-nodes and no removable i-node.
Hence,

dimq End(P ) =
(
1 + q2 + 2q4 + q6 + q8)(1 + 2q2 + 2q4 + q6)

= 1 + 3q2 + 6q4 + 8q6 + 8q8 + 6q10 + 3q12 + q14

and it is wild.
(∆−−) We consider the case 2 ≤ i < j = ℓ. These RΛ(βΛ′) are the non-wild algebras

from Case (iv ′). We have

Λ = Λ0 + Λb + Λi + Λℓ + Λ̃, Λ′′ = Λ1 + Λb+1 + Λi−1 + Λℓ−1 + Λ̃.

(i) First, we consider the case 1 ≤ b ≤ i− 2. We set

Λmid = Λ0 + Λb+1 + Λi−1 + Λℓ + Λ̃.
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Then, there is a path Λ → Λmid → Λ′′ because
βΛmid = α0 + 2α1 + · · · + 2αb + αb+1 + · · · + αi−1 + 2αi + · · · + 2αℓ−1 + αℓ,

βΛ′′ = 2α0 + 3α1 + · · · + 3αb + αb+1 + · · · + αi−1 + 2αi + · · · + 2αℓ−1 + αℓ.

Hence, the wildness of RΛ(βΛ′′) follows.
(ii) Second, we consider the case b = i and set Λmid = Λ1 + 2Λb + Λℓ−1 + Λ̃.

Then, we have
βΛmid = α0 + · · · + αℓ−1,

βΛ′′ = α0 + · · · + αb−1 + 2αb + αb+1 + · · · + αℓ.

(iii) Third, we consider the case b = i+ 1. In this case, we have

Λ = Λ0 + Λb−1 + Λb + Λℓ + Λ̃,

Λ′′ = Λ1 + Λb−2 + Λb+1 + Λℓ−1 + Λ̃,
and
βΛ′′ = α0 + · · · + αb−2 + 2αb−1 + 2αb + αb+1 + · · · + αℓ.

Define an indecomposable RΛ0+Λb−1+Λb+Λℓ(βΛ′′)-module P by

[P ] = f
(2)
b−1f

(2)
b fb+1 . . . fℓfb−2 . . . f0vΛ ∈ V (Λ0) ⊗ V (Λb−1) ⊗ V (Λb) ⊗ V (Λℓ).

Then, f (2)
b fb+1 . . . fℓfb−2 . . . f0vΛ is equal to(

(1b−1), (0), (1), (1ℓ−b+1)
)

+ q2
(
(b− 1), (0), (1), (1ℓ−b+1)

)
+ q2

(
(1b−1), (0), (1), (ℓ− b+ 1)

)
+ q4((b− 1), (0), (1), (ℓ− b+ 1)

)
.

Each 4-partition has 4 addable (b− 1)-nodes and no removable (b− 1)-
node. Thus,

dimq End(P ) =
(
1 + 2q4 + q8)(1 + q2 + 2q4 + q6 + q8)

= 1 + q2 + 4q4 + 3q6 + 6q8 + 3q10 + 4q12 + q14 + q16,

and both Lemma 2.13 and Lemma 2.14 implies that it is wild.
(iv) Finally, we consider the case i+ 2 ≤ b ≤ ℓ− 1.
Λ − Λ′′ = (Λ0 − Λ1 + Λb − Λb+1) + (Λi − Λi−1 + Λℓ − Λℓ−1)

and βΛ′′ = (α0 + · · · + αb) + (αi + · · · + αℓ). Then, Lemma 2.18 implies
that RΛ0+Λi+Λb+Λℓ(βΛ′′) is Morita equivalent to

RΛ0+Λb(α0 + · · · + αb) ⊗RΛi+Λℓ(αi + · · · + αℓ).
Both algebras are Brauer graph algebras we already computed, which
implies that RΛ0+Λi+Λb+Λℓ(βΛ′′) is wild.

(∆++) (1) We consider the case 1 ≤ i < j = ℓ − 1. These RΛ(βΛ′) are the non-wild
algebras from Case (iv ′′). We have

Λ = Λ0 + Λb + Λi + Λj + Λ̃, Λ′′ = Λ1 + Λb+1 + Λi+1 + Λj+1 + Λ̃.

We choose Λmid = Λ0 + Λb + Λi+1 + Λj+1 + Λ̃. Then
βΛmid = α0 + (α1 + · · · + αi) + (α1 + · · · + αj).
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Since Λ − Λmid = Λi − Λi+1 + Λj − Λj+1 and
Λ − Λ′′ = Λ − Λmid + Λ0 − Λ1 + Λb − Λb+1,

we have βΛ′′ = βΛmid + (α0 + · · · + αb).
(2) Next we consider the case i = 0 < j = ℓ − 1. These RΛ(βΛ′) are the other

non-wild algebras from Case (iv ′′). We have

Λ = 2Λ0 + Λb + Λj + Λ̃, Λ′′ = 2Λ1 + Λb+1 + Λj+1 + Λ̃.
Then, βΛ′′ = 2α0 + (α1 + · · · + αb) + (α1 + · · · + αj).
We define [P1], [P2] ∈ V (Λ0)⊗2 ⊗ V (Λb) ⊗ V (Λj) by

[P1] = f
(2)
1 f

(2)
2 . . . f

(2)
min(b,j)f

(2)
0 fmin(b,j)+1 . . . fmax(b,j)vΛ,

[P2] = f
(2)
0 f

(2)
1 . . . f

(2)
min(b,j)fmin(b,j)+1 . . . fmax(b,j)vΛ.

Then, we have the following.
– [P1] = f

(2)
1 ((1), (1), (1b−1), (1j−1)) and ((1), (1), (1b−1), (1j−1)) has 6

addable 1-nodes and no removable 1-node.
– [P2] = f

(2)
0 ((0), (0), (1b), (1j)) and ((0), (0), (1b), (1j)) has 4 addable 0-

nodes and no removable 0-node.
Then, we may find that
dimq End(P1) = 1 + q2 + 2q4 + 2q6 + 3q8 + 2q10 + 2q12 + q14 + q16,

dimq End(P2) = 1 + q4 + 2q8 + q12 + q16,

dimq Hom(P1, P2) = dim Hom(P2, P1) = q8.

Hence, there are 2 loops, one is of degree 2 and the other is of degree 4, on
vertex 1, and one loop of degree 4 on vertex 2. Thus, it is wild.

(∆i−,j+) We consider the case 2 ≤ i < j = ℓ− 1. These RΛ(βΛ′) are the non-wild algebras
from Case (v). We have

Λ = Λ0 + Λb + Λi + Λj + Λ̃, Λ′′ = Λ1 + Λb+1 + Λi−1 + Λj+1 + Λ̃
and βΛ′′ = (α0 + · · · + αb) + (αi + · · · + αj).

(1 ≤ b ≤ i− 2) In this case, RΛ0+Λb+Λi+Λj (βΛ′′) is Morita equivalent to
RΛ0+Λb(α0 + · · · + αb) ⊗RΛi+Λj (αi + · · · + αj).

Both are Brauer graph algebras which we have computed. Then, we see that
RΛ0+Λb+Λi+Λj (βΛ′′) is wild.

(i ≤ b ≤ ℓ− 1) In this case, we have

Λ = Λ0 + Λi + Λb + Λj + Λ̃, Λ′′ = Λ1 + Λi−1 + Λb+1 + Λj+1 + Λ̃,

βΛ′′ = (α0 + · · · + αi−1) +
(
2αi + · · · + 2αmin(b,j)

)
+
(
αmin(b,j)+1 + · · · + αmax(b,j)

)
.

We define [P ] ∈ V (Λ0) ⊗ V (Λi) ⊗ V (Λb) ⊗ V (Λj) by

[P ] = f
(2)
b f

(2)
b−1 . . . f

(2)
i fi−1 . . . f0fmin(b,j)+1 . . . fmax(b,j)vΛ.

Then, one can show that
dimq End(P ) =

(
1 + q2 + 2q4 + q6 + q8)(1 + q4)

= 1 + q2 + 3q4 + 2q6 + 3q8 + q10 + q12.
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Lemma 2.13 implies that it is wild.
(∆i+,j−) We consider the case 0 ≤ i < j = ℓ, i ≤ j − 2. These RΛ(βΛ′) are the non-wild

algebras from Case (vi). We have

Λ = Λ0 + Λb + Λi + Λj + Λ̃, Λ′′ = Λ1 + Λb+1 + Λi+1 + Λj−1 + Λ̃.

Recall that the arrow Λ′ → Λ′′ does not exist if 1 ≤ j − 1 ≤ b.
(1 ≤ b ≤ j − 2) We choose Λmid = Λ0 + Λb + Λi+1 + Λj−1 + Λ̃. Then,

βΛmid = (α0 + 2α1 + · · · + 2αi) + (αi+1 + · · · + αj−1) + (2αj + · · · + 2αℓ−1 + αℓ)
βΛ′′ = βΛmid + (α0 + · · · + αb).

Then, we see that RΛ(βΛmid) is wild.

11. Third neighbors in higher level cases

11.1. New non-wild cases in the second neighbors. Note that we do not need to
consider those non-wild algebras that have already appeared in the first neighbors as we
have treated them. Therefore, we only list the new non-wild cases in the second neighbors
(and not in the first neighbors). By the result of the second neighbors, we see that there
are no new non-wild algebras in Cases (2), (4), (5), and (6). So, the non-wild cases we
have to consider in this section are those listed in Sections 11.1.1, 11.1.2 and 11.1.3 below.

11.1.1. New non-wild cases in the second neighbors of Case (7).
(i) Λ = Λ0 + Λℓ + Λ̃, Λ′ = Λ2 + Λℓ + Λ̃, Λ′′ = Λ2 + Λℓ−2 + Λ̃ with m0 = mℓ = 1,

m1 = mℓ−1 = 0 and ℓ ≥ 4. In this case,

βΛ′′ = α0 + α1 + αℓ−1 + αℓ.

(ii) Λ = Λ0 + 2Λi + Λ̃, Λ′ = Λ2 + 2Λi + Λ̃, Λ′′ = Λ2 + Λi−1 + Λi+1 + Λ̃ with m0 = 1,
m1 = 0, mi = 2 and 2 < i ≤ ℓ− 1. In this case,

βΛ′′ = α0 + α1 + αi.

(iii) Λ = Λ0 + 2Λℓ + Λ̃, Λ′ = Λ2 + 2Λℓ + Λ̃, Λ′′ = Λ2 + 2Λℓ−1 + Λ̃ with m0 = 1, m1 = 0,
mℓ = 2 and ℓ ≥ 3. In this case,

βΛ′′ = α0 + α1 + αℓ.

11.1.2. New non-wild cases in the second neighbors of Case (1). The path we consider is

Λ = 2Λ0 + Λ̃ −→ Λ′ = 2Λ1 + Λ̃ −→ Λ′′.

(i) Λ = 2Λ0 + Λℓ + Λ̃ → Λ′ = 2Λ1 + Λℓ + Λ̃ → Λ′′ = 2Λ1 + Λℓ−2 + Λ̃ and
m0 = 2,mℓ−1 = 0, mℓ = 1. In this case, βΛ′′ = α0 + αℓ−1 + αℓ. This also
appears in Case (7).

(ii) Λ = 2Λ0 + 2Λℓ + Λ̃ → Λ′ = 2Λ1 + 2Λℓ + Λ̃ → Λ′′ = 2Λ1 + 2Λℓ−1, m0 = 2 = mℓ. In
this case, βΛ′′ = α0 + αℓ.

(iii) Λ = 2Λ0 + 2Λi + Λ̃ → Λ′ = 2Λ1 + 2Λi + Λ̃ → Λ′′ = 2Λ1 + Λi−1 + Λi+1 + Λ̃,
2 ≤ i ≤ ℓ− 1, m0 = mi = 2. In this case, βΛ′′ = α0 + αi.

Ann. Repr. Th. 3 (2026), 1, p. 27–97 https://doi.org/10.5802/art.34

https://doi.org/10.5802/art.34


92 Susumu Ariki et al.

(iv) Λ = 2Λ0 + Λ̃ → Λ′ = 2Λ1 + 2Λ̃ → Λ′′ = 2Λ2 + Λ̃, m0 = 2,m1 = 0, char k ̸= 2. In
this case, βΛ′′ = 2α0 + 2α1.

(v) Λ = 2Λℓ +Λ̃ → Λ′ = 2Λℓ−1 +2Λ̃ → Λ′′ = 2Λℓ−2 +Λ̃, mℓ = 2,mℓ−1 = 0, char k ̸= 2.
In this case, βΛ′′ = 2αℓ−1 + 2αℓ. Note that by symmetry, this case is equivalent to
Case (1)(iv).

11.1.3. New non-wild cases in the second neighbors of Case (3).
(i) Λ = 2Λa + Λ̃ → Λ′ = Λa−1 + Λa+1 + Λ̃ → Λ′′ = Λa−2 + Λa+2 + Λ̃, 2 ≤ a ≤ ℓ − 2,

ma = 2, ma−1 = ma+1 = 0, char k ̸= 2. We have βΛ′′ = αa−1 + 2αa + αa+1.

(ii) Λ = 3Λa+Λ̃ → Λ′ = Λa−1+Λa+Λa+1+Λ̃ → Λ′′ = 2Λa−1+Λa+2+Λ̃, 1 ≤ a ≤ ℓ−2,
ma = 3,ma+1 = 0, char k ̸= 3. We have βΛ′′ = 2αa + αa+1.

(iii) Λ = 3Λa+Λ̃ → Λ′ = Λa−1+Λa+Λa+1+Λ̃ → Λ′′ = Λa−2+2Λa+1+Λ̃, 2 ≤ a ≤ ℓ−1,
ma = 3,ma−1 = 0 and char k ̸= 3. We have

βΛ′′ = αa−1 + 2αa.

This case is equivalent to Case (3)(ii) by symmetry.

(iv) Λ = 2Λa + 2Λb + Λ̃ → Λ′ = Λa−1 + Λa+1 + 2Λb + Λ̃ → Λ′′ = Λa−1 + Λa+1 + Λb−1 +
Λb+1 + Λ̃, 1 ≤ a < b− 1, b ≤ ℓ− 1, ma = mb = 2. We have βΛ′′ = αa + αb.

(v) Λ = 4Λa + Λ̃ → Λ′ = Λa−1 + Λa+1 + 2Λa + Λ̃ → 2Λa−1 + 2Λa+1 + Λ̃, 1 ≤ a ≤ ℓ− 1,
ma = 4 and char k ̸= 2. We have βΛ′′ = 2αa.

(vi) Λ = 2Λa + Λ0 + Λ̃ → Λ′ = Λa−1 + Λa+1 + Λ0 + Λ̃ → Λ′′ = Λ2 + Λa−1 + Λa+1 + Λ̃,
3 ≤ a ≤ ℓ− 1, ma = 2, m0 = 1, m1 = 0. In this case,

βΛ′′ = α0 + α1 + αa.

This case also appears in Case (7).

(vii) Λ = 2Λa + Λℓ + Λ̃ → Λ′ = Λa−1 + Λa+1 + Λℓ + Λ̃ → Λ′′ = Λℓ−1 + Λa−1 + Λa+1 + Λ̃,
1 ≤ a ≤ ℓ− 3, ma = 2, mℓ = 1, mℓ−1 = 0. In this case,

βΛ′′ = αa + αℓ−1 + αℓ.

This case also appears in Case (7).

(viii) Λ = 2Λ0+2Λa+Λ̃ → Λa−1+Λa+1+2Λ0+Λ̃ → 2Λ1+Λa−1+Λa+1+Λ̃, 2 ≤ a ≤ ℓ−1,
m0 = ma = 2. In this case,

βΛ′′ = α0 + αa.

This case also appears in Case (1).

(ix) Λ = 2Λℓ + 2Λa + Λ̃ → Λa−1 + Λa+1 + 2Λℓ + Λ̃ → 2Λℓ−1 + Λa−1 + Λa+1 + Λ̃,
1 ≤ a ≤ ℓ− 2, mℓ = ma = 2. In this case,

βΛ′′ = αℓ + αa.

This case also appears in Case (1).
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We may show that the algebras associated with the third neighbors in these cases are
either wild or belong to the first or the second neighbors. Details may be found in [9,
Section 11].

Appendix A.

This is a proof of Lemma 2.18, which works for general Lie type [43]. We thank him
for the permission to include the proof.

Suppose that A = (aij)i,j∈I is a symmetrizable Cartan matrix, and we have a partition
I = I1 ∪ I2 such that aij = 0 for (i, j) ∈ I1 × I2, and we consider RΛ(β), for β = β1 + β2
with

β1 ∈
⊕
i∈I1

Z≥0αi, β2 ∈
⊕
i∈I2

Z≥0αi.

We want to show
e(β1 ∗ β2)RΛ(β)e(β1 ∗ β2) ∼= RΛ1(β1) ⊗RΛ2(β2),

where
Λ1 =

∑
i∈I1

⟨α∨
i ,Λ⟩Λi, Λ2 =

∑
i∈I2

⟨α∨
i ,Λ⟩Λi.

Lemma A.1. If L1, L2 are a simple R(β1)-module and a simple R(β2)-module, respec-
tively, then L1 ◦ L2 is a simple R(β)-module.

Proof. Suppose e(β1 ∗ β2)K ̸= 0, for a submodule K of L1 ◦ L2. Then
e(β1 ∗ β2)K ⊆ e(β1 ∗ β2)L1 ◦ L2 = L1 ⊗ L2,

which implies that L1⊗L2 generates K. Hence, e(β1∗β2)K = 0, for any proper submodule
of L1 ◦ L2. Since e(β1 ∗ β2)L1 ◦ L2 ̸= 0, we may conclude that Top(L1 ◦ L2) is a simple
module. In particular, Top(L1 ◦ L2) ∼= Soc(L2 ◦ L1).

From Kang–Kashiwara–Kim–Oh’s [34, 2.2], we have an R(β1) ⊗ R(β2)-module homo-
morphism L1 ⊗ L2 → L2 ◦ L1 defined by u ⊗ v 7→ ψw[n2,n1](v ⊗ u). Then, it induces
f : L1 ◦ L2 → L2 ◦ L1. Similarly, we have g : L2 ◦ L1 → L1 ◦ L2. Now,

gf(u⊗ v) = g
(
ψw[n2,n1](v ⊗ u)

)
= ψw[n2,n1]g(v ⊗ u) = ψ2

w[n2,n1]u⊗ v,

which implies gf = id by the assumption aij = 0 for (i, j) ∈ I1 × I2. Hence f splits.
Since Top(L2 ◦ L1) is simple, it implies that L1 ◦ L2 ∼= L2 ◦ L1. If L2 ◦ L1 was not simple,
Im(f) ⊆ Rad(L2 ◦ L1), so that it would contradict gf = id. □

Remark A.2. By [39, Theorem 2.2], we have
(L1 ◦ L2)∗ ∼= L∗

2 ◦ L∗
1⟨(α, β)⟩.

Lemma A.3. Every simple R(β)-module is isomorphic to L1 ◦ L2, for a simple R(β1)-
module L1 and a simple R(β2)-module L2.

Proof. Let n = |β|, n1 = |β1|, n2 = |β2|. Observe that L1 ⊗ L2 = e(β1 ∗ β2)L1 ⊗ L2 and

e(β1 ∗ β2)L1 ◦ L2 =
∑

w∈Sn

e(β1 ∗ β2)ψwk[x1, . . . , xn]e(β1 ∗ β2)L1 ⊗ L2.

Since I1 ∩ I2 = ∅ implies that w ∈ Sn1 × Sn2 if e(β1 ∗ β2)ψwe(β1 ∗ β2) ̸= 0,
e(β1 ∗ β2)L1 ◦ L2 = L1 ⊗ L2.
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Hence, the map Irr(R(β1)) × Irr(R(β2)) → Irr(R(β)) given by (L1, L2) 7→ L1 ◦ L2, which
is well-defined by the previous lemma, is injective.

On the other hand, if we consider the span of
{fi1 . . . fin |αi1 + · · · + αin = β},

the assumption aij = 0, for (i, j) ∈ I1 × I2, and the categorification theorem implies
| Irr(R(β)| = dimU(g)−β

= dimU(g)−β1 × dimU(g)−β2

= | Irr(R(β1)| × | Irr(R(β2)|.
Hence, the map Irr(R(β1)) × Irr(R(β2)) → Irr(R(β)) is bijective. □

Lemma A.4. R(β)e(β1 ∗ β2) ∼= R(β1) ◦R(β2) as (R(β), R(β1) ⊗R(β2))-bimodule.

Proof. Observe that
R(β)e(β1 ∗ β2) =

⊕
w∈Sn/Sn1 ×Sn2

ψw(R(β1) ⊗R(β2)).

Hence, we have the equality. □

Lemma A.5. RΛ(β)e(β1 ∗ β2) is a progenerator of RΛ(β) and
RΛ(β)e(β1 ∗ β2) ∼= RΛ1(β1) ◦RΛ2(β2)

as an (RΛ(β), RΛ1(β1) ⊗RΛ2(β2))-bimodule.

Proof. The proof that RΛ(β)e(β1 ∗ β2) is a progenerator is the same as the proof of
Lemma 2.18. Next, we have a surjective R(β)-module homomorphism

R(β)e(β1 ∗ β2) −→ R(β1) ◦R(β2) ⊗R(β1)⊗R(β2) R
Λ1(β1) ⊗RΛ2(β2)

= RΛ1(β1) ◦RΛ2(β2)

=
⊕

w∈Sn/Sn1 ×Sn2

ψwR
Λ1(β1) ⊗RΛ2(β2).

Further, w−1(1) = 1 or n1 + 1 and the first entry of w−1ν or the (n1 + 1)th entry is ν1,
respectively. Thus,

x
⟨α∨

ν1 ,Λ⟩
1 e(ν)ψw = ψwx

⟨α∨
ν1 ,Λ⟩

w−1(1) e
(
w−1ν

)
= 0.

It implies that RΛ1(β1) ◦ RΛ2(β2) is an RΛ(β)-module. We have obtained a surjective
R(β)-module homomorphism

RΛ(β)e(β1 ∗ β2) −→ RΛ1(β1) ◦RΛ2(β2).
On the other hand, we have a surjective R(β)-module homomorphism

R(β1) ◦R(β2) ∼= R(β)e(β1 ∗ β2) −→ RΛ(β)e(β1 ∗ β2).
If ν1 ∈ Iβ1 and ν2 = (i, ν ′) ∈ Iβ2 , then

e(ν1 ∗ ν2)x⟨α∨
i ,Λ⟩

n1+1 = e(ν1 ∗ ν2)ψn1 . . . ψ1x
⟨α∨

i ,Λ⟩
1 ψ1 . . . ψn1 = 0.

It implies that RΛ(β)e(β1 ∗ β2) is a right RΛ1(β1) ⊗ RΛ2(β2)-module, so that we have a
surjective R(β)-module homomorphism

RΛ1(β1) ◦RΛ2(β2) −→ RΛ(β)e(β1 ∗ β2).
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Comparing dimensions, we have the desired isomorphism. □

Multiplying e(β1 ∗ β2) on the left of

RΛ(β)e(β1 ∗ β2) ∼= RΛ1(β1) ◦RΛ2(β2),
we obtain

e(β1 ∗ β2)RΛ(β)e(β1 ∗ β2) ∼= RΛ1(β1) ⊗RΛ2(β2).
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