Tropical coefficient dynamics for higher-dimensional cluster categories
Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 1-25

We show that the index in higher-dimensional cluster categories mutates according to a higher-dimensional version of tropical coefficient dynamics.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.33
Classification: 16E35, 13F60
Keywords: higher-dimensional cluster categories, coefficient dynamics

Oppermann, Steffen 1; Thomas, Hugh 2

1 Department of Mathematical Sciences, Norwegian University of Science and Technology, Postboks 8900, 7491 Trondheim, Norway
2 Département de mathématiques, Université du Québec à Montréal, CP 8888, Succursale Centreville, Montréal QC H3C 3P8, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2026__3_1_1_0,
     author = {Oppermann, Steffen and Thomas, Hugh},
     title = {Tropical coefficient dynamics for higher-dimensional cluster categories},
     journal = {Annals of Representation Theory},
     pages = {1--25},
     year = {2026},
     publisher = {The Publishers of ART},
     volume = {3},
     number = {1},
     doi = {10.5802/art.33},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.33/}
}
TY  - JOUR
AU  - Oppermann, Steffen
AU  - Thomas, Hugh
TI  - Tropical coefficient dynamics for higher-dimensional cluster categories
JO  - Annals of Representation Theory
PY  - 2026
SP  - 1
EP  - 25
VL  - 3
IS  - 1
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.33/
DO  - 10.5802/art.33
LA  - en
ID  - ART_2026__3_1_1_0
ER  - 
%0 Journal Article
%A Oppermann, Steffen
%A Thomas, Hugh
%T Tropical coefficient dynamics for higher-dimensional cluster categories
%J Annals of Representation Theory
%D 2026
%P 1-25
%V 3
%N 1
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.33/
%R 10.5802/art.33
%G en
%F ART_2026__3_1_1_0
Oppermann, Steffen; Thomas, Hugh. Tropical coefficient dynamics for higher-dimensional cluster categories. Annals of Representation Theory, Volume 3 (2026) no. 1, pp. 1-25. doi: 10.5802/art.33

[1] Buan, Aslak B.; Marsh, Bethany; Reineke, Markus; Reiten, Idun; Todorov, Gordana Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl

[2] Dehy, Raika; Keller, Bernhard On the combinatorics of rigid objects in 2-Calabi–Yau categories, Int. Math. Res. Not., Volume 2008 (2008) no. 11, Paper no. rnn029, 17 pages | DOI | MR | Zbl

[3] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces Part II: Lambda lengths, Memoirs of the American Mathematical Society, 255, American Mathematical Society, 2018 | DOI | MR | Zbl

[4] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl

[5] Geiss, Christof; Keller, Bernhard; Oppermann, Steffen n-angulated categories, J. Reine Angew. Math., Volume 675 (2013), pp. 101-120 | DOI | MR | Zbl

[6] Iyama, Osamu Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., Volume 210 (2007) no. 1, pp. 22-50 | DOI | MR | Zbl

[7] Iyama, Osamu Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl

[8] Iyama, Osamu; Oppermann, Steffen n-representation-finite algebras and n-APR tilting, Trans. Am. Math. Soc., Volume 363 (2011) no. 12, pp. 6575-6614 | DOI | MR | Zbl

[9] Iyama, Osamu; Oppermann, Steffen Stable categories of higher preprojective algebras, Adv. Math., Volume 244 (2013), pp. 23-68 | DOI | MR | Zbl

[10] Jørgensen, Peter Tropical friezes and the index in higher homological algebra, Math. Proc. Camb. Philos. Soc., Volume 171 (2021) no. 1, pp. 23-49 | DOI | MR | Zbl

[11] Jørgensen, Peter; Shah, Amit Grothendieck groups of d-exangulated categories and a modified Caldero-Chapoton map, J. Pure Appl. Algebra, Volume 228 (2024) no. 5, Paper no. 107587, 25 pages | DOI | MR | Zbl

[12] Keller, Bernhard On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581 | MR | Zbl | DOI

[13] Oppermann, Steffen; Thomas, Hugh Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc., Volume 14 (2012) no. 6, pp. 1679-1737 | DOI | MR | Zbl

[14] Reid, Joseph Indecomposable objects determined by their index in higher homological algebra, Proc. Am. Math. Soc., Volume 148 (2020) no. 6, pp. 2331-2343 | DOI | MR | Zbl

[15] Reid, Joseph Modules determined by their composition factors in higher homological algebra (2020) | arXiv | Zbl

[16] Reid, Joseph Tropical duality in (d+2)-angulated categories, Appl. Categ. Struct., Volume 29 (2021) no. 3, pp. 529-545 | DOI | MR | Zbl

[17] Williams, Nicholas J. Quiver combinatorics and triangulations of cyclic polytopes, Algebr. Comb., Volume 6 (2023) no. 3, pp. 639-660 | DOI | MR | Zbl | Numdam

Cited by Sources: