We show that the index in higher-dimensional cluster categories mutates according to a higher-dimensional version of tropical coefficient dynamics.
Revised:
Accepted:
Published online:
Keywords: higher-dimensional cluster categories, coefficient dynamics
Oppermann, Steffen 1; Thomas, Hugh 2
CC-BY 4.0
@article{ART_2026__3_1_1_0,
author = {Oppermann, Steffen and Thomas, Hugh},
title = {Tropical coefficient dynamics for higher-dimensional cluster categories},
journal = {Annals of Representation Theory},
pages = {1--25},
year = {2026},
publisher = {The Publishers of ART},
volume = {3},
number = {1},
doi = {10.5802/art.33},
language = {en},
url = {https://art.centre-mersenne.org/articles/10.5802/art.33/}
}
TY - JOUR AU - Oppermann, Steffen AU - Thomas, Hugh TI - Tropical coefficient dynamics for higher-dimensional cluster categories JO - Annals of Representation Theory PY - 2026 SP - 1 EP - 25 VL - 3 IS - 1 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.33/ DO - 10.5802/art.33 LA - en ID - ART_2026__3_1_1_0 ER -
%0 Journal Article %A Oppermann, Steffen %A Thomas, Hugh %T Tropical coefficient dynamics for higher-dimensional cluster categories %J Annals of Representation Theory %D 2026 %P 1-25 %V 3 %N 1 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.33/ %R 10.5802/art.33 %G en %F ART_2026__3_1_1_0
Oppermann, Steffen; Thomas, Hugh. Tropical coefficient dynamics for higher-dimensional cluster categories. Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 1-25. doi: 10.5802/art.33
[1] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl
[2] On the combinatorics of rigid objects in 2-Calabi–Yau categories, Int. Math. Res. Not., Volume 2008 (2008) no. 11, Paper no. rnn029, 17 pages | DOI | MR | Zbl
[3] Cluster algebras and triangulated surfaces Part II: Lambda lengths, Memoirs of the American Mathematical Society, 255, American Mathematical Society, 2018 | DOI | MR | Zbl
[4] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[5] -angulated categories, J. Reine Angew. Math., Volume 675 (2013), pp. 101-120 | DOI | MR | Zbl
[6] Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., Volume 210 (2007) no. 1, pp. 22-50 | DOI | MR | Zbl
[7] Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl
[8] -representation-finite algebras and -APR tilting, Trans. Am. Math. Soc., Volume 363 (2011) no. 12, pp. 6575-6614 | DOI | MR | Zbl
[9] Stable categories of higher preprojective algebras, Adv. Math., Volume 244 (2013), pp. 23-68 | DOI | MR | Zbl
[10] Tropical friezes and the index in higher homological algebra, Math. Proc. Camb. Philos. Soc., Volume 171 (2021) no. 1, pp. 23-49 | DOI | MR | Zbl
[11] Grothendieck groups of -exangulated categories and a modified Caldero-Chapoton map, J. Pure Appl. Algebra, Volume 228 (2024) no. 5, Paper no. 107587, 25 pages | DOI | MR | Zbl
[12] On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581 | MR | Zbl | DOI
[13] Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc., Volume 14 (2012) no. 6, pp. 1679-1737 | DOI | MR | Zbl
[14] Indecomposable objects determined by their index in higher homological algebra, Proc. Am. Math. Soc., Volume 148 (2020) no. 6, pp. 2331-2343 | DOI | MR | Zbl
[15] Modules determined by their composition factors in higher homological algebra (2020) | arXiv | Zbl
[16] Tropical duality in -angulated categories, Appl. Categ. Struct., Volume 29 (2021) no. 3, pp. 529-545 | DOI | MR | Zbl
[17] Quiver combinatorics and triangulations of cyclic polytopes, Algebr. Comb., Volume 6 (2023) no. 3, pp. 639-660 | DOI | MR | Zbl | Numdam
Cited by Sources:


