$\tau $-tilting theory and silting theory of skew group algebra extensions
Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 599-637.

Let $\Lambda $ be a finite dimensional algebra with an action by a finite group $G$ and $A:= \Lambda *G$ the skew group algebra. One of our main results asserts that the canonical restriction-induction adjoint pair induced by the skew group algebra extension $\Lambda \subset A$ induces a poset isomorphism between the poset of $G$-stable support $\tau $-tilting modules over $\Lambda $ and that of ($\operatorname{mod}G$)-stable support $\tau $-tilting modules over $A$. We also establish a similar poset isomorphism between posets of appropriate classes of silting complexes over $\Lambda $ and $A$. These two results generalize and unify the preceding results by Zhang–Huang, Breaz–Marcus–Modoi and the second and the third authors. Moreover, we give a practical condition under which $\tau $-tilting finiteness and silting discreteness of $\Lambda $ are inherited by $A$. As applications we study $\tau $-tilting theory and silting theory of the (generalized) preprojective algebras and the folded mesh algebras. Among other things, we determine the posets of support $\tau $-tilting modules and of silting complexes over preprojective algebra $\Pi (\mathbb{L}_{n})$ of type $\mathbb{L}_{n}$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.31
Classification: 16G10, 16B50, 16E35, 16S35
Keywords: $\tau $-tilting theory, silting complexes, skew group algebras

Kimura, Yuta 1; Koshio, Ryotaro 2; Kozakai, Yuta 3; Minamoto, Hiroyuki 4; Mizuno, Yuya 5

1 Department of Mechanical Systems Engineering, Faculty of Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku Hiroshima 731-5143, Japan
2 Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
3 Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
4 Department of Mathematics, Graduate School of Science/ Faculty of Science, Osaka Metropolitan University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
5 Faculty of Liberal Arts, Sciences and Global Education / Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_4_599_0,
     author = {Kimura, Yuta and Koshio, Ryotaro and Kozakai, Yuta and Minamoto, Hiroyuki and Mizuno, Yuya},
     title = {$\tau $-tilting theory and silting theory of skew group algebra extensions},
     journal = {Annals of Representation Theory},
     pages = {599--637},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {4},
     year = {2025},
     doi = {10.5802/art.31},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.31/}
}
TY  - JOUR
AU  - Kimura, Yuta
AU  - Koshio, Ryotaro
AU  - Kozakai, Yuta
AU  - Minamoto, Hiroyuki
AU  - Mizuno, Yuya
TI  - $\tau $-tilting theory and silting theory of skew group algebra extensions
JO  - Annals of Representation Theory
PY  - 2025
SP  - 599
EP  - 637
VL  - 2
IS  - 4
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.31/
DO  - 10.5802/art.31
LA  - en
ID  - ART_2025__2_4_599_0
ER  - 
%0 Journal Article
%A Kimura, Yuta
%A Koshio, Ryotaro
%A Kozakai, Yuta
%A Minamoto, Hiroyuki
%A Mizuno, Yuya
%T $\tau $-tilting theory and silting theory of skew group algebra extensions
%J Annals of Representation Theory
%D 2025
%P 599-637
%V 2
%N 4
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.31/
%R 10.5802/art.31
%G en
%F ART_2025__2_4_599_0
Kimura, Yuta; Koshio, Ryotaro; Kozakai, Yuta; Minamoto, Hiroyuki; Mizuno, Yuya. $\tau $-tilting theory and silting theory of skew group algebra extensions. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 599-637. doi : 10.5802/art.31. https://art.centre-mersenne.org/articles/10.5802/art.31/

[1] Adachi, Takahide; Iyama, Osamu; Reiten, Idun τ-tilting theory, Compos. Math., Volume 150 (2014) no. 3, pp. 415-452 | DOI | MR | Zbl

[2] Adachi, Takahide; Kase, Ryoichi Examples of Tilting-Discrete Self-Injective Algebras Which Are Not Silting-Discrete, Publ. Res. Inst. Math. Sci., Volume 60 (2024) no. 2, pp. 373-411 | DOI | MR | Zbl

[3] Aihara, Takuma Tilting-connected symmetric algebras, Algebr. Represent. Theory, Volume 16 (2013) no. 3, pp. 873-894 | DOI | MR | Zbl

[4] Aihara, Takuma; Iyama, Osamu Silting mutation in triangulated categories, J. Lond. Math. Soc. (2), Volume 85 (2012) no. 3, pp. 633-668 | DOI | MR | Zbl

[5] Aihara, Takuma; Mizuno, Yuya Classifying tilting complexes over preprojective algebras of Dynkin type, Algebra Number Theory, Volume 11 (2017) no. 6, pp. 1287-1315 | DOI | MR | Zbl

[6] Andreu Juan, Estefanía; Saorín, Manuel The symmetry, period and Calabi–Yau dimension of finite dimensional mesh algebras, J. Algebra, Volume 429 (2015), pp. 19-74 | DOI | MR | Zbl

[7] Andreu Juan, Estefanía; Saorín, Manuel Pseudo-Frobenius graded algebras with enough idempotents, Commun. Algebra, Volume 44 (2016) no. 6, pp. 2305-2335 | DOI | MR | Zbl

[8] Asashiba, Hideto A generalization of Gabriel’s Galois covering functors and derived equivalences, J. Algebra, Volume 334 (2011), pp. 109-149 | DOI | MR | Zbl

[9] Assem, Ibrahim; Simson, Daniel; Skowroński, Andrzej Elements of the representation theory of associative algebras. Vol. 1: Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006 | DOI | MR | Zbl

[10] Auslander, Maurice; Reiten, Idun; Smalø, Sverre O. Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1995 | DOI | MR | Zbl

[11] Balmer, Paul Separability and triangulated categories, Adv. Math., Volume 226 (2011) no. 5, pp. 4352-4372 | DOI | MR | Zbl

[12] Białkowski, Jerzy; Erdmann, Karin; Skowroński, Andrzej Deformed preprojective algebras of generalized Dynkin type 𝕃 n : classification and symmetricity, J. Algebra, Volume 345 (2011), pp. 150-170 | DOI | MR | Zbl

[13] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005 | DOI | MR | Zbl

[14] Bocklandt, Raf; Schedler, Travis; Wemyss, Michael Superpotentials and higher order derivations, J. Pure Appl. Algebra, Volume 214 (2010) no. 9, pp. 1501-1522 | DOI | MR | Zbl

[15] Breaz, Simion; Marcus, Andrei; Modoi, George Ciprian Support τ-tilting modules and semibricks over group graded algebras, J. Algebra, Volume 637 (2024), pp. 90-111 | DOI | MR | Zbl

[16] Brenner, Sheila; Butler, Michael C. R.; King, Alastair D. Periodic algebras which are almost Koszul, Algebr. Represent. Theory, Volume 5 (2002) no. 4, pp. 331-367 | DOI | MR | Zbl

[17] Bridgeland, Tom Stability conditions on triangulated categories, Ann. Math. (2), Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl

[18] Chen, Jianmin; Chen, Xiao-Wu; Ruan, Shiquan The dual actions, equivariant autoequivalences and stable tilting objects, Ann. Inst. Fourier, Volume 70 (2020) no. 6, pp. 2677-2736 | DOI | Numdam | MR | Zbl

[19] Chen, Xiao-Wu A note on separable functors and monads with an application to equivariant derived categories, Abh. Math. Semin. Univ. Hamb., Volume 85 (2015) no. 1, pp. 43-52 | DOI | MR | Zbl

[20] Chen, Xiao-Wu; Ren, Wang Preprojective algebras, skew group algebras and Morita equivalences (2024) | arXiv | Zbl

[21] Chen, Xiao-Wu; Ren, Wang Skew group categories, algebras associated to Cartan matrices and folding of root lattices, Proc. R. Soc. Edinb., Sect. A, Math. (2024), pp. 1-45 (online first) | DOI

[22] Cohen, Miriam; Montgomery, Susan Group-graded rings, smash products, and group actions, Trans. Am. Math. Soc., Volume 282 (1984) no. 1, pp. 237-258 | DOI | MR | Zbl

[23] Dade, Everett C. Extending group modules in a relatively prime case, Math. Z., Volume 186 (1984) no. 1, pp. 81-98 | DOI | MR | Zbl

[24] Dell, Hannah; Heng, Edmund; Licata, Anthony M Fusion-equivariant stability conditions and Morita duality (2023) | arXiv | Zbl

[25] Demonet, Laurent; Iyama, Osamu; Jasso, Gustavo τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 852-892 | DOI | MR | Zbl

[26] Eisele, Florian; Janssens, Geoffrey; Raedschelders, Theo A reduction theorem for τ-rigid modules, Math. Z., Volume 290 (2018) no. 3-4, pp. 1377-1413 | DOI | MR | Zbl

[27] Elagin, Alexey D. On equivariant triangulated categories (2014) | arXiv | Zbl

[28] Erdmann, Karin; Skowroński, Andrzej Periodic algebras, Trends in representation theory of algebras and related topics (EMS Series of Congress Reports), European Mathematical Society, 2008, pp. 201-251 | DOI | MR | Zbl

[29] Etingof, Pavel; Gelaki, Shlomo; Nikshych, Dmitri; Ostrik, Viktor Tensor categories, Mathematical Surveys and Monographs, 205, American Mathematical Society, 2015 | DOI | MR | Zbl

[30] Etingof, Pavel; Khovanov, Michael Representations of tensor categories and Dynkin diagrams, Int. Math. Res. Not., Volume 1995 (1995) no. 5, pp. 235-247 | DOI | MR | Zbl

[31] Fu, Changjian; Geng, Shengfei Tilting modules and support τ-tilting modules over preprojective algebras associated with symmetrizable Cartan matrices, Algebr. Represent. Theory, Volume 22 (2019) no. 5, pp. 1239-1260 | DOI | MR | Zbl

[32] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Quivers with relations for symmetrizable Cartan matrices. I: Foundations, Invent. Math., Volume 209 (2017) no. 1, pp. 61-158 | DOI | MR | Zbl

[33] Happel, Dieter; Preiser, Udo; Ringel, Claus Michael Binary polyhedral groups and Euclidean diagrams, Manuscr. Math., Volume 31 (1980) no. 1-3, pp. 317-329 | DOI | MR | Zbl

[34] Holm, Thorsten; Zimmermann, Alexander Deformed preprojective algebras of type L: Külshammer spaces and derived equivalences, J. Algebra, Volume 346 (2011), pp. 116-146 | DOI | MR | Zbl

[35] Honma, Takahiro Covering theory of silting objects, 2023 https://ring-theory-japan.com/... (a slide of the talk given in the 54th Symposium on Ring Theory and Representation Theory)

[36] Humphreys, James E. Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990 | DOI | MR | Zbl

[37] Kassel, Christian; Turaev, Vladimir Braid groups, Graduate Texts in Mathematics, 247, Springer, 2008 (with the graphical assistance of Olivier Dodane) | DOI | MR | Zbl

[38] Kirillov, Alexander Jr.; Ostrik, Viktor On a q-analogue of the McKay correspondence and the ADE classification of 𝔰𝔩 2 conformal field theories, Adv. Math., Volume 171 (2002) no. 2, pp. 183-227 | DOI | MR | Zbl

[39] Koshio, Ryotaro On induced modules of inertial-invariant support τ-tilting modules over blocks of finite groups, SUT J. Math., Volume 58 (2022) no. 2, pp. 157-171 | DOI | MR | Zbl

[40] Koshio, Ryotaro; Kozakai, Yuta Normal subgroups and support τ-tilting modules, J. Math. Soc. Japan, Volume 76 (2024) no. 4, pp. 1279-1305 | DOI | MR | Zbl

[41] Leuschke, Graham J.; Wiegand, Roger Cohen–Macaulay representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, 2012 | DOI | MR | Zbl

[42] Malkin, Anton; Ostrik, Viktor; Vybornov, Maxim Quiver varieties and Lusztig’s algebra, Adv. Math., Volume 203 (2006) no. 2, pp. 514-536 | DOI | MR | Zbl

[43] Mizuno, Yuya ν-stable τ-tilting modules, Commun. Algebra, Volume 43 (2015) no. 4, pp. 1654-1667 | DOI | MR | Zbl

[44] Montgomery, Susan Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Conference Board of the Mathematical Sciences, Washington DC; American Mathematical Society, 1993 | DOI | MR | Zbl

[45] Reiten, Idun; Riedtmann, Christine Skew group algebras in the representation theory of Artin algebras, J. Algebra, Volume 92 (1985) no. 1, pp. 224-282 | DOI | MR | Zbl

[46] Schneider, Peter Modular representation theory of finite groups, Springer, 2013 | DOI | MR | Zbl

[47] Zhang, Yingying; Huang, Zhaoyong G-stable support τ-tilting modules, Front. Math. China, Volume 11 (2016) no. 4, pp. 1057-1077 | DOI | MR | Zbl

Cited by Sources: