Semilinear clannish algebras arising from surfaces with orbifold points
Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 439-504.

Semilinear clannish algebras have been recently introduced by the first author and Crawley-Boevey as a generalization of Crawley-Boevey’s clannish algebras. In the present paper, we associate semilinear clannish algebras to the (colored) triangulations of a surface with marked points and orbifold points, and exhibit a Morita equivalence between these algebras and the Jacobian algebras constructed a few years ago by Geuenich and the second author.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.32
Classification: 16G20, 16S35, 13F60
Keywords: semilinear clannish algebra, Jacobian algebra, species, surface with marked points and orbifold points, Morita equivalence

Bennett-Tennenhaus, Raphael 1; Labardini-Fragoso, Daniel 2, 3

1 Fakultät für Mathematik Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
2 Instituto de Matemáticas Universidad Nacional Autónoma de México Área de la Investigación Científica Circuito exterior Ciudad Universitaria, 04510 Mexico
3 Dipartimento di Matematica “Tullio Levi-Civita” Università degli Studi di Padova Via Trieste 63 35131 Padova Italy
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_4_439_0,
     author = {Bennett-Tennenhaus, Raphael and Labardini-Fragoso, Daniel},
     title = {Semilinear clannish algebras arising from surfaces with orbifold points},
     journal = {Annals of Representation Theory},
     pages = {439--504},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {4},
     year = {2025},
     doi = {10.5802/art.32},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.32/}
}
TY  - JOUR
AU  - Bennett-Tennenhaus, Raphael
AU  - Labardini-Fragoso, Daniel
TI  - Semilinear clannish algebras arising from surfaces with orbifold points
JO  - Annals of Representation Theory
PY  - 2025
SP  - 439
EP  - 504
VL  - 2
IS  - 4
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.32/
DO  - 10.5802/art.32
LA  - en
ID  - ART_2025__2_4_439_0
ER  - 
%0 Journal Article
%A Bennett-Tennenhaus, Raphael
%A Labardini-Fragoso, Daniel
%T Semilinear clannish algebras arising from surfaces with orbifold points
%J Annals of Representation Theory
%D 2025
%P 439-504
%V 2
%N 4
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.32/
%R 10.5802/art.32
%G en
%F ART_2025__2_4_439_0
Bennett-Tennenhaus, Raphael; Labardini-Fragoso, Daniel. Semilinear clannish algebras arising from surfaces with orbifold points. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 439-504. doi : 10.5802/art.32. https://art.centre-mersenne.org/articles/10.5802/art.32/

[1] Assem, Ibrahim; Brüstle, Thomas; Charbonneau-Jodoin, Gabrielle; Plamondon, Pierre-Guy Gentle algebras arising from surface triangulations, Algebra Number Theory, Volume 4 (2010) no. 2, pp. 201-229 | DOI | MR | Zbl

[2] Bautista, Raymundo; López-Aguayo, Daniel Potentials for some tensor algebras, J. Algebra, Volume 573 (2021), pp. 177-269 | DOI | MR | Zbl

[3] Bennett-Tennenhaus, Raphael; Crawley-Boevey, William W. Semilinear clannish algebras, Proc. Lond. Math. Soc. (3), Volume 129 (2024) no. 4, Paper no. e12637, 58 pages | DOI | MR | Zbl

[4] Berg, Carl F. Structure Theorems for Basic Algebras (2011) | arXiv | Zbl

[5] Brüstle, Thomas Kit algebras, J. Algebra, Volume 240 (2001) no. 1, pp. 1-24 | DOI | MR | Zbl

[6] Cohn, Paul M. On the free product of associative rings. II: The case of (skew) fields, Math. Z., Volume 73 (1960) no. 5, pp. 433-456 | DOI | MR | Zbl

[7] Cohn, Paul M. Quadratic extensions of skew fields, Proc. Lond. Math. Soc. (3), Volume 11 (1961) no. 1, pp. 531-556 | DOI | MR | Zbl

[8] Crawley-Boevey, William W. Functorial filtrations. II: Clans and the Gelfand problem, J. Lond. Math. Soc. (2), Volume 40 (1989) no. 1, pp. 9-30 | DOI | MR | Zbl

[9] Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei Quivers with potentials and their representations. I: Mutations, Sel. Math., New Ser., Volume 14 (2008) no. 1, pp. 59-119 | DOI | MR | Zbl

[10] Dlab, Vlastimil; Ringel, Claus M. On algebras of finite representation type, J. Algebra, Volume 33 (1975) no. 2, pp. 306-394 | DOI | MR | Zbl

[11] Dlab, Vlastimil; Ringel, Claus M. Indecomposable representations of graphs and algebras, Memoirs of the American Mathematical Society, 173, American Mathematical Society, 1976 | DOI | MR | Zbl

[12] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras and triangulated orbifolds, Adv. Math., Volume 231 (2012) no. 5, pp. 2953-3002 | DOI | MR | Zbl

[13] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I: Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[14] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II: Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl

[15] Gabriel, Peter Indecomposable representations. II, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press Inc. (1973), pp. 81-104 | MR | Zbl

[16] Geiß, Christof; Labardini-Fragoso, Daniel; Schröer, Jan Schemes of modules over gentle algebras and laminations of surfaces, Sel. Math., New Ser., Volume 28 (2021) no. 1, Paper no. 8, 78 pages | DOI | MR | Zbl

[17] Geuenich, Jan Quiver Modulations and Potentials, Ph. D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2017)

[18] Geuenich, Jan; Labardini-Fragoso, Daniel Species with potential arising from surfaces with orbifold points of order 2. I: One choice of weights, Math. Z., Volume 286 (2016) no. 3-4, pp. 1065-1143 | DOI | MR | Zbl

[19] Geuenich, Jan; Labardini-Fragoso, Daniel Species with potential arising from surfaces with orbifold points of order 2. II: arbitrary weights, Int. Math. Res. Not., Volume 2020 (2020) no. 12, pp. 3649-3752 | DOI | MR | Zbl

[20] Gouvêa, Fernando Quadros p-adic Numbers: An Introduction, Universitext, Springer, 2020 | DOI | MR | Zbl

[21] Green, Edward L. The representation theory of tensor algebras, J. Algebra, Volume 34 (1975) no. 1, pp. 136-171 | DOI | MR | Zbl

[22] Koblitz, Neal p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, 58, Springer, 1984 | DOI | MR | Zbl

[23] Labardini-Fragoso, Daniel Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3), Volume 98 (2008) no. 3, pp. 797-839 | DOI | MR | Zbl

[24] Labardini-Fragoso, Daniel Quivers with potentials associated to triangulated surfaces. IV: Removing boundary assumptions, Sel. Math., New Ser., Volume 22 (2016) no. 1, pp. 145-189 | DOI | MR | Zbl

[25] Labardini-Fragoso, Daniel Strongly primitive species with potentials: aims and limitations (2023) | arXiv

[26] Labardini-Fragoso, Daniel; Zelevinsky, Andrei Strongly primitive species with potentials. I: Mutations, Bol. Soc. Mat. Mex., III. Ser., Volume 22 (2016) no. 1, pp. 47-115 | DOI | MR | Zbl

[27] Levy, Lawrence S. Modules over hereditary Noetherian prime rings (survey), Algebra and its applications (Contemporary Mathematics), Volume 259, American Mathematical Society, 2000, pp. 353-370 | DOI | MR | Zbl

[28] López-Aguayo, Daniel Cyclic derivations, species realizations and potentials, Rev. Colomb. Mat., Volume 53 (2019) no. Suppl. 1, pp. 185-194 | DOI | MR | Zbl

[29] Ringel, Claus M. Representations of K-species and bimodules, J. Algebra, Volume 41 (1976) no. 2, pp. 269-302 | DOI | MR | Zbl

[30] Rota, Gian-Carlo; Sagan, Bruce; Stein, Paul R. A cyclic derivative in noncommutative algebra, J. Algebra, Volume 64 (1980) no. 1, pp. 54-75 | DOI | MR | Zbl

[31] Simson, Daniel Categories of representations of species, J. Pure Appl. Algebra, Volume 14 (1979) no. 1, pp. 101-114 | DOI | MR | Zbl

[32] Smits, Theodorus H. M. The free product of a quadratic number field and a semi-field, Nederl. Akad. Wet., Proc., Ser. A, Volume 72 (1969) no. 2, pp. 145-159 | DOI | Zbl

Cited by Sources: