
Raphael Bennett-Tennenhaus & Daniel Labardini-Fragoso

Semilinear clannish algebras arising from surfaces with
orbifold points
Volume 2, issue 4 (2025), p. 439-504
https://doi.org/10.5802/art.32

Communicated by Sibylle Schroll.

© The authors, 2025

This article is licensed under the
Creative Commons Attribution (CC-BY) 4.0 License.
http://creativecommons.org/licenses/by/4.0/

Annals of Representation Theory is published by the
Norwegian University of Science and Technology

and is a member of the
Centre Mersenne for Open Scientific Publishing

e-ISSN: 2704-2081
C EN T R E
MER S ENN E

https://doi.org/10.5802/art.32
http://creativecommons.org/licenses/by/4.0/




Annals of Representation Theory
Volume 2, issue 4 (2025), p. 439–504
https://doi.org/10.5802/art.32

Semilinear clannish algebras arising from surfaces
with orbifold points

Raphael Bennett-Tennenhaus and Daniel Labardini-Fragoso

Abstract. Semilinear clannish algebras have been recently introduced by the first author and
Crawley-Boevey as a generalization of Crawley-Boevey’s clannish algebras. In the present paper,
we associate semilinear clannish algebras to the (colored) triangulations of a surface with marked
points and orbifold points, and exhibit a Morita equivalence between these algebras and the Jacobian
algebras constructed a few years ago by Geuenich and the second author.
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1. Introduction

Clannish algebras, defined by Crawley-Boevey over thirty years ago [8], form a class of
tame algebras whose indecomposable modules enjoy explicit parameterizations in terms
of strings and bands that generalize the familiar parameterizations of indecomposables for
gentle algebras. Very recently, Bennett-Tennenhaus–Crawley-Boevey [3], have introduced
semilinear clannish algebras, a more general class of algebras where the action of an arrow
of the quiver on a representation allows the scalars to “come out” up to the application of
a field automorphism a priori attached to the arrow, instead of requiring them to always
“come out” linearly. The indecomposable modules over a semilinear clannish algebra still
enjoy very handy parameterizations in terms of strings and bands.

On the other hand, with the aim of categorifying the skew-symmetrizable cluster al-
gebras associated by Felikson–Shapiro–Turmakin [12] to surfaces Σ equipped with a set
M of marked points and a set O of orbifold points Σ = (Σ,M,O), Geuenich–Labardini-
Fragoso associated in [18, 19] a species with potential to each colored triangulation of
such a surface Σ, and showed that if Σ is either once-punctured closed or unpunctured,
then whenever one is given two colored triangulations related by the flip of an arc, the
associated species with potential are related by a mutation of species with potential (also
defined in [18], following the guidelines of Derksen–Weyman–Zelevinsky’s mutations of
quivers with potential [9]), thus extending one of the main results from the second au-
thor’s Ph.D. thesis from simply-laced to non-simply laced situations.

An example was given in [3, § 5.4] of a 3-vertex semilinear clannish algebra that can be
easily seen to be isomorphic to one of the Jacobian algebras discovered in [18] (namely,
the Jacobian algebra of the species with potential associated to certain triangulation of
a digon with two orbifold points, see Remark 4.3 below). The main aim of this paper is
to prove that, a lot more generally, the Jacobian algebras of all the species with potential
from the previous paragraph are Morita-equivalent to semilinear clannish algebras. We do
this by explicitly constructing semilinear clannish algebras for the colored triangulations
of a surface with marked points and orbifold points, and by exhibiting explicit Morita-
equivalences with the Jacobian algebras defined in [18, 19].
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Let us describe the contents of the paper in some detail. Section 2 is devoted to
recalling some previously existing notions and to setting notation for them. In § 2.1, we
recall some generalities on tensor rings, species and modulations of weighted quivers, as
well as the notion of a modulating function from [18], the notion of a semilinear path
algebra from [3], and some explicit computations that can be performed on bimodules
over cyclic Galois field extensions whose base field contains certain roots of unity. In § 2.2,
we recall the notion of representation of a species, as well as the equivalence between the
category of representations of a species and the category of left modules over the tensor
ring of the species. Afterwards, we note that for any species arising from a modulating
function of a weighted quiver (Q,d) over the field extensions just mentioned, the category
of representations of the species is equivalent to the category whose objects are quiver
representations of Q that to each vertex attach a vector space over the field corresponding
to the vertex, and to each arrow attach a map that is semilinear over the intersection of
the fields corresponding to the head and tail, see Lemma 2.5 and Corollary 2.6.

In § 2.3 and § 2.4, we recall from [3, 18] the general notions of a Jacobian algebra of a
species with potential, and of a semilinear clannish algebra. In Section 3, we describe the
specific types of field extensions that will be used to construct the species associated to
triangulations: only degree-1, degree-2 or degree-4 cyclic Galois extensions E/F with F
having certain fourth roots of unity will be used.

In Section 4, we introduce two sets of 3-vertex algebras. The first set is formed by
ten 3-vertex Jacobian algebras defined by species with potential, and that we thus call
Jacobian blocks. The second set is formed by ten 3-vertex semilinear clannish algebras,
that we call semilinear clannish blocks. In Proposition 4.5, we prove that for k = 1, . . . , 10,
the kth Jacobian block and the kth semilinear clannish block are Morita-equivalent.

In Section 5, we recall the combinatorial framework of surfaces with marked points
and orbifold points and their triangulations, as well as the notion of colored triangulation
defined in [19]. For the latter, one needs to first to introduce a certain two-dimensional
CW-complex X(τ) = (X0(τ), X1(τ), X2(τ)) for each triangulation τ , and then consider
the cochain complex C•(τ) dual to the cellular chain complex of X(τ) with coefficients
in F2 := Z/2Z. A colored triangulation is defined to be a pair (τ, ξ) consisting of a
triangulation τ and a 1-cocycle ξ of C•(τ).

To associate a Jacobian algebra and a semilinear clannish algebra to a colored trian-
gulation of Σ = (Σ,M,O), we need to fix one more piece of input, namely, a function
ω : O→ {1, 4}. We refer to any such ω as a choice of weights; there are, thus, 2|O| distinct
choices of weights. Roughly speaking, fixing a choice of weights corresponds to fixing
one amongst all the skew-symmetrizable matrices giving rise to a given diagram in [14,
Definition 7.3]. For example, the diagram 1 22oo · · ·oo noo arises both from a
skew-symmetrizable matrix of type B, and from a skew-symmetrizable matrix of type C;
fixing a choice of weights corresponds to picking one of these two matrices for the depicted
diagram.

Given Σω := (Σ,M,O, ω) and a triangulation τ of Σ = (Σ,M,O), in § 6.1, we associate
to (τ, ω) a loop-free weighted quiver (Q(τ, ω),d(τ, ω)), that is, a pair consisting of a loop-
free quiver Q(τ, ω) and a tuple d(τ, ω) = (d(τ, ω)k)k∈ τ of positive integers. The quiver
Q(τ, ω) is a modification of the quiver Q(τ) that defines the 1-skeleton of X(τ), a quiver
that we denote Q(τ). As recalled in § 5.1, pending arcs connect marked points with
orbifold points. The integer d(τ, ω)k is set to be ω(qk) ∈ {1, 4} if k is a pending arc
incident to an orbifold point qk, and d(τ, ω)k := 2 if k is a non-pending arc. Thus,

Ann. Repr. Th. 2 (2025), 4, p. 439–504 https://doi.org/10.5802/art.32

https://doi.org/10.5802/art.32


442 Raphael Bennett-Tennenhaus & Daniel Labardini-Fragoso

lcm{d(τ, ω)k | k ∈ τ} ∈ {1, 2, 4}, and this is why we only need degree-1, degree-2 and
degree-4 field extensions E/F in Section 3.

With (Q(τ, ω),d(τ, ω)) at hand, in § 6.2, we associate a Jacobian algebra (§ 6.2.1) and
a semilinear clannish algebra (§ 6.2.2) to each colored triangulation. Both constructions
are defined in terms of the degree-d field extension E/F from Section 3, where d :=
lcm{d(τ, ω)k | k ∈ τ}, and the non-trivial element θ of the Galois group Gal(L/F ) =
{11L, θ} of the unique subfield L of E such that [L : F ] = 2.

In § 6.2.1 we recall from [19] how, for each 1-cocycle ξ of C•(τ), one can associate a
species with potential (A(τ, ξ),W (τ, ξ)) to the colored triangulation (τ, ξ). For this we
attach to each k ∈ τ the unique subfield Fk of E such that [Fk : F ] = d(τ, ω)k, and to
each arrow a : k → j of Q(τ) the Fj-Fk-bimodule

A(τ, ξ)a := F
g(τ,ξ)a

j ⊗Fj ∩Fk
Fk

where g(τ, ξ)a ∈ Gal(Fj ∩ Fk/F ) is either an extension of θξa : L → L to Fj ∩ Fk
(if F ⊊ Fj ∩Fk, i.e. L ⊆ Fj ∩Fk) or the restriction θξa |F = 11F : F → F (if F = Fj ∩Fk).
The potential W (τ, ξ) is defined as a sum of “obvious” degree-3 cycles in the tensor ring

TR(A(τ, ξ)) where R := ×k∈ τFk and A(τ, ξ) :=
⊕

a∈Q(τ,ω)1

A(τ, ξ)a.

With the notion of a cyclic derivative from [18, Definition 3.11], we form the Jacobian
algebra P(A(τ, ξ),W (τ, ξ)) as the quotient of the complete tensor ring of A(τ, ξ) over R,
which we denote R⟨⟨A(τ, ξ)⟩⟩ and call complete path algebra, modulo the m-adic topological
closure of the two-sided ideal generated by the cyclic derivatives of W (τ, ξ) with respect
to the arrows of Q(τ, ω). Roughly speaking, for each arrow a and each cycle c, the cyclic
derivative ∂a(c) is defined to be the g(τ, ξ)−1

a -linear part of the usual sum of paths obtained
by deleting each occurrence of a in c (with the accustomed reordering yx when c = xay).

In § 6.2.2, we associate a semilinear clannish algebra to (τ, ξ) as follows. For an auto-
morphism α of a field K we write K[x;α] for the corresponding skew polynomial ring, for
which the non-negative powers of x form a K-basis, and whose multiplication extends the
equation xλ = α(λ)x linearly over K.

Set Q̂(τ) to be the quiver obtained from Q(τ) by adding a loop sj at each pending arc
j of τ . Then we attach L to every vertex of Q̂(τ). To each arrow a of Q̂(τ) we attach a
field automorphism σa ∈ Gal(L/F ) = {11L, θ} by

σa :=


θξa if a ∈ Q(τ)1;
θ if a = sj and d(τ, ω)j = 1;
11L if a = sj and d(τ, ω)j = 4.

Letting LσQ̂(τ) be the semilinear path algebra of Q̂(τ) with respect to the collection of
automorphisms σ := (σa | a ∈ Q̂(τ)1), for each pending arc j of τ we define a degree-2
polynomial qsj ∈ L[sj ;σsj ] ⊆ LσQ̂(τ) by

qsj
:=
{
s2
j − ej if d(τ, ω)j = 1;
s2
j − uej if d(τ, ω)j = 4;

where u is an a priori given element of L\F such that θ(u) = −u, and ej is the jth primitive
idempotent of the semisimple ring S := ×k∈ τL. Furthermore, we set Z(τ, ξ) ⊆ LσQ̂(τ) to
be the set of all paths of length two on Q(τ) both of whose constituent arrows are contained
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in the same triangle of τ . The quotient LσQ̂(τ)/⟨Z(τ, ξ) ∪ {qsj | j is a pending arc of τ}⟩
turns out to be a semilinear clannish algebra, see Proposition 6.18. It is an F -algebra, but
not necessarily an L-algebra, as the action of L on it is typically not central.

Remark. If O ̸= ∅, then the semilinear clannish algebras we obtain are not semilinear
gentle, because of the presence of special loops attached to the orbifold points. If O = ∅,
which we allow in § 6.2, then the algebras constructed in § 6.2.1 and § 6.2.2 are semilinear
gentle (infinite-dimensional if (Σ,M,O) is moreover once-punctured closed). Finally, if
O = ∅, ξ is the zero cocycle and, moreover, M ⊆ ∂Σ, then the algebras obtained are
precisely the gentle algebras studied by Assem–Brüstle–Charbonneau–Plamondon in [1],
introduced earlier in [23].

Special attention deserve the constant choices of weights ω : O → {1, 4}, i.e. the
constant functions ω ≡ 1 and ω ≡ 4. For ω ≡ 1 we have d := lcm{d(τ, ω)k | k ∈ τ} = 2,
and the settings from § 6.2 allow us to take E/F to be C/R (the field thus attached in
§ 6.2.1 to the non-pending arcs is C, the one attached to the pending arcs is R, whereas
the field attached to all arcs in § 6.2.2 is then C).

In contrast, for ω ≡ 4 we have d := lcm{d(τ, ω)k | k ∈ τ} = 4, and strictly speaking, the
settings from § 6.2 do not allow us to take E/F or E/L to be C/R (since [E : F ] = d = 4
and L has degree 2 over its subfield F ); however, a careful reading of § 6.2.1 and § 6.2.2
suggests that, by taking ξ to be the zero 1-cocycle, one should be able to work over C/R
and still obtain all the definitions and results from § 6.2. We do this in detail in § 6.3.1
and § 6.3.2. For O ̸= ∅ and ω ≡ 4, one is thus allowed in § 6.3.1 to attach the field R to
the non-pending arcs, and the field C to the pending arcs, whereas the field attached to
all arcs in § 6.3.2 is, concordantly, R.

In Section 7 we state and prove our main result, namely:

Theorem 1.1. Let Σ := (Σ,M,O) be a surface with marked points and orbifold points,
ω : O→ {1, 4} a function, and (τ, ξ) a colored triangulation of Σ. If

• ∂Σ = ∅ and |M| = 1, or
• ∂Σ ̸= ∅ and M ⊆ ∂Σ,

then the Jacobian algebra of the species with potential associated to (τ, ξ), defined in § 6.2.1
(resp. § 6.3.1), is Morita-equivalent to the semilinear clannish algebra associated to (τ, ξ),
defined in § 6.2.2 (resp. § 6.3.2). The Morita-equivalence is F -linear and restricts to an
equivalence between the categories of finite-dimensional left modules.

The species with potential associated to (τ, ξ) in § 6.2.1 (resp. § 6.3.1) was first con-
structed in [19] (resp. [18]). Theorem 1.1 is stated more precisely as Theorem 7.4 below.
To prove it we recall from [12, 13] that τ can be obtained by gluing finitely many puzzle
pieces, and notice a few facts, namely,

• that the Jacobian blocks and the semilinear clannish blocks defined respectively
in § 4.1 and § 4.2 are precisely the Jacobian algebras and the semilinear clannish
algebras that would arise from the puzzle pieces according to the constructions of
Section 6 (allowing boundary segments to be vertices of the quivers or, alterna-
tively, adding to them some artificial boundary triangles);
• that one can glue not only the puzzle pieces, but also their associated Jacobian

blocks (resp. semilinear clannish blocks), following a procedure first defined by
Brüstle in [5], and that the result of this gluing of blocks is precisely the Jacobian
algebra (resp. the semilinear clannish algebra) associated to (τ, ξ); alternatively,
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applying the notion of ρ-block decomposition from [16], the ρ-blocks of the Jaco-
bian algebra (resp. the semilinear clannish algebra) associated to (τ, ξ) are precisely
the Jacobian blocks (resp the semilinear clannish blocks) given by the puzzle-piece
decomposition of (τ, ξ);
• that the explicit Morita equivalences given in the proof of Proposition 4.2 between

Jacobian blocks and semilinear clannish blocks, can be glued as well to produce
an explicit Morita equivalence between the Jacobian algebra and the semilinear
clannish algebra associated to (τ, ξ).

Section 8 is devoted to recalling the parameterizations of the indecomposable modules
over a semilinear clannish algebra in terms of symmetric and asymmetric strings and bands
given in [3], to providing a full list of strings and bands for the semilinear clannish blocks
from § 4.2, and to illustrating the construction of symmetric-string modules by means of
an explicit example, and the representation of the Jacobian algebra corresponding to it
under Morita equivalence.

Finally, in Section 9 we explain why we need to work with 1-cocycles ξ as part of the
input (τ, ξ) to which we associate algebras. Roughly and informally speaking, only the
species arising from modulating functions satisfying a cocycle conditions have the chance
of admitting a non-degenerate potential for the notion of mutation of species with potential
from [18]. In contrast, one does not need any cocycle condition to be satisfied in order
to define a semilinear clannish algebra. This means that the constructions from § 4.2,
§ 6.2.2 and § 6.3.2 can be carried out, without requiring ξ to be a cocycle, to still obtain
semilinear clannish algebras in the end.

2. Algebraic background

2.1. Tensor rings, species and modulations.
In this subsection we recall some generalities on tensor rings, species and modulations

of weighted quivers. We will start with very general concepts and settings, and gradually
decrease the level of generality. The intention of this approach is to make as transparent as
possible how the concrete Jacobian and semilinear clannish algebras we will later introduce
fit into classical well-known general constructions of rings that are not necessarily algebras
over an algebraically closed field. Our main references for § 2.1 are [15, § 7.1], [10, § 10],
[21, § 1B], [29, § 2] and [31, § 2], [3, § 2], [18, § 2 and § 3], [4, § 2] and [17, § 2].

2.1.1. Tensor rings. The tensor ring R⟨A⟩ of an R-R-bimodule A over a ring R is

R⟨A⟩ :=
⊕
n≥ 0

A⊗Rn, A⊗R0 := R, A⊗Rn := A⊗R · · · ⊗R A︸ ︷︷ ︸
n

(n > 0),

with multiplication given by the natural R-balanced maps A⊗Rn × A⊗Rm → A⊗R(n+m).
Define the complete tensor ring R⟨⟨A⟩⟩, and the (two-sided) arrow ideal m⟨⟨A⟩⟩◁R⟨⟨A⟩⟩, by
setting

R⟨⟨A⟩⟩ :=
∏
n≥ 0

A⊗Rn = lim←−
l > 0

R⟨A⟩/⊕
n≥ l

A⊗Rn

, m⟨⟨A⟩⟩ :=
∏
n≥ 1

A⊗Rn.

Both R⟨A⟩ and R⟨⟨A⟩⟩ are R-rings, meaning each occurs as the codomain of a ring homo-
morphism from R. The image of R under such ring homomorphism is often not contained

Ann. Repr. Th. 2 (2025), 4, p. 439–504 https://doi.org/10.5802/art.32

https://doi.org/10.5802/art.32


Semilinear clannish algebras arising from surfaces with orbifold points 445

in the center of R⟨A⟩ (or R⟨⟨A⟩⟩), even when R is commutative. A two-sided ideal I ◁R⟨A⟩
is said to be bounded if

⊕
n≥ lA

⊗n ⊆ I for some l≫ 0, in which case

R⟨A⟩/I ∼= R⟨⟨A⟩⟩/J, J =
⋂
n> 0

(I + m⟨⟨A⟩⟩n),

that is, J is the closure of I in the m⟨⟨A⟩⟩-adic topology. See [18, Definition 3.6].

2.1.2. Species. A species is a pair S = ((Di)i∈ I, (Aij)(i,j)∈ I×I) subject to the conditions:

• Di is a division ring attached to each i (in the given finite index set I);
• Aij is a Di-Dj-bimodule for each (i, j); and
• HomDi -Mod(Aij , Di) ∼= Hom-Mod -Dj

(Aij , Dj) as Dj-Di-bimodules for each (i, j).

Every species ((Di)i∈ I, (Aij)(i,j)∈ I×I) gives rise to a semisimple ring R := ×i∈ IDi and
an R-R-bimodule A :=

⊕
(i,j)∈ I×IAij . For j ∈ I we denote ej := (δi,j)i∈ I ∈ R, where

δi,j ∈ Di is the Kronecker delta between i and j, and call ej the trivial path at j. Thus,
e2
j = ej and 1R =

∑
j ∈ I ej .

For a field F we say that S as above is an F -species provided that for every (i, j) ∈ I×I,
F acts centrally on Di and Aij , turning them unambiguously into F -vector spaces, and
provided these vector spaces are finite-dimensional.

2.1.3. Weighted quivers and modulations. We write quivers as Q = (Q0, Q1, h, t) where Q0
is the set of vertices, Q1 is the set of arrows and h (respectively, t) denotes the function
Q1 → Q0 assigning to each arrow a its head h(a) (respectively, tail t(a)). A weighted
quiver is a pair (Q,d) consisting of a finite quiver Q = (Q0, Q1, t, h) and a Q0-tuple
d = (di)i∈Q0 of positive integers. Each di is referred to as the weight attached to i.
See [26, Definition 2.2].

For a field F an F -modulation of (Q,d) is a pair ((Di)i∈Q0 , (Aa)a∈Q1) such that:

• Di is a finite-dimensional division algebra over F (in particular, F is contained in
the center of Di), with dimF (Di) = di, for each i ∈ Q0;
• Aa is a Dh(a)-Dt(a)-bimodule for each a ∈ Q1, finitely generated both on the left

over Dh(a) and on the right over Dt(a);
• for each a ∈ Q1, the action of F on Aa, arising from the Dh(a)-Dt(a)-bimodule

structure of Aa, is central.

Any F -modulation gives rise to an F -species S = ((Di)i∈Q0 , (Aij)(i,j)∈Q0×Q0) by setting
Aij :=

⊕
Aa where the sum runs over all arrows a ∈ Q1 that go from j to i.

By the Krull–Remak–Schmidt property of finite-length modules, any F -species S =
((Di)i∈ I, (Aij)(i,j)∈ I×I) arises from an F -modulation of a weighted quiver (Q,d) where
Q0 = I, di = dimF (Ri), and the number of arrows j → i is the number of indecomposable
Dj-Di-bimodule summands of Aij . The pair ((Di)i∈Q0 , (Aa)a∈Q1) is then an F -modu-
lation of (Q,d) giving rise to S . See [17, Remarks 2.4.5 and 2.4.6, Corollary 2.3.11].

Remark 2.1. We will thus use the term F -species to refer indistinctly to either an F -
species or the F -modulation it arises from. We use S = ((Di)i∈Q0 , (Aij)(i,j)∈Q0×Q0) and
S = ((Di)i∈Q0 , (Aa)a∈Q1) indistinctly to denote a given F -species.
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2.1.4. Modulating functions. Let (Q,d) be a weighted quiver, d := lcm{di | i ∈ Q0}, and
E/F a degree-d cyclic Galois field extension. For i ∈ Q0 define Fi to be the unique
degree-di extension of F contained in E.

Following [18, Definition 3.2], we define a modulating function to be a collection

g = (ga)a∈Q1 ∈ ×a∈Q1 Gal
(
Fh(a) ∩ Ft(a)/F

)
of field automorphisms ga ∈ Gal(Fh(a) ∩ Ft(a)/F ).

For each a ∈ Q1 we denote by F ga

h(a) the Fh(a)-(Fh(a)∩Ft(a))-bimodule defined as follows
(cf. [18, Section 2]):

(1) as an additive group, F ga

h(a) := Fh(a);
(2) for w ∈ Fh(a), z ∈ Fh(a) ∩ Ft(a) and m ∈ F ga

h(a), the left action of w on m and the
right action of z on m are defined by the rules

w ⋆m := wm m ⋆ z := mga(z), (2.1)

where the products on the right hand sides of the equalities in (2.1) are taken
according to the multiplication that Fh(a) has as a field.

Each modulating function g defines an F -modulation ((Fi)i∈Q0 , (Aa(Q,d, g))a∈Q1),
where

Aa(Q,d, g) := F ga

h(a) ⊗Fh(a) ∩Ft(a) Ft(a) for a ∈ Q1.

Set R := ×i∈Q0Fi and A(Q,d, g) :=
⊕

a∈Q1 Aa(Q,d, g). In [18, Definition 3.5] and [19],
the tensor ring R⟨A(Q,d, g)⟩ (resp. the complete tensor ring R⟨⟨A(Q,d, g)⟩⟩) is called the
path algebra (resp. complete path algebra) of (Q,d, g).

2.1.5. Semilinear path algebras. Let (Q̂, d̂) be a weighted quiver all of whose weights are
the same positive integer d̂, i.e. such that d̂ = (d̂)i. The reason for this notation is that,
later, (Q̂, d̂) will be defined in terms of a given loop-free weighted quiver (Q,d) by adding
some loops to Q and setting d̂ to be one of the integers di appearing in d.

Let K/F be a degree-d̂ cyclic Galois field extension and σ : Q̂1 → Gal(K/F ) be a
function assigning an automorphism σb ∈ Gal(K/F ) to each b ∈ Q̂1, i.e. a modulating
function. Following [3, § 2.1] and the notation therein, we define the semilinear path
algebra KσQ̂ to be the tensor ring S⟨A(Q̂, d̂,σ)⟩, where the semisimple ring S and the
S-S-bimodule A(Q̂, d̂,σ) are defined as (cf.[3, § 2.1])

S := ×
i∈ Q̂0

K, A
(
Q̂, d̂,σ

)
:=

⊕
b∈ Q̂1

πh(b)Kσbπt(b) .

where πj : S → K is the restriction sending (λi) to λj , and where πh(b)Kσbπt(b) is the set K
whose S-S-bimodule action is indicated by the subscripts, so defined by the equations

(λi) · µ = λh(b)µ, µ · (λi) = µσb(λt(b)),
(
(λi : i ∈ Q̂0) ∈ S, µ ∈ πh(b)Kσbπt(b) , b ∈ Q̂1

)
.

Remark 2.2. The semilinear path algebras just defined above form a particular instance
of the concept of path algebra defined in § 2.1.4. This is not the case for the more general
semilinear path algebras that Bennett-Tennenhaus–Crawley-Boevey work with in [3]: they
allow K to be a division ring that need not be finite-dimensional over a central subfield.
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2.1.6. Eigenbases of cyclic Galois extensions and bimodules. Let d be a positive integer,
F a field containing a primitive dth root of unity ζ ∈ F , and E/F a degree-d cyclic
Galois extension with Galois group Gal(E/F ) = ⟨ρ⟩. Then there exists v ∈ E which is an
eigenvector of ρ with eigenvalue ζ, i.e.,

ρ(v) = ζv.

For n,m ∈ Z we then have

ρn(vm) = (ρn(v))m = (ζnv)m = ζnmvm.

It follows that the set
BE/F :=

{
1, v, v2, . . . , vd−1

}
is an eigenbasis of E/F , that is, an F -vector space basis of E consisting of eigenvectors of
all the elements of Gal(E/F ).

For each positive divisor di of d, let Fi be the unique subfield of E containing F and
such that [Fi : F ] = di. If di and dj are positive divisors of d, then Fj/Fi ∩ Fj is a
degree-(dj/ gcd(di, dj)) cyclic Galois extension with Galois group

Gal(Fj/Fi ∩ Fj) =

11Fj , ρ
∣∣
Fj
, ρ2∣∣

Fj
, . . . , ρ

dj

gcd(di,dj)−1∣∣∣
Fj

,
and with an eigenbasis given by

Bii,j :=

1, v
d

dj ,

(
v

d
dj

)2
, . . . ,

(
v

d
dj

) dj

gcd(di,dj)−1
. (2.2)

Notice that Bii,j , and hence also any eigenbasis of Fj/Fi∩Fj has the property that for any
two elements ω1, ω2 ∈ Bii,j , the product ω1ω2 is an F -multiple of some element of Bii,j .

Remark 2.3. Thanks to the facts that all the intermediate field subextensions of E/F
admit eigenbases, that such eigenbases can be computed explicitly, and that each of them
is closed under multiplication up to F -multiples, many definitions and computations (e.g.,
cyclic derivatives of potentials) can be done very explicitly when working with the path
algebras and the semilinear path algebras from § 2.1.4 and § 2.1.5.

The following result from [18] lies behind the definition of cyclic derivative for the
species we will work with, see Definition 2.8(4) below.

Proposition 2.4 ([18, Proposition 2.15]). For Fi and Fj as above, let CFi,Fj be the category
of those Fi-Fj-bimodules on which F acts centrally and whose dimension over F is finite.

(1) the bimodules F ρi ⊗Fi ∩Fj Fj, with ρ running in Gal(Fi ∩ Fj/F ), form a complete
set of pairwise non-isomorphic simple objects in CFi,Fj ;

(2) for every M ∈ CFi,Fj and every ρ ∈ Gal(Fi ∩ Fj/F ), the function

πρ = πMρ : M −→M, m 7−→ 1
[Fi ∩ Fj : F ]

∑
ω ∈BFi ∩ Fj /F

ρ
(
ω−1

)
mω

is an idempotent Fi-Fj-bimodule homomorphism;
(3) for every M ∈ CFi,Fj and every pair ρ1, ρ2 ∈ Gal(Fi ∩ Fj/F ), if ρ1 ̸= ρ2, then

πρ1πρ2 = 0;
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(4) for every M ∈ CFi,Fj we have an internal direct sum decomposition

M =
⊕

ρ∈Gal(Fi ∩Fj/F )
Im πρ;

(5) for every M ∈ CFi,Fj , every m ∈ Im πρ and every x ∈ Fi∩Fj we have mx = ρ(x)m;
(6) for every M ∈ CFi,Fj and every m ∈ Im πρ there exists a unique Fi-Fj-bimodule

homomorphism φ : F ρi ⊗Fi ∩Fj Fj →M such that φ(1⊗ 1) = m.

2.2. Representations of species.

2.2.1. Representations and modules. Let F be a field and S = ((Di)i∈Q0 , (Aa)a∈Q1) an
F -species of a weighted quiver (Q,d). Write Rep(S ) for the category whose objects are
S -representations, and where morphisms of S -representations, are defined as follows.

An S -representation refers to a collection M = ((Mi)i∈Q0 , (Ma)a∈Q1) such that:
• Mi is a left Di-module for each i ∈ Q0; and
• Ma : Aa ⊗Dt(a) Mt(a) →Mh(a) is a left Dh(a)-module morphism for each a ∈ Q1.

If each Mi is of finite rank over Di, M is said to be finite-dimensional. A morphism of
S -representations f : M = ((Mi)i∈Q0 , (Ma)a∈Q1) → N = ((Ni)i∈Q0 , (Na)a∈Q1) is a
Q0-tuple f = (fi)i∈Q0 satisfying:

• fi : Mi → Ni is a homomorphism of left Di-modules for each i ∈ Q0;
• for each a ∈ Q1 the diagram of Dh(a)-module homomorphisms

Aa ⊗Dt(a) Mt(a)
Ma //

11Aa⊗ft(a)

��

Mh(a)

fh(a)

��
Aa ⊗Dt(a) Nt(a)

Na // Nh(a)

commutes.
For n ≥ 0 and a path p in Q of length n, we define an Dh(p)-Dt(p)-bimodule Ap as

follows. For n = 0, and hence p a trivial path, let Ap = Di where h(p) = i = t(p). For
n > 0, say where p = an . . . a1 with ai ∈ Q1, we let Ap = Aa if n = 1 and a1 = a, and for
n > 1 we let

Ap = Aan ⊗Dt(an) Aan−1 ⊗Dt(an−1) . . . ⊗Dt(a3) Aa2 ⊗Dt(a2) Aa1 .

Using this notation, for i, j ∈ Q0 we have the Di-Dj-bimodule

eiR⟨A⟩ej =
⊕

paths p in Q :h(p)=i, t(p)=j
Ap.

For a representation M = ((Mi)i∈Q0 , (Ma)a∈Q1) of S and a path p in Q as above, the
morphisms Ma can be combined to give a Dh(p)-module homomorphism Mp : Ap ⊗Dt(p)

Mt(p) →Mh(p) defined as follows. If p is the trivial path (with n = 0) at i ∈ Q0 then take
Mp as the isomorphism Di ⊗Di Mi →Mi. If instead n > 0 and p = an . . . a1 we take

Mp = Man ◦
(
11Aan

⊗Man−1

)
◦ · · · ◦

(
11Aan

⊗ · · · ⊗ 11Aa2
⊗Ma1

)
.

For i, j ∈ Q0 we define the map Mij : eiR⟨A⟩ej ⊗Dj Mj →Mi by assembling the maps Mp

through the universal property of the coproduct of Di-modules.
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By a relation with head i ∈ Q0 and tail j ∈ Q0 in the F -species S we mean an
element σ of eiR⟨A⟩ej . A representation M is said to be annihilated by σ provided
Mij ◦ (ι⊗Dj 11Mj ) = 0 where ι is the inclusion RiσRj ⊆ eiR⟨A⟩ej of Di-Dj-bimodules.

It was shown by Dlab and Ringel [10, Proposition 10.1] that Rep(S ) is equivalent to the
category R⟨S ⟩--Mod of left modules over the tensor ring R⟨A⟩; see also [21, Theorem A]
and [4, Proposition 2.1]. Namely, there are functors

Ω: R⟨A⟩ -Mod −→ Rep(S ), Γ: Rep(S ) −→ R⟨A⟩ -Mod,

which are mutually quasi-inverse.
Let I = ⟨ρ⟩ be a two-sided ideal in the tensor ring R⟨S ⟩ generated by a set ρ of relations

in S . A representation M = ((Mi)i∈Q0 , (Ma)a∈Q1) of S is called finite-dimensional over
F provided each Mi is finite-dimensional over F . Consider the following subcategories:

• R⟨A⟩/I -Mod, the full subcategory of R⟨A⟩ -Mod whose modules are annihilated
by I = ⟨ρ⟩.
• Rep(S , ρ), the full subcategory of Rep(S ) whose S -representations are annihi-

lated by every σ ∈ ρ.
• R⟨A⟩/I -mod, the full subcategory of R⟨A⟩/I -Mod whose modules are finite-

dimensional over F .
• rep(S , ρ), the full subcategory of Rep(S , ρ) whose S -representations are finite-

dimensional over F .
By [4, Proposition 2.3, Corollaries 2.2 and 2.4], the functors Ω and Γ restrict to equivalences

R⟨A⟩/I -Mod −→ Rep(S , ρ), Rep(S , ρ) −→ R⟨A⟩/I -Mod,
R⟨A⟩/I -mod −→ rep(S , ρ), rep(S , ρ) −→ R⟨A⟩/I -mod .

2.2.2. Representations as tuples of semilinear maps. For a field K, a field automorphism
ρ : K → K and K-vector spaces M and N , we write

Homρ
K(M,N) :=

{
φ : M −→ N

∣∣ φ(αm+n) = ρ(α)φ(m)+φ(n) for all α ∈ K,m, n ∈M
}
.

The following lemma is well known, see e.g. [26, Lemma 12.5], where the result is proved
under the assumption that gcd(di, dj) = 1.

Lemma 2.5. Let d be a positive integer, di and dj be positive divisors of d, F a field
containing a primitive dth root of unity, E/F a degree-d cyclic Galois extension, and
Fi, Fj ⊆ E the subfields of E containing F such that [Fi : F ] = di and [Fj : F ] = dj. For
any given ρ ∈ Gal(Fi ∩ Fj/F ), there exist F -vector space isomorphisms

HomFi

(
F ρi ⊗Fi ∩Fj Fj ⊗Fj M,N

)
∼= Homρ

Fi ∩Fj
(M,N)

∼= HomFj

(
M,F ρ

−1

j ⊗Fi ∩Fj Fi ⊗Fi N
)
,

natural in the Fj-vector space M and the Fi-vector space N .

Proof. The proof is elementary and follows e.g. from [11, p. 14] by first noting that, given
any field automophism ρ̃ : FiFj → FiFj of the composite FiFj with ρ̃|Fi ∩Fj = ρ, the rules

a⊗ b 7−→
[
x⊗ y 7−→ aTrFi/Fi ∩Fj

(
ρ̃−1(bx)

)
y
]

a⊗ b 7−→
[
x⊗ y 7−→ xTrFj/Fi ∩Fj

(ρ̃(ya))b
]
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induce well-defined Fj-Fi bimodule isomorphisms

F ρ
−1

j ⊗Fi ∩Fj Fi −→ Homvec -Fj

(
F ρi ⊗Fi ∩Fj Fj , Fj

)
,

F ρ
−1

j ⊗Fi ∩Fj Fi −→ HomFi- vec
(
F ρi ⊗Fi ∩Fj Fj , Fi

)
,

where TrFj/Fi ∩Fj
: Fj → Fi ∩ Fj is the trace function of the field extension Fj/Fi ∩ Fj .

Now, under our hypotheses, we have the eigenbases Bji,j and {ω−1 |ω ∈ Bji,j} of
Fj/Fi ∩ Fj at hand. One easily checks that they are mutually dual with respect to

TrFj/Fi ∩Fj
(•·?) : Fj × Fj −→ Fi ∩ Fj ,

an Fi ∩Fj-Fi ∩Fj-bilinear form, and this enables us to give very concrete formulae for the
desired isomorphisms. For this reason, and in order to establish some notation that will
be used later, we explicitly exhibit these formulae.

We shall use the natural abbreviations
F ρi ⊗Fi ∩FjM =

(
F ρi ⊗Fi ∩Fj Fj

)
⊗FjM and F ρ

−1

j ⊗Fi ∩FjN =
(
F ρ

−1

j ⊗Fi ∩Fj Fi
)
⊗FiN.

(1) HomFi(F
ρ
i ⊗Fi ∩Fj M,N) ∼= Homρ

Fi ∩Fj
(M,N).

A straightforward computation shows that
−→• : HomFi

(
F ρi ⊗Fi ∩Fj M,N

)
−→ Homρ

Fi ∩Fj
(M,N)

−→
f (m) := f(1⊗m)

←−• : Homρ
Fi ∩Fj

(M,N) −→ HomFi

(
F ρi ⊗Fi ∩Fj M,N

) ←−a (e⊗m) := ea(m)

are well-defined, mutually inverse F -vector space isomorphisms.

(2) Homρ
Fi ∩Fj

(M,N) ∼= HomFj (M,F ρ
−1

j ⊗Fi ∩Fj N).
Let Bji,j be an eigenbasis of the field extension Fj/Fi ∩ Fj . Such a basis exists because

E/F is a finite-degree cyclic Galois field extension and F contains a primitive [E : F ]-th
root of unity. Given f ∈ HomFj (M,F ρ

−1

j ⊗Fi ∩Fj N) and m ∈M , one can uniquely write

f(m) =
∑

ω ∈Bj
i,j

ω−1 ⊗ nf,m,ω−1

for some elements nf,m,ω−1 ∈ N uniquely determined by f and m. With this in mind, one
can verify that
−→• : Homρ

Fi ∩Fj
(M,N) −→ HomFj

(
M,F ρ

−1

j ⊗Fi ∩Fj N
) −→

b (m) :=
∑

ω ∈Bj
i,j

ω−1 ⊗ b(ωm)

←−• : HomFj

(
M,F ρ

−1

j ⊗Fi ∩Fj N
)
−→ Homρ

Fi ∩Fj
(M,N)

←−
f (m) := nf,m,1

are well-defined, mutually inverse F -vector space isomorphisms, independent of the eigen-
basis Bji,j of Fj/Fi ∩ Fj chosen.

(3) HomFj (M,F ρ
−1

j ⊗Fi ∩Fj N) ∼= HomFi(F
ρ
i ⊗Fi ∩Fj M,N).

The maps obtained by composing the isomorphisms from (1) and (2) above have the
form

←−←−• : HomFj

(
M,F ρ

−1

j ⊗Fi ∩Fj N
)
−→ HomFi

(
F ρi ⊗Fi ∩Fj M,N

)
,

−→−→• : HomFi

(
F ρi ⊗Fi ∩Fj M,N

)
−→ HomFj

(
M,F ρ

−1

j ⊗Fi ∩Fj N
)
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and are obviously inverse to each other. For the convenience of the reader we display the
rules these maps obey:

←−←−
f (x⊗m) = xnf,m,1, and

−→−→g (m) =
∑
ω ∈Bj

ω−1 ⊗ g(1⊗ ωm).

From here the required natural isomorphisms follow. □

Corollary 2.6. Let (Q,d) be a weighted quiver, d := lcm{di | i ∈ Q0}, E/F and (Fi)i∈Q0

be as in § 2.1.4, with the field F containing a primitive dth root of unity, and let

g = (ga)a∈Q1 ∈ ×a∈Q1 Gal
(
Fh(a) ∩ Ft(a)/F

)
be a modulating function. The category of representations of the F -species(

(Fi)i∈Q0 ,
(
F ga

h(a) ⊗Fh(a) ∩Ft(a) Ft(a)
)
a∈Q1

)
is isomorphic to the category

(1) whose objects are the pairs ((Mi)i∈Q0 , (φa)a∈Q1) that attach an Fi-vector space
Mi to each i ∈ Q0, and a map φa ∈ Homga

Fh(a)∩Ft(a)
(Mt(a),Mh(a)) to each a ∈ Q1

(i.e. an F -linear map φa : Mt(a) → Mh(a) such that φa(ℓm) = ga(ℓ)φa(m) for
every ℓ ∈ Fh(a) ∩ Ft(a) and every m ∈Mt(a));

(2) whose morphisms ((Mi)i∈Q0 , (φa)a∈Q1) → ((Ni)i∈Q0 , (ψa)a∈Q1) are Q0-tuples
(fi)i∈Q0 consisting of an Fi-linear map fi : Mi → Ni for each i ∈ Q0, such
that the diagram of F -linear maps

Mt(a)
φa //

ft(a)

��

Mh(a)

fh(a)

��
Nt(a) ψa

// Nh(a)

commutes for every a ∈ Q1.

Remark 2.7. Although Lemma 2.5 and Corollary 2.6 are of course valid in signifi-
cantly broader generality, the very explicit formulae in the proof of Lemma 2.5, that our
hypotheses on the field extension E/F allow us to obtain, will later enable us to perform
many computations very explicitly.

2.3. Jacobian algebras. Let (Q,d) be a weighted quiver, d := lcm{di | i ∈ Q0}, E/F
and (Fi)i∈Q0 be as in § 2.1.4, with the field F containing a primitive dth root of unity,
and let

g = (ga)a∈Q1 ∈ ×a∈Q1 Gal
(
Fh(a),t(a)/F

)
be a modulating function. Let ((Fi)i∈Q0 , (Aa(Q,d, g))a∈Q1) be the corresponding F -
modulation, and let R⟨A(Q,d, g)⟩ and R⟨⟨A(Q,d, g)⟩⟩ be the path algebra and complete
path algebra of (Q,d, g), defined in § 2.1.4. Recall m⟨⟨A(Q,d, g)⟩⟩ denotes the arrow ideal
in R⟨⟨A(Q,d, g)⟩⟩ defined by the product over n > 0 of n-fold tensor products A(Q,d, g)⊗R
· · · ⊗R A(Q,d, g). Denote by Bi the eigenbasis of Fi/F given by (2.2).
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Definition 2.8.
(1) Following [26, Definition 4.4] and [18, Definition 3.6], we define a path of length n

on A(Q,d, g) to be any element ω0a1ω1 . . . ωn−1anωn ∈ R⟨⟨A(Q,d, g)⟩⟩ such that
• a1, . . . , an are arrows of Q such that h(ar+1) = t(ar) for r = 1, . . . , n− 1;
• ω0 ∈ Bh(a1) and ωr ∈ Bt(ar) for r = 1, . . . , n.

A path ω0a1ω1 . . . ωn−1anωn is cyclic if h(a1) = t(an).
(2) A potential on A(Q,d, g) is any element W ∈ (m⟨⟨A(Q,d, g)⟩⟩)2 satisfying W =∑

i∈Q0 eiWei, i.e. any element of R⟨⟨A(Q,d, g)⟩⟩ that can be written as a possibly
infinite F -linear combination of cyclic paths of length ≥ 2 on A(Q,d, g), cf. [26,
Definition 5.1] and [18, Definition 3.11].

(3) A potential W ∈ R⟨⟨A(Q,d, g)⟩⟩ will be called polynomial potential if it actually
belongs to R⟨A(Q,d, g)⟩.

(4) Following [18, Definition 3.11] and [19, Equation (10.1)], for each arrow a ∈ Q1 and
each cyclic path ω0a1ω1 . . . ωn−1anωn on A(Q,d, g) we define the cyclic derivative

∂a(ω0a1ω1 . . . ωn−1anωn) :=

1
da

da−1∑
m=0

g−1
a

(
v

−md
da

)( n∑
k=1

δa,ak
ωkak+1 . . . anωnω0a1 . . . ak−1ωk−1

)
v

md
da (2.3)

where da := gcd(dh(a), dt(a)) and δa,ak
is the Kronecker delta between a and ak.

The cyclic derivative ∂a(W ) for an arbitrary potential W on A(Q,d, g) is defined
by extending (2.3) by F -linearity and continuity.

(5) For a potential W ∈ R⟨⟨A(Q,d, g)⟩⟩, the Jacobian ideal J(W ) is defined to be the
topological closure of the two-sided ideal of R⟨⟨A(Q,d, g)⟩⟩ generated by {∂a(W ) |
a ∈ Q1}, and the Jacobian algebra of (A(Q,d, g),W ) is the quotient

P(A(Q,d, g),W ) := R⟨⟨A(Q,d, g)⟩⟩/J(W ).
(6) Given a polynomial potential W on A(Q,d, g) we will say that the two-sided ideal

J0(W ) := ⟨∂a(W ) | a ∈ Q1⟩

of R⟨A(Q,d, g)⟩ is the polynomial Jacobian ideal of W , and call the quotient
P0(A(Q,d, g),W ) := R⟨A(Q,d, g)⟩/J0(W )

the polynomial Jacobian algebra of (A(Q,d, g),W ).

Remark 2.9.
(1) Let p :=

∑n
k=1 δa,ak

ωkak+1 . . . anωnω0a1 . . . ak−1ωk−1 in (2.3). By Proposition 2.4,
there exist elements pρ, uniquely determined by p, such that ρ runs in Gal(Fh(a) ∩
Ft(a)/F ), p =

∑
ρ pρ, and pρz = ρ(z)pρ for every z ∈ Fh(a) ∩ Ft(a). That is, pρ is

the ρ-linear part of p. Thus, the cyclic derivative (2.3) is the g−1
a -linear part of p.

(2) For cyclic derivatives defined in more general species and contexts, see [2, 28, 30].
(3) If W is a polynomial potential on A(Q,d, g), then the canonical inclusion of the

path algebra in the complete path algebra R⟨A(Q,d, g)⟩ ↪→ R⟨⟨A(Q,d, g)⟩⟩ induces
an F -linear ring homomorphism P0(A(Q,d, g),W ) → P(A(Q,d, g),W ) acting as
the identity on R. Furthermore, the left P(A(Q,d, g),W )-modules that have fi-
nite dimension over the ground field F are precisely the finite-dimensional left
P0(A(Q,d, g),W )-modules that are nilpotent, see the paragraphs preceding [9,
Definition 10.2].
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(4) If W is a polynomial potential on A(Q,d, g) such that (m⟨⟨A(Q,d, g)⟩⟩)n ⊆ J(W )
for some n > 0, then the aforementioned ring homomorphism P0(A(Q,d, g),W )→
P(A(Q,d, g),W ) is an F -algebra isomorphism. See [17, Lemma 2.6.2].

Example 2.10. Let (Q,d) be the weighted quiver

1
γ

��
2

α
@@

3
β

oo

d1 = 2

d2 = 1 d3 = 4

Thus d := lcm(d1, d2, d3) = 4 = [E : F ]. Take E/F , (Fi)i∈Q0 and g = (ga)a∈Q1 ∈
×a∈Q1 Gal(Fh(a) ∩ Ft(a)/F ) as in the opening paragraph of the ongoing § 2.3. Following
§ 2.1.4, to begin this means that F1 = L, F2 = F and F3 = E where L is the unique subfield
of E that contains F and satisfies [L : F ] = 2 (hence also [E : L] = 2). Furthermore, since
ga is an F -linear automorphism of Fh(a),t(a) = Fh(a) ∩ Ft(a), we have that

F1,2 = F, F3,1 = L, F2,3 = F, gα = 11F , gβ = 11F .
The species ((Fi)i∈Q0 , (Aa(Q,d, g))a∈Q1) can be mnemotechnically visualized as follows:

L

γ

Egγ⊗FL

  
F

α

L⊗FF

??

E.
β

F⊗FE
oo

where L is the unique subfield of E that contains F and satisfies [L : F ] = 2 (hence also
[E : L] = 2). By Lemma 2.5 and Corollary 2.6, the category of representations of this
species is equivalent to the category whose objects have the form

M1
φγ

""
M2

φα

==

M3.φβ

oo

(2.4)

with M1 an L-vector space, M2 an F -vector space, M3 an E-vector space, φα an F -linear
map, φβ an F -linear map, and φγ an F -linear map satisfying φγ(ℓm) = gγ(ℓ)φγ(m) for
ℓ ∈ L and m ∈M1. (We skip the description of the morphisms here.)

Letting BE/F := {1, v, v2, v3} be an eigenbasis of E/F as in § 2.1.6, and setting u := v2,
we see that BL/F := {1, u} is an eigenbasis of L/F . Furthermore, writing Gal(L/F ) =
{11L, θ}, we have gγ = g−1

γ = θξγ with ξγ ∈ Z/2Z, hence gγ(u) = (−1)ξγu and g−1
γ (u−1) =

(−1)ξγu−1. Thus, for the potential W = αβγ we have

∂α(αβγ) = βγ, ∂β(αβγ) = γα, ∂γ(αβγ) = 1
2
(
αβ + (−1)ξγu−1αβu

)
.

We now consider the consequence of Proposition 2.4(4) in this context. This result
describes a direct sum decomposition of an arbitrary L-E-bimodule. This specifies here
to the L-E-bimodule decomposition HomF (M3,M1) = HomL(M3,M1)⊕Homθ

L(M3,M1).
To see this, note any φ ∈ HomF (M3,M1) satisfies φ = φ′ + φ′′ where

φ′ := 1
2
(
φ+ u−1φu

)
∈ HomL(M3,M1), φ′′ := 1

2
(
φ− u−1φu

)
∈ Homθ

L(M3,M1).
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Indeed, clearly φ′, φ′′ ∈ HomF (M3,M1), and since u2 ∈ F , for any m ∈M3 we have

2φ′′(um) = φ(um)− u−1φ(u2m) = φ(um)− uφ(m)

= −u
(
φ(m)− u−1φ(um)

)
= −2uφ′′(m).

Note also that φ = u−2φu2 and so φ′ = u−1φ′u and φ′′ = −u−1φ′′u. Therefore, the
category of left modules over the Jacobian algebra P(A(Q,d, g)) is equivalent to the
category whose objects are the objects (2.4) above satisfying that φβ ◦φγ = 0, φγ ◦φα = 0,
and that writing φα ◦ φβ = φ′ + φ′′ as above gives

0 = 1
2
(
φ+ (−1)ξγu−1φu

)
= 1

2
(
φ′ + φ′′ + (−1)ξγu−1(φ′ + φ′′)u

)
=
{
φ′ (if ξγ = 0)
φ′′ (if ξγ = 1)

(We skip the description of the morphisms here.)

2.4. Semilinear clannish algebras. As in § 2.1.5 (and less generally than [3]), let (Q̂, d̂)
be a weighted quiver all of whose weights are the same positive integer d̂, K/F be a
degree-d̂ cyclic Galois field extension, and σ : Q̂1 → Gal(K/F ) be a function assigning
a field automorphism σb ∈ Gal(K/F ) to each b ∈ Q̂1. Let KσQ̂ be the semilinear path
algebra constructed with this data.

Definition 2.11 ([3, § 1, § 2.1, § 2.3]). A semilinear clannish algebra is a K-ring of the
form KσQ̂/I where I = ⟨Z ∪ S⟩ is generated by a set Z, of zero-relations, and a set S, of
special-relations, such that:

(Q) Q̂ contains a specified set S of special loops, the arrows not belonging to S thus
being called ordinary, and such that for any i ∈ Q̂0 there are at most 2 arrows
b ∈ Q̂1 with h(b) = i, and at most two arrows c ∈ Q̂1 with t(c) = i;

(Z) Z consists of paths in Q̂ of length at least two, such that:
• for any b ∈ Q̂1 \ S there exists at most one a ∈ Q̂1 with ab a path outside Z,

and there exists at most one c ∈ Q̂1 with bc a path outside Z; and
• if p ∈ Z and s ∈ S, then s cannot be the first or last arrow of p, and s2 cannot

occur as a subpath of p (so s may occur, but not twice consecutively).
(S) S = {s2−βss+ γsei | s ∈ S, h(s) = i = t(s)} for some elements βs, γs ∈ K (s ∈ S).

That is, S is given by specifying a monic, quadratic (skew-)polynomial, of the form
qs(x) = x2 − βsx+ γs ∈ K[x;σs], for each s ∈ S.

Remark 2.12. The semilinear clannish algebras introduced in [3] are far more general:
K is allowed to be a division ring, not necessarily finite-dimensional over any field, and
for each the arrow b ∈ Q̂1, σb is allowed to be any ring automorphism of K.

Definition 2.13.
(1) Given σ ∈ Aut(K) and q(x) = x2 − βx+ γ ∈ K[x;σ] we say that q(x) is:

(i) normal if the left and right ideals in the skew-polynomial ring K[x;σ], gene-
rated by q(x), must coincide, i.e. K[x;σ]q(x) = q(x)K[x;σ];

(ii) non-singular if the constant term of q(x) is non-zero, that is, γ ̸= 0; and
(iii) of semisimple type if the quotient K[x;σ]/⟨q(x)⟩ is a semisimple ring.

(2) A semilinear clannish algebra KσQ̂/I is normally-bound non-singular or of semi-
simple type if each of the quadratics qs(x) ∈ K[x;σs] (s ∈ S) is normal, non-singular
or of semisimple type, respectively.
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Remark 2.14. For σ ∈ Aut(K) and µ ∈ K, set q(x) := x2 − µ ∈ K[x;σ]. By [3,
Lemma 2.1(i)], to say that q(x) is normal is equivalent to the conditions that σ(µ) = µ
and σ2(λ)µ = µλ for all λ ∈ K.

Example 2.15. Let K be a field.
(1) If σ := 11K and µ ∈ {u ∈ K | ∄x ∈ K with x2 = u}, then L[x;σ]/⟨q(x)⟩ =

L[x]/⟨q(x)⟩ is a field, so q(x) := x2 − µ ∈ K[x;σ] = K[x] is of semisimple type.
(2) If σ is an order-2 field automorphism of K and µ := 1, then K[x;σ]/⟨q(x)⟩ ∼= F 2×2,

where F := {x ∈ K |σ(x) = x}, so q(x) := x2 − µ ∈ K[x;σ] is of semisimple type.

Example 2.16. Let Q̂ be one of the following three connected quivers

1
γ

��
2

α
@@

3
β

oo

1

s1

��

γ

��
2

α
@@

3
β

oo

1
γ

��
2

s2

--

α
@@

3

s3

qq
β

oo

Set S := Q̂1 \ {α, β, γ}, meaning that every loop in Q̂ is special. Take the weight d̂ to be
either 1 or 2, and let K/F be a degree-d̂ field extension. Fix arbitrary elements

σα, σβ, σγ , σsi ∈ Gal(K/F ), µi ∈ K, qsi(x) = x2 − µi ∈ K[x;σsi ], (si ∈ S).

Let Z = {αβ, βγ, γα}. It is straightforward to observe that conditions (Q), (Z) and (S)
from Definition 2.11 hold, so KσQ̂/⟨Z ∪ S⟩ is a semilinear clannish algebra.

We now specify K, σ and µ to particular examples that arise from Section 4 on. By
Remark 2.14 and Example 2.15, KσQ̂/⟨Z ∪ S⟩ is normally-bound, non-singular and of
semisimple type in each of the following two situations:

• [K : F ] = 2, char(K) ̸= 2, and (σsi , µi) ∈ {(θ, 1)}∪{(11K , u) |∄x ∈ K with x2 = u}
for each special loop si, where Gal(K/F ) = {11K , θ}.
• K = F and (σsi , µi) ∈ {(11F , u) | ∄x ∈ K with x2 = u} for each special loop si.

3. Specific field extensions

In this short section we give a brief description of the specific field extensions over which
we will define Jacobian algebras and semilinear clannish algebras for triangulations.

Definition 3.1 (Degree-4 datum). We will say that a E/F is a degree-4 datum if:
(1) E/F is a degree-4 cyclic Galois field extension; and
(2) F contains a primitive 4th root of unity.

For a degree-4 datum E/F , the following notation will always be adopted:
• ρ : E → E will be a generator of the Galois group Gal(E/F ), so Gal(E/F ) =
{11E , ρ, ρ2, ρ3};
• ζ ∈ F will be a primitive 4th root of unity;
• v ∈ E \ {0} will be an eigenvector for ρ with eigenvalue ζ, i.e. ρ(v) = ζv, and
u := v2;
• L/F will be the unique degree-2 field extension with L ⊆ E, i.e. L = F (u) =

FixE(ρ2);
• Gal(L/F ) = {11L, θ}, i.e. 11E |L = 11L = ρ2|L and ρ|L = θ = ρ3|L.
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Example 3.2. Let F be a finite field whose characteristic p is a prime number congruent
to 1 modulo 4, and let E/F be the unique degree-4 field extension of F inside an a priori
given algebraic closure of F . Then E/F is a degree-4 datum.

Example 3.3. Let p be a positive prime number congruent to 1 modulo 4, F be any finite
extension of the field of p-adic numbers Qp, and E/F be the unique degree-4 unramified
extension of F inside an a priori given algebraic closure of F . Then E/F is a degree-4
datum. See, e.g., [20, § 5.3 and § 5.4] or [22, § III.3].

Definition 3.4 (Degree-2 datum). We will say that a L/F is a degree-2 datum if:
(1) L/F is a degree-2 field extension; and
(2) F contains a primitive 2nd root of unity, i.e. char(F ) ̸= 2.

Notice that for a field F containing a primitive 2nd root of unity, every degree-2 field
extension is Galois with cyclic Galois group.

For a degree-2 datum, the following notation will always be adopted:
• θ : L→ L will be a generator of Gal(L/F ), so Gal(L/F ) = {11L, θ};
• u ∈ L \ {0} will be an eigenvector for θ with eigenvalue −1, i.e. θ(u) = −u.

Notice that c := u2 ∈ F and θ−1(u−1) = θ(u−1) = θ(u)−1 = −u−1.

Example 3.5. The well-known field extension C/R is a degree-2 datum for which θ is the
usual conjugation of complex numbers, and one can take u to be i or −i.

Definition 3.6 (Degree-1 datum). By a degree-1 datum we simply mean a field F with
no further conditions imposed.

Remark 3.7. Every degree-4 datum E/F contains two degree-2 data, namely E/L and
L/F . However, it is not true that every degree-2 datum is part of a degree-4 datum.
Consider, for instance, the field extension C/R: degree-2 extensions of C do not exist
because C is algebraically closed, and no subfield F of R satisfies [R : F ] = 2 because
Aut(R) = {11R}. This is the technical reason why in Section 6 the constructions from § 6.3
cannot be simply said to be a particular case of the constructions from § 6.2.

4. Three-vertex blocks

In this section we introduce two lists of 3-vertex algebras. The first list will consist of
10 Jacobian algebras (see Tables 4.1 and 4.2), whereas the second one will consist of 10
semilinear clannish algebras (see Tables 4.3 and 4.4). The main aim of the section is to
show that for each k = 1, . . . , 10, the kth Jacobian block is Morita-equivalent to the kth

semilinear clannish block.
The ten Jacobian blocks are instances of the algebras constructed in [18, 19], whereas,

except for the blocks 8 and 10, the construction of the semilinear clannish blocks is
brand new. Later on, in Section 6, we will separately associate a Jacobian algebra and a
semilinear-clannish algebra to each colored triangulation of a surface with orbifold points.
It will turn out that these can alternatively be obtained by gluing copies of the blocks we
are about to introduce.

The reader will notice that in Tables 4.1, 4.2, 4.3 and 4.4 some entries of the weight
triple d = (d1, d2, d3) appear enclosed in a small circle. This means that the corresponding
vertex is an outlet that in Section 7 below will be allowed to be matched and glued to
another outlet, in a fashion similar to [13, Definition 13.1] and [5].
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4.1. Jacobian blocks. In Tables 4.1 and 4.2 the reader can see ten Jacobian algebras of
the form

P(A(Q,d, g(ξ)),W (Q,d, g(ξ))),

where:
(1) Q is one of the following 3-vertex quivers

1
γ

��
2

α
@@

3
β

oo

1
γ

��
2

α
@@

3
β0

qq
β1

mm
(4.1)

(2) d = (d1, d2, d3) is a triple of integers with d := lcm(d1, d2, d3) ∈ {1, 2, 4};
(3) ξ : {α, β, γ} → Z/2Z is a function satisfying ξα + ξβ + ξγ = 0, where we

write β = {β0, β1} if Q is the quiver on the right in (4.1);
(4) to each vertex i ∈ Q0 there is attached a field Fi extracted from a degree-d datum

E/F and satisfying [Fi : F ] = di;
(5) the bimodules A(Q,d, g(ξ))a := F

ga(ξ)
h(a) ⊗Fh(a) ∩Ft(a) Ft(a) arise from a modulating

function g(ξ) = (ga(ξ))a∈Q1 ∈ ×a∈Q1 Gal(Fh(a) ∩ Ft(a)/F ) defined in terms of
the cocycle ξ above;

(6) W (Q,d, g(ξ)) is a potential defined using the guidelines from [19] for Blocks 1-7
(resp. from [18] for Blocks 8, 9 and 10), and the cyclic derivatives are computed
via Definition 2.8(4).

For Block 5, we defined ρl, ρl+2 ∈ Gal(E/F ) so that ρl|L = θξβ = ρl+2|L ∈ Gal(L/F ).

Lemma 4.1. For each of the Jacobian blocks in Tables 4.1 and 4.2, the canonical
inclusion R⟨A(Q,d, ξ)⟩ ↪→ R⟨⟨A(Q,d, ξ)⟩⟩ induces an F -algebra isomorphism

R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) −→ P(Q,d, ξ)

that acts as the identity on R. In particular, dimF (P(Q,d, ξ)) <∞.

Proof. For each i = 1, . . . , 10 let P denote the set of paths of length 4 in the quiver Q
associated to Jacobian block i. So every path of length at least 4 factors through an element
in P . We claim that, when considering P as a subset of the bimodule A(Q,d, ξ), it must be
contained in J(W (Q,d, ξ)). Note that the asserted isomorphism then immediately follows
from Remark 2.9(3). Note that for any i each element of P factors through the path γα.
So the claim holds for i = 1, 3, 4, 6, 7, 8, 9, 10. Likewise, when i = 2, each element of P
factors through αβ, and so again the claim holds. Thus we now just consider the case
where i = 5.

In A(Q,d, ξ) we have

β0 = 1
2
(
(β0 + β1) + ζ−lv−1e2(β0 + β1)ve3

)
,

β1 = 1
2
(
(β0 + β1) + ζ−l−2v−1e2(β0 + β1)ve3

)
.

(4.2)

After right multiplication by γ, it follows that β0γ, β1γ ∈ J(W (Q,d, ξ)), and since every
element of P factors through either β0γ or β1γ, the claim follows. □
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Table 4.1. Jacobian blocks 1 to 5

Block 1 Block 2 Block 3 Block 4 Block 5
Weight triple

d1
d2 d3

2
2 2

1
2 2

4
2 2

2
1 1

2
4 4

Vertex fields
F1

F2 F3

L
L L

F
L L

E
L L

L
F F

L
E E

Bimodules
A(Q,d, ξ)α

A(Q,d, ξ)β

A(Q,d, ξ)β0

A(Q,d, ξ)β1

A(Q,d, ξ)γ

Lθξα ⊗
L
L

Lθξβ ⊗
L
L

Lθξγ ⊗
L
L

F ⊗
F
L

Lθξβ ⊗
L
L

L⊗
F
F

Eθξα ⊗
L
L

Lθξβ ⊗
L
L

Lθξγ ⊗
L
E

L⊗
F
F

F ⊗
F
F

F ⊗
F
F

F ⊗
F
L

Lθξα ⊗
L
L

Eρl ⊗
E
E

Eρl+2 ⊗
E
E

Lθξγ ⊗
L
L

Mnemotechnics L

γ

Lθ
ξγ ⊗

L
L

��
L

α

Lθξα ⊗
L

L

JJ

L
β

Lθ
ξβ ⊗

L
L

oo

F

γ

L ⊗
F

F

��
L

α

F ⊗
F

L

JJ

L
β

Lθ
ξβ ⊗

L
L

oo

E

γ

Lθ
ξγ ⊗

L
E

��
L

α

Eθξα ⊗
L

L

JJ

L
β

Lθ
ξβ ⊗

L
L

oo

L

γ
F ⊗

F
L

��
F

α
L ⊗

F
F

AA

Fβ0

F ⊗
F

F

uu
β1

F ⊗
F

F

hh

L

γ
Eθ

ξγ ⊗
L

L

��
E

α
Lθξα ⊗

L
E

??

Eβ0

Eρl ⊗
E

E

tt
β1

Eρl+2 ⊗
E

E

ii

Potential
W (Q,d, ξ) αβγ αβγ αβγ β0γα+ β1γuα α(β0 + β1)γ

Derivatives
∂α(W (Q,d, ξ))
∂β(W (Q,d, ξ))
∂β0(W (Q,d, ξ))
∂β1(W (Q,d, ξ))
∂γ(W (Q,d, ξ))

βγ
γα

αβ

βγ
1
2
(
γα+ (−1)ξβu−1γαu

)
αβ

βγ
γα

αβ

β0γ + β1γu

γα
γuα
αβ0 + uαβ1

(β0 + β1)γ

1
2
(
γα+ ρ−l(v−1)γαv

)
1
2
(
γα+ ρ−l−2(v−1)γαv

)
α(β0 + β1)

A
nn.R

epr.T
h.2
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Table 4.2. Jacobian blocks 6 to 10

Block 6 Block 7 Block 8 Block 9 Block 10
Weight triple

d1
d2 d3

2
4 1

2
1 4

1
1 1

2
1 1

1
2 2

Vertex fields
F1

F2 F3

L
E F

L
F E

F
F F

L
F F

F
L L

Bimodules
A(Q,d, ξ)α

A(Q,d, ξ)β

A(Q,d, ξ)β0

A(Q,d, ξ)β1

A(Q,d, ξ)γ

Lθξα ⊗
L
E

E⊗
F
F

F ⊗
F
L

L⊗
F
F

F ⊗
F
E

Eθξγ ⊗
L
L

F ⊗
F
F

F ⊗
F
F

F ⊗
F
F

L⊗
F
F

F ⊗
F
F

F ⊗
F
L

F ⊗
F
L

L⊗
L
L

Lθ ⊗
L
L

L⊗
F
F

Mnemotechnics L

γ

F ⊗
F

L

��
E

α

Lθξα ⊗
L

E

HH

F
β

E ⊗
F

F

oo

L

γ

Eθ
ξγ ⊗

L
L

��
F

α

L ⊗
F

F

HH

E
β

F ⊗
F

E

oo

F

γ

F ⊗
F

F

��
F

α

F ⊗
F

F

HH

F
β

F ⊗
F

F

oo

L

γ

F ⊗
F

L

��
F

α

L ⊗
F

F

HH

F
β

F ⊗
F

F

oo

F

γ

L ⊗
F

F

""
L

α

F ⊗
F

L
<<

L
β0

L⊗
L

L

uu
β1

Lθ ⊗
L

L

ii

Potential
W (Q,d, ξ) αβγ αβγ αβγ αβγ α(β0 + β1)γ

Derivatives
∂α(W (Q,d, ξ))
∂β(W (Q,d, ξ))
∂β0(W (Q,d, ξ))
∂β1(W (Q,d, ξ))
∂γ(W (Q,d, ξ))

1
2
(
βγ + θ−ξα(u−1)βγu

)
γα

αβ

βγ
γα

1
2 (αβ + θ−ξγ (u−1)αβu)

βγ
γα

αβ

βγ
γα

αβ

(β0 + β1)γ

1
2
(
γα+ u−1γαu

)
1
2
(
γα− u−1γαu

)
α(β0 + β1)

A
nn.R

epr.T
h.2
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4.2. Semilinear clannish blocks. Next, we present ten semilinear clannish blocks in
Tables 4.3 and 4.4. Just as in § 2.4, we have tried to adapt as much as possible to
the notation in [3]. Specifically, in each column of Tables 4.3 and 4.4 we construct
an F -algebra KσQ̂/I, where the field K may be F or L depending on the block, the
quiver Q̂ has three vertices, and when K = L (resp. when K = F ), the function σ :
Q̂1 → Gal(L/F ) ⊆ Aut(L) satisfies σα ◦ σβ ◦ σγ = 11L (resp. σα = σβ = σγ = 11F ). Ac-
cording to Example 2.16, KσQ̂/I is a semilinear clannish algebra that turns out to be
normally-bound, non-singular, and of semisimple type.

4.3. Morita equivalences for blocks.

Proposition 4.2. For k ∈ {1, 3, 5, 8, 9, 10} there is an F -algebra isomorphism between
the kth Jacobian block from Tables 4.1 and 4.2 and the kth semilinear clannish block from
Tables 4.3 and 4.4.

Proof. The cases k = 1, 3, 8, 9 are straightforward. For k = 1, 8, one is considering
tensor rings for the same species. For k = 3 one can use the F -algebra isomorphism
E ∼= L[x]/(x2 − u). For k = 9 one can use the F -algebra isomorphism L = F (u) ∼=
F [x]/(x2 − u2). The cases k = 5, 10 are more difficult. We exhibit an explicit iso-
morphism between the 5th Jacobian and semilinear clannish blocks. The treatment of
the 10th blocks is similar and somewhat simpler, so we leave it in the reader’s hands.

For the 5th semilinear clannish block we are taking K = L. (For the 10th block one
takes K = F .) Notice that KσQ̂/I has a natural R-R-bimodule structure with R :=
F1×F2×F3 = L×E×E, extending its natural S-S-bimodule structure with S := L×L×L.
Here the left and right actions of the element ve2 = (0, v, 0) (resp. ve3 = (0, 0, v)) of R on
KσQ̂/I are respectively given by left and right multiplications by s2 (resp. s3). This uses
the F -algebra isomorphism E ∼= L[x]/(x2 − u) together with the fact that σs2 = σs3 =11L
for this block. Furthermore, the assignment

ve2 7−→ s2, ve3 7−→ s3, α 7−→ α, γ 7−→ γ,

β0 7−→
1
2

(
β +

(
ζ lu
)−1

s2βs3

)
, β1 7−→

1
2

(
β +

(
ζ l+2u

)−1
s2βs3

)
,

extends uniquely to an R-R-bimodule homomorphism φ : A(Q,d, ξ) → KσQ̂/I, where:
on the one hand, we identify each a ∈ {α, β0, β1, γ} = Q1 with the element 1 ⊗ 1 of
the summand A(Q,d, ξ)a of A(Q,d, ξ); and, on the other hand, we identify each b ∈
{α, β, γ, s2, s3} = Q̂1 with the coset (modulo I = ⟨Z∪S⟩) represented by the element 1⊗1
of the summand Lσb⊗L of the arrow bimodule πh(b)Kσbπt(b) associated to the arrow b. For
instance, since v2 = u, ρl|L = θξβ , ρl(v) = ζ lv, σβ = θξβ and σs2 = 11L, the fact that φ can
be defined as an R-R-bimodule homomorphism on the whole direct summand A(Q,d, ξ)β0
of A(Q,d, ξ) follows from the following computation:

φ(β0ve3) = 1
2
(
β + (ζ lu)−1s2βs3

)
s3 = 1

2
(
βs3 + (ζ lu)−1s2βue3

)
= 1

2
(
βs3 + (ζ lu)−1s2θ

ξβ (u)β
)

= 1
2
(
βs3 + (ζ lu)−1θξβ (u)s2β

)
= 1

2
(
βs3 + (ζ lu)−1ζ2lus2β

)
= 1

2
(
βs3 + ζ ls2β

)
= ζ ls2

2
(
ζ−lu−1s2βs3 + β

)
= φ

(
ρl(v)e2β0

)
.
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Table 4.3. Semilinear clannish blocks 1 to 5

Block 1 Block 2 Block 3 Block 4 Block 5
Weight triple(

d̂

d̂ d̂

) (
2

2 2

) (
2

2 2

) (
2

2 2

) (
2

2 2

) (
2

2 2

)

Ordinary quiver
Q̂

1
γ

��
2

α
@@

3,
β

oo

1

s1

��

γ

��
2

α
@@

3
β

oo

1

s1

��

γ

��
2

α
@@

3
β

oo

1
γ

��
2

s2

DD

α
@@

3

s3

DDβ
oo

1
γ

��
2

s2

DD

α
@@

3

s3

DDβ
oo

Special loops S ∅ {s1} {s1} {s2, s3} {s2, s3}
Field K L L L L L

Automorphisms
σa ∈ Aut(K)

for a ∈ Q̂1

σα = θξα

σβ = θξβ

σγ = θξγ

σα = θ−ξβ σs1 = θ
σβ = θξβ

σγ = 11L

σα = θξα σs1 = 11L

σβ = θξβ

σγ = θξγ

σα = 11L

σβ = 11L σs2 = θ
σγ = 11L σs3 = θ

σα = θξα

σβ = θξβ σs2 = 11L

σγ = θξγ σs3 = 11L

Bimodules
Kσa ⊗K K
for a ∈ Q̂1

Lσα ⊗
L
L

Lσβ ⊗
L
L

Lσγ ⊗
L
L

Lσα ⊗
L
L Lσs1 ⊗

L
L

Lσβ ⊗
L
L

Lσγ ⊗
L
L

Lσα ⊗
L
L Lσs1 ⊗

L
L

Lσβ ⊗
L
L

Lσγ ⊗
L
L

Lσα ⊗
L
L

Lσβ ⊗
L
L Lσs2 ⊗

L
L

Lσγ ⊗
L
L Lσs3 ⊗

L
L

Lσα ⊗
L
L

Lσβ ⊗
L
L Lσs2 ⊗

L
L

Lσγ ⊗
L
L Lσs3 ⊗

L
L

Mnemotechnics L

γ

Lθ
ξγ ⊗

L
L

  
L

α

Lθξα ⊗
L

L >>

L
β

Lθ
ξβ ⊗

L
L

oo

L

s1

Lθ ⊗
L

L

��

γ

L⊗
L

L

  
L

α

Lθ
−ξβ ⊗

L
L >>

L
β

Lθ
ξβ ⊗

L
L

oo

L

s1

L⊗
L

L

��

γ

Lθ
ξγ ⊗

L
L

  
L

α

Lθξα ⊗
L

L >>

L
β

Lθ
ξβ ⊗

L
L

oo

L

γ

L⊗
L

L

  
L

s2

Lθ ⊗
L

L

DD
α

L⊗
L

L >>

L

s3

Lθ ⊗
L

L

DD
β

L⊗
L

L

oo

L

γ

Lθ
ξγ ⊗

L
L

  
L

s2

L⊗
L

L

DD
α

Lθξα ⊗
L

L >>

L

s3

L⊗
L

L

DD
β

Lθ
ξβ ⊗

L
L

oo

Relations Z
S

{αβ, βγ, γα}
∅

{αβ, βγ, γα}
{s2

1 − e1}
{αβ, βγ, γα}
{s2

1 − ue1}
{αβ, βγ, γα}
{s2

2 − e2, s
2
3 − e3}

{αβ, βγ, γα}
{s2

2 − ue2, s
2
3 − ue3}

A
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Table 4.4. Semilinear clannish blocks 6 to 10

Block 6 Block 7 Block 8 Block 9 Block 10
Weight triple(

d̂

d̂ d̂

) (
2

2 2

) (
2

2 2

) (
1

1 1

) (
1

1 1

) (
1

1 1

)

Ordinary quiver
Q̂

1
γ

��
2

s2

DD

α
@@

3

s3

DDβ
oo

1
γ

��
2

s2

DD

α
@@

3

s3

DDβ
oo

1
γ

��
2

α
@@

3,
β

oo

1

s1

��

γ

��
2

α
@@

3
β

oo

1
γ

��
2

s2

DD

α
@@

3

s3

DDβ
oo

Special loops S {s2, s3} {s2, s3} ∅ {s1} {s2, s3}
Field K L L F F F

Automorphisms
σa ∈ Aut(K)

for a ∈ Q̂1

σα = θξα

σβ = 11L σs2 = 11L

σγ = θ−ξα σs3 = θ

σα = θ−ξγ

σβ = 11L σs2 = θ
σγ = θξγ σs3 = 11L

σα = 11F

σβ = 11F

σγ = 11F

σα = 11F σs1 = 11F

σβ = 11F

σγ = 11F

σα = 11F

σβ = 11F σs2 = 11F

σγ = 11F σs3 = 11F

Bimodules
Kσa ⊗K K
for a ∈ Q̂1

Lσα ⊗
L
L

Lσβ ⊗
L
L Lσs2 ⊗

L
L

Lσγ ⊗
L
L Lσs3 ⊗

L
L

Lσα ⊗
L
L

Lσβ ⊗
L
L Lσs2 ⊗

L
L

Lσγ ⊗
L
L Lσs3 ⊗

L
L

Fσα ⊗
F
F

Fσβ ⊗
F
F

Fσγ ⊗
F
F

Fσα ⊗
F
F Fσs1 ⊗

F
F

Fσβ ⊗
F
F

Fσγ ⊗
F
F

Fσα ⊗
F
F

Fσβ ⊗
F
F F σs2 ⊗

F
F

Fσγ ⊗
F
F F σs3 ⊗

F
F

Mnemotechnics L

γ

Lθ−ξα ⊗
L

L

��
L

s2

L⊗
L

L

DD
α

Lθξα ⊗
L

L ??

L

s3

Lθ ⊗
L

L

DD
β

L⊗
L

L

oo

L

γ

Lθ
ξγ ⊗

L
L

��
L

s2

Lθ ⊗
L

L

DD
α

Lθ
−ξγ ⊗

L
L ??

L

s3

L⊗
L

L

DD
β

L⊗
L

L

oo

F

γ

F ⊗
F

F

��
F

α

F ⊗
F

F ??

F
β

F ⊗
F

F

oo

F

s1

F ⊗
F

F

��

γ

F ⊗
F

F

��
F

α

F ⊗
F

F ??

F
β

F ⊗
F

F

oo

F

γ

F ⊗
F

F

��
F

s2

F ⊗
F

F

DD
α

F ⊗
F

F ??

F

s3

F ⊗
F

F

DD
β

F ⊗
F

F

oo

Relations Z
S

{αβ, βγ, γα}
{s2

2 − ue2, s
2
3 − e3}

{αβ, βγ, γα}
{s2

2 − e2, s
2
3 − ue3}

{αβ, βγ, γα}
∅

{αβ, βγ, γα}
{s2

1 − u2e1}
{αβ, βγ, γα}

{s2
2 − u2e2, s

2
3 − u2e3}

A
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Thus, φ induces a well-defined ring homomorphism

φ : R⟨A(Q,d, ξ)⟩ −→ KσQ̂/I,where I :=
〈
αβ, βγ, γα, s2

2 − ue2, s
2
3 − ue3

〉
(we use the same letter φ in order to avoid making the notation even heavier) which is
F -linear and an R-R-bimodule homomorphism. In particular φ sends the trivial path
ei in the path algebra R⟨A(Q,d, ξ)⟩ of Q to the trivial path ei in the semilinear path
algebra KσQ̂ (see § 2.1.2 for the definition of trivial path). We claim that φ is surjective.
Indeed, since ζ4 = 1 and ζ2 ̸= 1, we have ζ2 + 1 = 0, hence β = φ(β0 + β1). So, each
arrow in Q̂ lies in the image of φ. Furthermore, S := L × L × L is an L-subalgebra of
R = F1 × F2 × F3 = L× E × E, so the image of the coproduct

A(Q̂,σ) =
⊕
b∈ Q̂1

πh(b)Kσbπt(b)

under the projection KσQ̂ → KσQ̂/I is contained in the image of φ. Hence the whole
KσQ̂/I is contained in the image of φ.

Next, the cyclic derivatives of W (Q,d, ξ) = α(β0+β1)γ are contained in ker(φ). Indeed,
with the aid of the last columns of Tables 4.1 and 4.3, we see that

φ(∂α(W (Q,d, ξ))) = βγ ∈ I, φ(∂β0(W (Q,d, ξ))) = 1
2
(
γα+ ζ lu−1s2γαs3

)
∈ I,

φ(∂γ(W (Q,d, ξ))) = αβ ∈ I, φ(∂β1(W (Q,d, ξ))) = 1
2
(
γα+ ζ l+2u−1s2γαs3

)
∈ I.

So, we have an induced surjective ring homomorphism
φ : R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) −→ KσQ̂/I

(we again use the same letter φ in order to avoid making the notation heavier) which is
an F -linear R-R-bimodule homomorphism.

On other hand, the assignments
s2 7−→ ve2, s3 7−→ ve3, α 7−→ α, β 7−→ β0 + β1, γ 7−→ γ,

extend uniquely to an S-S-bimodule homomorphism of the form
ψ :

⊕
b∈ Q̂1

πh(b)Kσbπt(b) −→ R⟨A(Q,d, ξ)⟩

where we are using the same identifications of arrows with elements of the direct summands
πh(b)Kσbπt(b) and A(Q,d, ξ)a as above. For instance, the fact that ψ can be defined on the
whole direct summand πh(β)Kσβπt(β) as an S-S-bimodule homomorphism follows from the
fact that ρl|L = θξβ = ρl+2|L and

ψ(βℓe3) = (β0 + β1)ℓe3

= ρl(ℓ)e2β0 + ρl+2(ℓ)e2β1

= θξβ (ℓ)e2(β0 + β1)
= ψ(θξβ (ℓ)e2β).

Thus, ψ induces a well-defined ring homomorphism
ψ : KσQ̂ −→ R⟨A(Q,d, ξ)⟩

(we use the same letter ψ in order to avoid making the notation even heavier) which is
F -linear and an S-S-bimodule homomorphism.
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Recalling (4.2) from the proof of Lemma 4.1, we have that R and all the arrows of Q are
in the image of ψ. Thus, A(Q,d, ξ), and hence the whole R⟨A(Q,d, ξ)⟩, are contained in
the image of ψ. The image of I ⊆ KσQ̂ under ψ is contained in the (incomplete) Jacobian
ideal J0(W (Q,d, ξ)). Indeed, since v2 = u and ρ−l(v−1) + ρ−l−2(v−1) = ζ l(1 + ζ2)v−1 = 0
in E, with the aid of the last columns of Tables 4.1 and 4.3, we see that

ψ(αβ) = ∂γ(W (Q,d, ξ)),

ψ(βγ) = ∂α(W (Q,d, ξ)), ψ
(
s2

2 − ue2
)

= 0,

ψ(γα) = ∂β0(W (Q,d, ξ)) + ∂β1(W (Q,d, ξ)), ψ
(
s2

3 − ue3
)

= 0.

So, we have an induced surjective ring homomorphism
ψ : KσQ̂/I −→ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ))

(we again use the same letter ψ in order to avoid making the notation heavier) which is
F -linear and an S-S-bimodule homomorphism.

With the above considerations, one easily verifies that ψ ◦ φ and φ ◦ ψ act as the
identity on specific sets that generate R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) and KσQ̂/I as F -
algebras. This implies that φ and ψ are mutually inverse F -algebra isomorphisms. This
finishes the treatment of the 5th blocks. □

Remark 4.3. Notice that the isomorphism between the 10th Jacobian and semilinear
clannish blocks is the one alluded to in [3, § 5.4] with F = R and L = C in loc. cit.
Remark 4.4. To motivate the statement of Proposition 4.5, we explain why Proposi-
tion 4.2 does not extend to the cases of blocks 2, 4, 6 and 7. That is, we explain why,
for each of these blocks, the Jacobian algebra is not isomorphic to the semilinear clannish
algebra. All of the rings we are considering are finite-dimensional over the field F , and
hence, for each said ring, the multiplicative identity can be written as a finite sum of prim-
itive pairwise-orthogonal idempotents, and any such sum must have the same number of
summands.

Note that each jacobian algebra modulo its radical is the product of exactly 3 division
rings. It follows that the multiplicative identity of each Jacobian algebra, in each case, is
a sum of exactly 3 primitive pairwise orthogonal idempotents. Let A = LσQ̂/I be any of
the semilinear clannish blocks 2, 4, 6 and 7. From what we have observed so far, it sufiices
to find at least 4 pairwise orthogonal idempotents in A.

Note that there exists some i = 1, 2, 3 such that vertex i in the quiver Q̂ has a special
loop s such that qs(x) = x2 − 1. Now let e = ei. Recall that L has characteristic different
from 2. Consider that, in LσQ̂,(1

2(e± s)
)2

= 1
4
(
(e+ s2)± 2s

)
= 1

2

(1
2(e+ s2)± s

)
,

1
2(e± s)1

2(e∓ s) = 1
4(e− s2).

Since qs(x) = x2−1 we have e−s2 ∈ I, and so e+s2+I = 2e+I, and it follows that e′+I
and e′′+I are pairwise orthogonal idempotents in A where e′ := 1

2(e+s) and e′′ := 1
2(e−s).

Finally, writing f and f ′ for the trivial paths in Q̂ such that {ej | j ̸= i} = {f, f ′}, observe
that f + I, f ′ + I, e′ + I and e′′ + I are pairwise orthogonal idempotents in A, since

ef = fe = ef ′ = f ′e = sf = fs = s′f = f ′s = 0 ∈ LσQ̂.

Proposition 4.5. For k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the kth Jacobian block from
Tables 4.1, 4.2, and the kth semilinear clannish block from Tables 4.3, 4.4, are Morita
equivalent through an F -linear Morita equivalence.
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Proof. By Proposition 4.2, it only remains to show that the kth Jacobian and semilinear
clannish blocks are Morita-equivalent for k = 2, 4, 6, 7. This can be done by a direct
exhibition of functors

Ψ: R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod −→ KσQ̂/I -Mod,
Φ: KσQ̂/I -Mod −→ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod,

(recall that K := L for k = 2, 4, 6, 7) and invertible natural transformations

ε : 11R⟨A(Q,d,ξ)⟩/J0(W (Q,d,ξ)) -Mod −→ Φ ◦Ψ,
η : 11

KσQ̂/I -Mod −→ Ψ ◦ Φ.

By Corollary 2.6 and the discussion in § 2.2.1, we can treat the two module categories
involved as full subcategories of categories of semilinear representations of quivers. In
Tables 4.5 and 4.6, the reader can see the correspondence rules for Ψ and Φ on objects.
We shall write down in detail the correspondence rules for Ψ and Φ on morphisms, as well
as the correspondence rules of ε and η, only in the case k = 6. The cases k = 2, 4, 7, can
be handled similarly, and are thus left in the reader’s hands.

As the reader may observe, for each Jacobian block in Tables 4.5 and 4.6, the vertices
of the quiver get different fields attached, taken from {F,L,E}, which means that in the
representations of such block the spaces assigned to the vertices are vector spaces over
different fields, and the action of each arrow is semilinear over the intersection of the fields
attached to its head and its tail. On the other hand, for each semilinear clannish block in
that same table, all vertices get attached the same field L, which is an extension of F and
a subfield of E. This means that in the representations of such block the spaces assigned
to the vertices are vector spaces over the same field L, and the action of each arrow is
semilinear over L.

When associating to a given representation M of a Jacobian block a representation
Ψ(M) of a semilinear clannish block, we replace each F -vector space Mj with the
L-vector space L⊗FMj and the L-semilinear endomorphism θ⊗11Mj : L⊗FMj → L⊗FMj ,
whereas each L-vector space Mj is left unchanged, and each E-vector space Mj is replaced
with the L-vector space Mj and the L-linear endomorphism v11Mj : Mj →Mj .

Furthermore, for some arrows a the F -linear map Ma has to be replaced with
an L-semilinear one, which we define through an extension or coextension of scalars of
sorts: the domain or the codomain of Ma has been already tensored with L, the corre-
sponding L-semilinear extension or coextension of Ma, denoted←−Ma or −→Ma, respectively, is
defined by an explicit formula, which appeared in the proof of Lemma 2.5. Such formula is
recalled in the row of Tables 4.5 and 4.6 labeled Ψ(M). When the action of Ma is already
semilinear over L, no extension or coextension of scalars is needed, so the map Ma is kept
unchanged in the definition of Ψ(M).

On the other hand, when associating to a representation N of a semilinear clannish
block a representation Φ(N) of a Jacobian block, we use the L-semilinear endomorphisms
Nsj that are not L-linear to realize the corresponding L-vector space Nj canonically as
L ⊗F ker(Nsj − 11Nj ) and this way replace Nj with the F -vector space ker(Nsj − 11Nj )
(this is Galois descent for vector spaces). Similarly, we use the endomorphisms Nsj that
are L-linear to extend the left action of L on Nj canonically to a action of E on Nj that
makes Nj an E-vector space.

Ann. Repr. Th. 2 (2025), 4, p. 439–504 https://doi.org/10.5802/art.32

https://doi.org/10.5802/art.32


466 Raphael Bennett-Tennenhaus & Daniel Labardini-Fragoso

Table 4.5. Morita equivalences 2 and 4, behavior of functors on objects

Blocks 2 Blocks 4
d1

d2 d3

1
2 2

2
1 1

Jacobian
block

F

γ
L ⊗

F
F

��
L

α
F ⊗

F
L

>>

L

β

Lθ
ξβ ⊗

L
L

uu

βγ, αβ, 1
2
(
γα+ (−1)ξβu−1γαu

)

L

γ
F ⊗

F
L

��
F

α
L ⊗

F
F

>>

Fβ0

F ⊗
F

F

ww
β1

F ⊗
F

F

gg

β0γ + β1γu, γα, γuα, αβ0 + uαβ1

M_ M1

Mγ

��
M2

Mα

==

M3Mβ
tt

M1

Mγ

��
M2

Mα

==

M3

Mβ0
ss

Mβ1

mm

��
Ψ(M)

L⊗
F
M1

θ ⊗ 11M1

VV
←−
Mγ

��
M2

−−→
Mα

==

M3Mβ
ss

M1
−→
Mγ

��
L⊗

F
M2

←−−
Mα

99

θ ⊗ 11M2

��
L⊗

F
M311 ⊗ Mβ0 +u11 ⊗ Mβ1

rr

θ ⊗ 11M3





−→
Mα(m) = 1

2
∑1

j=0 u
−j ⊗Mα(ujm)

←−
Mγ(ℓ⊗m) = ℓMγ(m)

←−
Mα(ℓ⊗m) = θ−ξγ (ℓ)Mα(m)
−→
Mγ(m) = 1

2
∑1

j=0 u
−j ⊗Mγ(ujm)

Semilinear
clannish

block

L

s1

Lθ ⊗
L

L

ZZ

γ
L⊗

L
L

��
L

α
Lθ

−ξβ ⊗
L

L

>>

L

β

Lθ
ξβ ⊗

L
L

uu

αβ, βγ, γα, s2
1 − e1

L

γ
L⊗

L
L

��
L

s2

Lθ ⊗
L

L

,,

α
L⊗

L
L

>>

L
s3

Lθ ⊗
L

L

rr
β

L⊗
L

L
uu

αβ, βγ, γα, s2
2 − e2, s

2
3 − e3

M_ M1

Ms1

FF

Mγ

��
M2

Mα

==

M3Mβ
tt

M1

Mγ

��
M2

Ms2

))

Mα

==

M3

Ms3

uuMβ
tt

��
Φ(M)

ker(Ms1
−11M1)

Mγ |ker

��
M2

1
2 (11M1 +Ms1)Mα

::

M3
Mβ

tt

M1

1
2 (11M3 +Ms3)Mγ

��
ker(Ms2

−11M2)

Mα|ker

::

ker(Ms3
−11M3)

1
2 (Ms2 +11M2)Mβ |ker

pp

u
2 (Ms2

−11M2)Mβ |ker

ll
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Table 4.6. Morita equivalences 6 and 7, behavior of functors on objects

Blocks 6 Blocks 7
d1

d2 d3

2
4 1

2
1 4

Jacobian
block

L

γ
F ⊗

F
L

��
E

α
Lθξα ⊗

L
E

==

F

β

E ⊗
F

F
tt

1
2
(
βγ + θ−ξα(u−1)βγu

)
, γα, αβ

L

γ
Eθ

ξγ ⊗
L

L

��
F

α
L ⊗

F
F

==

E

β

F ⊗
F

E
tt

βγ, γα, 1
2
(
αβ + θ−ξγ (u−1)αβu

)
M_ M1

Mγ

��
M2

Mα

<<

M3Mβ
ss

M1

Mγ

��
M2

Mα

<<

M3Mβ
ss

��
Ψ(M)

M1

(θ−ξα ⊗ 11M3)−→Mγ

��
M2

Mα

==

v11M2

)) L⊗
F
M3

←−−
Mβ

ss

θ ⊗ 11M3





M1

Mγ

��
L⊗

F
M2

←−−
Mα

;;

θ ⊗ 11M2

��
M3

−−→
Mβ

rr

v11M3

uu

←−
Mβ(ℓ⊗m) = ℓMβ(m)
−→
Mγ(m) = 1

2
∑1

j=0 u
−j ⊗Mγ(ujm)

←−
Mα(ℓ⊗m) = θ−ξγ (ℓ)Mα(m)
−→
Mβ(m) = 1

2
∑1

j=0 u
−j ⊗Mβ(ujm))

Semilinear
clannish

block

L

γ
Lθ−ξα ⊗

L
L

��
L

s2

L⊗
L

L

,,

α

Lθξα ⊗
L

L

==

L
s3

Lθ ⊗
L

L

rr
β

L⊗
L

L
tt

αβ, βγ, γα, s2
2 − ue2, s

2
3 − e3

L

γ
Lθ

ξγ ⊗
L

L

��
L

s2

Lθ ⊗
L

L

,,

α
Lθ

−ξγ ⊗
L

L

==

L
s3

L⊗
L

L

rr
β

L⊗
L

L
tt

αβ, βγ, γα, s2
2 − ue2, s

2
3 − e3

M_ M1

Mγ

��
M2

Ms2

))

Mα

<<

M3

Ms3

uuMβ
ss

M1

Mγ

��
M2

Ms2

))

Mα

<<

M3

Ms3

uuMβ
ss

��
Φ(M)

M1
1
2 (11M3 +Ms3 )Mγ

��
M2

Mα

==

ker(Ms3
−11M3)Mβ |kerss

M1

Mγ

��
ker(Ms2

−11M2)

Mα|ker

88

M3
1
2 (Ms2 +11M2 )Mβ

qq
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For the case of the 6th Jacobian and semilinear clannish blocks, we begin by checking
that for M ∈ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ))-Mod and N ∈ KσQ̂/I-Mod we indeed have
Ψ(M) ∈ KσQ̂/I -Mod and Φ(N) ∈ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod:

Ψ(M)α := Mα, so Ψ(M)α is σα-linear.
Ψ(M)β(ℓ⊗m) := ℓMβ(m), so Ψ(M)β is σβ-linear.

Ψ(M)γ(um) :=
(
(θ−ξα ⊗ 11M3) ◦ −→Mγ

)
(um)

= 1
2
(
θ−ξα ⊗ 11M3

)(
1⊗Mγ(um) + u−1 ⊗Mγ(u2m)

)
= 1

2(θ−ξα ⊗ 11M3)
(
1⊗Mγ(um) + u⊗Mγ(m)

)
(since u2 ∈ F )

= 1
2
(
1⊗Mγ(um) + θ−ξα(u)⊗Mγ(m)

)
= θ−ξα(u)

2
(
θ−ξα(u)−1 ⊗Mγ(um) + 1⊗Mγ(m)

)
= θ−ξα(u)

2
(
θ−ξα ⊗ 11M3

)(
u−1 ⊗Mγ(um) + 1⊗Mγ(m)

)
= θ−ξα(u)

(
(θ−ξα ⊗ 11M3) ◦ −→Mγ

)
(m)

= θ−ξα(u)Ψ(M)γ(m), so Ψ(M)γ is σγ-linear.
Ψ(M)s2 := v11M2 , so Ψ(M)s2 is σs2-linear.
Ψ(M)s3 := θ ⊗ 11M3 , so Ψ(M)s3 is σs3-linear.

Therefore Ψ(M) ∈ KσQ̂ -Mod. To see that I annihilates Ψ(M), observe:

Ψ(M)αβ(ℓ⊗m) = Mα ◦
←−
Mβ(ℓ⊗m)

= Mα(ℓMβ(m))
= θξα(ℓ)Mα(Mβ(m))
= θξα(ℓ)M∂γ(W (Q,d,ξ))(m) = 0.

Ψ(M)βγ(m) =
(←−
Mβ ◦

(
θ−ξα ⊗ 11M3

)
◦
−→
Mγ

)
(m)

= 1
2
((←−
Mβ ◦ (θ−ξα ⊗ 11M3)

)(
1⊗Mγ(m) + u−1 ⊗Mγ(um)

))
= 1

2
←−
Mβ

(
1⊗Mγ(m) + θ−ξα(u−1)⊗Mγ(um)

)
= 1

2
(
Mβ(Mγ(m)) + θ−ξα(u−1)Mβ(Mγ(um))

)
= M∂α(W (Q,d,ξ))(m) = 0.

Ψ(M)γα(m) =
((
θ−ξα ⊗ 11M3

)
◦
−→
Mγ ◦Mα

)
(m)

= 1
2
(
θ−ξα ⊗ 11M3

)(
1⊗Mγ(Mα(m)) + u−1 ⊗Mγ(uMα(m))

)
= 1

2
(
θ−ξα ⊗ 11M3

)
(1⊗Mγ(Mα(m))

+u−1 ⊗Mγ

(
Mα(θ−ξα(u)m)

))
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= 1
2
(
1⊗M∂β(W (Q,d,ξ))(m)

+θ−ξα

(
u−1

)
⊗M∂β(W (Q,d,ξ))

(
θ−ξα(u)m

))
= 0.

Ψ(M)s2
2−ue2 = ((v11M2) ◦ (v11M2))− u11M2 = 0.

Ψ(M)s2
3−e3 = ((θ ⊗ 11M3) ◦ (θ ⊗ 11M3))− 11M3 = 0.

Therefore, Ψ(M) ∈ KσQ̂/I -Mod. To see that
Φ(N) ∈ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod,

we turn the L-vector space Φ(N)2 := N2 into an E-vector space by setting
(ℓ0 + ℓ1v)n := ℓ0n+ ℓ1Ns2(n) for ℓ0, ℓ1 ∈ L and n ∈ N2.

This uses that the map Ns2 is L-linear. Furthermore, Φ(N)3 := ker(Ns3−11N3) certainly is
an F -vector space sinceNs3 is F -linear, and since (Ns3−11N3)◦(11N3+Ns3) = N2

s3−11N3 = 0,
the image of (11N3 +Ns3) ◦Nγ is contained in Φ(N)3. Moreover,

Φ(N)α := Nα so Φ(N)α is θξα-linear
Φ(N)β := Nβ|ker(Ns3−11N3) so Φ(N)β is F -linear

Φ(N)γ := 1
2(11N3 +Ns3) ◦Nγ so Φ(N)γ is F -linear

Hence,

Φ(N)∂α(W (Q,d,ξ))

= 1
2
(
Φ(N)βΦ(N)γ + θ−ξα(u−1)Φ(N)βΦ(N)γu

)
= 1

4
(
Nβ|Φ(N)3(11N3 +Ns3)Nγ + θ−ξα(u−1)Nβ|Φ(N)3(11N3 +Ns3)Nγu

)
= 1

4
(
Nβ|(11N3 +Ns3)Nγ + θ−ξα(u−1)Nβ|(11N3 +Ns3)θ−ξα(u)Nγ

)
= 1

4
(
Nβ|(11N3 +Ns3)Nγ + θ−ξα(u−1)Nβ|(θ−ξα(u)11N3 + θ1−ξα(u)Ns3)Nγ

)
= 1

4
(
Nβ|(11N3 +Ns3)Nγ + θ−ξα(u−1)Nβ|(θ−ξα(u)11N3 − θ−ξα(u)Ns3)Nγ

)
since θ(u) = −u. Thus, for all n ∈ Φ(N)1 := N1 we have that Φ(N)∂α(W (Q,d,ξ))(n) equals

1
4
(
Nβ|(11N3 +Ns3)Nγ(n) + θ−ξα(u−1)θ−ξα(u)Nβ(11N3 −Ns3)Nγ(n)

)
= 1

4
(
Nβ|(11N3 +Ns3)Nγ(n) +Nβ(11N3 −Ns3)Nγ(n)

)
= 1

4
(
Nβ(11N3 +Ns3)Nγ +Nβ(11N3 −Ns3)Nγ

)
(n)

= 1
2NβNγ(n) = 0.

Also, we have

Φ(N)∂β(W (Q,d,ξ)) = Φ(N)γΦ(N)α = 1
2(11N3 +Ns3)NγNα = 0

Φ(N)∂γ(W (Q,d,ξ)) = Φ(N)αΦ(N)β = NαNβ|ker(Ns3−11N3) = 0.
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Therefore, Φ(N) ∈ R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod. We see that Ψ and Φ are well-
defined on objects.

At the level of morphisms, Ψ : R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod→ KσQ̂/I -Mod is
defined on a morphism f : M → N in R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ)) -Mod by the rule

M1

Mγ

��
f1

��

M1

f1

��

(θ−ξα⊗11M3)◦−→Mγ

  
M2

Mα

CC

f2

��

M3
Mβ

oo

f3

��

Ψ(M)

Ψ(f)

��

M2

f2

��

Mα

CC

v11M2

GG L⊗F M3

11L⊗f3

��

←−
Mβ

oo

θ⊗11M3

GG

N1

Nγ

��

7→ N1

(θ−ξα⊗11N3)◦−→Nγ

  
N2

Nα

CC

N3Nβoo Ψ(N) N2

Nα

CC

v11N2

GG L⊗F N3←−
Nβ

oo

θ⊗11N3

GG

To define Φ : KσQ̂/I -Mod → R⟨A(Q,d, ξ)⟩/J0(W (Q,d, ξ))-Mod on a morphism f : M
→ N in KσQ̂/I -Mod one uses the rule

M1

f1

��

Mγ

��

M1
1
2 (11M3 +Ms3)◦Mγ

&&
f1

��

M2

f2

��

Mα

CC

Ms2

GG M3

f3

��

Mβ

oo

Ms3

GG Φ(M)

Φ(f)

��

M2

Mα

<<

f2

��

ker(Ms3 − 11M3)
Mβ |ker(Ms3 −11M3)

oo

f3

��

N1

Nγ

��

7→ N1

1
2 (11N3 +Ns3)◦Nγ

&&
N2

Nα

CC

Ns2

GG N3
Nβ

oo

Ns3

GG Φ(N) N2

Nα

<<

ker(Ns3 − 11N3)
Nβ |ker(Ns3 −11N3)

oo

Through a routine check, the reader can easily verify that Ψ and Φ are covariant F -
linear functors. We claim that they are equivalences of categories, mutually inverse up
to isomorphism of functors. We will prove this claim by exhibiting invertible natural
transformations of the form ε : 11P(A(Q,ξ)) -Mod → Φ ◦Ψ and η : 11

KσQ̂/I -Mod → Ψ ◦ Φ.
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For M ∈ P(A(Q, ξ)) -Mod define an F -linear function εM : M → Φ ◦Ψ(M) as follows:

M1

Mγ

��

11M1 // M1

1
2 (11L⊗F M3 +θ⊗11M3)◦(θ−ξα⊗11M3)◦−→Mγ

��

M
εM // Φ ◦Ψ(M)

M2

Mα

II

11M2

66M3
Mβoo

m 7→1⊗m

44
M2

Mα

II

ker(θ ⊗ 11M3 − 11L⊗FM3)
←−
Mβ |keroo

And for N ∈ KσQ̂/I -Mod, define an F -linear function ηN : N → Ψ ◦ Φ(N) as follows:

N1

Nγ

��

11N1 // N1

(
θ−ξα⊗11

ker(Ns3 −11N3)

)
◦
−−−−−−−−−−−−−→
1
2 (11N3 +Ns3)◦Nγ

��

N
ηN // Ψ ◦ Φ(N)

N2

Ns2

GG

Nα

JJ

11N2

99N3

Ns3

GG
Nβoo

1
2 (1⊗ 1

2 (11N1 +Ns3)+u−1⊗ 1
2 (11N1 +Ns3)u)

77
N2

Ns2

GG

Nα

JJ

L⊗F ker(Ns3 − 11N3)

θ⊗11
ker(Ns3 −11N3)

HH

←−−−−−−−−−−−−−
Nβ |ker(Ns3 −11N3)
oo

Again, a routine check shows that:

• εM is an isomorphism of P(A(Q, ξ))-modules;
• ηN is an isomorphism of KσQ̂/I-modules;
• ε := (εM )M ∈P(A(Q,ξ)) -Mod is a natural transformation 11P(A(Q,ξ)) -Mod → Φ ◦Ψ;
• η := (ηM )

M ∈LσQ̂/I -Mod is a natural transformation 11
KσQ̂/I -Mod → Ψ ◦ Φ.

Therefore, ε and η are F -linear isomorphisms of functors, and Ψ and Φ are F -linear
Morita equivalences between the Jacobian algebra P(A(Q, ξ)) and the semilinear clannish
algebra KσQ̂/I. Observe that Φ,Ψ restrict to equivalences between the full subcategories
of finite-dimensional representations. □
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Example 4.6. For k = 2 in Proposition 4.5, take F = R, L = C, and consider the
Jacobian block (left) and the semilinear clannish block (right)

R

γ

C⊗RR

��
C

α

R⊗RC
77

Cβ

Cθ
ξβ⊗CC

kk

C
s1

Cθ⊗CC

��

γ

C⊗CC

��
C

α

Cθ
−ξβ⊗CC

77

Cβ

Cθ
ξβ⊗CC

kk

J(Q,d, ξ) =
〈
βγ, αβ,

1
2
(
γα+ (−1)ξβu−1γαu

)〉
I =

〈
αβ, βγ, γα, s2

1 − e1
〉

where u ∈ C satisfies u2 = −1. We have seen in Proposition 4.5 that the arising Jacobian
algebra P(A(Q, ξ)) and semilinear clannish algebra CσQ̂/I are Morita equivalent. They
are, however, not isomorphic as rings.

To prove our claim, notice first that in each of P(A(Q, ξ)) and CσQ̂/I, the center
is the image of R under the corresponding diagonal embeddings R ↪→ P(A(Q, ξ)) and
R ↪→ CσQ̂/I. Since every ring isomorphism restricts to an isomorphism between centers,
and since the only non-zero ring endomorphism of R is the identity, we deduce that any ring
isomorphism between P(A(Q, ξ)) and CσQ̂/I would be forced to be R-linear. However,

dimR(P(A(Q, ξ))) = 13 and dimR(CσQ̂/I) = 16,
so P(A(Q, ξ)) and CσQ̂/I cannot be isomorphic as rings.

Alternatively, instead of a dimension count, one could notice that, on the one hand, the
diagonal ∆ : C ↪→ CσQ̂/I embeds C as a unital subring of CσQ̂/I containing the center
Z(CσQ̂/I), and on the other, it is possible to endow the real vector space R with the
structure of left P(A(Q, ξ))-module. Were φ : CσQ̂/I → P(A(Q, ξ)) a ring isomorphism,
a fortiori R-linear as we have seen, its restriction to ∆(C) would lift the real vector space
structure of R to a complex vector space structure, under which we would then have
2 ≤ [C : R] dimC(R) = dimR(R) = 1.

Similar arguments show in general that for k = 2, 4, 6, 7 the kth Jacobian block and the
kth semilinear clannish block cannot be isomorphic as rings.

5. Colored triangulations of surfaces with orbifold points

5.1. Triangulations. By a surface with marked points and orbifold points we mean a
triple Σ = (Σ,M,O) consisting of

• an oriented connected compact real surface Σ with (possibly empty) boundary ∂Σ,
• a non-empty finite set M ⊆ Σ that meets each connected component of ∂Σ,
• a (possibly empty) finite set O ⊆ Σ \ (∂Σ ∪M).

The points in M are called marked points, the points in O are orbifold points. Marked
points belonging to Σ\∂Σ are known as punctures. We shall refer to Σ simply as a surface.

We will consider only unpunctured surfaces with finitely many orbifold points, and
once-punctured closed surfaces with arbitrarily many orbifold points. Furthermore, we
will always assume that (Σ,M,O) is none of the following 8 surfaces:

• a once-punctured closed sphere with |O| < 4;
• the unpunctured disc with |M| = 1 and |O| = 1;
• the unpunctured discs with |M| ∈ {1, 2, 3} and |O| = 0.
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Our reasons for working only with unpunctured and once-punctured closed surfaces are:
• A consequence of Theorem 6.16 below is that the species with potential associa-

ted to their colored triangulations are non-degenerate in the sense of Derksen–
Weyman–Zelevinsky, a result that for surfaces with arbitrarily many punctures has
been shown only when O = ∅ [24] and when the choice of weights ω : O→ {1, 4}
is the constant function that takes the value 1 at every orbifold point [18];
• for surfaces with many punctures, the non-degenerate potentials on the species

associated to colored triangulations typically yield Jacobian algebras not Morita
equivalent to semilinear clannish algebras. This is well-known in the case of sur-
faces without orbifold points.

Definition 5.1 ([12, Section 4]). Let (Σ,M,O) be a surface with marked points and
orbifold points.

(1) An arc on (Σ,M,O), is a curve i on Σ such that:
• either both of the endpoints of i belong to M, or i connects a point of M with

a point of O;
• i does not intersect itself, except that its endpoints may coincide;
• the points in i that are not endpoints do not belong to M ∪O ∪ ∂Σ;
• if i cuts out an unpunctured monogon, then such monogon contains at least

two orbifold points;
• if i cuts out an unpunctured digon, then such digon contains at least one

orbifold point.
(2) If i is an arc that connects a point of M with a point of O, we will say that i

is a pending arc; if it connects a point of M to a point of M, we will say it is
non-pending.

(3) Two arcs i1 and i2 are isotopic relative to M∪O if there exists a continuous function
H : [0, 1]× Σ→ Σ such that
(a) H(0, x) = x for all x ∈ Σ;
(b) H(1, i1) = i2;
(c) H(t,m) = m for all t ∈ I and all m ∈M ∪O;
(d) for every t ∈ I, the function Ht : Σ → Σ given by x 7→ H(t, x) is a homeo-

morphism.
Arcs will be considered up to isotopy relative to M ∪ O, parametrization, and
orientation.

(4) Two isotopy classes C1 and C2 of arcs are compatible if either
• C1 = C2; or
• C1 ̸= C2 and there are arcs i1 ∈ C1 and i2 ∈ C2 such that i1 and i2 do not

share an orbifold point as a common endpoint, and, except possibly for their
endpoints, i1 and i2 do not intersect.

If C1 and C2 form a pair of compatible isotopy classes of arcs and we have elements
j1 ∈ C1 and j2 ∈ C2, we will also say that j1 and j2 are compatible.

(5) An ideal triangulation of (Σ,M,O) is any maximal collection τ of pairwise com-
patible arcs.

Thus, a non-pending arc goes from a point in M to a point in M, whereas a pending
arc connects a point in M with a point in O. Loops based at a marked point and cut-
ting off a monogon containing exactly one orbifold point are not considered to be arcs.
In this paper, ideal triangulations will be often referred to simply as triangulations, and
ideal triangles simply as triangles.
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The following result states the basic properties of the flip, which is a combinatorial
move on ideal triangulations. Recall that we are considering only unpunctured surfaces
and closed surfaces with exactly one puncture.

Theorem 5.2 ([12]). Let (Σ,M,O) be a surface with marked points and orbifold points.
(1) If τ is an ideal triangulation of (Σ,M,O) and i ∈ τ , then there exists a unique arc

j on (Σ,M,O) such that the set σ = (τ \ {i}) ∪ {j} is an ideal triangulation of
(Σ,M,O). We say that σ is obtained from τ by the flip of i ∈ τ .

(2) Any two ideal triangulations of (Σ,M,O) can be obtained from each other by a
finite sequence of flips.

In other words, for unpunctured surfaces and closed surfaces with exactly one puncture,
every arc in an ideal triangulation can be flipped, and any two ideal triangulations are
related by a chain of flips.

Example 5.3. In Figure 5.1 we can see four triangulations of a hexagon with one orbifold
point. Every two consecutive triangulations are related by a flip.

Figure 5.1.

Definition 5.4. Let (Σ,M,O) be a surface with marked points and orbifold points, and
let τ be an ideal triangulation of (Σ,M,O).

(1) An ideal triangle of τ is the topological closure of a connected component of the
complement in Σ of the union of the arcs in τ .

(2) An ideal triangle △ is interior if its intersection with the boundary of Σ consists
only of (possibly none) marked points. Otherwise it will be called non-interior.

(3) An orbifolded triangle is an ideal triangle (not necessarily interior) that contains
an orbifold point.

We now give a combinatorial description of ideal triangulations in terms of puzzle-piece
decompositions. Consider the three “puzzle pieces” shown in Figure 5.2.

Figure 5.2.

Take several pairwise disjoint copies of these pieces, assign an orientation to each of the
outer sides of these copies and fix a partial matching on the set of all outer sides of the
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copies taken, never matching two sides of the same copy. Then glue the puzzle pieces along
the matched sides, making sure the orientations match. Though some partial matchings
may not lead to an (ideal triangulation of an) oriented surface, we do have the following.

Theorem 5.5. Any ideal triangulation τ of an oriented surface (Σ,M,O) can be obtained
from a suitable partial matching by means of the procedure just described.

One way to see this is to start with an ideal triangulation τ0 of (Σ,M,∅), add the points
in O, say one by one, completing the given ideal triangulation each time a point is added,
and then notice that

(1) τ0 can be obtained from a puzzle-piece decomposition, say, by [13, Remark 4.2];
(2) every time a point from O is added and the ideal triangulation is completed, the

puzzle-piece decomposition can be updated;
(3) possessing a puzzle-piece decomposition is a property of ideal triangulations which

is invariant under flips. This can be easily shown through a case by case verification
depending on whether the arc to be flipped sits inside a puzzle piece or is an arc
shared by two puzzle pieces. The verification was carried out exhaustively in [19,
Figures 21 and 22].

Definition 5.6. Any partial matching giving rise to τ through the procedure just
described will be called a puzzle-piece decomposition of τ .

Theorem 5.5 will play an essential role in the proof of our main result. Notice that
the possibilities for how a triangle in a triangulation of one of the surfaces in our setting
(unpunctured, or once-punctured closed) can look like are limited. More precisely, there
are three types of triangles:

• Ordinary triangles, i.e. triangles containing no orbifold points.
• Once orbifolded triangles, i.e. triangles containing exactly one orbifold point.
• Twice orbifolded triangles, i.e. triangles containing exactly two orbifold points.

Following [19, Definition 3.2], given a triangulation τ of Σ, we define a quiver Q(τ) as
follows:

(1) The vertices of Q(τ) are the arcs in τ , that is, Q(τ)0 = τ .
(2) The arrows of Q(τ) are induced by the triangles of τ and the orientation of Σ: for

each triangle △ of τ and every pair i, j ∈ τ of arcs in △ such that j succeeds i in
△ with respect to the orientation of Σ, we draw a single arrow from i to j.

Thus, for the three types of triangles depicted in Figure 5.2, we draw arrows according to
the rule depicted in Figure 5.3, with the convention that no arrow incident to a boundary
segment is drawn.

Figure 5.3.
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5.2. Colored triangulations. Let Σ be a surface with orbifold points, and let τ a tri-
angulation of Σ. Through a slight modification of [19, Equation (4.1)], we define a family
of sets X•(τ) = (Xn(τ))n∈Z≥ 0 by setting Xn(τ) = ∅ for n ̸∈ {0, 1, 2} and

X0(τ) = Q(τ)0, X1(τ) = Q(τ)1, X2(τ) = {△ |△ is an interior triangle of τ} (5.1)

We use X•(τ) to define a chain complex C•(τ) as follows:

C•(τ) : · · · // 0 ∂3 // F2X2(τ) ∂2 // F2X1(τ) ∂1 // F2X0(τ) //∂0 // 0, (5.2)

where F2X stands for the vector space with basis X over the two-element field F2 := Z/2Z.
The non-zero differentials are given on basis elements as follows:

∂2(△) = α+ β + γ if △ ∈ X2(τ) induces α, β, γ ∈ Q(τ)1,
∂1(α) = h(α)− t(α) for α ∈ X1(τ).

(5.3)

Example 5.7 ([19, Example 4.3]). In Figure 5.4 we can see two triangulations τ and σ
of the pentagon with two orbifold points, as well as the quivers Q(τ) and Q(σ). We can
also visualize the 2-dimensional cells belonging to the sets X2(τ) and X2(σ).

Figure 5.4.

Definition 5.8. Let Z1(τ) be the set of 1-cocycles of the cochain complex C•(τ) =
HomF2(C•(τ),F2). A colored triangulation of Σ is a pair (τ, ξ) consisting of a triangulation
τ of Σ and a 1-cocycle ξ ∈ Z1(τ) ⊆ C1(τ) = HomF2(C1(τ),F2).
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Remark 5.9.
(1) The chain complex C•(τ, ω) defined in [19, Equation (4.1)] is a subcomplex of C•(τ)

defined above through (5.1), (5.2) and (5.3). It is easy to see that the inclusion
C•(τ, ω) ↪→ C•(τ) is a homotopy equivalence.

(2) The first cohomology group H1(C•(τ)) is isomorphic to H1(Σ \M,F2), see [19,
Definition 3.6, Equations (4.1), (4.3) and (8.1), and Corollary 8.8]. Thus, for
instance, if Σ has positive genus, then H1(C•(τ)) ̸= 0.

(3) By definition, C1(τ) is the F2-vector space with basis Q(τ)1. Let {α∨ |α ∈ Q(τ)1}
be the F2-vector space basis of C1(τ) = HomF2(C1(τ),F2) which is dual to Q(τ)1.
Then, choosing a cocycle ξ =

∑
α ξ(α)α∨ ∈ Z1(τ) amounts to fixing, for each arrow

α ∈ Q(τ)1, an element ξ(α) ∈ {0, 1} = F2 in such a way that whenever α, β, γ are
arrows of Q(τ) induced by an interior triangle △ one has

ξ(α) + ξ(β) + ξ(γ) = 0 ∈ F2 .

See Section 9 below for a brief discussion on the necessity of this cocycle condition.

6. Jacobian and semi-linear clannish algebras associated to colored
triangulations

6.1. The weighted quiver of a triangulation. As already mentioned in the Introduc-
tion, our input information will consist not only of a surface Σ, but of an assignment of a
weight to each orbifold point.

Definition 6.1. A surface with marked points and weighted orbifold points Σω, is a surface
Σ = (Σ,M,O) together with a function ω : O→ {1, 4}.

Remark 6.2.
(1) The idea of taking a function ω : O → {1, 4} as part of the input information

comes from [12].
(2) If Γ is a discrete subgroup of PSL2(R) and z is a point in the upper half plane

U ⊆ C fixed by a non-identity element of Γ, then the order of the stabilizer Γz ⊆ Γ
is said to be the order of q = p(z) as an orbifold point of U/Γ, where p : U→ U/Γ
is the projection to the orbit space. In Teichmüller theory one typically fixes
the topological type of U/Γ (that is, one fixes it as a topological manifold, but
ignores any possible Riemann surface structure on it) as well as a set of prescribed
orbifold points, together with their prescribed orders –integers greater than 1, then
considers all the discrete subgroups G of PSL2(R) such that U/G has the desired
topological type and the prescribed orbifold points, with the prescribed orders.

(3) As such, the number ω(q) ∈ {1, 4} is unrelated to the order of q as an orbifold
point, which plays no role in this paper.

For the rest of the article, Σω = (Σ,M,O, ω) will be part of our a priori given input.
For each triangulation τ of Σ, we shall define a weighted quiver (Q(τ, ω),d(τ, ω)).

Definition 6.3 ([19, Definition 3.3]). Let Σω = (Σ,M,O, ω) be a surface with weighted
orbifold points as in Definition 6.1, and let τ a triangulation of Σ. For each arc i ∈ Q0(τ)
we define an integer d(τ, ω)i, the weight of i with respect to ω, by the rule

d(τ, ω)i :=
{

2 if i is a non-pending arc,
ω(q) if i is a pending arc with q ∈ i ∩O.
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We set d(τ, ω) = (d(τ, ω)i)i in τ , and define the weighted quiver of τ with respect to ω to be
the weighted quiver (Q(τ, ω),d(τ, ω)) on the vertex set Q0(τ, ω) = τ , where Q(τ, ω) is the
quiver obtained from Q(τ) by adding an extra arrow j → i for each pair of pending arcs
i and j that satisfy d(τ, ω)i = d(τ, ω)j and for which Q(τ) has an arrow from j to i.
Example 6.4 ([19, Example 3.8]). Consider the triangulations τ and σ from Figure 5.4.
The quivers Q(τ, ω) and Q(σ, ω) are seen in Table 6.1 for each map ω : O → {1, 4}. No
triangle of σ contains more than one orbifold point, thus Q(σ, ω) = Q(σ) for each such ω.

Table 6.1. Weighted quivers of the triangulations from Figure 5.4.

ω(q1), ω(q2) Q(τ, ω) Q(σ, ω)
1, 1 k1 33++ k2

yy•

ee

&&•

88

•oo // •

k1

%%

k2

%%•

99

•oo

99

•oo // •

1, 4 k1 // k2

yy•

ee

&&•

88

•oo // •

k1

%%

k2

%%•

99

•oo

99

•oo // •

4, 1 k1 // k2

yy•

ee

&&•

88

•oo // •

k1

%%

k2

%%•

99

•oo

99

•oo // •

4, 4 k1 33++ k2

yy•

ee

&&•

88

•oo // •

k1

%%

k2

%%•

99

•oo

99

•oo // •

Example 6.5. For k = 1, . . . , 7, the weighted quiver (Q,d) appearing in the column
labeled “Block k” in Tables 4.1, 4.2, 4.3 and 4.4 has the form (Q(τ, ω),d(τ, ω)) for some
triangulation τ of a puzzle piece from Figure 5.2 with weighted orbifold points.
6.2. Arbitrary weights: algebras defined over degree-4 field extensions. Let
Σω = (Σ,M,O, ω) be a surface with weighted orbifold points, and let τ be a triangu-
lation of Σ. Set d = lcm{d(τ, ω)k | k ∈ τ}, which is equal to either 2 or 4 (because τ
contains at least one non-pending arc), and let E/F be a degree-d datum, and L/F be
the degree-2 datum contained in E/F (see Section 3). Notice that

d =
{

2 if O = ∅ or ω ≡ 1,
4 otherwise;

hence [E : L] =
{

1 if O = ∅ or ω ≡ 1,
2 otherwise;

(6.1)

Remark 6.6.
(1) If O ̸= ∅, then there are 2O − 1 functions ω : O → {1, 4} that yield d = 4, but

only one that yields d = 2, namely, the constant function ω ≡ 1.
(2) If ω ≡ 1, then (6.1) tells us that E/F is a degree-2 datum and E = L (even if

O = ∅). In particular, when ω ≡ 1, the forthcoming constructions and results are
valid over the field extension C/R.
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Following [19, Section 6], for each k ∈ τ we set Fk/F to be the unique degree-d(τ, ω)k
field subextension of E/F , and denote Gk = Gal(Fk/F ). We also denote Gj,k = Gal(Fj ∩
Fk/F ) for j, k ∈ τ . Thus:

Gj,k =


{
11E , ρ, ρ2, ρ3} if lcm(d(τ, ω)j , d(τ, ω)k) = 4;
{11L, θ} if lcm(d(τ, ω)j , d(τ, ω)k) = 2;
{11F } if lcm(d(τ, ω)j , d(τ, ω)k) = 1.

6.2.1. The Jacobian algebra of a colored triangulation. Let (τ, ξ) be a colored triangula-
tion of Σω. Exactly as in [19, Definition 6.1], we define a modulating function g(τ, ξ) :
Q(τ, ω)1 →

⋃
j,k∈ τ Gj,k as follows. Take an arrow a ∈ Q(τ, ξ)1.

(1) If d(τ, ω)h(a) = 1 or d(τ, ω)t(a) = 1, set

g(τ, ξ)a = 11 ∈ Gh(a),t(a).

(2) If d(τ, ω)h(a) ̸= 1 ̸= d(τ, ω)t(a), and d(τ, ω)h(a)d(τ, ω)t(a) < 16, set

g(τ, ξ)a = θξ(a) ∈ Gh(a),t(a).

(3) If d(τ, ω)h(a) = 4 = d(τ, ω)t(a), then t(a) and h(a) are pending arcs contained in a
twice orbifolded triangle △, and
(a) the quiver Q(τ) has exactly one arrow t(a)→ h(a), induced by △; let δ△0 be

this arrow of Q(τ); notice that we can evaluate ξ at δ△0 ;
(b) the quiver Q(τ, ω) has exactly two arrows going from t(a) to h(a), one of which

is δ△0 ; let δ△1 be the other such arrow of Q(τ, ω); of course, a ∈ {δ△0 , δ
△
1 };

(c) [E : F ] = 4 and Fh(a) = E = Ft(a); let ℓ be the unique element of {0, 1}
whose residue class modulo 2 is ξ(δ△0 ) ∈ F2 := Z/2Z (equivalently, let ℓ be
the unique element of {0, 1} such that ρℓ|L = θξ(δ

△
0 ) = ρℓ+2|L).

We set

g(τ, ξ)a =
{
ρℓ if a = δ△0 ;
ρℓ+2 if a = δ△1 .

Example 6.7. For k = 1, . . . , 7, the weighted quiver (Q,d) and the modulating function
Q1 →

⋃
i,j Gi,j appearing in the column labeled “Block k” in Tables 4.1 and 4.2 have the

form (Q(τ, ξ),d(τ, ξ)) and g(τ, ξ), respectively, for some colored triangulation (τ, ξ) of a
puzzle piece surface from Figure 5.2.

For the next definition we refer the reader to § 2.1.3 and § 2.1.4.

Definition 6.8 ([19, Definition 6.2]). The species of the colored triangulation (τ, ξ) is the
F -modulation of (Q(τ, ξ),d(τ, ξ)) defined by setting

(F,A(τ, ξ)) :=
(
(Fk)k∈ τ , (A(τ, ξ)a)a∈Q(τ,ξ)1

)
, where

A(τ, ξ)a := F
g(τ,ξ)a

h(a) ⊗Fh(a) ∩Ft(a) Ft(a).

We write R := ×k∈ τFk and A(τ, ξ) :=
⊕

a∈Q(τ,ξ)1 A(τ, ξ)a. It is clear that R is a
semisimple ring and A(τ, ξ) is an R-R-bimodule. Detailed examples can be found in [19,
Examples 6.3 and 6.4]. The next proposition asserts that (F,A(τ, ξ)) is a species real-
ization of one of the skew-symmetrizable matrices associated to τ by Felikson–Shapiro–
Tumarkin [12], cf. [19, Remark 3.5(2)]. The proof is left to the reader.
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Proposition 6.9 ([19, Proposition 6.5]). Let Σω be a surface with weighted orbifold points,
and (τ, ξ) a colored triangulation of Σω, where Σ is either unpunctured or once-punctured
closed. Let B(τ, ω) = (bkj(τ, ω))k,j denote the skew-symmetrizable matrix that corresponds
to the weighted quiver (Q(τ, ω),d(τ, ω)) under [26, Lemma 2.3]. For every pair (k, j) ∈
τ × τ we have:

(1) ekA(τ, ξ)ej is an Fk-Fj-bimodule;
(2) dimFk

(ekA(τ, ξ)ej) = [bkj(τ, ω)]+ and dimFj (ekA(τ, ξ)ej) = [−bjk(τ, ω)]+, where
[b]+ := max(b, 0); and

(3) there exists an Fj-Fk-bimodule isomorphism of the form
HomFk

(ekA(τ, ξ)ej , Fk) ∼= HomFj (ekA(τ, ξ)ej , Fj).

Remark 6.10. Notice that in the situation d(τ, ω)h(a) = 4 = d(τ, ω)t(a) above, writing
a : j → k we have F θ

ξδ0
k ⊗L Fj = Eθ

ξδ0 ⊗L E which is isomorphic to(
Eρ

l ⊗E E
)
⊕
(
Eρ

l+2 ⊗E E
)

=
(
F
g(τ,ξ)δ0
k ⊗Fk ∩Fj Fj

)
⊕
(
F
g(τ,ξ)δ1
k ⊗Fk ∩Fj Fj

)
and Eρ

l ⊗E E ̸∼= Eρ
l+2 ⊗E E as E-E-bimodules.

We now move towards the definition of a natural potential W (τ, ξ) ∈ R⟨A(τ, ξ)⟩. There
are some obvious cycles on A(τ, ξ), that we point to explicitly.

Definition 6.11 ([19, Definitions 6.7, 6.8 and 6.9]). Let (τ, ξ) be a colored triangulation
of Σω and △ be an interior triangle of τ .

(1) If △ does not contain any orbifold point, then, with the notation from the picture
on the upper left in Figure 6.1), we set W△(τ, ξ); = α△β△γ△;

(2) if △ contains exactly one orbifold point, let k be the unique pending arc of τ con-
tained in △. Using the notation from the picture on the upper right in Figure 6.1,
we set W△(τ, ξ) = α△β△γ△, regardless of whether d(τ, ω)k equals 1 or 4;

(3) it △ contains exactly two orbifold points, let k1 and k2 be the two pending arcs of
τ contained in △, and assume that they are configured as in Figure 6.1.
• If d(τ, ω)k1 = 1 = d(τ, ω)k2 , then, with the notation of the picture on the

bottom left in Figure 6.1, we set W△(τ, ξ) = δ△0 β
△γ△ + δ△1 β

△uγ△.
• If d(τ, ω)k1 = 1 and d(τ, ω)k2 = 4, then, with the notation of the picture on

the bottom right in Figure 6.1, we set W△(τ, ξ) = α△β△γ△.
• If d(τ, ω)k1 = 4 and d(τ, ω)k2 = 1, then, with the notation of the picture on

the bottom right in Figure 6.1, we set W△(τ, ξ) = α△β△γ△.
• If d(τ, ω)k1 = 4 and d(τ, ω)k2 = 4, then, with the notation of the picture on

the bottom left in Figure 6.1, we set W△(τ, ξ) = (δ△0 + δ△1 )β△γ△.

For the next definition, we remind the reader that Σ = (Σ,M,O) is assumed to be
either unpunctured or once-punctured closed.

Definition 6.12 ([19, Definition 6.10]). Let Σω = (Σ,M,O, ω) be a surface with weighted
orbifold points, and (τ, ξ) a colored triangulation of Σω = (Σ,M,O, ω).

(1) The potential associated to (τ, ξ) is

W (τ, ξ) :=
∑
△
W△(τ, ξ) ∈ R⟨A(τ, ξ)⟩ ⊆ R⟨⟨A(τ, ξ)⟩⟩,

where the sum runs over all interior triangles △ of τ .
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(2) The Jacobian algebra associated to (τ, ξ) is the quotient
P(A(τ, ξ),W (τ, ξ)) := R⟨⟨A(τ, ξ)⟩⟩/J(W (τ, ξ)),

where the Jacobian ideal J(W (τ, ξ)) is defined according to Definition 2.8, cf. [18,
Definition 3.11].

b

0d

1d
g b g

k

a

bg
a

b g

k
1

k
2

k
1

k
2

a

Figure 6.1. Notation for the definition of W△(τ, ξ).

In the case where ∂Σ = ∅ and |M| = 1, i.e. when Σ = (Σ,M,O) is a once-punctured
closed surface, we will consider the polynomial Jacobian algebra P0(A(τ, ξ),W (τ, ξ)) =
R⟨A(τ, ξ)⟩/J0(W (τ, ξ)) as well (see Definition 2.8(6)).

For detailed examples of the basic arithmetic in R⟨A(τ, ξ)⟩ and in the Jacobian algebra
P(A(τ, ξ),W (τ, ξ)), we kindly refer the reader to [19, Example 6.11, Example 6.12 and
Section 13] and [17, Example 6.2.18]. See Example 6.15 below as well.

Theorem 6.13 ([19, Theorems 10.1 and 10.2]). Let Σω be an unpunctured surface with
weighted orbifold points.

(1) For every colored triangulation (τ, ξ) of Σω, the Jacobian algebra P(A(τ, ξ),
W (τ, ξ)) is F -linearly isomorphic to P0(A(τ, ξ)) = R⟨A(τ, ξ)⟩/J0(W (τ, ξ)), the
polynomial Jacobian algebra, and its dimension over the ground field F is finite.

(2) For every pair (τ, ξ1) and (τ, ξ2) of colored triangulations of Σω with same under-
lying triangulation τ , the following statements are equivalent:
(a) [ξ1] = [ξ2] in the first cohomology group H1(C•(τ));
(b) the Jacobian algebras P(A(τ, ξ1),W (τ, ξ1)) and P(A(τ, ξ2),W (τ, ξ2)) are iso-

morphic through an F -linear ring isomorphism acting as the identity on the
set of idempotents {ek | k ∈ τ}.

Remark 6.14. When Σ is once-punctured closed, [ξ1] = [ξ2] in cohomology implies
P(A(τ, ξ1),W (τ, ξ1)) ∼= P(A(τ, ξ2),W (τ, ξ2)) through an F -linear ring isomorphism acting
as the identity on {ek | k ∈ τ}.

Example 6.15. Consider the triangulations τ and σ of the pentagon with two orbifold
points shown in Figure 5.4. Therein we can visualize not only the quivers Q(τ) and Q(σ),
but all the cells conforming the bases of the chain complexes C•(τ) and C•(σ): the shaded
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regions are the 2-cells, the arrows are the 1-cells, and the vertices of Q(τ) and Q(σ) are
the 0-cells. Take arbitrary 1-cocycles ξ ∈ Z1(τ) ⊆ C1(τ) and ϕ ∈ Z1(σ) ⊆ C1(σ), and an
arbitrary choice of weights ω : O→ {1, 4}.

In view of Theorem 6.13, in Tables 6.2 and 6.3 we can visualize the Jacobian alge-
bras P(A(τ, ξ),W (τ, ξ))) and P(A(σ, ϕ),W (σ, ϕ)), for we see the species with potential
(A(τ, ξ),W (τ, ξ)) and (A(σ, ϕ),W (σ, ϕ)), as well as all the cyclic derivatives of the poten-
tials W (τ, ξ) and W (σ, ϕ).

The initial interest in the Jacobian algebras P(A(τ, ξ),W (τ, ξ)) stems from the relation
to cluster combinatorics provided by Proposition 6.9 and the following result on their good
behavior under mutations of species with potential.

Theorem 6.16 ([19, Theorem 7.1]). Let Σω be a surface with weighted orbifold points,
either unpunctured or once-punctured closed, and (τ, ξ) and (σ, ϕ) be colored triangulations
of Σ. If (σ, ϕ) can be obtained from (τ, ξ) by the colored flip of an arc k ∈ τ , then the
species with potential (A(σ, ϕ),W (σ, ϕ)) and µk(A(τ, ξ),W (τ, ξ)) are right-equivalent.

The notion of colored flip of colored triangulations is defined in [19, Definition 5.8] (see
also [19, Examples 5.9 and 5.10]), while those of right equivalence and mutation of species
with potential are defined in [18, Definitions 3.11 and 3.19] (see also [18, Remark 3.20]
and [19, Section 2.1]). The latter two notions were of course inspired by the corresponding
ones introduced by Derksen–Weyman–Zelevinsky in [9].

6.2.2. The semilinear clannish algebra of a colored triangulation. Fix a degree-4 datum
E/F , and let (τ, ξ) be a colored triangulation of a surface with weighted orbifold points
Σω = (Σ,M,O, ω). We associate to (τ, ξ) a semilinear clannish algebra Kσ(τ,ξ)Q̂(τ)/I(τ, ξ)
as follows.

Define Q̂(τ) to be the quiver obtained from Q(τ) by adding one loop at each pending
arc of τ , which we assume to be special. Since Q(τ) is loop-free, this means we are taking
the set S(τ) of special loops in Q̂(τ) to be the set of all loops in Q̂(τ), or said another way,
Q̂(τ)1 = Q(τ)1 ⊔ S(τ).

Let K = L. To each arrow a ∈ Q̂(τ)1 we define a field automorphism σ(τ, ξ)a ∈
Gal(L/F ) ⊆ Aut(L) by

σ(τ, ξ)a :=


θξa if a ∈ Q(τ)1 = Q̂(τ)1 \ S(τ);
θ if h(a) = t(a) and d(τ, ω)h(a) = 1;
11L if h(a) = t(a) and d(τ, ω)h(a) = 4.

This information determines already a semilinear path algebra Kσ(τ,ξ)Q̂(τ). Furthermore,
to each loop s ∈ S(τ) of Q̂(τ) with head and tail k, we attach the quadratic polynomial

qs(x) :=
{
x2 − 1 ∈ L[x; θ] if d(τ, ω)k = 1;
x2 − u ∈ L[x] if d(τ, ω)k = 4.

This information determines the set of special relations, defined by

S(τ, ξ) :=
{
q(s)

∣∣∣ s ∈ S(τ) = Q̂(τ)1 \Q(τ)1
}
,

ekKσ(τ,ξ)Q̂(τ)ek ∋ q(s) :=
{
s2 − ek if d(τ, ω)k = 1;
s2 − uek if d(τ, ω)k = 4.
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Table 6.2. Jacobian algebras from Example 6.15 for weights (1, 1) and (1, 4).

ω(q1), ω(q2) P(A(τ, ξ),W (τ, ξ))) P(A(σ, ϕ),W (σ, ϕ))

1, 1

F
F⊗F F

22
F⊗F F

,, F

L⊗F F
||

L

F⊗F L

bb

Lθ
ξβ⊗LL

""
L

Lθ
ξγ⊗LL

<<

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

W (τ, ξ) = αβγ + δ0εη + δ1εuη
∂αW (τ, ξ) = βγ ∂δ0W (τ, ξ) = εη
∂βW (τ, ξ) = γα ∂δ1W (τ, ξ) = εuη
∂γW (τ, ξ) = αβ ∂εW (τ, ξ) = ηδ0 + uηδ1
∂νW (τ, ξ) = 0 ∂ηW (τ, ξ) = δ0ε+ δ1εu

F

L⊗F F

""

F

L⊗F F

""
L

F⊗F L

<<

L
Lθ

ϕβ⊗LL

oo

F⊗F L

<<

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = 1

2
(
γα+ (−1)ϕβu−1γαu

)
∂ηW (σ, ϕ) = δε

∂γW (σ, ϕ) = αβ ∂νW (σ, ϕ) = 0
∂εW (σ, ϕ) = 1

2
(
ηδ + (−1)ϕεu−1ηδu

)

1, 4

F
E⊗F F // E

Lθ
ξη⊗LE||

L

F⊗F L

bb

Lθ
ξβ⊗LL

""
L

Lθ
ξγ⊗LL

<<

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

W (τ, ξ) = αβγ + δεη
∂αW (τ, ξ) = βγ ∂δW (τ, ξ) = εη
∂βW (τ, ξ) = γα ∂εW (τ, ξ) = ηδ
∂γW (τ, ξ) = αβ ∂ηW (τ, ξ) = 1

2
(
δε+ (−1)ξηu−1δεu

)
∂νW (τ, ξ) = 0

F

L⊗F F

""

E

Lθ
ϕη⊗LE

""
L

F⊗F L

<<

L
Lθ

ϕβ⊗LL

oo

Eθϕδ⊗LL

<<

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = 1

2
(
γα+ (−1)ϕβu−1γαu

)
∂εW (σ, ϕ) = ηδ

∂γW (σ, ϕ) = αβ ∂ηW (σ, ϕ) = δε
∂νW (σ, ϕ) = 0

A
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Table 6.3. Jacobian algebras from Example 6.15 for weights (4, 1) and (4, 4).

ω(q1), ω(q2) P(A(τ, ξ),W (τ, ξ))) P(A(σ, ϕ),W (σ, ϕ))

4, 1

E
F⊗F E // F

L⊗F F
||

L
Eθξε⊗LL

bb

Lθ
ξβ⊗LL

""
L

Lθ
ξγ⊗LL

<<

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

W (τ, ξ) = αβγ + δεη
∂αW (τ, ξ) = βγ ∂δW (τ, ξ) = εη
∂βW (τ, ξ) = γα ∂εW (τ, ξ) = 1

2
(
ηδ + (−1)ξεu−1ηδu

)
∂γW (τ, ξ) = αβ ∂ηW (τ, ξ) = δε
∂νW (τ, ξ) = 0

E

Lθ
ϕγ⊗LE

""

F

L⊗F F

""
L

Eθϕα⊗LL

<<

L
Lθ

ϕβ⊗LL

oo

F⊗F L

<<

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = γα ∂εW (σ, ϕ) = 1

2
(
ηδ + (−1)ξεu−1ηδu

)
∂γW (σ, ϕ) = αβ ∂ηW (σ, ϕ) = δε
∂νW (σ, ϕ) = 0

4, 4

E

Eρℓ+2
⊗EE

22
Eρℓ
⊗EE

,, E

Lθ
ξη⊗LE||

L
Eθξε⊗LL

bb

Lθ
ξβ⊗LL

""
L

Lθ
ξγ⊗LL

<<

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

W (τ, ξ) = αβγ + (δ0 + δ1)εη
∂αW (τ, ξ) = βγ ∂δ0W (τ, ξ) = 1

2
(
εη + ρ−l(v−1)εηv

)
∂βW (τ, ξ) = γα ∂δ1W (τ, ξ) = 1

2
(
εη + ρ−l−2(v−1)εηv

)
∂γW (τ, ξ) = αβ ∂εW (τ, ξ) = η(δ0 + δ1)
∂νW (τ, ξ) = 0 ∂ηW (τ, ξ) = (δ0 + δ1)ε

E

Lθ
ϕγ⊗LE

""

E

Lθ
ϕη⊗LE

""
L

Eθϕα⊗LL

<<

L
Lθ

ϕβ⊗LL

oo

Eθϕδ⊗LL

<<

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = γα ∂εW (σ, ϕ) = ηδ
∂γW (σ, ϕ) = αβ ∂ηW (σ, ϕ) = δε

∂νW (σ, ϕ) = 0
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We define the two-sided ideal I(τ, ξ) = ⟨Z(τ, ξ)∪S(τ, ξ)⟩ in Kσ(τ,ξ)Q̂(τ) by defining the set
Z(τ, ξ) of zero-relations, as follows. Suppose △ is a triangle in τ , say of one of the forms
depicted in Figure 5.3. Each such △ gives rise to three distinct arrows of Q(τ) subject to
certain conditions, namely
α△, β△, γ△ ∈ Q̂(τ)1 \ S(τ) = Q(τ)1, h(α△) = t(γ△), h(γ△) = t(β△), h(β△) = t(α△).

We now let Z(τ, ξ) be the union of the sets Z(τ, ξ,△) = {α△β△, β△γ△, γ△α△} taken over
all such △.

Example 6.17. For k = 1, . . . , 7, the rings appearing in Tables 4.3 and 4.4 have the form
Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) where (τ, ξ) is a colored triangulation of a puzzle piece surface Σ from
Figure 5.2. Compare with Example 6.7.

Proposition 6.18. If (τ, ξ) is a triangulation of a surface Σω then Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) is
a normally-bound, non-singular semilinear clannish algebra of semisimple type.

Proof. Let Q̂ = Q̂(τ). In what follows we consider an element i ∈ Q̂0 from the set Q̂(τ)0
of arcs in the triangulation (τ, ξ) of Σω = (Σ,M,O, ω). We fix notation for such an arc i
which depends on cases.

(a) If i is the edge of only one triangle in (τ, ξ), we denote it △(i); let e(i), f(i) ∈ Q̂0
be the arcs defining the remaining edges of △(i); and we write κ(i), λ(i), µ(i) for
the (ordinary) arrows in Q(τ)1 = Q̂1 \ S(τ) with t(κ(i)) = i = h(λ(i)), t(λ(i)) =
e(i) = h(µ(i)) and t(µ(i)) = f(i) = h(κ(i)).

(b) If i is the edge of two distinct triangles in (τ, ξ) we denote them △−(i) and
△+(i); let e±(i), f±(i) ∈ Q̂0 be the other arcs defining edges of △±(i); and let
κ±(i), λ±(i), µ±(i) ∈ Q̂1 \ S(τ) where t(κ±(i)) = i = h(λ±(i)), t(λ±(i)) = e±(i) =
h(µ±(i)) and t(µ±(i)) = f±(i) = h(κ±(i)).

Note that: exactly one of (a) or (b) holds; Z(τ, ξ,△(i)) = {κ(i)λ(i), λ(i)µ(i), µ(i)κ(i)}
in case (a); and Z(τ, ξ,△±(i)) = {κ±(i)λ±(i), λ±(i)µ±(i), µ±(i)κ±(i)} in case (b). As
observed in Example 2.16, it is straightforward to check conditions (S) and (1i)-(1iii),
from Definitions 2.11 and 2.13, hold.

(Q) Note firstly that there is at most one special loop incident at i, and if there is one,
i must be a pending arc, and we must be in case (a) above. In case (a) the arrow λ(i)
(respectively, κ(i)) is the unique ordinary arrow with head (respectively, tail) i. Hence (Q)
holds in case (a), whether or not i is pending.

In case (b) i must be non-pending, meaning there are no special loops at i. Hence (Q)
holds in case (b) as well, since the arrows with head (respectively, tail) i are precisely
λ±(i) (respectively, κ±(i)).

(Z) Let y be an ordinary arrow, and hence an element of Q(τ)1 = Q̂1 \ S(τ), and write
h(y) = i. Hence in case (a) we have y = λ(i), in which case κ(i)y ∈ Z(τ, ξ,△(i)). Likewise
in case (b) we have, after relabeling, y = λ+(i), and therefore κ+(i)y ∈ Z(τ, ξ,△+(i)). By
having shown condition (Q) holds, and since no special loop occurs in a path from Z(τ, ξ),
we now have that (Z) holds. □

Example 6.19. Consider the triangulations τ and σ of the pentagon with two orbifold
points from Figure 5.4. Take arbitrary 1-cocycles ξ ∈ Z1(τ) ⊆ C1(τ) and ϕ ∈ Z1(σ) ⊆
C1(τ), and take arbitrary weights ω : O → {1, 4}. In Tables 6.4 and 6.5 we visualize the
semilinear clannish algebras Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) and Lσ(σ,ϕ)Q̂(σ)/I(σ, ϕ).
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Table 6.4. Semilinear clannish algebras from Example 6.19 corresponding to the Jacobian algebras from Table 6.2.

ω(q1), ω(q2) Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) Lσ(σ,ϕ)Q̂(σ)/I(σ, ϕ)

1, 1

L

Lθ⊗LL �� Lθξδ⊗LL // L
Lθ⊗LL

rr

Lθ
ξη⊗LL

��
L

Lθξε⊗F L

__

Lθ
ξβ⊗LL

��
L

Lθ
ξγ⊗LL

??

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

I(τ, ξ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − e1, s
2
2 − e2

〉

L

Lθ⊗LL

��

Lθ
ϕγ⊗LL

��

L

Lθ⊗LL

��

Lθ
ϕη⊗LL

��
L

Lθϕα⊗LL

??

L
Lθ

ϕβ⊗LL

oo

Lθϕδ⊗LL

??

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

I(σ, ϕ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − e1, s
2
2 − e2

〉

1, 4

L

Lθ⊗LL �� Lθξδ⊗LL // L
L⊗LL

rr

Lθ
ξη⊗LL

��
L

Lθξε⊗F L

__

Lθ
ξβ⊗LL

��
L

Lθ
ξγ⊗LL

??

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

I(τ, ξ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − e1, s
2
2 − ue2

〉

L

Lθ⊗LL

��

Lθ
ϕγ⊗LL

��

L

L⊗LL

��

Lθ
ϕη⊗LL

��
L

Lθϕα⊗LL

??

L
Lθ

ϕβ⊗LL

oo

Lθϕδ⊗LL

??

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

I(σ, ϕ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − e1, s
2
2 − ue2

〉

A
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Table 6.5. Semilinear clannish algebras from Example 6.19 corresponding to the Jacobian algebras from Table 6.3.

ω(q1), ω(q2) Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) Lσ(σ,ϕ)Q̂(σ)/I(σ, ϕ)

4, 1

L

L⊗LL �� Lθξδ⊗LL // L
Lθ⊗LL

rr

Lθ
ξη⊗LL

��
L

Lθξε⊗F L

__

Lθ
ξβ⊗LL

��
L

Lθ
ξγ⊗LL

??

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

I(τ, ξ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − ue1, s
2
2 − e2

〉

L

L⊗LL

��

Lθ
ϕγ⊗LL

��

L

Lθ⊗LL

��

Lθ
ϕη⊗LL

��
L

Lθϕα⊗LL

??

L
Lθ

ϕβ⊗LL

oo

Lθϕδ⊗LL

??

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

I(σ, ϕ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − ue1, s
2
2 − e2

〉

4, 4

L

L⊗LL �� Lθξδ⊗LL // L
L⊗LL

rr

Lθ
ξη⊗LL

��
L

Lθξε⊗F L

__

Lθ
ξβ⊗LL

��
L

Lθ
ξγ⊗LL

??

L
Lθξα⊗LL

oo
Lθξν⊗LL

// L

I(τ, ξ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − ue1, s
2
2 − ue2

〉

L

L⊗LL

��

Lθ
ϕγ⊗LL

��

L

L⊗LL

��

Lθ
ϕη⊗LL

��
L

Lθϕα⊗LL

??

L
Lθ

ϕβ⊗LL

oo

Lθϕδ⊗LL

??

L
Lθϕε⊗LL

oo
Lθϕν⊗LL

// L

I(σ, ϕ) =
〈
αβ, βγ, γα, δε, εη, ηδ, s2

1 − ue1, s
2
2 − ue2

〉

A
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6.3. Constant weights: algebras defined over C/R. As pointed out in Remark 6.6,
if O ̸= ∅ and ω ≡ 1, then one may simply work over a degree-2 datum (not necessarily
extendable to a degree-4 datum, e.g. C/R), and all the constructions and results from
§ 6.2.1 and § 6.2.2 are valid.

Example 6.20. Consider the triangulations τ and σ of the pentagon with two orbifold
points shown in Figure 5.4, and the constant function ω : O → {1, 4} with value 1. Let
ξ ∈ Z1(τ) ⊆ C1(τ) and ϕ ∈ Z1(σ) ⊆ Z1(σ) be arbitrary 1-cocycles.

Working over the degree-2 datum C/R (thus, θ : C→ C is the usual complex conjugation
and the square of u = i ∈ C is −1 ∈ R), in Table 6.6 we can visualize the Jacobian
algebras P(A(τ, ξ),W (τ, ξ)) and P(A(σ, ϕ),W (σ, ϕ)), and in Table 6.7 we can visualise
the semilinear clannish algebras Cσ(τ,ξ)Q̂(τ)/I(τ, ξ) and Cσ(σ,ϕ)Q̂(σ)/I(σ, ϕ).

Table 6.6. Jacobian algebras defined over C/R with (constant) weight 1.

P(A(τ, ξ),W (τ, ξ)) P(A(σ, ϕ),W (σ, ϕ))

R
R⊗RR

33
R⊗RR

++ R

C⊗RR

��
C

R⊗RC

ZZ

Cθ
ξβ⊗CC

��
C

Cθξγ⊗CC

DD

C
Cθξα⊗CC

oo
Cθξν⊗CC

// C

W (τ, ξ) = αβγ + δ0εη + δ1εiη
∂αW (τ, ξ) = βγ ∂δ0W (τ, ξ) = εη
∂βW (τ, ξ) = γα ∂δ1W (τ, ξ) = εiη
∂γW (τ, ξ) = αβ ∂εW (τ, ξ) = ηδ0 + iηδ1
∂νW (τ, ξ) = 0 ∂ηW (τ, ξ) = δ0ε+ δ1εi

R

C⊗RR

��

R

C⊗RR

��
C

R⊗RC

DD

C
Cθ

ϕβ⊗CC

oo

R⊗RC

DD

C
Cθϕε⊗CC

oo
Cθϕν⊗CC

// C

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = 1

2(γα− (−1)ϕβ iγαi)
∂ηW (σ, ϕ) = δε ∂νW (σ, ϕ) = 0
∂γW (σ, ϕ) = αβ
∂εW (σ, ϕ) = 1

2(ηδ − (−1)ϕεiηδi)

Thus, the rest of this short subsection will be devoted to giving a small modification of
the constructions from § 6.2.1 and § 6.2.2 that allow to work over a degree-2 datum also
when ω ≡ 4.

Let Σω = (Σ,M,O, ω) be a surface with weighted orbifold points, with ω : O → {1, 4}
constant taking the value 4, let τ be a triangulation of Σ. For each k ∈ τ , set

δ(τ, ω)k := d(τ, ω)k
2 =

{
1 if k is not a pending arc;
2 if k is a pending arc.

(6.2)

Set δ := lcm{δ(τ, ω)k | k ∈ τ}, and let L/F be a degree-δ datum. Thus, δ = 2 if O ̸= ∅,
and δ = 1 if O = ∅. Notice that one may take L/F to be C/R if δ = 2, or L = F = C if
δ = 1.
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Table 6.7. Semilinear clannish algebras defined over C/R with weight 1.

Cσ(τ,ξ)Q̂(τ)/I(τ, ξ) Cσ(σ,ϕ)Q̂(σ)/I(σ, ϕ)

C
Cθ⊗CC �� Cθξδ⊗CC // C

Cθ⊗CCrr

Cθξη⊗CC
��

C

Cθξε⊗CC

ZZ

Cθ
ξβ⊗CC

��
C

Cθξγ⊗CC

DD

C
Cθξα⊗CC

oo
Cθξν⊗CC

// C

I(τ, ξ) = ⟨αβ, βγ, γα, δε, εη, ηδ,
s2

1 − e1, s
2
2 − e2⟩

C

Cθ⊗CC

��

Cθϕγ⊗CC

��

C

Cθ⊗CC

��

Cθϕη⊗CC

��
C

Cθϕα⊗CC

DD

C
Cθ

ϕβ⊗CC

oo

Cθϕδ ⊗CC

DD

C
Cθϕε⊗CC

oo
Cθϕν⊗CC

// C

I(σ, ϕ) = ⟨αβ, βγ, γα, δε, εη, ηδ,
s2

1 − e1, s
2
2 − e2⟩

For each k ∈ τ we set Fk/F to be the unique degree-δ(τ, ω)k field subextension of L/F ,
and denote Gk = Gal(Fk/F ). We also denote Gj,k = Gal(Fj ∩ Fk/F ) for j, k ∈ τ . Thus:

Gj,k =
{
{11L, θ} if both j and k are pending arcs;
{11F } if at least one of j and k is not a pending arc.

Since we are assuming ω ≡ 4, we have δ(τ, ω)k = 1 for every non-pending arc k. Thus,
our construction of a Jacobian algebra and a clannish algebra will be independent of any
1-cocycle ξ. For this reason, in § 6.3.1 and § 6.3.2, we shall work with plain triangulations
τ instead of colored triangulations (τ, ξ).

6.3.1. Jacobian algebra. We are working under the assumptions and notations described
in the first few paragraphs of the current § 6.3. Let τ be a triangulation of Σω. We define a
modulating function c(τ) : Q(τ, ω)1 →

⋃
j,k∈τ Gj,k as follows. Take an arrow a ∈ Q(τ, ξ)1.

(1) If min{δ(τ, ω)h(a), δ(τ, ω)t(a)} = 1, set

c(τ)a = 11 ∈ Gh(a),t(a).

(2) If min{δ(τ, ω)h(a), δ(τ, ω)t(a)} = 2, then both h(a) and t(a) are pending arcs, and
the quiver Q(τ, ω) has exactly two arrows going from t(a) to h(a), say β0 and β1.
We set

c(τ)a =
{

11L if a = β0;
θ if = β1.

Example 6.21. For k = 8, 9, 10, the weighted quiver (Q,d) and the modulating function
Q1 →

⋃
i,j Gi,j appearing in the column labeled “Block k” in Table 4.2 have the form

(Q(τ, ω), δ(τ, ω)) and c(τ), respectively, for some triangulation τ of a puzzle piece surface
from Figure 5.2, where δ(τ, ω) is the tuple defined by (6.2).

With the modulating function c(τ) we form the species

(F,A(τ)) :=
(
(Fk)k∈ τ , (A(τ)a)a∈Q(τ,ω)1

)
,
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where

A(τ)a := F
c(τ)a

h(a) ⊗Fh(a) ∩Ft(a) Ft(a).

We write R := ×k∈ τFk and A(τ) :=
⊕

a∈Q(τ,ω)1 A(τ)a. It is clear that R is a semisimple
ring and A(τ) is an R-R-bimodule.

One easily verifies that the pair (F,A(τ)) satisfies Proposition 6.9 too, i.e. we are
obtaining a species realization of one of the 2|O| skew-symmetrizable matrices associated
to τ by Felikson–Shapiro–Tumarkin [12], cf. [19, Remark 3.5(2)].

Remark 6.22. If min{δ(τ, ω)h(a), δ(τ, ω)t(a)} = 2, so that h(a) and t(a) are pending and
Q(τ, ω) has exactly two arrows going from j := t(a) to k := h(a), namely β0 and β1 (one
of them being a of course), then

Fk ⊗F Fj = L⊗F L ∼=
(
L11L ⊗L L

)
⊕
(
Lθ ⊗L L

)
=
(
F
c(τ)β0
k ⊗Fk ∩Fj Fj

)
⊕
(
F
c(τ)β1
k ⊗Fk ∩Fj Fj

)
and L11L ⊗L L ̸∼= Lθ ⊗L L as L-L-bimodules.

We now move towards the definition of a natural potential W (τ) ∈ R⟨A(τ)⟩. There are
some obvious cycles on A(τ), that we point to explicitly.

Definition 6.23. Let τ be a triangulation of Σω and △ be an interior triangle of τ .
(1) If △ does not contain any orbifold point, then, with the notation from the picture

on the upper left in Figure 6.1), we set W△(τ); = α△β△γ△;
(2) if △ contains exactly one orbifold point, let k be the unique pending arc of τ con-

tained in △. Using the notation from the picture on the upper right in Figure 6.1,
we set W△(τ) = α△β△γ△;

(3) if △ contains exactly two orbifold points, let k1 and k2 be the two pending arcs
of τ contained in △, and assume that they are configured as in Figure 6.1. Then,
with the notation of the picture on the bottom left in Figure 6.1, we set W△(τ) =
(δ△0 + δ△1 )β△γ△.

For the next definition, we remind the reader that Σ = (Σ,M,O) is assumed to be
either unpunctured or once-punctured closed.

Definition 6.24. Let Σω = (Σ,M,O, ω) be a surface with weighted orbifold points, with
ω ≡ 4, and let τ a triangulation of Σω = (Σ,M,O, ω).

(1) The potential associated to τ is

W (τ) :=
∑
△
W△(τ) ∈ R⟨A(τ)⟩ ⊆ R⟨⟨A(τ)⟩⟩,

where the sum runs over all interior triangles △ of τ ;
(2) the Jacobian algebra associated to τ is the quotient

P(A(τ),W (τ)) := R⟨⟨A(τ)⟩⟩/J(W (τ)),

where the Jacobian ideal J(W (τ)) ⊆ R⟨⟨A(τ)⟩⟩ is defined according to [18, Defini-
tion 3.11].
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In the case where ∂Σ = ∅ and |M| = 1, i.e. when Σ = (Σ,M,O) is a once-punctured
closed surface, we will also consider P0(A(τ),W (τ)) = R⟨A(τ)⟩/J0(W (τ)), the polynomial
Jacobian algebra (see Definition 2.8(6)).

For detailed examples of the basic arithmetic in R⟨A(τ)⟩ and in the Jacobian algebra
P(A(τ),W (τ)), we kindly refer the reader to [18, Example 4.8 and Section 9].

Remark 6.25.
(1) if O ̸= ∅ and ω ≡ 4, then (A(τ),W (τ)) is the species with potential associated to

τ in [18] (although therein punctures are allowed, whereas here they are excluded
in the case ∂Σ ̸= ∅);

(2) if O = ∅ and M ⊆ ∂Σ, then (A(τ),W (τ)) is the quiver with potential defined
in [23], and P(A(τ),W (τ)) is the gentle algebra studied in [1].

The same argument as the one given in the proof of [19, Theorem 10.2] can be applied
to obtain a proof of the next result.

Theorem 6.26. Let Σω be an unpunctured surface with weighted orbifold points, with
ω ≡ 4. For every triangulation τ of Σω, the Jacobian algebra P(A(τ),W (τ)) is F -linearly
isomorphic to R⟨A(τ)⟩/J0(W (τ)) and its dimension over the ground field F is finite.

Example 6.27. Consider the triangulations τ and σ of the pentagon with two orbifold
points shown in Figure 5.4, and the constant function ω : O → {1, 4} with value 4.
Working over the degree-2 datum C/R (thus, θ : C→ C is the usual complex conjugation
and the square of u = i ∈ C is −1 ∈ R), in Table 6.8 we can visualize the Jacobian algebras
P(A(τ),W (τ)) and P(A(σ),W (σ)).

Table 6.8. Jacobian algebras defined over C/R with (constant) weight 4.

P(A(τ),W (τ)) P(A(σ),W (σ))

C
Cθ⊗CC

33
C⊗CC

++ C

R⊗RC

��
R

C⊗RR

ZZ

R⊗RR

��
R

R⊗RR

DD

R
R⊗RR

oo
R⊗RR

// R

W (τ, ξ) = αβγ + (δ0 + δ1)εη
∂αW (τ, ξ) = βγ ∂δ0W (τ, ξ) = 1

2 (εη − iεηi)
∂βW (τ, ξ) = γα ∂δ1W (τ, ξ) = 1

2 (εη + iεηi)
∂γW (τ, ξ) = αβ ∂εW (τ, ξ) = η(δ0 + δ1)
∂νW (τ, ξ) = 0 ∂ηW (τ, ξ) = (δ0 + δ1)ε

C

R⊗RC

��

C

R⊗RC

��
R

C⊗RR

DD

R
R⊗RR

oo

C⊗RR

DD

R
R⊗RR

oo
R⊗RR

// R

W (σ, ϕ) = αβγ + δεη
∂αW (σ, ϕ) = βγ ∂δW (σ, ϕ) = εη
∂βW (σ, ϕ) = γα ∂εW (σ, ϕ) = ηδ
∂γW (σ, ϕ) = αβ ∂ηW (σ, ϕ) = δε

∂νW (σ, ϕ) = 0

Theorem 6.28 ([18, Theorem 8.4]). Let Σω be an unpunctured surface with weighted
orbifold points, with ω ≡ 4, and let τ and κ be colored triangulations of Σ. If κ can be
obtained from τ by the flip of an arc k ∈ τ , then the species with potential (A(κ),W (κ))
and µk(A(τ),W (τ)) are right-equivalent.
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6.3.2. Semilinear clannish algebra. We maintain the assumptions and notations described
in the first few paragraphs of the current § 6.3. Let τ be a triangulation of Σ. We associate
to τ a semilinear clannish algebra Kσ(τ)Q̂(τ)/I(τ) as follows.

Exactly as in § 6.2.2, we set Q̂(τ) to be the quiver obtained from Q(τ) by adding one
special loop at each pending arc of τ .

We set K := F . To every arrow a ∈ Q̂(τ)1 we attach the trivial field automorphism
σ(τ, ξ)a := 11F ∈ Gal(K/F ) ⊆ Aut(K).

This information determines already a path algebra Kσ(τ)Q̂(τ). Furthermore, to each
loop s ∈ S(τ) of Q̂(τ) with head and tail k, we attach the quadratic polynomial

qs(x) := x2 − u2 ∈ F [x].
This information determines the set of special relations, defined by

S(τ) = {q(s) | s ∈ S(τ) = Q̂(τ)1 \Q(τ)1}, ekKσ(τ)Q̂(τ)ek ∋ q(s) = s2 − u2ek.

We define the two-sided ideal I(τ) = ⟨Z(τ)∪ S(τ)⟩ in Kσ(τ)Q̂(τ) by defining the set Z(τ)
of zero-relations, as follows. Suppose △ is a triangle in τ , say of one of the forms depicted
in Figure 5.3. Each such △ gives rise to three distinct arrows of Q(τ) subject to certain
conditions, namely

α△, β△, γ△ ∈ Q̂(τ)1 \ S(τ) = Q(τ)1,

h(α△) = t(γ△), h(γ△) = t(β△), h(β△) = t(α△).

We now let Z(τ) be the union of the sets Z(τ,△) = {α△β△, β△γ△, γ△α△} taken over all
such △.
Example 6.29. For k = 8, 9, 10, the ring appearing in the column labeled “Block k” in
Table 4.4 has the form Kσ(τ)Q̂(τ)/I(τ) where τ is triangulation of a puzzle piece surface
Σ from Figure 5.2.

A minor modification of the proof of Proposition 6.18 proves the next result.

Table 6.9. Semilinear clannish algebras defined over C/R with weight 4.

P(A(τ),W (τ)) P(A(σ),W (σ))

R
R⊗RR �� R⊗RR // R

R⊗RR
rr

R⊗RR

��
R

R⊗RR

ZZ

R⊗RR

��
R

R⊗RR

DD

R
R⊗RR

oo
R⊗RR

// R

I(τ, ξ) = ⟨αβ, βγ, γα, δε, εη, ηδ,
s2

1 + e1, s
2
2 + e2⟩

R

R⊗RR

��

R⊗RR

��

R

R⊗RR

��

R⊗RR

��
R

R⊗RR

DD

R
R⊗RR

oo

R⊗RR

DD

R
R⊗RR

oo
R⊗RR

// R

I(σ, ϕ) = ⟨αβ, βγ, γα, δε, εη, ηδ, s2
1 + e1, s

2
2 + e2⟩

Proposition 6.30. Let Σω be a surface with weighted orbifold points, with ω ≡ 4. For
every triangulation τ of Σ, Fσ(τ)Q̂(τ)/I(τ) is a clannish F -algebra which is normally-
bound, non-singular and of semisimple type.
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Example 6.31. Consider the triangulations τ and σ of the pentagon with two orbifold
points shown in Figure 5.4, and the constant function ω : O → {1, 4} taking the value 4.
Working over the degree-2 datum C/R (thus, θ : C→ C is the usual complex conjugation
and the square of u = i ∈ C is −1 ∈ R), in Table 6.9 we can visualize the clannish algebras
Rσ(τ,ξ)Q̂(τ)/I(τ, ξ) and Rσ(σ,ϕ)Q̂(σ)/I(σ, ϕ).

7. Morita equivalence between Jacobian and semilinear clannish algebras

Let us describe how we shall glue the building blocks from Section 4 together in order to
construct “bigger” algebras. This way of gluing algebras along vertices was first introduced
by Brüstle in [5] (in broader generality). The ρ-block decompositions from [16] can be
thought of as a “reverse-engineering” of the gluing process.

(1) Take finitely many disjoint copies of blocks from one and only one of the following
four sets:
(a) the Jacobian blocks 1, . . . , 7 in Tables 4.1 and 4.2;
(b) the Jacobian blocks 8, 9, 10 in Table 4.2;
(c) the semilinear clannish blocks 1, . . . , 7 in Tables 4.3 and 4.4;
(d) the semilinear clannish blocks 8, 9, 10 in Table 4.4.
As said in the opening paragraphs of Section 4, in each of these copies, some entries
of the weight triple d = (d1, d2, d3) appear enclosed in a small circle. This means
that the corresponding vertex is an outlet, allowed to be matched and glued to
another outlet.

Notice that there is never a loop based at an outlet, and that on all the outlets
of the block copies chosen appears the same field (it is L if the block copies are
taken from (1a) or (1b), and it is F if the block copies are taken from (1c) or (1d)).

(2) Fix a partial matching of this set of outlets, never matching two outlets of the
same block copy.

(3) Glue the puzzle pieces along the matched outlets.
(4) After the gluing, choose an arbitrary subset of the set of outlets that were not

matched (hence also not glued) to any other outlets, and delete this subset and
the arrows incident to its elements.

Remark 7.1. Recall that, as outlined in § 5.1, our meaning of triangulation in this paper
is precisely that of an ideal triangulation as defined in [18]. We explain here, how the
notion of a puzzle-piece decomposition coming from [18, Definition 2.8], corresponds with
the gluing of building blocks (from Section 4) above.

Item (1) above corresponds to equipping oneself with several copies of the puzzle pieces
from Figure 5.2. In this way, choosing a side of a triangle correspond to choosing a vertex
of a quiver of a block. Furthermore, the outer side of a triangle corresponds to an outlet.
Thus item (2) above corresponds to equipping oneself with a partial matching of the outer
sides of puzzle pieces from Figure 5.2, and item (3) corresponds to gluing them.

For the sake of Proposition 7.2 and Theorem 7.4, it is important to note [18, Theo-
rem 2.7], which says that every triangulation can be obtained by a suitable partial match-
ing, as described above. Table 7.1 (respectively, 7.2) describes how the blocks in Tables 4.1
and 4.3 (respectively, 4.2 and 4.4) are given by weighted surfaces Σω = (Σ,M,O, ω).
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Table 7.1. Triangulations and mnemotechnics for blocks 1 to 5.

Block 1 Block 2 Block 3 Block 4 Block 5
Weight triple(

d1
d2 d3

) (
2

2 2

) (
1

2 2

) (
4

2 2

) (
2

1 1

) (
2

4 4

)
Triangulation

(Σ,M,O)

Jacobian
algebra

mnemotechnics
L

γ

Lθ
ξγ ⊗

L
L

��
L

α

Lθξα ⊗
L

L

II

L
β

Lθ
ξβ ⊗

L
L

oo

F

γ

L ⊗
F

F

��
L

α

F ⊗
F

L

II

L
β

Lθ
ξβ ⊗

L
L

oo

E

γ

Lθ
ξγ ⊗

L
E

��
L

α

Eθξα ⊗
L

L

II

L
β

Lθ
ξβ ⊗

L
L

oo

L

γ
F ⊗

F
L

��
F

α
L ⊗

F
F

FF

Fβ0

F ⊗
F

F

uu
β1

F ⊗
F

F

gg

L

γ
Eθ

ξγ ⊗
L

L

��
E

α
Lθξα ⊗

L
E

FF

Eβ0

Eρl ⊗
E

E

uu
β1

Eρl+2 ⊗
E

E

hh

Semilinear
clannish
algebra

mnemotechnics

L

γ

Lθ
ξγ ⊗

L
L

��
L

α

Lθξα ⊗
L

L

FF

L
β

Lθ
ξβ ⊗

L
L

oo

L

s1

Lθ ⊗
L

L

��

γ

L⊗
L

L

��
L

α

Lθ
−ξβ ⊗

L
L

FF

L
β

Lθ
ξβ ⊗

L
L

oo

L

s1

L⊗
L

L

��

γ

Lθ
ξγ ⊗

L
L

��
L

α

Lθξα ⊗
L

L

FF

L
β

Lθ
ξβ ⊗

L
L

oo

L

γ

L⊗
L

L

��
L

s2

Lθ ⊗
L

L

DD

α

L⊗
L

L
DD

L

s3

Lθ ⊗
L

L

DD
β

L⊗
L

L

oo

L

γ

Lθ
ξγ ⊗

L
L

��
L

s2

L⊗
L

L

DD

α

Lθξα ⊗
L

L
DD

L

s3

L⊗
L

L

DD
β

Lθ
ξβ ⊗

L
L

oo

A
nn.R

epr.T
h.2
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Table 7.2. Triangulations and mnemotechnics for blocks 6 to 10.

Block 6 Block 7 Block 8 Block 9 Block 10
Weight triple(

d1
d2 d3

) (
2

4 1

) (
2

1 4

) (
1

1 1

) (
2

1 1

) (
1

2 2

)
Triangulation

(Σ,M,O)

Jacobian
algebra

mnemotechnics
L

γ

F ⊗
F

L

��
E

α

Lθξα ⊗
L

E

II

F
β

E ⊗
F

F

oo

L

γ

Eθ
ξγ ⊗

L
L

��
F

α

L ⊗
F

F

II

E
β

F ⊗
F

E

oo

F

γ

F ⊗
F

F

��
F

α

F ⊗
F

F

II

F
β

F ⊗
F

F

oo

L

γ

F ⊗
F

L

��
F

α

L ⊗
F

F

II

F
β

F ⊗
F

F

oo

F

γ
L ⊗

F
F

��
L

α
F ⊗

F
L

EE

L
β0

L⊗
L

L

ww
β1

Lθ ⊗
L

L

gg

Semilinear
clannish
algebra

mnemotechnics

L

γ

Lθ−ξα ⊗
L

L

��
L

s2

L⊗
L

L

DD

α

Lθξα ⊗
L

L

FF

L

s3

Lθ ⊗
L

L

DD
β

L⊗
L

L

oo

L

γ

Lθ
ξγ ⊗

L
L

��
L

s2

Lθ ⊗
L

L

DD

α

Lθ
−ξγ ⊗

L
L

FF

L

s3

L⊗
L

L

DD
β

L⊗
L

L

oo

F

γ

F ⊗
F

F

��
F

α

F ⊗
F

F
EE

F
β

F ⊗
F

F

oo

F

s1

F ⊗
F

F

��

γ

F ⊗
F

F

��
F

α

F ⊗
F

F
EE

F
β

F ⊗
F

F

oo

F

γ

F ⊗
F

F

��
F

s2

F ⊗
F

F

DD

α

F ⊗
F

F
EE

F

s3

F ⊗
F

F

DD
β

F ⊗
F

F

oo

A
nn.R

epr.T
h.2
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The next result is completely in sync with the combinatorial block decompositions
from [13, § 13] and [12, § 3]. The proof is straightforward; see Remark 7.1 above.

Proposition 7.2. All the Jacobian algebras introduced in § 6.2.1 and § 6.3.1, as well as all
the semilinear clannish algebras defined in § 6.2.2 and § 6.3.2, are F -linearly isomorphic
to algebras that can be obtained through the process just described.

Remark 7.3.
(1) When M ⊆ ∂Σ ̸= ∅, the Jacobian algebra P(A(τ, ξ),W (τ, ξ)) is canonically iso-

morphic to the polynomial Jacobian algebra P0(A(τ, ξ),W (τ, ξ)). See Remark 2.9
and Theorems 6.13 and 6.26.

(2) When ∂Σ = ∅ and |M| = 1, the algebras P0(A(τ, ξ),W (τ, ξ)) and P(A(τ, ξ),
W (τ, ξ)) are not isomorphic, but the finite-dimensional P(A(τ, ξ),W (τ, ξ))-modu-
les are precisely the finite-dimensional nilpotent P0(A(τ, ξ),W (τ, ξ))-modules. See
Remark 2.9.

We have arrived at the main result of the paper.

Theorem 7.4. Let Σω = (Σ,M,O, ω) be a surface with weighted orbifold points, either
unpunctured or once-punctured closed, and let (τ, ξ) be a colored triangulation of Σ.

(1) For ω : O→ {1, 4} arbitrary, the polynomial Jacobian algebra P0(A(τ, ξ),W (τ, ξ))
defined in § 6.2.1 and the semilinear clannish algebra Lσ(τ,ξ)Q̂(τ)/I(τ, ξ) defined
in § 6.2.2 are Morita-equivalent through F -linear functors.

(2) If ω ≡ 4, then the polynomial Jacobian algebra P0(A(τ, ξ),W (τ, ξ)) defined in
§ 6.3.1 and the clannish F -algebra Fσ(τ)Q̂(τ)/I(τ) defined in § 6.3.2 are isomor-
phic through an F -linear ring isomorphism.

Proof. As noted in Remark 7.1, (Σ,M,O) may be obtained by gluing a suitable partial
matching of outer sides of puzzle pieces. By Proposition 7.2, both the Jacobian algebra and
the semilinear clannish algebra can be obtained through a corresponding gluing of copies of
Jacobian blocks, resp. copies of semilinear clannish blocks. Since both the Jacobian algebra
and the semilinear clannish algebra are associated to the same (colored) triangulation,
these two block decompositions can be consistently taken in such a way that there is a
bijection between the set of copies of Jacobian blocks and the set of copies of semilinear
clannish blocks, with the following two properties:

(a) every time a copy of a Jacobian block corresponds to a copy of a semilinear clannish
block under the bijection, there is a k = 1, . . . , 10 such that the Jacobian block
copy lies on the kth column of Tables 4.1 and 4.2, and the semilinear clannish block
copy lies on the kth column of Tables 4.3 and 4.4;

(b) the bijection takes pairs of matched-and-glued Jacobian block copies (and corre-
sponding outlets) to pairs of matched-and-glued semilinear clannish block copies
(and corresponding outlets), and viceversa.

Thus, there are Morita equivalences between the blocks of the Jacobian algebra and the
blocks of the semilinear clannish algebra by Propositions 4.2 and 4.5.

We have noticed above that there is never a loop based at an outlet, and that on
all the outlets of the block copies chosen appears the same field. This, and the explicit
definition of the Morita equivalences appearing in the proofs of Propositions 4.2 and 4.5
(see Tables 4.5 and 4.6), show that these Morita equivalences can be glued as well to
produce a Morita equivalence between P(A(τ, ξ),W (τ, ξ)) and Lσ(τ,ξ)Q̂(τ)/I(τ, ξ). This
proves the first statement.
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The second statement follows by the same reasoning, after noticing that in Proposi-
tion 4.2 we have an F -linear isomorphism between the kth Jacobian block and the kth

semilinear clannish block for k = 8, 9, 10. □

8. Indecomposable representations for blocks

Indecomposable finite-dimensional modules over clannish algebras were classified by
Crawley-Boevey in [8]. Such modules are either string modules, defined by walks in the
quiver, or band modules, given by cyclic walks. The class of string modules and that of band
modules each split into so-called asymmetric and symmetric subclasses. The symmetry is
a reflection of the relevant walk about a special loop. Crawley-Boevey’s classification was
generalized to semilinear clannish algebras in [3]. We recall this result in Theorem 8.5.

Recall Definitions 2.13 and 2.11. Throughout all of Section 8 we fix a semilinear clannish
algebra A = KσQ̂/I which is non-singular, normally-bound and of semisimple type.

8.1. Asymmetric and symmetric strings and bands. The main theorem in [3] gives
a classification of the indecomposable modules, finite-dimensional over K, for A. These
indecomposables, strings and bands, are defined in [3, § 2.4–§ 2.6, § 3]. They are described
in terms of certain words in an alphabet defined by the arrows of the quiver Q subject to
the set Z of zero-relations and the set S of special loops. Such words are defined explicitly
in [3, § 2.4], where it is explained what it means for a string or band to be symmetric or
asymmetric. The next result describes the words that occur for the semilinear clannish
algebras we are considering from Tables 4.3 and 4.4.

Proposition 8.1. The strings for a semilinear clannish block from Tables 4.3 and 4.4 are
given by Table 8.1.

Table 8.1. Strings for semilinear clannish blocks 1 to 10.

w Blocks 1 and 8 Blocks 2, 3 and 9 Blocks 4, 5, 6, 7 and 10

Ordinary quiver
Q̂

1
γ

&&2
α
99

3,
β

oo

1

s1

��
γ

&&2
α
88

3
β

oo

1 γ

&&2

s2

--
α
88

3

s3

qq
β

oo

Equivalence
classes of
asymmetric
strings

11
12
13
α
β
γ

12
13
β
s∗1α
γs∗1
γs∗1α

11
(s∗3β−1s∗2β)ns∗3γ

αs∗2
(
βs∗3β

−1s∗2
)n

s∗2
(
βs∗3β

−1s∗2
)n
βs∗3

s∗2
(
βs∗3β

−1s∗2
)n
βs∗3γ

αs∗2
(
βs∗3β

−1s∗2
)n
βs∗3

αs∗2
(
βs∗3β

−1s∗2
)n
βs∗3γ

Equivalence
classes of
symmetric
strings

None.
s∗1
α−1s∗1α
γs∗1γ

−1

s∗2
(
βs∗3β

−1s∗2
)n

s∗3
(
β−1s∗2βs

∗
3
)n

αs∗2
(
βs∗3β

−1s∗2
)n
α−1

γ−1s∗3
(
β−1s∗2βs

∗
3
)n
γ
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Furthermore, for each block there is no asymmetric band, and the following holds.
(1) For blocks 1, 2, 3, 8 and 9 there are no symmetric bands.
(2) For blocks 4, 5, 6, 7 and 10 every symmetric band is equivalent to

∞
(
βs∗3β

−1s∗2

)∞
= . . . βs∗3β

−1s∗2

∣∣∣βs∗3β−1s∗2βs
∗
3β
−1s∗2 . . .

Proof. From the choice of Q, S and Z used in defining A it follows that the words above
constitute a complete list of the strings and bands for A. To see this, note that any
word which is relation-admissible and end-admissible must be a sequence that alternates
between an ordinary arrow (which here is one of the arrows in the 3-cycle) and any special
loop (so any of the loops). Moreover, if a word ends on a vertex at which there is a special
loop s, the last letter of the word must end with s∗.

To see that the words above are pairwise non-equivalent, consider cases. For strings,
note that distinct strings w and w′ are equivalent provided w′ is found by inverting the
letters of w and reversing their order, where letters of the form s∗ with s ∈ S are self-
inverse. For bands, note that there can only be four distinct infinite words, all of which
are shifts of one another, meaning they must be equivalent. □

8.2. Modules over semilinear clannish algebras. For each string or band w one
defines a ring Rw and a A-Rw-bimodule M(Cw). The ring Rw is one of four parameterising
rings, depending on whether w is a string or a band, and depending on whether w is
symmetric or asymmetric.

Definition 8.2. Let w be a word which is either a string or a band, and either symmetric
or asymmetric. For the items below we refer to [3, § 3.1–§ 3.4].

(a) If w is an asymmetric string then Rw = K.
(b) If w is a symmetric string then Rw = K[x; ν]/⟨q(x)⟩ where ν ∈ Aut(K) and the

quadratic q(x) ∈ K[x; ν] is monic, normally-bound, non-singular and semisimple.
(c) If w is an asymmetric band then Rw = K[x, x−1;σ] for σ ∈ Aut(K).
(d) If w is a symmetric band then Rw = K[x; ρ]/⟨r(x)⟩ ∗K K[y; τ ]/⟨p(y)⟩ where ρ, τ ∈

Aut(K) and r(x), p(y) are monic, normally-bound, non-singular and semisimple.

Remark 8.3. Recall that for the semilinear clannish blocks 1, . . . , 7, we take K = L,
and that the automorphisms σx assigned to each arrow x come from the Galois group
Gal(L/F ) = {11L, θ}. Suppose now w is a symmetric band, and so Rw = L[x; ρ]/⟨r(x)⟩ ∗L
L[y; τ ]/⟨p(y)⟩ by (d) above. Since L is a finite-dimensional field extension of the field fixed
by each of the automorphisms σx, namely F . This means Rw is a classical hereditary
order. So, in principle, finite-length Rw-modules are well understood; see [3, Theorem 3.8,
Remark 3.9] and, for example, the survey of modules over classical hereditary orders by
Levy [27]. Let us consider two examples:

(i) Let ρ = τ = 11L, r(x) = x2 − u and p(y) = y2 − u for u as in the degree-
2 situation. It follows by results of Cohn [6, Theorem 3.5], [7, Lemma 2] that
L[x]/⟨x2 − u⟩ ∗L L[y]/⟨y2 − u⟩, which is a free product (over L) of two isomorphic
copies of the field extension E, is a left and right principal ideal domain.

(ii) Let ρ = θ, τ = 11L, r(x) = x2 − 1 and p(y) = y2 − u for u as above and θ as in
the degree-2 situation. Rings of the form L[x; ρ]/⟨x2 − 1⟩ ∗L L[y]/⟨y2 − u⟩, and
finite-dimensional modules over them, have been considered and studied before by
Smits [32].

For the definition of the A-Rw-bimodule M(Cw), we refer the reader to [3].
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Example 8.4. Recall the 6th semilinear clannish block from Table 4.4. Throughout this
example we simplify notation, letting ξ := ξα. Here we take K = L, take Q̂ to be the
quiver depicted below on the left, and take σ : Q̂1 → Aut(L) to be the function whose
image is depicted below on the right

1
γ

$$2

s2

--

α
::

3

s3

qq
β

oo

L
θ−ξ

%%
L

11L

,,

θξ
99

L

θ

rr
11L

oo

For block 6 we are additionally taking Z = {αβ, βγ, γα}, S = {s2, s3}, qs2(x) = x2 −
u ∈ L[x] and qs3(x) = x2 − 1 ∈ L[x; θ]. Recall, from Example 2.16, that the quotient
A = LσQ̂/⟨Z ∪ S⟩ is a semilinear clannish algebra which is normally bound, non-singular
and of semisimple type.

We aim to give an example of a symmetric string module M(Cw)⊗Rw E, following the
notation from [3, § 2.6, § 3.2]. Let w = γ−1s∗3β

−1s∗2βs
∗
3γ, which is a symmetric string with

Rw = L[x]/⟨x2 − u⟩. Let V = E, an Rw-module where x acts by multiplication with v,
with L-basis {1, v}. One then defines the symmetric string module above by constructing
the A-Rw-bimodule M(Cw). This construction is done in such a way that the following
properties are satisfied.

• Considered as a left L-vector space M(Cw) has basis {b0, . . . , b7}, and for any
ℓ ∈ L,

biℓ = ℓbi (i = 0, 7), bjℓ = θ−ξ(ℓ)bj (j = 1, 6), bkℓ = θ1−ξ(ℓ)bk (k = 2, 3, 4, 5).

• The L-ring generators of A = LσQ̂/I and Rw = L[x]/⟨x2 − u⟩ act according to

b0

x

33
γ // b1 33

s3 // b2 55
β // b3 <<

s2 // b4 b5
βoo b6

s3oo b7
γoo

Next we describe the semilinear representation N corresponding to M(Cw) ⊗Rw V , the
symmetric string module described above. By identifying such semilinear representations
with representations of the species (Q̂,σ) annihilated by the relations Z ∪ S, one can
consider N as the image of the equivalence Ω recalled in § 2.2.1.

Consider the right L-action on M(Cw) discussed in the first item above. As in [3], for
each i = 0, . . . , 7 we identify the left L-vector space bi ⊗ V with a twisted copy of L. The
σ-semilinear representation N can hence be described as follows. For any σ ∈ Aut(L), we
write σE to denote the L-vector space σL⊕ σL.

(i) N1 = E, N2 = θξ−1
E and N3 = θξ

E ⊕ θξ−1
E are considered as L-vector spaces.

(ii) Nα : N2 → N1 is the zero map, which is θξ-semilinear.
(iii) Nβ : N3 → N2 is the 11L-semilinear projection onto the right-hand component.
(iv) Nγ : N1 → N3 is the θ−ξ-semilinear embedding into the left-hand component.
(v) Ns2 : N2 → N2 is 11L-semilinear, given by multiplication by v, and N2

s2 = u11N2 .
• Writing N2 = θξ−1

L2 we have ℓ(λ, µ) = (θξ−1(ℓ)λ, θξ−1(ℓ)µ) for ℓ ∈ L.
• The map Ns2 is defined by (λ, µ) 7→ (θξ−1(u)µ, λ), and so N2

s2(λ, µ) = u(λ, µ).
• Corresponding to Ns2 is an anti-diagonal matrix in M2(L) (so with 0 on the

diagonal) with non-zero entries 1 and θξ−1(u).
(vi) Ns3 : N3 → N3 is swaps the entries, so θ-semilinear as θ2 = 11L and N2

s3 = 11N3 .
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The L-vector spaces Ni and σb-semilinear maps Nb thus define a σ-semilinear representa-
tion N of Q̂ satisfying the required relations to be an A-module.

We now recall the main result in [3].

Theorem 8.5. The modules M(Cw)⊗Rw V run through a complete set of pairwise non-
isomorphic indecomposable A-modules which are finite-dimensional over K, where: w runs
through representatives of distinct equivalence classes of strings and bands, and for each
fixed string or band w, V runs through representatives of distinct isomorphism classes of
indecomposable Rw-modules which are finite-dimensional over K.

Hence the classification of finite-dimensional indecomposable modules over a semilinear
clannish algebra are parameterised by the finite-dimensional indecomposable Rw-modules
V , as w runs through the equivalence classes of strings and bands.

By the verification of condition (1iii) from Definition 2.13 in the proof of Proposi-
tion 6.18, if w is a string then the ring Rw is simple artinian. Otherwise, by Proposition 8.1,
w is a symmetric band. In this case, by definition and Remark 8.3, the finite-dimensional
Rw-modules are well understood.

8.3. Passing representations through the established Morita equivalence. We
aim at illustrating how the equivalence given in Theorem 1.1 works for modules over the
Jacobian and semilinear clannish blocks 6 from Tables 4.2 and 4.4. In Example 8.4, we
described a representation for the semilinear clannish block, chosen using Theorem 8.5.
We now pass the representation through the Morita equivalence from Proposition 4.5.

Example 8.6. Recall the 6th Jacobian block is defined in Table 4.2 as follows. As we did
in Example 8.4, in this example we let ξ := ξα. Let (Q,d) be the weighted quiver with
d := lcm(2, 4, 1) = 4, given by

1 γ

''2
α

77

3
β

oo

d1 = 2

d2 = 4 d3 = 1

For block 6 we also have E/L/F , a degree-4 datum for (Q,d), recalled as follows.
• E/L and L/F are degree-2 cyclic Galois extensions with E = L(v) and L = F (u).
• ζ ∈ F is a primitive 4th root of unity and v2 = u ∈ L.
• θ ∈ Gal(L/F ) and ρ ∈ Gal(E/L) are generators of the respective Galois groups.

For the Jacobian algebra fix ξ ∈ Z/2Z and define a modulating function by α 7→ θξ and
β, γ 7→ 11L. Thus A(Q,d, g) is the F -modulation of (Q,d) given by

(F1, F2, F3) = (L,E, F ), (Aα, Aβ, Aγ) =
(
Lθ

ξ ⊗L E,E ⊗F F, F ⊗F L
)
.

Moreover, W (Q,d, g) = αβγ is a potential and ρ = {1
2(βγ+θ−ξ(u−1)βγu), γα, αβ}, the set

of derivatives, defines the relations for the quotient A′ = P(Q,d, g)) ∼= R⟨Q,d, g⟩/⟨ρ⟩, the
Jacobian algebra. Now consider the image M = Φ(N) of the module N for the semilinear
clannish block A exhibited in Example 8.4, under the equivalence from Proposition 4.5.
We use notation from Proposition 4.5 and Example 8.4.

(i) M1 = E, which, just as for N1 = E, is considered as an L-vector space.
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(ii) M2 is the E = L(v)-vector space θξ−1
L2 where the E-action is defined by

E × θξ−1
L2 −→ θξ−1

L2,

(ℓ+ ℓ′v, (λ, µ)) 7−→
(
θξ−1(ℓ)λ+ θξ−1(ℓ′u)µ, θξ−1(ℓ)µ+ θξ−1(ℓ′)λ

)
where ℓ+ ℓ′v ∈ E for unique ℓ, ℓ′ ∈ L, and where λ, µ ∈ L.

(iii) M3 = E∆ = {(e, e) | e ∈ E} which is an F -subspace of N3 = θξ
E ⊕ θξ−1

E, but not
an L-subspace.

(iv) Mα : M2 →M1 is the zero map, which is again considered θξ-semilinear.
(v) Mβ : M3 → M2 sends (λ + µv, λ + µv) ∈ FE

∆ to (λ, µ) ∈ E(θξ−1
L2) which is

F -linear.
(vi) Mγ : M1 → M3 sends (ℓ, ℓ′) ∈ LE = L2 to 1

2(ℓ + ℓ′v, ℓ + ℓ′v) ∈ FE
∆ which is

F -linear.
We have defined Fi-vector spaces Mi (i ∈ Q0) and g(a)-semilinear maps Ma : Mt(a) →
Mh(a) (a ∈ Q1), which combine to define a representation M of A(Q,d, g) given by the
image of N under the functor Φ.

We now compute the module Y over the Jacobian algebra P(Q,d, g) that corresponds
to the representation M under the funtor Γ in § 2.2.1. Begin by considering

Y = LE ⊕ E

(
θξ−1

L2
)
⊕ FE

∆

as a module over the direct product L × E × F , via the diagonal action. Consider now
the F -linear map Yγ : Aγ ⊗R1 M1 → M3, and the E-linear map Yβ : Aβ ⊗R3 M3 → M2,
respectively defined by

Yγ : F ⊗F L⊗L E −→ FE
∆, Yβ : E ⊗F F ⊗F E∆ −→ E

(
θξ−1

L2
)
,

1⊗ λ⊗ (ℓ, ℓ′) 7−→ 1
2
(
λℓ+ λℓ′v, λℓ+ λℓ′v

)
, 1⊗ f ⊗ (λ+ µv, λ+ µv) 7−→ (fλ, fµ).

The left action P(Q,d, g)×Y → Y is given by canonically extending the maps Yγ and Yβ.
For example, the action of the path v3βγu ∈ R⟨⟨S (Q,d, ξ)⟩⟩ on any element (ℓ, ℓ′) ∈ LE
is given by

E

(
θξ−1

L2
)
∋ v3βγu.(ℓ, ℓ′) = (0 + uv)(Mβ ◦Mγ(uℓ, uℓ′)) = 1

2
(
u3ℓ′, θξ−1(u)uℓ

)
.

9. On the need of cocycles to define the algebras

The constructions in § 6.2 have a colored triangulation (τ, ξ), that is, a triangulation
τ and a 1-cocycle ξ, as an input. As mentioned in Remark 5.9, choosing a 1-cocycle
ξ =

∑
α ξαα

∨ ∈ Z1(τ) ⊆ C1(τ) := HomF2(C1(τ),F2) amounts to fixing, for each arrow
α ∈ Q(τ)1, an element ξα ∈ {0, 1} = F2, in such a way that for every interior triangle △
of τ , the three arrows α, β, γ of Q(τ) induced by △ satisfy

ξα + ξβ + ξγ = 0 ∈ F2 ,

which translates into the equation
θξαθξβθξγ = 11 ∈ Gal(L/F ) . (9.1)

In [18, Examples 3.12, 3.13, 3.25] and [19, Example 4.1 and Section 11], it is shown that
if (9.1) failed to hold for some interior triangle △ such that

min
{
d(τ, ω)h(α), d(τ, ω)h(β), d(τ, ω)h(γ)

}
≥ 2 (9.2)
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(notice that h(α), h(β) and h(γ) are the three arcs of τ contained in △), then any ori-
ented 3-cycle involving the arrows α, β and γ would be cyclically equivalent to zero in the
corresponding (complete) path algebra. Since our cyclic derivatives are defined so that
cyclically equivalent potentials have the same cyclic derivatives (see [18, Definition 3.11]),
this ultimately implies that such (complete) path algebra fails to admit a non-degenerate
potential (in the sense of Derksen–Weyman–Zelevinsky [9, Definition 7.2]) under the mu-
tation of species with potential from [18, Definitions 3.19 and 3.22].

Thus, the imposition of a cocycle condition as part of the input (τ, ξ) comes from the
desire to give the (complete) path algebra of the associated species A(τ, ξ) a chance to
admit a non-degenerate potential.

Now, why do we need to allow arbitrary 1-cocycles? Why do we not simply work with
the zero cocycle? These questions are fully answered in [18, Proposition 2.12 and the
paragraph that follows it] and [19, Case 1 in the proof of Theorem 7.1]. Roughly speaking,
the main point is that when one decomposes the tensor product of bimodules as a direct
sum of indecomposable bimodules, one is forced to consider twisted bimodules such as
Cθ ⊗C C even if the tensor factors are not twisted by field automorphisms (notice that C
does not act centrally on this bimodule: one needs to apply complex conjugation in order
to move complex numbers through the tensor symbol).

Thus, if one wants the first step of the purely combinatorial weighted quiver mutation
(i.e. the introduction of “composite arrows”, see e.g. [25] or [26, § 2]) to be categorified as
taking the tensor product of bimodules, one is forced to allow non-trivial 1-cocycles.

Summarizing, the need to work with 1-cocycles stems from the phenomena that arise
in the categorification of mutations of weighted quivers via mutations of species with
potential.
Remark 9.1. What happens in Subsection 6.3 is that for a degree-2 datum L/F , the set
of bimodules {

F ⊗F F, F ⊗F L,L⊗F F,L⊗F L
}

is closed under tensor products, and the bimodule L ⊗F L (on which L does not act
centrally, see also Remark 6.22) always connects pending arcs. So, under the setting
in (6.2) and the paragraphs that follow it, one can coincidentally avoid bimodules with
non-trivial twists, even when one is interested in mutations of species with potential.

On the other hand, the definitions and results from [3] on semilinear clannish algebras
do not require the field automorphisms σa attached to the arrows a that are not special
loops, to satisfy any particular identity. This means that we can modify the constructions
in § 4.2, § 6.2.2 and § 6.3.2 by attaching to each non-loop a : j → k any field automorphism
σa : K → K, but keeping the automorphisms attached to the loops, as well as the
definition of the relations intact, and still obtain a semilinear clannish algebra, most likely
not isomorphic or even Morita equivalent to the ones we defined. (Recall that K := L in
§ 6.2.2 and in the first seven columns of Tables 4.3 and 4.4, whereas K := F in § 6.3.2
and in the last three tables of the referred tables).
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