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Dedicated to Jun-ichi Miyachi’s 65th birthday

Abstract. Let Λ be a finite dimensional algebra with an action by a finite group G and A := Λ∗G the
skew group algebra. One of our main results asserts that the canonical restriction-induction adjoint
pair induced by the skew group algebra extension Λ ⊂ A induces a poset isomorphism between
the poset of G-stable support τ -tilting modules over Λ and that of (mod G)-stable support τ -tilting
modules over A. We also establish a similar poset isomorphism between posets of appropriate classes
of silting complexes over Λ and A. These two results generalize and unify the preceding results
by Zhang–Huang, Breaz–Marcus–Modoi and the second and the third authors. Moreover, we give
a practical condition under which τ -tilting finiteness and silting discreteness of Λ are inherited by
A. As applications we study τ -tilting theory and silting theory of the (generalized) preprojective
algebras and the folded mesh algebras. Among other things, we determine the posets of support
τ -tilting modules and of silting complexes over preprojective algebra Π(Ln) of type Ln.

1. Introduction

A decade has been passed since the introduction of τ -tilting theory [1] and silting
theory [4]. During these years, those theories have been extensively studied by many
researchers and now become basic and fundamental subjects in representation theory
of algebras. These theories study hidden symmetry of the module category and the
derived category of algebras by using specific classes of objects: τ -tilting modules and
silting complexes. Thus, these theories have connections to various areas of mathematics.
Among other things, we point out that since silting theory is strongly related to t-structures
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of the derived category, it is effectively used in the study of Bridgeland’s stability condi-
tions [17].

The central aim of the present paper is to study τ -tilting theory and silting theory
of the skew group algebra extension Λ ⊂ Λ ∗ G. Namely, given an algebra Λ with an
action G ↷ Λ by a finite group G, we study the relationships between τ -tilting modules
and silting complexes over Λ, and those over the skew group algebra A := Λ ∗ G, via
the induction and the restriction functors. A detailed explanation is given in the next
section, in which the main results are summarized as Theorem 1.1. Another important
result proves that under a reasonable condition, τ -tilting finiteness and silting discreteness
of Λ are inherited. This is summarized in Theorem 1.2. In Section 1.2, we review recent
related results which study a triangulated category T with an action G ↷ T by a finite
group G, and then we explain relationships between these results and our results.

As applications we study τ -tilting theory and silting theory of the (generalized) pre-
projective algebras and the folded mesh algebras in Section 5. Among other things, we
determine the posets of support τ -tilting modules and of silting complexes of preprojective
algebra Π(Ln) of type Ln.

1.1. τ-tilting theory and silting theory of skew group algebra extensions. Let
Λ be a finite dimensional algebra, G a finite group acting on Λ and A := Λ ∗G the skew
group algebra. The canonical inclusion Λ ⊂ A induces the adjoint pair (IndA

Λ , ResA
Λ) of

the induction functor IndA
Λ = A ⊗Λ − and the restriction functor ResA

Λ of the categories
of finite dimensional (left) modules.

IndA
Λ : mod Λ ⇄ mod A : ResA

Λ .

The one of the main aims of this paper is to compare support τ -tilting modules M over
Λ and those N over A, via the adjoint pair (IndA

Λ , ResA
Λ). Namely we ask what kind of

support τ -tilting modules over Λ (resp. A) are sent to those over A (resp. Λ) by the
functor IndA

Λ (resp. ResA
Λ).

Since it is a natural question, there are several previous research of this problem (or of
equivalent one).

1.1.1. Preceding results. Zhang–Huang [47] studied a skew group algebra extension Λ ⊂ A
where A := Λ ∗G under the assumption that char k ∤ |G|. Their main result proved that
the induction functor IndA

Λ sends G-stable support τ -tilting modules M over Λ to support
τ -tilting modules IndA

Λ(M) over A and that this map is injective (for the notion G-stability
see Definition 2.1). They also gave a restriction on the image of the map induced by IndA

Λ .
But they could not identify the image of this map.

Breaz–Marcus–Modoi [15] dealt with the extension Λ ⊂ A of a strongly G-graded al-
gebra A =

⊕
g ∈ G Ag and its degree eG-part Λ := AeG and compared support τ -tilting

modules of Λ and A using the canonical adjoint pair. (We note that as is explained in
Appendix A, this problem is equivalent to that of skew group algebra extension by a fi-
nite group G, via Cohen–Montgomery duality.) They worked with the assumption that
Λ is self-injective. They showed that the induction functor IndA

Λ sends G-stable support
τ -tilting modules M over Λ to support τ -tilting modules IndA

Λ(M) over A. Moreover, un-
der the additional assumption char k ∤ |G|, they also find a condition for a support τ -tilting
module N over A that ensures that ResA

Λ(N) is a support τ -tilting modules over Λ.
Finally, the second author and the third author of this paper [40] dealt with a group

extension N ◁ H. They compared support τ -tilting modules of Λ := kN and A := kH of
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Skew group algebra extensions 601

group algebras via the canonical adjoint pair induced from the extension Λ=kN⊂kH =A.
Notabley, they did not impose any hypothesis on the characteristic of the base field k.
(We note that A = kH has a canonical structure of a strongly G := H/N -graded algebras
such that AeG = kN , see Appendix A.) They proved that the functor IndA

Λ induces an
injective map from the poset of G-stable support τ -tilting modules over Λ to the poset of
those over A. This is analogous to the aforementioned result by Zhang–Huang. However,
they additionally succeeded to identify the image of the map induced from the functor
IndA

Λ .

1.1.2. Poset isomorphisms. In the paper we deal with the skew group algebra extension
Λ ⊂ Λ ∗G without any hypothesis on the characteristic of k, and obtain results that unify
and generalize previous results recalled above. One of the novelties of the paper is the
notion of (mod G)-stability for a module N over A (Definition 2.9). This notion precisely
identifies the image of the map induced by IndA

Λ . Namely we prove that the functor IndA
Λ

induces a poset isomorphism between the poset (sτ - tilt Λ)G of G-stable support τ -tilting
modules and the poset (sτ - tilt A)mod G of (mod G)-stable support τ -tilting modules, and
that the functor ResA

Λ induces the inverse map between these posets.
In the paper, we also compare silting complexes, 2-term silting complexes and tilting

complexes via the canonical adjoint pair and obtain similar poset isomorphisms between
the posets of these complexes.

The following theorem summarizes our results about the skew group algebra extension.

Theorem 1.1. Let Λ be a finite dimensional algebra with an action of a finite group G
and A := Λ ∗ G the skew group algebra. Then the adjoint pair (IndA

Λ , ResA
Λ) induces the

following commutative diagram of the poset morphisms

(sτ - tilt Λ)G
IndA

Λ // (sτ - tilt A)mod G

ResA
Λ

oo

(2-tilt Λ)G
IndA

Λ //
H0
OO

� _

��

(2-tilt A)mod G

ResA
Λ

oo

H0
OO

� _

��
(silt Λ)G

IndA
Λ // (silt A)mod G

ResA
Λ

oo

(tilt Λ)G
IndA

Λ //
?�

OO

(tilt A)mod G

ResA
Λ

oo
?�

OO

where the horizontal arrows are poset isomorphisms inverse to each other. The vertical
arrows H0 from the middle to the top are induce from the poset isomorphism H0 between
2-term silting complexes and support τ -tilting modules.

The top horizontal isomorphisms are established in Theorem 3.3. The second, the third
and the fourth horizontal isomorphisms, as well as the commutativity of the second and
third squares are established in Theorem 4.3. Proposition 4.4 proves that two vertical
arrows H0 are poset isomorphisms. The commutativity of the first square is easy to check
and its verification is left to the readers.

In a subsequent work, we establish similar correspondences of torsion theories, semi-
bricks and wide subcategories over Λ and A.
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1.1.3. τ -tilting finiteness and silting discreteness. In general, (mod G)-stability is difficult
to check. However, next theorem tells us that under certain conditions, τ -tilting finiteness
(resp. silting discreteness) of Λ is inherited to A = Λ ∗ G and moreover that all support
τ -tilting modules (resp. silting complexes) over A are (mod G)-stable.

The basic setup of the theorem is that, as is often with many applications, an algebra
Λ = kQ/I is given by a quiver Q and an admissible ideal I and an action G ↷ Λ is induced
from an action G ↷ Q on the quiver Q. For a vertex e ∈ Q0, we denote by stab(e) < G
the stabilizer group.
Theorem 1.2. In the above setup, we further assume that for each vertex e ∈ Q0, the
group algebra k stab(e) is local. If Λ is a τ -tilting finite (resp. silting discrete), then so is
A and moreover all support τ -tilting modules (resp. silting complexes) are (mod G)-stable.
Consequently, the adjoint pair (IndA

Λ , ResA
Λ) induces the following poset isomorphisms

IndA
Λ : (sτ - tilt Λ)G ←→ sτ - tilt A : ResA

Λ(
resp. IndA

Λ : (silt Λ)G ←→ silt A : ResA
Λ

)
Theorem 1.2 about support τ -tilting modules (resp. silting complexes) is proved as

Theorem 3.11 (resp. Theorem 4.7) under a slightly more general condition.
We note that if the action of G on the vertex set Q0 is free, the assumption of Theo-

rem 1.2 is satisfied. For the convenience of the readers, we recall the following well-known
fact in modular representation theory of a finite group.
Lemma 1.3 (See for example [46, Corollary 3.2.4]). Assume that k is an algebraically
closed field of characteristic p = char k > 0. The group algebra kG is local algebra if and
only if G is a p-group.
1.2. Related results. In this section, we review recent related results which study a trian-
gulated category T with an action G ↷ T by a finite group G and then we explain rela-
tionships between these results and our results. We assume that a triangulated category
T is Hom-finite and idempotent complete in the sequel. We denote by T G the category
of G-equivariant objects of T , which is triangulated, in nice situations, by [11, 19, 27].

Chen–Chen–Ruan [18] deals with a triangulated category T equipped with an action
G ↷ T by a finite abelian group G. The point here is that the category T G of
G-equivariant object comes equipped with an action Ĝ ↷ T G by the character group Ĝ.
Then as one of their main results [18, Theorem A], they proved that G-stable tilting
objects of T is bijectively corresponds to Ĝ-stable tilting objects of T G under the assump-
tion that the group algebra kG is a direct product of k.

Dell–Heng–Licata [24], first study stability conditions of a triangulated category T
equipped with an action C ↷ T of a fusion category C (for fusion categories we refer [29]).
The point here is that the category T G of G-equivariant object comes equipped with an
action mod G ↷ T G by the tensor category mod G. We note that they need to assume
that char k ∤ |G| so that the tensor category mod kG is a fusion category. One of their
main result [24, Theorem B] proves that the space stabG(T ) of G-equivariant stability con-
ditions of T is homeomorphic to the space stabmod G(T G) of (mod G)-equivariant stability
conditions of T . We note that in [24, Theorem B], the action G ↷ T is reinterpreted as
the action vec(G) ↷ T by the category vec(G) of G-graded vector spaces. (The category
vec(G) is isomorphic to the category kG∗ mod of kG∗-modules where kG∗ = Homk(kG, k)
denotes the dual Hopf algebra of kG. The above reinterpretation is explained in Appen-
dix B.)
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Now we explain relationships between above results and our results. Thus as in the pre-
vious section, let Λ be a finite dimensional algebra with an action G ↷ Λ by
a finite group and A := Λ ∗ G. The category mod Λ of Λ-modules is equipped with
the induced action G ↷ mod Λ. It is well-known that (mod Λ)G ≃ mod A. Now we as-
sume that char k ∤ |G|. Then by [19, Proposition 4.5], we have equivalences Db(mod Λ)G ≃
Db((mod Λ)G) ≃ Db(mod A) of triangulated categories. As we mentioned before, silting
complexes and stablity conditions are closely related. Therefore, since our poset iso-
morphism (silt Λ)G ∼= (silt A)mod G of silting complexes is verified without the assump-
tion char k ∤ |G|, we conjecture that there exists a homeomorphism stabG(Db(mod Λ)) ∼=
stabmod G(Db(mod A)) without any assumption on char k. This conjecture and its variant
for algebraic varieties are left to our future study.

If we further assume that the group algebra kG is a direct product of k as in [18], then
(mod G)-stable objects of Db(mod A) are precisely Ĝ-stable objects of Db(mod A) (see for
the discussion after Definition 2.10). Thus our poset isomorphism (tilt Λ)G ∼= (tilt A)mod G

established for a finite group G which is not necessarily abelian, can be viewed as a partial
generalization of the result given in [18] in the situation that T = Db(mod Λ) and an
action G ↷ T is induced from an action G ↷ Λ on an algebra Λ.

1.2.1. Honma [35] deals with the situation that a (not necessarily finite) group G acting
on a Hom-finite triangulated category T . Compared to the setup of our paper, a Hom-finite
k-linear category T plays the role of the derived category Db(mod Λ) with the induced
G-action. Using covering theory, he studied the poset of G-stable silting objects of T .
One of his main results shows that if an action of G on ind T is free, then the poset of
G-stable silting objects of T is isomorphic as posets to the silting poset of T ′ where T ′

is a G-precovering of T such that the thick-hull of the image of the induction functor
coincide with T ′. In the case T = Db(mod Λ), the consequence of this result may coincide
with the silting part of Theorem 1.2. However, the assumption of freeness for the action
G ↷ ind Db(mod Λ) is stronger than our assumption.

1.3. Organization of the paper. Section 2 gives preliminaries about a skew group
algebra extension Λ ⊂ A where A := Λ ∗ G. We recall well-known facts about a skew
group algebra extension. In the case char k ∤ |G|, it is well-known that the Auslander–
Reiten translations τ (of Λ and of A) commute with the functors IndA

Λ and ResA
Λ . As one

of the technical heart of the paper, we discuss this commutativity without any assumption
on the characteristic of the base field. Other important notions introduced in this section
are (mod G)-action on modules N over A and stability with respect to this action which
is called (mod G)-stability.

In Section 3 and Section 4, we study τ -tilting theory and silting theory of a skew
group algebra extension, respectively and prove the corresponding part of Theorem 1.1
and Theorem 1.2.

In Section 5, applying results obtained in the previous sections, we study silting theory
and τ -tilting theory of preprojective algebras and folded mesh algebras.

In Appendix A, we explain that our results about a skew group algebra extensions can
be reinterpreted to that about a G-graded algebras A =

⊕
g ∈ G Ag and the canonical ad-

joint pair V : grmod A ⇄ mod A : U between the categories of graded A-modules and that
of ungraded A-modules, via the Cohen–Montgomery duality. We also explain that special-
izing the results about a G-graded algebra, we obtain results about an extension AeG ⊂ A
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of a strongly G-graded algebra by its degree eG-part AeG . By this reinterpretation, our
results give generalizations of the previous papers [15, 40].

In Appendix B, we discuss a formal aspect from theory of tensor categories and Hopf
algebras. We provide a formalism of our result that allows us to give a possible general-
ization of our result to an algebra Λ with an action of a Hopf algebra H.

1.4. Conventions. In the paper k denotes a (not necessarily algebraically closed) field of
arbitrary characteristic. Undecorated tensor product ⊗ always denotes the tensor product
⊗k over k.

Groups are assumed to be finite groups. Algebras are assumed to be a finite dimensional
k-algebra. Modules over an algebra Λ are always assumed to be finite dimensional left
Λ-modules, unless otherwise mentioned. An action G ↷ Λ of a group G on an algebra Λ
is assumed to preserve the algebra structure of Λ.

Let M be a Λ-module. We denote its basic part by Mbasic, i.e., a basic module such
that add Mbasic = add M . We note that Mbasic is unique up to isomorphisms. We denote
by |M | the number of the indecomposable direct summands of Mbasic.

In the same way, we define the basic part Mbasic of an object M of the derived category
Db(mod Λ).

2. Preliminaries about skew group algebra extensions

Let Λ be an algebra with an action of a group G. Recall that the skew group algebra
A := Λ ∗G is defined in the following way: The underlying k-vector space of A is defined
to be Λ ⊗ kG where kG is the group algebra of G. For r ∈ Λ and g ∈ G, we set
r ∗ g := r ⊗ g ∈ Λ⊗ kG. Then the multiplication of A is given by

(r ∗ g)(s ∗ h) := rg(s) ∗ gh (r, s ∈ Λ, g, h ∈ G).

2.1. G-action on Λ-modules and (mod G)-action on A-modules.

2.1.1. G-action and G-stability. For g ∈ G and a Λ-module M , we denote by gM the
Λ-module whose underlying vector space is that of M and the action of Λ is twisted by g,
i.e.

r ·gM m := g(r) ·M m

for r ∈ Λ, g ∈ G and m ∈ M . We remark that h(gM) ∼= ghM . Note that the map
gΛ→ Λ, r 7→ g−1(r) is an isomorphism of Λ-modules.

Definition 2.1. A Λ-module M is called G-stable if gM ∼= M for all g ∈ G.

2.1.2. mod G action and (mod G)-stability.

Definition 2.2. Let N be an A = Λ ∗ G-module and X a G-module. We define an
A-module X ⊗G

k N in the following way. As a k-vector space X ⊗G
k N is defined to be

X ⊗k N . We define an action of an element r ∗ g ∈ A to x⊗ n ∈ X ⊗k N by the following
formula:

(r ∗ g) · (x⊗ n) := g(x)⊗ (r ∗ g)n.

We note that this construction is already used in representation theory of skew group
algebras (see e.g., [41, Definition 5.17]).
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Remark 2.3. The construction (X, M) 7→ X ⊗G
k M given in Definition 2.2 is natu-

ral in X ∈ mod G and M ∈ mod Λ respectively and hence induces a functor ⊗G
k :

(mod G)×(mod A)→ mod A. It is straightforward to check that this functor together with
the isomorphisms given in Lemma 2.5 below endows the category mod A with a structure
of a left module category over the tensor category mod G in the sense of [29, Defini-
tion 7.1.2]. (It should be noted that familiarity with tensor categories is not necessary for
understanding this paper, with the exception of Appendix B.)

In other words, the construction of Definition 2.2 gives an action mod G ↷ mod A. We
note that as is explained in Section 4, this action mod G ↷ mod A on mod A extends to an
action mod G ↷ Db(mod A) on the derived categories Db(mod A), which coincides with
the (mod G)-action used in [24].

Example 2.4. If Λ = k with the trivial G-action, then the skew group algebra A is the
group algebra kG and the A-module X⊗G

k N is the kG-modules X⊗k N with the diagonal
action.

We leave the verification of the following lemma to the readers.

Lemma 2.5. For an A-module N and G-modules X, Y , the following assertions hold.
(1) kG ⊗G

k N ∼= N .
(2) (X ⊗G

k Y )⊗G
k N ∼= X ⊗G

k (Y ⊗G
k N).

Thanks to the second statement of above lemma, we may write both of(
X ⊗G

k Y
)
⊗G

k N and X ⊗G
k

(
Y ⊗G

k N
)

by X ⊗G
k Y ⊗G

k N.

Example 2.6. Observe that Λ has a canonical A-module structure. For a G-module X,
we often write Λ ∗X = X ⊗G

k Λ and in that case an element x⊗ r is written as r ∗ x. The
A-module Λ ∗ kG = kG⊗G

k Λ is canonically isomorphic to the A-module A = Λ ∗G.
Let kG =

⊕n
i=1 Pi be a decomposition as a G-module. Then we have a decomposition

A =
⊕n

i=1 Λ ∗ Pi as an A-module.

Lemma 2.7. Let X be a G-module. We equip X ⊗G
k A a right Λ-module structure by the

formula (x⊗ (r ∗ g))s := x⊗ (r ∗ g)s for r, s ∈ Λ, x ∈ X, g ∈ G. Then X ⊗G
k A becomes an

A-Λ-bimodule, and it is isomorphic to X ⊗k A ∼= A⊕ dim X as A-Λ-bimodules.

Proof. It is straightforward to check the first statement. It is also straightforward to check
that the following map is an isomorphism of A-Λ-bimodules

ϕ : X ⊗G
k A −→ X ⊗k A, ϕ(x⊗ (r ∗ g)) := g−1(x)⊗ (r ∗ g). □

Corollary 2.8. Let Q be a projective A-module and X a finite dimensional G-module.
Then X ⊗G

k Q is a projective A-module.

Now we introduce the notion of (mod G)-stability.

Definition 2.9. An A-module N is called (mod G)-stable if X ⊗G
k N ∈ add N for any

X ∈ mod G.

We introduce X-stability.

Definition 2.10 (The X-stability(cf.[47, p. 1070])). An A-module N is called X-stable if
S ⊗G

k N ∈ add N for any 1-dimensional simple G-module S.
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We explain that the above definition of X-stability coincides with the original definition
given by Zhang–Huang [47]. Let χ : G → k× be a group homomorphism and kχ the
induced G-module. For a 1-dimensional G-module S, there exists a unique χ : G → k×

such that S ∼= kχ. Then S⊗G
k N = kχ⊗G

k N is χ−1
N in the notation of [47]. Observe that

in case of N is basic, then we have S ⊗G
k N ∈ add N if and only if kχ ⊗G

k N ∼= N . Thus,
we see that for a basic A-module N , the two X-stabilities are the same notion.

We note that an A-module N is (mod G)-stable, then it is X-stable. In Example 3.6, we
give an example of support τ -tilting A-modules which is X-stable, but not (mod G)-stable.

2.1.3. The adjoint property of (mod G)-action given in the following proposition plays a
key role in the proof of Theorem 3.11.

Proposition 2.11. Let X be a finite dimensional G-module and D(X) = Homk(X, k) the
dual G-module of X. Then the pair (X ⊗G

k −, D(X) ⊗G
k −) of endofunctors of mod A is

an adjoint pair.

This proposition follows from a general result in the theory of module categories over a
tensor category [29, Proposition 7.1.6]. But for the convenience of the readers, we provide
a direct proof.

Proof. Let {xi}ni=1 be a basis of X and {xi}ni=1 the dual basis of D(X). For an A-module
N , we define maps ϵN : N → D(X)⊗G

k X ⊗G
k N and ηN : X ⊗G

k D(X)⊗G
k N → N to be

ϵN : N −→ D(X)⊗G
k X ⊗G

k N, ϵN (n) :=
n∑

i=1
xi ⊗ xi ⊗ n

ηN : X ⊗G
k D(X)⊗G

k N −→ N, ηN (x⊗ ξ ⊗ n) := ξ(x)n.

Then, it is straightforward to check that these maps are homomorphisms of A-modules nat-
ural in N that satisfy the triangle identities (ηX⊗GN )◦(X⊗GϵN ) = idX⊗GN , (D(X)⊗GηN )◦
(ϵD(X)⊗GN ) = idD(X)⊗GN . □

2.2. Induction-Reduction adjunction. Recall that the extension (i.e., the canonical
inclusion) Λ→ A is a Frobenius extension, that means that, A is a free as left Λ-module
and that we have an isomorphism of A-Λ-bimodules

ϕ : A −→ HomΛ(A, Λ),

which is given by ϕ(r ∗g)(s∗h) := sh(r)δg,h−1 . Consequently the functors IndA
Λ = A⊗Λ−,

HomΛ(A,−) : mod Λ → mod A are naturally isomorphic. Hence the induction functor
F := IndA

Λ is left and right adjoint of the restriction functor R := ResA
Λ .

mod A

R
��

mod Λ

F

::

F

dd

(2.1)

2.2.1. Basic isomorphisms. We collect isomorphisms of Λ-modules and A-modules, that
play important roles in the sequel. Although these are well-known and can be (partly)
found in the standard references (e.g., [45]), we provide proofs for the convenience of the
readers.
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Lemma 2.12.

(1) For a Λ-module M , an element g ∈ G and X ∈ mod G, we have the following
isomorphisms

(a) F (gM) ∼= F (M), (b) RF (M) ∼=
⊕
g ∈ G

gM,

(c) FRF (M) ∼= F (M)⊕|G|, (d) X ⊗G
k F (M) ∼= F (M)⊕ dim X .

(2) For an A-module N , an element g ∈ G and X ∈ mod G, we have the following
isomorphisms.

(a) R(N) ∼= gR(N), (b) FR(N) ∼= A⊗Λ N ∼= kG⊗G
k N,

(c) RFR(N) ∼= R(N)⊕|G|, (d) R
(
X ⊗G

k N
)
∼= X ⊗k N ∼= N⊕ dim X .

Proof. (1) The isomorphism (a) is given by

ϕ : A⊗Λ gM −→ A⊗Λ M, ϕ((r ∗ h)⊗m) :=
(
r ∗ hg−1

)
⊗m.

The isomorphism (b) is given by

ϕ :
⊕
g ∈ G

gM −→ A⊗Λ M, ϕ((mg)g ∈ G) :=
∑

g ∈ G

(
1 ∗ g−1

)
⊗mg.

The isomorphism (c) follows from (a) and (b). The isomorphism (d) is a consequence of
Lemma 2.7.

(2) It is straightforward to check that the map ϕN : R(N) → gR(N), ϕ(n) := (1 ∗ g)n
gives the desired isomorphism (a).

It follows from the definition of F, R that FR(N) ∼= A ⊗Λ N . It is straightforward to
prove that the map below is an isomorphism of A-modules.

ϕ : kG⊗G
k N −→ A⊗Λ N = FR(N), ϕ(g ⊗ n) := (1 ∗ g)⊗

(
1 ∗ g−1

)
n

The isomorphism (c) follows from (a) and (1-b). It is straightforward to check that the
map ϕ : R(X⊗G

k N)→ X⊗k R(N), ϕ(x⊗n) := x⊗n is an isomorphism of Λ-modules. □

We point out the following immediate consequence of Lemma 2.12.

Corollary 2.13.

(1) For a Λ-module M , the A-module F (M) is (mod G)-stable. Moreover we have
add FRF (M) = add F (M).

(2) For an A-module N , the Λ-module R(N) is G-stable. Moreover, add RFR(N) =
add R(N).

2.2.2. A criterion of G-stability. As a consequence of Lemma 2.12, we have the following
criterion of G-stability

Corollary 2.14. A Λ-module M is G-stable if and only if we have add M = add RF (M).

Ann. Repr. Th. 2 (2025), 4, p. 599–637 https://doi.org/10.5802/art.31

https://doi.org/10.5802/art.31


608 Yuta Kimura et al.

2.2.3. A criterion of (mod G)-stability. Recall that an A-module N is called rigid if
Ext1

A(N, N) = 0. To obtain a criterion of (mod G)-stability similar to Corollary 2.14,
we need to assume that an A-module N to be rigid.

Proposition 2.15 (cf. [40, Lemma 3.7]). For a rigid A-module N , the following conditions
are equivalent.

(1) N is (mod G)-stable.
(2) S ⊗G

k N ∈ add N for any simple G-modules S.
(3) add FR(N) = add N .

Moreover, if we further assume one of the following conditions: (i) char k ∤ |G|, (ii) kG
is local, then the above conditions are equivalent to the following condition (4).

(4) FR(N) ∈ add N .

We leave the verification of the following lemma to the readers, since it can be proved
in the same way of [40, Lemma 3.6].

Lemma 2.16 (cf. [40, Lemma 3.6]). Let N be an A-module and X a G-module. Assume
that N is rigid and that for any composition factors S of X, we have S ⊗G

k N ∈ add N .
Then we have X ⊗G

k N =
⊕

S ⊗G
k N where S runs over all composition factor of X.

Proof of Proposition 2.15. (3)⇒(1) follows from Lemma 2.12 (1-d). (1)⇒(2) is trivial. We
prove the implication (2)⇒(3). By Lemma 2.12(2-b) and Lemma 2.16, we have

A⊗Λ N ∼= kG⊗G
k N ∼=

⊕
S ⊗G

k N

where S runs all composition factors of kG. Since we are assuming (2) holds, it follows
that A ⊗Λ N ∈ add N . Since the trivial G-module kG is a composition factor of kG, we
see that N ∼= kG ⊗G

k N belongs to add(A⊗Λ N).
It is clear (3) always implies (4). By Lemma 2.17 below, we see that (4) together with

one of (i), (ii) implies (3). □

Lemma 2.17. Let N be an A-module. If one of the following conditions holds, then we
have N ∈ add FR(N).

(i) char k ∤ |G|.
(ii) N is rigid and kG is local.

Proof. It is enough to show that the canonical map f : FR(N)→ N splits. We note that
we have f = ϵ⊗G

k N : kG⊗G
k N → kG⊗G

k N where ϵ : kG→ kG denotes the augmentation
map.

Assume the condition (i) holds. Then the canonical map ϵ splits and hence so does f .
Assume the condition (ii) holds. Then every G-module X has a surjective homomor-

phism X → kG of G-modules. By induction of length of X and utilizing the rigidity of N ,
we can show that the induced map X ⊗G

k N → kG⊗G
k N splits and X ⊗G

k N ∈ add N . □

Remark 2.18. Even if an A-module N is not rigid, the implications (3) ⇒ (1) ⇒ (2)
hold true, but converses do not hold true in general.

We provide an example that (2)⇒(1)⇒(3) does not hold true in general. Assume that
char k = 2. Let Λ = k be the base field with the trivial action by a cyclic group G = C2 of
order 2. Then A = kG is a usual group algebra. Since there is only one simple G-module
kG, the trivial G-module, any A-module N satisfies the condition (2). But the A-module
N = kG is not (mod G)-stable, since kG ⊗G

k kG = kG /∈ add kG. It is easy to see that
N ′ := kG ⊕ kG is (mod G)-stable but add FR(N ′) ⊊ add N ′.
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2.2.4. The local case. Assume that the group algebra kG is local. Then the unique simple
module is the trivial representation kG of G. In this case, the condition (2) of Proposi-
tion 2.15 is always satisfied. Thus as a consequence, we have the following corollary.
Corollary 2.19. If G is a finite group such that kG is local, then every rigid module N
over A = Λ ∗G is (mod G)-stable as well as it satisfies add N = add FR(N).
2.2.5. A lemma. The following lemma is used to prove Lemma 2.24.
Lemma 2.20. Let e, e′ ∈ Λ be idempotent elements, r ∈ eΛe′ and g ∈ G. Then the
following assertions hold.

(1) We have an isomorphism gΛe ∼= Λg−1(e) of Λ-modules.
(2) We have an isomorphism RF (Λe) ∼=

⊕
g ∈ G Λg(e) of Λ-modules.

(3) We denote the right multiplication map r : Λe → Λe′ by the same symbol. Then
under the above isomorphism, we have RF (r) =

⊕
g ∈ G g(r).

RF (r) : RF (Λe) ∼=
⊕
g ∈ G

Λg(e)
⊕

g(r)
−−−−→

⊕
g ∈ G

Λg(e′) = RF (Λe′)

Proof. (1) The desired isomorphism is given by
ϕ : gΛe −→ Λg−1(e), ϕ(re) := g−1(r)g−1(e).

(2), (3) follow from (1) and Lemma 2.12(1)(b). □

2.3. Compatibility of the Auslander–Reiten translation τ with F and R.

2.3.1. Recollection of the radical morphisms. For M, M ′ ∈ mod Λ, the radical rad(M ′, M)
is defined to be a subspace of HomΛ(M ′, M) consisting of such elements f : M ′ → M
that satisfy the following property: for any L ∈ ind Λ and any morphisms s : L→ M ′, t :
M → L, the composition tfs : L → L is not an isomorphism. We note that rad(−, +)
is a k-linear sub-bifunctor of HomΛ(−, +). We also note that rad(M, M) is the Jacobson
radical of EndΛ(M) [9, Proposition A.3.5].

Recall that a homomorphism g : M →M ′′ is called right minimal if any endomorphism
h : M →M such that g ◦ h = g is an isomorphism.

We need the following two lemmas about minimal morphisms and radical morphisms.

Lemma 2.21. Let 0→M ′ f−→M
g−→M ′′ be an exact sequence in mod Λ. Then g is right

minimal if and only if f ∈ rad(M ′, M).
Proof. “If” part. Assume that f ∈ rad(M ′, M). Let h : M → M be such that g ◦ h = g.
Then, g◦(h− idM ) = 0. It follows that there exists k : M →M ′ such that h− idM = f ◦k.
Since h−idM = f ◦k belongs to rad(M, M), it is nilpotent. Therefore, h = idM +(h−idM )
is an automorphism of M .

“Only if” part. We prove that if f does not belongs to rad(M ′, M), then g is not
a right minimal. Let L be an indecomoposable Λ-module and s : L → M ′, t : M → L
homomorphisms of Λ-modules such that t◦f◦s is an automorphism of L. We set l := t◦f◦s
and h := idM −f ◦ s ◦ l−1 ◦ t. Then, since g ◦ f = 0, we have g ◦ h = g. On the other
hand, t ◦ h = t − t ◦ f ◦ s ◦ l−1 ◦ t = t − t = 0. Since t ̸= 0, we conclude that h is not an
automorphism. □

Lemma 2.22. Let M, M ′ be Λ-modules, P projective Λ-modules and f : M → P , g :
M ′ → M homomorphisms of Λ-modules. Assume that g : M ′ → M is surjective. Then f
belongs to rad(M, P ) if and only if f ◦ g belongs to rad(M ′, P ).
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Proof. “Only if” part is clear. We prove “if” part by contraposition. Assume that f
does not belong to rad(M, P ). Then there exists an indecomposable Λ-module L and
homomorphisms s : L → M, t : P → L such that l := t ◦ f ◦ s is an automorphism of
L. It follows that f ◦ s ◦ l−1 is a section of t (i.e., t ◦ (f ◦ s ◦ l−1) = idL) and hence the
Λ-module L is a projective. Since g : M ′ →M is surjective, there exists a homomorphism
r : L→M ′ such that g ◦ r = s. It follows that t ◦ (f ◦ g) ◦ r = t ◦ f ◦ s is an automorphism.
This shows that f ◦ g does not belong to rad(M ′, P ).

M ′ g // M
f // P

t��
L

r

jj

s

`` □

2.3.2. The Jacobson radicals and radical morphisms. The following lemma about the
Jacobson radicals seems to be well-known. But for the convenience of the readers we
provide a proof.

Lemma 2.23. Let JΛ and JA be the Jacobson radicals of Λ and A. Then the following
assertions hold.

(1) For an element g ∈ G, we have g(JΛ) = JΛ.
(2) JΛ ⊂ JA.

Proof. (1) Let m be a maximal left ideal of Λ. Then the image g(m) by the action of g ∈ G
is again a maximal left ideal of Λ. It follows that g(JΛ) = JΛ.

(2) Let j ∈ JΛ. To prove j ∈ JA, we show that for any α, β ∈ A, the element 1 − αjβ
of A is invertible. We set γ := αjβ. If we write α =

∑
g ∈ G αg ∗ g, β =

∑
g ∈ G βg ∗ g,

then γ =
∑

g,h αgg(j)g(βh) ∗ gh. It follows from (1) and the fact that JΛ is a two-sided
ideal that γ is of the form

∑
g γg ∗ g for some γg ∈ JΛ. Since Λ is finite dimensional, the

Jacobson radical JΛ is nilpotent. Hence γ is nilpotent. It follows that 1− γ = 1− αjβ is
invertible. □

We fix a complete set {ei}i ∈ I of primitive orthogonal idempotent element of Λ. Let
P, P ′ be projective Λ-modules. We take decomposition P =

⊕m
s=1 Ps, P ′ =

⊕n
t=1 P ′

t into
indecomposable projective Λ-modules Ps

∼= Λei(s), P ′
t
∼= Λej(t). Recall that a homomor-

phism f : P → P ′ of Λ-modules belongs to rad(P, P ′) if and only if each component
fts : Ps → P ′

t belongs to the radical ei(s)JΛej(t) under the identification

HomΛ
(
Ps, P ′

t

) ∼= HomΛ
(
Λei(s), Λej(t)

)
∼= ei(s)Λej(t).

By Lemma 2.23 and Lemma 2.20, we see that F and RF preserve radical morphisms
between projective modules. Thus we obtain the following lemma.

Lemma 2.24. Let P, P ′ be projective Λ-modules. Then for a radical morphism f : P →
P ′, the morphism F (f) : F (P ) → F (P ′) (resp. RF (f) : RF (P ) → RF (P ′)) is a radical
morphism between projective A (resp. Λ)-modules.

Let M be a Λ-module and P a projective Λ-module. Recall from [10, Proposition I.4.1]
that a surjective homomorphism p : P → M is projective cover if and only if it is right
minimal.

The following lemma shows that the functors F, RF preserve projective covers.
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Lemma 2.25. Let p : P →M be a projective cover of a Λ-module M . Then
(1) F (p) : F (P )→ F (M) is a projective cover.
(2) RF (p) : RF (P )→ RF (M) is a projective cover.

Proof. (1) Let K = Ker p be the kernel of p and i : K → P the canonical inclusion. By
Lemma 2.21, i ∈ rad(K, P ). By the same lemma, we only have to show that F (i) ∈
rad(F (K), F (P )), since F is exact and preserves projective modules.

Let q : P ′ → K be a projective cover. Then i ◦ q ∈ rad(P ′, P ). By Lemma 2.24, we
have F (i) ◦ F (q) = F (i ◦ q) ∈ rad(F (P ′), F (P )). Since F is exact, F (q) : F (P ′) → F (K)
is a surjective homomorphism. Thus we can apply Lemma 2.22 and conclude that F (i)
belongs to rad(F (K), F (P )).

(2) Since RF is exact and preserves projective modules and radical morphisms between
projective modules, the same proof with (1) works for RF . □

Let M be a Λ-module. Recall that a projective presentation P1
f−→ P0

p−→ M → 0 is
called minimal if the homomorphisms p : P0 → M and f : P1 → Ker p are projective
covers.

As a consequence of Lemma 2.25, we obtain the following corollary that shows that the
functors F, RF preserve minimal projective presentations.

Corollary 2.26. Let M be a Λ-module and P1
f→ P0 −→ M −→ 0 a minimal projective

presentation. Then, the following assertions hold.

(1) The projective presentation F (P1) F (f)−−−→ F (P0) −→ F (M) −→ 0 of the A-module
F (M) is minimal.

(2) The projective presentation RF (P1) RF (f)−−−−→ RF (P0) −→ RF (M) −→ 0 of the
Λ-module RF (M) is minimal.

2.3.3. Compatibility of the AR-translation τ with F . It was proved that the Auslander–
Reiten translations τ (of Λ and of A) commutes with the induction functor F in the case
that |G| is invertible in k by Reiten–Riedtmann [45, Proof of Lemma 4.2]. (Breaz–Marcus–
Modoi [15, Proposition 3.5] proved the same commutativity for group graded algebras
satisfying some conditions.) In the next proposition, we show that the commutativity
holds true in general.

Proposition 2.27 ([21, Lemma 7.3]). Let M be a Λ-module. Then, τF (M) = Fτ(M).

This proposition has been demonstrated in [21, Lemma 7.3] using the same method as
our proof. However, for the reader’s convenience, we include a proof here.

We need the following compatibility of F = A ⊗Λ − with the k-duality D(−) =
Homk(−, k).

Lemma 2.28. For a right Λ-module M ′, we have the following isomorphism of left A-
modules which is natural in M ′

A⊗Λ D(M ′) ∼= D
(
M ′ ⊗Λ A

)
Proof. The desired isomorphism is obtained from the following string of isomorphisms:

A⊗Λ D(M ′) ∼= HomΛ(A, Λ)⊗Λ D(M ′) ∼= HomΛ
(
A, D(M ′)

)
∼= Homk

(
M ′ ⊗Λ A, k

)
= D

(
M ′ ⊗Λ A

)
. □
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For simplicity we use the same symbol (−)∗ to denote the dualities (−)∗ := HomΛ(−, Λ)
and (−)∗ := HomA(−, A)

Proof of Proposition 2.27. Let P1
f−→ P0 → M → 0 be a minimal projective presentation

of M . Then we have τ(M) ∼= Ker[D(f∗) : D(P ∗
1 )→ D(P ∗

0 )] and by Lemma 2.28

A⊗Λ τ(M) ∼= Ker
[
A⊗D(f∗) : A⊗Λ D(P ∗

1 ) −→ A⊗Λ D(P ∗
0 )

]
∼= Ker

[
D(f∗ ⊗A) : D(P ∗

1 ⊗Λ A) −→ D(P ∗
0 ⊗Λ A)

]
∼= Ker

[
D((A⊗ f)∗) : D((A⊗Λ P1)∗) −→ D((A⊗Λ P0)∗)

]

where for the last isomorphism we use the isomorphism HomΛ(P, Λ)⊗Λ A ∼= HomA(A⊗Λ
P, A) for a Λ-module P .

By Corollary 2.26(1), the projective presentation A⊗Λ P1
A⊗f−−−→ A⊗Λ P0 → A⊗Λ M → 0

of A⊗Λ M is minimal. It follows that τ(A⊗Λ M) = Ker D((A⊗ f)∗) ∼= A⊗Λ τ(M). □

2.3.4. Compatibility of the AR-translation τ with R. It is well-known that if char k ∤ |G|,
the Auslander–Reiten translations τ (of Λ and of A) commute with the restriction func-
tor R. (Dade [23, Corollary 5.7] (see also [15, Proposition 3.7]) proved the commutativity
for group graded algebras satisfying certain condition.)

We remark that the commutativity does not hold true in general.

Example 2.29. For example, let k = F2, G = Z/2Z and Λ = k with the trivial G-action.
Then A = kG ∼= k[x]/(x2) and for a trivial G-module N := k we have Rτ(N) = R(N)
and τR(N) = 0. Thus τR(N) ̸= Rτ(N).

In the next proposition, we show that if we put a mild condition (irrelevant to |G| nor
char k) on an A-module N , then we have τR(N) ∼= Rτ(N).

Proposition 2.30. Let N be an A-module and Q1
g−→ Q0 → N → 0 be a minimal projective

presentation. Assume that N ∈ add FR(N). Then the following assertions hold.
(1) The morphism R(g) : R(Q1) → R(Q0) gives a minimal projective presentation of

R(N).
(2) The morphism FR(g) : FR(Q1) → FR(Q0) gives a minimal projective presenta-

tion of FR(N).
(3) We have τR(N) ∼= Rτ(N).

We note that by Lemma 2.17, in the case char k ∤ |G|, we have N ∈ add FR(N) for any
A-module N . Hence we can recover the commutativity τR(N) ∼= R(τN) in the classical
case char k ∤ |G| from the above proposition. We also note that thanks to Lemma 2.15, a
(mod G)-stable rigid A-module N satisfies the condition N ∈ add FR(N).

To prove the proposition, we need the following compatibility of R with dualities (−)∗ =
HomΛ(−, Λ) and (−)∗ = HomA(−, A)

Lemma 2.31. For an A-module N , there is an isomorphism R(N∗) ∼= R(N)∗ which is
natural in N .

Proof. Since F is a right adjoint of R, we have the following isomorphism of k-vector
spaces

HomA(N, A) ∼= HomA(N, F (Λ)) ∼= HomΛ(R(N), Λ).
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It is straightforward to check that this map is compatible with the action of Λ. □

Proof of Proposition 2.30. (1) We set M := R(N). Let P1
f−→ P0 →M → 0 be a minimal

projective presentation of M . It follows from the assumption N ∈ add F (M) that the
complex [Q1 → Q0] is a direct summand of a direct sum of the complex [F (P1)→ F (P0)].
Hence the complex [R(Q1)→ R(Q0)] is a direct summand of a direct sum of the complex
[RF (P1) → RF (P0)]. On the other hand, by Corollary 2.26, the projective presentation
RF (P1) RF (f)−−−−→ RF (P0) → RF (M) → 0 is minimal. It is easy to see that if a projec-
tive presentation is a direct summand of a minimal projective presentation, then it is a
minimal projective presentation. Thus we conclude that R(g) gives a minimal projective
presentation of R(N).

(2) follows from Corollary 2.26.
(3) We have the following isomorphisms by Lemma 2.31

Rτ(N) ∼= Ker [RD(g∗) : RD(Q∗
1) −→ RD(Q∗

0)]
∼= Ker [D(R(g∗)) : D(R(Q∗

1)) −→ D(R(Q∗
0))]

∼= Ker [D((Rg)∗) : D(R(Q1)∗) −→ D(R(Q0)∗)] .

By (1), R(Q1) R(g)−−−→ R(Q0)→ R(N)→ 0 is a minimal projective presentation of R(N). It
follows that Rτ(N) ∼= Ker D((Rg)∗) = τR(N). □

3. τ-tilting theory of skew group algebra extensions

In this section we discuss τ -tilting theory of a skew group algebra extension Λ ⊂ Λ ∗G.
For the definition of support τ -tilting modules and other basic notions and results, we
refer [1].

3.1. The bijection. The next theorem is the first step to prove Theorem 3.3, which is
the τ -tilting part of Main Theorem 1.1.

Theorem 3.1.
(1) If M is a G-stable support τ -tilting Λ-module, then F (M) is a support τ -tilting

A-module.
(2) If N is a (mod G)-stable support τ -tilting A-module, then R(N) is a support

τ -tilting Λ-module.

A sketch of the first proof of Theorem 3.1. (1) is a generalization of [39, Theorem 3.2] in
our setting as well as a generalization of [47, Theorem 4.2]. With the preparations given
before mainly the commutativity τF (M) ∼= F (τM) (Proposition 2.27), the same proof
with [47] works.

(2) is a generalization of [40, Theorem 3.4] in our setting. With the preparations
given before, mainly the commutativity τR(N) ∼= R(τN) for (mod G)-stable N (Proposi-
tion 2.30), the same proof with [40] works. □

Remark 3.2. In Section 4.3 we give an alternative proof of Theorem 3.1 by using
2-term silting complexes. In the proof we do not use the commutativity τF (M) ∼=
F (τM), τR(N) ∼= R(τN) that played crucial roles in the first proof.

Let sτ - tilt Λ and sτ - tilt A be the posets of (isomorphism classes of) basic support
τ -tilting modules over Λ and A respectively. We denote by (sτ - tilt Λ)G the subposet of
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G-stable basic support τ -tilting Λ-modules, and by (sτ - tilt A)mod G the poset of (mod G)-
stable basic support τ -tilting A-modules.

We remark that since we are not assuming that our algebras Λ and A are basic, strictly
speaking the τ -tilting module Λ (resp. A) does not necessarily belong to sτ - tilt Λ (resp.
sτ - tilt A). However, to simplify the notation, we often denote Λ and A to denote the basic
τ -tilting modules Λbasic and Abasic.
Theorem 3.3 (cf. [40, Corollary 3.9]). The adjoint pair (F = IndA

Λ , R = ResA
Λ) induces

an isomorphism of posets
F = IndA

Λ : (sτ - tilt Λ)G ←→ (sτ - tilt A)mod G : ResA
Λ = R.

Proof. Thanks to Theorem 3.1, the maps F : (sτ - tilt Λ)G→(sτ - tilt A)mod G, M 7→F (M)basic

and R : (sτ - tilt A)mod G → (sτ - tilt Λ)G, N 7→ R(N)basic are well-defined. Moreover, it
follows from Corollary 2.14 and Proposition 2.15 that these maps are the inverse maps to
each other.

Recall that for two support τ -tilting modules M1 and M2, the inequality M1 ≥ M2 is
defined to be existence of a surjection M ′

1 ↠ M2 from some M ′
1 ∈ add M1. Since the

functors F, R preserve surjections, it is straightforward to check that the above maps are
poset morphisms. □

Assume that all the simple G-modules are 1-dimensional. Then it follows from the
discussion after Definition 2.10 and Proposition 2.15 that (mod G)-stability of rigid A-mo-
dules coincides with X-stability of rigid A-modules. Thus we obtain the following corollary
in which we denote the poset of X-stable support τ -tilting A-modules by (sτ - tilt A)X.
Corollary 3.4. Assume that all the simple G-modules are 1-dimensional. Then the adjoint
pair (IndA

Λ , ResA
Λ) induces an isomorphism of posets

IndA
Λ : (sτ - tilt Λ)G ←→ (sτ - tilt A)X : ResA

Λ .

Remark 3.5. We note that if k is algebraically closed and G is abelian, then all the
simple G-module is 1-dimensional. In the case that k is algebraically closed and G is
abelian, the statement of Corollary 3.4 for an abelian group G such that char k ∤ |G| was
claimed in [47, Corollary 4.7], which was obtained as a consequence of [47, Theorem 4.6]
that claimed the same statement holds true even in the case that G is solvable such
that char k ∤ |G|. However, as is shown in Example 3.6, there exists an example of an
algebra Λ with an action G ↷ Λ of a solvable group G such that char k ∤ |G| that
satisfies (sτ - tilt A)mod G ⊊ (sτ - tilt A)X where we set A := Λ ∗ G. Consequently, the map
IndA

Λ : (sτ - tilt Λ)G → (sτ - tilt A)X is not a bijection.
3.1.1. An example.
Example 3.6. Assume that k is algebraically closed.

Let G = S3 be the symmetric group of degree 3 and Λ := k[x]/(x2). We equip an
action of G on Λ to be σ · x := sgn(σ)x for σ ∈ S3. We set A := Λ ∗G.

Since the algebra Λ is local, we have sτ - tilt Λ = {0 < Λ}. It is clear that both of Λ, 0
are G-stable. Hence we have (sτ - tilt Λ)G = {0 < Λ}. It follows from Theorem 3.3 that
(sτ - tilt A)mod G = {0 < A}.

From now, we directly compute the Hasse quiver of sτ - tilt A, determine the actions
S⊗G

k − of simple G-modules on sτ - tilt A and finally check that (sτ - tilt A)mod G = {0 < A}
actually holds. We see that the τ -tilting theory of A heavily depends on the characteristic
of the base fields.
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(I) The case char k ̸= 2, 3.
To describe the skew group algebra A, we set Q to be the quiver below and

A′
12 := kQ/(x′x′′, x′′x′).

1
x′
// 2

x′′
oo

Then using the general method given in [14, Section 3] (or direct computation),
we can check that A is isomorphic to A′

12×M2(Λ) and hence Morita equivalent to
A′ := A′

12 × Λ. We set e3 := (0, 1Λ) ∈ A′.
The Hasse diagram of the poset sτ - tilt A = sτ - tilt A′ is given below:

Q1 ⊕Q2 ⊕Q3

Q1 ⊕Q2

S2 ⊕Q2 ⊕Q3 Q1 ⊕ S1 ⊕Q3

S2 ⊕Q2 Q1 ⊕ S1

S2 ⊕Q3 S1 ⊕Q3

S2 S1

Q3

0
where Q1, Q2, Q3 denote the indecomposable projective A′-modules corresponding
to the vertices 1, 2, 3 and S1, S2, S3 denote the simple A′-modules corresponding
to the vertices 1, 2, 3.

We study (mod G)-stability and X-stability. Let kG be the trivial represen-
tation, ksgn the sign representation and V the unique irreducible 2-dimensional
representation of G. Using Example 2.6 we can check that

ksgn ⊗G
k Q1 ∼= Q2, ksgn ⊗G

k Q2 ∼= Q1, ksgn ⊗G
k Q3 ∼= Q3,

ksgn ⊗G
k S1 ∼= S2, ksgn ⊗G

k S2 ∼= S1, ksgn ⊗G
k S3 ∼= S3,

V ⊗G
k Q1 ∼= Q3, V ⊗G

k Q2 ∼= Q3, V ⊗G
k Q3 ∼= Q1 ⊕Q2 ⊕Q3.

(3.1)

Thus, (mod G)-stable support τ -tilting modules are precisely Q1⊕Q2⊕Q3 and 0.
These are X-stable. But there are two more X-stable support τ -tilting modules Q3
and Q1 ⊕Q2.

Remark 3.7. The above isomorphisms (3.1) are that in the category mod A′. Thus, in
particular, we regard ksgn ⊗G

k −, V ⊗G
k − are endofunctors of mod A′ via the equivalence

mod A′ ∼= mod A. The same remark is applied to the isomorphisms (3.2).

(II) The case char k = 2. In this case, the action G ↷ Λ is trivial. It follows that the
skew group algebra A is the ordinary group algebra A = Λ⊗kG. It is well-known
that kG ∼= k[y]/(y2)×M2(k). Hence we see that A ∼= Λ[y]/(y2)×M2(Λ) and that
A is Morita equivalent to A′′ := Λ[y]/(y2)× Λ = k[x, y]/(x2, y2)× k[x]/(x2).

The Hasse diagram of the poset sτ - tilt A = sτ - tilt A′′ is given below:

Q1 ⊕Q2

Q2 Q1

0
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where Q1 and Q2 denote the indecomposable projective A′′-modules corresponding
to the primitive idempotent elements e1 := (1, 0), e2 := (0, 1) of A′′.

Since we are assuming char k = 2, the symmetric group G = S3 has two simple
modules, the trivial module kG and the unique 2-dimensional irreducible represen-
tation V . It follows that every A-module is X-stable. We can check that

V ⊗G
k Q1 ∼= Q⊕2

2 , V ⊗G
k Q2 ∼= Q1 ⊕Q2. (3.2)

Thus, (mod G)-stable support τ -tilting modules are Q1 ⊕Q2 and 0.
(III) The case char k = 3.

Let η, ζ ∈ G be elements of order 3 and 2 respectively. Then we have G =
⟨η⟩ ⋊ ⟨ζ⟩. Since η trivially acts on Λ, we have A = Λ ∗ G ∼= (Λ ∗ ⟨η⟩) ∗ ⟨ζ⟩ ∼=
(Λ⊗ k[y]/(y3)) ∗ ⟨ζ⟩ ∼= (k[x, y] ∗ ⟨ζ⟩)/(x2, y3) where we set y := η − η2 and in the
rightmost term, we take the action ⟨ζ⟩↷ k[x, y] given by ζ · x := −x, ζ · y := −y.
It is well-known that the algebra k[x, y] ∗ ⟨ζ⟩ is isomorphic to the preprojective
algebra Π(Ã1) of the extended Dynkin quiver Ã1. It follows that the skew group
algebra A is isomorphic to the following path algebra kQ′′/I with the relations

Q′′ : 1

x
((

y ))
2,

x′

gg y′ii

and the relations are xx′ = 0, x′x = 0, yy′y = 0, y′yy′ = 0, x′y = y′x, xy′ = yx′.
The Hasse quiver of the poset sτ - tilt A has two connected components both of

which are infinite:

Q1 ⊕Q2

N(2) ⊕Q2 Q1 ⊕N ′
(2)

N(2) ⊕N(3) N ′
(3) ⊕N ′

(2)

N(4) ⊕N(3) N ′
(3) ⊕N ′

(4)

...
...

...
...

L(3) ⊕ L(4) L′
(3) ⊕ L′

(4)

L(3) ⊕ L(2) L′
(3) ⊕ L′

(2)

S2 ⊕ L(2) S1 ⊕ L′
(2)

S2 S1

0

(3.3)

where

N(2) := 2 2
1 1 1

2 2
, N(3) := 2 2 2

1 1 1 1
2 2

, N(4) := 2 2 2 2
1 1 1 1 1

2 2
, . . .

L(2) := 1 1
2 , L(3) := 1 1 1

2 2 , L(4) := 1 1 1 1
2 2 2 , . . .

and the composition series of N ′
(i), L′

(i) for i = 2, 3, . . . are obtained from that of
N(i), L(i) by replacing the composition factors 1, 2 with 2, 1.

We can show by the same method of the proof of [25, Theorem 6.17] that the Hasse quiver
of sτ - tilt A has precisely two components given in (3.3). (We have the following alternative
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proof. The element w := yy′+y′y of A is central and belongs to the Jacobson radical. It fol-
lows from [26, Theorem 4.1] that the canonical map sτ - tilt A→ sτ - tilt A/(w) is bijective.
On the other hand, the algebra A/(w) is precisely the algebra dealt in [25, Theorem 6.17].
Hence we can obtain the Hasse quiver of the poset sτ - tilt A/(w) ∼= 2-tilt A/(w).)

Since we are assuming char k = 3, the symmetric group G = S3 has two simple modules,
the trivial module kG and the sign representation ksgn. It follows in particular that
(mod G)-stability for rigid A-modules coincides with X-stability for rigid A-modules. We
can check that

ksgn ⊗G
k Q1 ∼= Q2, ksgn ⊗G

k Q2 ∼= Q1, ksgn ⊗G
k S1 ∼= S2, ksgn ⊗G

k S2 ∼= S1.

It follows that the functor ksgn ⊗G
k − induces the reflection with respect to the vertical

dotted lines of the Hasse quiver of the poset sτ - tilt A.
Thus, we check that (mod G)-stable support τ -tilting modules are Q1 ⊕Q2 and 0.

3.2. τ-tilting finiteness. Recall that an algebra Λ is said to be τ -tilting finite if we
have |sτ - tilt Λ| < ∞. From Example 3.6(III) we observe that τ -tilting finiteness is not
necessarily preserved by a skew group algebra extension. The aim of this section is to prove
Theorem 3.11 that tells that finiteness of support τ -tilting modules of Λ is transferred to
A = Λ ∗G under certain condition that can be easily checked in many situations.

3.2.1. Preparations. We need preparations. In many situation of applications, an algebra
Λ = kQ/(r1, . . . , rn) is often given by a quiver Q with the admissible relations r1, . . . , rn

and an action G ↷ Λ is often induced from an action G ↷ Q on the quiver Q that
preserves the ideal (r1, . . . , rn). The following definition is an abstraction of this situation.

Definition 3.8. Let Λ be an algebra with a G-action.
We say that the action G ↷ Λ preserves idempotent elements if the following conditions

(1)(2) hold. We say that the action G ↷ Λ preserves idempotent elements and has local
stabilizers if the following conditions (1)(2)(3) hold.

(1) An algebra Λ is basic and elementary with a complete set E ⊂ Λ of primitive orthog-
onal idempotent elements. Namely, for e, e′ ∈ E, e ̸= e′, we have e(Λ/JΛ)e′ = 0
and e(Λ/JΛ)e = k.

(2) The action of G preserves E. Namely, for any e ∈ E and g ∈ G, we have g(e) ∈ E.
(3) For any e ∈ E, the group algebra k stab(e) of the stabilizer group stab(e) is local.

As is mentioned above, the following is an elementary and basic example of an action
G ↷ Λ that preserves idempotent elements.

Example 3.9. Let Q be a finite quiver and I a two-sided admissible ideal of kQ. Assume
a finite group G acts on Q in such a way that the extended action on kQ preserves I.
Then the induced action of G on Λ := kQ/I preserves the canonical idempotent elements
E := {ei | i ∈ Q0} that correspond to the vertices of Q.

The following lemma provides basic properties of indecomposable projective modules
over A = Λ ∗G in the case that an action G ↷ Λ preserves idempotent elements.

Lemma 3.10. Let Λ be an algebra with a G-action that preserves idempotent elements
and E the fixed set in Definition 3.8. Then the following assertions hold.

(1) Let e, e′ ∈ E. Then the idempotent elements e, e′ are equivalent as idempotent
elements of A if and only if these elements are in the same G-orbit.
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(2) An element e ∈ E (regarded as an element of A via the canonical inclusion Λ ⊂ A)
is primitive in A if and only if the group algebra k stab(e) is local where stab(e) is
the stabilizer subgroup of e.

(3) The projective module Ae is (mod G)-stable for each e ∈ E.

Proof. (1) “If” part. We assume that there exists g ∈ G such that e′ = g(e). Then the
elements a := e ∗ g−1, b := g(e) ∗ g satisfy the equations

ea = ae′ = a, e′b = be = b, ab = e, ba = e′. (3.4)

“Only if” part. We prove only if part by contradiction. Assume that e and e′ belong to
different G-orbit. Let a, b ∈ A that satisfy the equations (3.4). We write a =

∑
g ∈ G ag ∗

g, b =
∑

g ∈ G bg ∗ g with ag, bg ∈ Λ. It follows from the first and second equations of (3.4)
that ag ∈ eΛg(e′) = eJΛg(e′), bg ∈ e′Λg(e) = e′JΛg(e). Therefore, e = ab, e′ = ba belong
to JΛ ∗G. In particular, we come to the contradiction that these elements are nilpotent.

(2) The two-sided ideal ⟨JΛ⟩ := AJΛA of A generated by JΛ ⊂ Λ ⊂ A is the linear span
of the elements of the forms j ∗ g (j ∈ JΛ, g ∈ G). It follows that A/⟨JΛ⟩ ∼= Λ/JΛ ∗ G.
Observe that for r ∈ Λ, g ∈ G, we have e(r ∗ g)e = (erg(e)) ∗ g where r := r + JΛ. It
follows from the condition (1) of Definition 3.8 that e(A/⟨JΛ⟩)e ∼= k stab(e).

Since ⟨JΛ⟩ ⊂ JA by Lemma 2.23, the algebra e(A/JA)e is the quotient algebra of
e(A/⟨JΛ⟩)e by its Jacobson radical e(JA/⟨JΛ⟩)e. It follows that k stab(e) ∼= e(A/⟨JΛ⟩)e is
local if and only if e(A/JA)e is a field if and only if e is primitive as an element of A.

(3) We fix a complete set R of the representatives of G/ stab(e) that contains the unit
eG of G. Then

⊕
g ∈ R Λg(e) is a direct summand of the A-module Λ and

⊕
g ∈ R Ag(e) =

(
⊕

g ∈ R Λg(e)) ∗ G. Hence
⊕

g ∈ R Ag(e) is (mod G)-stable. By (1), we have add Ae =
add(

⊕
g ∈ R Ag(e)). Therefore, we conclude that Ae is (mod G)-stable. □

3.2.2. Finiteness theorem.

Theorem 3.11. Let G be a finite group and Λ an algebra with a G-action that preserves
idempotent elements and has local stabilizers. Moreover, we assume |(sτ - tilt Λ)G| < ∞.
Then the following assertions hold.

(1) A = Λ ∗G is τ -tilting finite.
(2) All supprot τ -tilting A-modules are (mod G)-stable.
(3) The adjoint pair (IndA

Λ , ResA
Λ) induces a bijection

IndA
Λ : (sτ - tilt Λ)G ←→ sτ - tilt A : ResA

Λ .

To prove this theorem, we introduce the notion of ind-(mod G)-stability.

Definition 3.12. A support τ -tilting A-module N is said to be ind-(mod G)-stable if each
indecomposable direct summand of N is (mod G)-stable. Namely, if N =

⊕n
i=1 Ni is a

decomposition into indecomposable modules Ni, then each Ni is (mod G)-stable.
We note the condition is equivalent to X ⊗G

k Ni
∼= N⊕ dim X

i for any X ∈ mod G.

A key step is the following lemma that states that ind-(mod G)-stability of support
τ -tilting modules is preserved by irreducible left mutations.

Lemma 3.13. Assume N =
⊕n

i=1 Ni is a basic ind-(mod G)-stable support τ -tilting A-
module with decompostion into indecmoposable direct summand Ni. Then for any i =
1, . . . , n, the irreducible left mutation µ−

i (N) is also ind-(mod G)-stable.
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Proof. The case n = 1 is clear. Thus we may assume that n ≥ 2. We may also assume that
i = 1. We set N ′ :=

⊕n
i=2 Ni. Let f : N1 → L be a left minimal add N ′-approximation.

We only have to prove that the cokernel C := Cok f is (mod G)-stable.
For this purpose, we take a finite dimensional G-module X and show that X ⊗G

k C ∼=
C⊕ dim X . First we claim that X ⊗G

k f is a left add N ′-approximation. Indeed, let g :
X ⊗G

k N1 → K be a homomorphism of A-modules with K ∈ add N ′. Recall that the pair
(X⊗G

k −, D(X)⊗G
k −) is an adjoint pair by Proposition 2.11. Let g◦ : N1 → D(X)⊗G

k K be
the homomorphism corresponding to g via the adjoint isomorphism. Since N ′ is (mod G)-
stable, we have D(X) ⊗G

k K ∈ add N ′. It follows that there exists a homomorphism
h : L → D(X)⊗G

k K such that h ◦ f = g◦. Let ◦h : X ⊗G
k L → K be the homomorphism

corresponding to h via the adjoint isomorphism. Then by the naturality of adjoint isomor-
phisms, we have ◦h◦(X⊗G

k f) = g. This shows that X⊗G
k f is a left add N ′-approximation

as desired.

X ⊗G
k N1

X⊗G
k f

//

g
((

X ⊗G
k L,

◦h
��

K

N1
f //

g◦
((

L

h
��

D(X)⊗G
k K

For simplicity, we set d = dim X. We fix an isomorphism X ⊗G
k N1 ∼= N⊕d

1 . By the
above claim and the assumption that f is a minimal left add N ′-approximation, we have
homomorphism s : L⊕d → X ⊗G

k L, t : X ⊗G
k L → L⊕d that compatible with f⊕d and

X ⊗G
k f .

N⊕d
1

∼=
��

f⊕d

// L⊕d

s

��
X ⊗G

k N1
X⊗G

k f

// X ⊗G
k L

t

OO

Since f⊕d is left minimal, the composition t ◦ s is an isomorphism. Moreover, as X ⊗G
k L

and L⊕d are (non-canonically) isomorphic to each other and in particular have the same
dimension, it follows that the morphisms s and t are isomorphisms. Now we conclude that
X ⊗G

k C = Cok(X ⊗G
k f) ∼= Cok(f⊕d) ∼= C⊕d as desired. □

Proof of Theorem 3.11. Let F ⊂ E be a complete set of representatives of E/G. It follows
from Lemma 3.10 that Abasic ∼=

⊕
e ∈ F Ae and that it is ind-(mod G)-stable.

Let µ−N
• (A) be the set of support τ -tilting modules that are obtained from Abasic by it-

erated irreducible left mutations. Applying Lemma 3.13 repeatedly, we see that µ−N
• (A) ⊂

(sτ - tilt A)mod G. Since we are assuming |(sτ - tilt Λ)G| < ∞, the set (sτ - tilt A)mod G is a
finite set by Theorem 3.3. It follows that the set µ−N

• (A) is also finite. Thus, by [1,
Corollary 2.38], we have µ−N

• (A) = sτ - tilt A. Consequently we have (sτ - tilt A)mod G =
sτ - tilt A. □
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3.3. Complements.

3.3.1. The aim of Section 3.3.1 is to show that if (M, P ) is a support τ -tilting pair over
Λ such that M is G-stable, then the pair (F (M), F (P )) is a support τ -tilting pair over
A such that F (M) is (mod G)-stable. Moreover, we study a converse problem. As is
shown in Example 3.17 below, even if a support τ -tilting Λ-module M is not G-stable,
the A-module F (M) possibly becomes a support τ -tilting A-module. However, the next
proposition shows that a support τ -tilting Λ-module M with the complement P is G-stable
if and only if the pair (F (M), F (P )) is a support τ -tilting pair over A.

Proposition 3.14. Let (M, P ) be a support τ -tilting pair over Λ. Then the following
conditions are equivalent.

(a) M is G-stable.
(b) The pair (F (M), F (P )) is a support τ -tilting pair over A.

Via the reinterpretation given in Appendix A, this proposition and the proof of Propo-
sition 4.4 gives a generalization of [15, Theorem 4.3].

We need the following lemma.

Lemma 3.15. For a Λ-module M , the following conditions are equivalent.
(1) F (M) is a support τ -tilting A-module.
(2) RF (M) =

⊕
g ∈ G gM is a support τ -tilting Λ-module.

Proof. (1)⇒(2). By Corollary 2.13, F (M) is (mod G)-stable. The implication follows from
Theorem 3.1.

(2)⇒(1). By Lemma 2.12, RF (M) is G-stable. It follows from Theorem 3.1 that
FRF (M) is support τ -tilting A-module. Since add FRF (M) = add F (M) by Lemma 2.12,
we conclude that F (M) is support τ -tilting A-module. □

Proof of Proposition 3.14. (a)⇒(b) By Theorem 3.1, F (M) is support τ -tilting A-module.
Let Q be a projective A-modules such that (F (M), Q) is a support τ -tilting pair.

It follows from the adjoint isomorphism HomΛ(R(Q), M) ∼= HomA(Q, F (M)) = 0 that
R(Q) ∈ add P and hence FR(Q) ∈ add F (P ). Since Q is projective, the canonical surjec-
tion FR(Q) = A⊗Λ Q→ Q splits. Thus we have Q ∈ add F (P ).

We recall the adjoint isomorphism

HomA(F (P ), F (M)) ∼= HomΛ(P, RF (M)) ∼= HomΛ

P,
⊕
g ∈ G

gM

 . (3.5)

Now by the assumption that M is G-stable, we have add(
⊕

g ∈ G gM) = add M . It follows
from (3.5) that HomA(F (P ), F (M)) = 0 and F (P ) ∈ add Q. Thus we conclude that
add Q = add F (P ).

(b)⇒(a). The module
⊕

g ∈ G gM is support τ -tilting Λ-module by Lemma 3.15. In
particular it is τ -rigid. It follows that for any g ∈ G, we have

HomΛ (M, τ(gM)) = 0, HomΛ (gM, τM) = 0.

Moreover, since HomA(F (P ), F (M)) = 0, it follows from (3.5) that HomΛ(P, gM) = 0 for
any g ∈ G. Thanks to [1, Corollary 2.13] we see that gM ∈ add M . Now it is easy to
deduce that gM ∼= M . □

We provide an example of Λ-module M which is not a support τ -tilting module, but
F (M) is a support τ -tilting A-module.
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Example 3.16. Let Λ := kQ/(ab, ba) where Q is the following quiver

Q : 1
a // 2.
b

oo

Let G = ⟨g⟩ be a cyclic group of order 2 with a generator g. We give an action G ↷ Λ
by g : 1 ↔ 2, a ↔ b. Then there is an isomorphism A := Λ ∗ G

∼=−→ M2(k[x]/(x2)) of
algebras under which the element e1 ∈ A corresponds to the matrix unit

( 1 0
0 0

)
.

The projective Λ-module P1 = Λe1 is not a support τ -tilting Λ-module, but F (P1) = Ae1
is a support τ -tilting A-module.

We provide an example of a support τ -tilting Λ-module M which is not G-stable, but
F (M) is a support τ -tilting A-module.

Example 3.17. Let Λ := k × k. We set e1 := (1k, 0), e2 := (0, 1k). Let G := ⟨g⟩
be a cyclic group of order 2 with a generator g. We give an action G ↷ Λ by setting
g(e1) := e2, g(e2) := e1. The skew group algebra A := Λ ∗G is isomorphic to the matrix
algebra M2(k) of order 2.

It is easy to check that the simple Λ-module S1 = Λe1 corresponding to the vertex 1 is
a support τ -tilting Λ module which is not G-stable, but F (S1) = A(e1 ∗ eG) is a support
τ -tilting A-module.

3.3.2. In this section, we show that if (N, Q) is a support τ -tilting pair over A such that
N is (mod G)-stable, then the pair (R(N), R(Q)) is a support τ -tilting pair over Λ such
that R(N) is G-stable. We also study related problems as in the previous section.

First we establish the following lemma which is an R = ResA
Λ-version of Lemma 3.15.

Lemma 3.18. Let N be an A-module. The following conditions are equivalent
(1) R(N) is a support τ -tilting Λ-module.
(2) FR(N) = kG⊗G

k N is a support τ -tilting A-module.

Proof. (1)⇒(2). By Corollary 2.13, R(N) is G-stable. Thanks to Theorem 3.1, FR(N) =
kG⊗G

k N is a support τ -tilting A-module.
(2)⇒(1). By Corollary 2.13, FR(N) is (mod G)-stable. It follows from Theorem 3.1

that RFR(N) is a support τ -tilting Λ-module. By Corollary 2.13, we have add RFR(N) =
add R(N). Thus, we conclude that R(N) is a support τ -tilting A-module. □

The following is an R = ResA
Λ-version of Proposition 3.14. However, the two condi-

tions (a) and (b) are not equivalent in this situation.

Proposition 3.19. Let (N, Q) be a support τ -tilting pair over A. We consider the follow-
ing conditions.

(a) N is (mod G)-stable.
(b) (R(N), R(Q)) is a support τ -tilting pair over Λ.

Then the following assertions hold.
(1) The condition (a) implies (b).
(2) If one of the following conditions hold, then the condition (b) implies (a).

(i) char k does not divide |G|.
(ii) The group algebra kG is local.

Via the reinterpretation given in Appendix A, this proposition and the proof of Propo-
sition 4.4 gives a generalization of [15, Theorem 4.5].
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Proof. (1) Assume that N is (mod G)-stable. By Theorem 3.1, R(N) is a support τ -tilting
Λ-module. Let P be a projective Λ-module such that the pair (R(N), P ) is a support
τ -tilting pair over Λ. Then we have HomA(F (P ), N) ∼= HomΛ(P, R(N)) = 0. It follows
that F (P ) ∈ add Q and hence RF (P ) ∈ add R(Q). By Lemma 2.12, P is a direct summand
of RF (P ), we have P ∈ add R(Q).

Since N is (mod G)-stable, we have FR(N) ∈ add N . By the adjoint isomorphism, we
have HomΛ(R(Q), R(N)) ∼= HomA(Q, FR(N)) = 0. It follows that R(Q) ∈ add P . Thus
we conclude that add P = add R(Q).

(2) Before assuming one of (2i) or (2ii) holds, we only assume that the condition (b)
holds. Namely, we assume that (R(N), R(Q)) is a support τ -tilting pair over Λ. Since
R(N) is G-stable, the pair (FR(N), FR(Q)) is a support τ -tilting pair over A by Propo-
sition 3.14. We claim that add FR(Q) = add Q i.e., Q is (mod G)-stable. Indeed, since Q
is projective, the canonical surjection FR(Q) = kG⊗G

k Q→ Q splits. Hence we have Q ∈
add FR(Q). On the other hand, we have HomA(FR(Q), N) ∼= HomΛ(R(Q), R(N)) = 0.
It follows that FR(Q) ∈ add Q. Thus we conclude that add FR(Q) = add Q.

By the claim we have |Q| = |FR(Q)|. On the other hand, by a basic property of
support τ -tilting modules, we have |A| = |N |+ |Q| = |FR(N)|+ |FR(Q)|. It follows that
|N | = |FR(N)|.

If we additionally assume that one of (2i) or (2ii) holds, then we have add N ⊂
add FR(N) by Lemma 2.17. Thus, we conclude add N = add FR(N) as desired. □

We provide an example that shows that the condition (b) does not always imply the
condition (a).

Example 3.20. Assume that char k = 3. Let G = S3 be the symmetric group of degree 3.
We set Λ := k with the trivial G action. Then A = Λ ∗ G is the group algebra kG and
isomorphic to kQ/(aba, bab) where Q is a quiver given below

Q : 1
a // 2.
b

oo

Note that we may identify the simple modules S1, S2 corresponding to the vertices 1, 2
with the trivial representation kG and the sign representation ksgn.

Since kG ⊗G
k S2 ∼= A as A-modules, the module N := S2 ⊕ P2 is not (mod G)-stable.

But the pair (N, 0) is a supprot τ -tilting pair over A such that the pair (R(N), R(0)) is a
support τ -tilting pair over k.

4. Silting theory of skew group algebra extensions

In this section we discuss silting theory of a skew group algebra extension Λ ⊂ Λ ∗ G.
For the definition of silting complexes and other basic notions and results, we refer [4].

4.1. Preliminaries. Recall that the induction functor F = IndA
Λ : mod Λ → mod A and

the restriction functor R = ResA
Λ : mod A → mod Λ are exact and preserve projective

modules. Therefore, these functors F, R induce exact functors F = IndA
Λ : Db(mod Λ) →

Db(mod A) and R = ResA
Λ : Db(mod A) → Db(mod Λ) of derived categories, which are

denoted by the same symbols, and the functors F and R on the derived categories restrict
to exact functors F = IndA

Λ : Kb(proj Λ) → Kb(proj A) and R = ResA
Λ : Kb(proj A) →

Kb(proj Λ) of homotopy categories, which are also denoted by the same symbols.
Let g ∈ G. Then the endofunctor g(−) : mod Λ → mod Λ, M 7→ gM is exact and

preserves finitely generated projective modules. Thus it gives rise to an exact endofunctor
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g(−) of the derived category Db(mod Λ) and the homotopy category Kb(proj Λ). We define
the G-stability of an object M ∈ Kb(proj Λ) in a similar way of Definition 2.1.

Let X be a finite dimensional G-module. Then the endofunctor X ⊗G
k − : mod A →

mod A is exact and preserves finitely generated projective modules by Corollary 2.8. Thus
it gives rise to an exact endofunctor X ⊗G

k − of the derived category Db(mod A) and
the homotopy category Kb(proj A). We define the (mod G)-stability of an object N ∈
Kb(proj A) in a similar way of Definition 2.9.

Moreover, all isomorphisms established in Section 2.1 and Section 2.2 are natural in
relevant modules over Λ or A. It follows that all the results given in these sections have
their derived category version. Among other things we point out the following derived
category version of Proposition 2.15 for later quotations. To state this, we recall that an
object N ∈ Db(mod A) is called rigid if HomDb(mod A)(N, N [1]) = 0.

Proposition 4.1. For a rigid object N ∈ Db(mod A), the following conditions are equiv-
alent.

(1) N is (mod G)-stable.
(2) S ⊗G

k N ∈ add N for any simple G-modules S.
(3) add FR(N) = add N .

Moreover, if we further assume one of the following conditions:
(i) char k ∤ |G|,

(ii) kG is local, then the above conditions are equivalent to the following condition
(4).

(4) FR(N) ∈ add N .

4.2. The bijection. The aim of this section is to prove that the induction-restriction ad-
joint pair (F, R) induces a bijection between G-stable silting complexes and (mod G)-stable
silting complexes, whose restriction maps give bijections of the sets of 2-term silting com-
plexes having appropriate stabilities, and the set of tilting complexes having appropriate
stabilities. For this purpose, first we prove the following lemma.

Lemma 4.2.
(1) If S ∈ Kb(proj Λ) is a G-stable tilting (resp. silting, 2-term silting) complex of

Kb(proj Λ), then F (S) ∈ Kb(proj A) is a tilting (resp. silting, 2-term silting) object
of Kb(proj A).

(2) If T ∈ Kb(proj A) is a (mod G)-stable tilting (resp. silting, 2-term silting) complex
of Kb(proj A), then R(T ) ∈ Kb(proj Λ) is a tilting (resp. silting, 2-term silting)
object of Kb(proj Λ).

Proof. (1) Since Λ ∈ Kb(proj Λ) = thick S, we have A = F (Λ) ∈ thick F (S). It follows
that thick F (S) = Kb(proj A).

For n ∈ Z, we have
HomKb(proj A)(F (S), F (S)[n]) ∼= HomKb(Λ proj)(S, RF (S)[n]). (4.1)

Since S is G-stable, we have RF (S) ∈ add S by (a derived category version of) Corol-
lary 2.14. It follows from the assumption that S is tilting (resp. silting) that

HomKb(proj A)(F (S), F (S)[n]) = 0

for n ̸= 0 (resp. n > 0). Now we have shown that if S is a tilting (resp. silting) complex,
then so is F (S).
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Finally, since the functor F preserves projective modules, it follows that if S is a 2-term
silting complex, then so is F (S).

(2) can be proved with a similar argument by using Proposition 4.1 and the fact that
R(A) contains Λ as a direct summand. □

Let silt Λ be the poset (of isomorphism classes) of basic silting complexes over Λ. We
denote by (silt Λ)G the subposet of G-stable basic silting complexes. We also introduce
2-tilt Λ and (2-tilt Λ)G (resp. tilt Λ and (tilt Λ)G) the poset of 2-term silting complexes
(resp. tilting complexes) and the subposet of G-stable ones.

In a similar way, we define the posets (silt A)mod G, (2-tilt A)mod G and (tilt A)mod G to be
posets of (mod G)-stable silting complexes, 2-term silting complexes and tilting complexes
respectively.

We remark that since we are not assuming that our algebras Λ, A are basic, strictly
speaking the silting complex Λ (resp. A) does not necessarily belong to silt Λ (resp.
silt A). However, to simplify the notation, we often denote Λ and A to denote the basic
silting complexes Λbasic and Abasic.

Theorem 4.3. The adjoint pair (F = IndA
Λ , R = ResA

Λ) induces an isomorphism of posets

F = IndA
Λ : (silt Λ)G ←→ (silt A)mod G : ResA

Λ = R.

Moreover, the restrictions of these maps give isomorphisms
F : (2-tilt Λ)G ←→ (2-tilt A)mod G : R and F : (tilt Λ)G ←→ (tilt A)mod G : R.

Proof. Thanks to Lemma 4.2 the map F : (silt Λ)G → (silt A)mod G, S 7→ F (S)basic and
R : (silt A)mod G → (silt Λ)G, T 7→ R(T )basic are well defined. By (a derived category
version of) Corollary 2.14 and Proposition 4.1, we see that these maps are inverse to each
other. It also follows from Lemma 4.2 that restrictions of these maps give bijections F :
(2-tilt Λ)G ↔ (2-tilt A)mod G : R and F : (tilt Λ)G ↔ (tilt A)mod G : R.

Recall from [4] that for two silting complexes S1, S2, the inequality S1 ≥ S2 is defined
by the equality Hom(S1, S2[n]) = 0 (∀ n > 0). Using adjoint isomorphisms as in (4.1) and
(a derived category version of) Corollary 2.14 and Proposition 4.1, we can check that the
above maps are poset morphisms. □

4.3. Correspondence between 2-term silting complexes and support τ-tilting
modules. Recall from [1] that taking the 0th cohomology group H0(S) of a 2-term silting
complex S gives a bijection H0 : 2-tilt Λ→ sτ - tilt Λ.

Proposition 4.4.
(1) The bijection H0 : 2-tilt Λ → sτ - tilt Λ restricts to a bijection H0 : (2-tilt Λ)G →

(sτ - tilt Λ)G.
(2) The bijection H0 : 2-tilt A→ sτ - tilt A restricts to a bijection H0 : (2-tilt A)mod G →

(sτ - tilt A)mod G.

Proof. (1) We denote the inverse map of H0 : 2-tilt Λ → sτ - tilt Λ by K : sτ - tilt Λ →
2-tilt Λ. It is clear that if S is a G-stable 2-term silting complex, then H0(S) is G-stable.
Thus, we only have to show that if M is a G-stable support τ -tilting module, then the
2-term silting complex K(M) is G-stable.

Recall K(M) is constructed in the following way. Let P be a complement projective
module of M and P −1 → P 0 →M → 0 a minimal projective presentation. For simplicity
we set PM := [P −1 → P 0]. Then K(M) := PM ⊕ P [1].
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By Corollary 2.26, the complex RF (PM ) gives a minimal projective presentation of
RF (M). Since add RF (M) = add M by G-stablity of M , we have add RF (PM ) = add PM

in Kb(proj Λ). Next note that RF (P ) is projective Λ-module. Since the pairs (R, F )
and (F, R) are adjoint pairs, we have HomΛ(RF (P ), M) ∼= HomΛ(P, RF (M)) = 0. It
follows RF (P ) ∈ add P . On the other hand, we have P ∈ add RF (P ) by Lemma 2.12.
It follows that add RF (P ) = add P . Combining above two observations we conclude that
add RFK(M) = add K(M).

(2) is proved in a similar way by using Proposition 2.30(2) and the fact that the canonical
morphism RF (Q)→ Q is surjective. □

Remark 4.5. The equality add RF (P ) = add P in the above proof immediately follows
from Propositions 3.14 and 3.19. However, these two propositions rely on Theorem 3.1.
Therefore, if we use these two propositions in the proof, we can not use Proposition 4.4
to the second proof of the theorem given below.

The second proof of Theorem 3.1. (1) Let M be a G-stable support τ -tilting Λ-module.
Then H0FK(M) is a (mod G)-stable support τ -tilting A-module by Theorem 4.3 and
Proposition 4.4.

(sτ - tilt Λ)G K−−→ (2-tilt Λ)G F−−→ (2-tilt A)mod G H0
−−−→ (sτ - tilt A)mod G.

On the other hand, it is straightforward to check that H0FK(M) = F (M). This finishes
the proof of (1). The second statement is proved in a similar way. □

4.4. Silting discreteness. We introduce the notion of G-stable silting discreteness.

Definition 4.6. An algebra Λ with a G-action is called G-stable silting discrete if for any
n ≥ 0, there are only a finite number of G-stable silting complexes S over Λ such that
Λ[n] ≤ S ≤ Λ. In other words, we have |(silt Λ)G ∩ [Λ[n], Λ]| <∞ where

[Λ[n], Λ] :=
{
S ∈ silt Λ

∣∣ Λ[n] ≤ S ≤ Λ
}
.

We provide a silting version of Theorem 3.11.

Theorem 4.7. Let G be a finite group and Λ an algebra with G-action that preserves
idempotent elements and has local stabilizers. Assume that Λ is G-stable silting discrete.
Then the following assertions hold.

(1) A = Λ ∗G is silting discrete.
(2) All silting complexes over A are (mod G)-stable.
(3) The adjoint pair (IndA

Λ , ResA
Λ) induces a bijection

IndA
Λ : (silt Λ)G ←→ silt A : ResA

Λ .

Proof. We can introduce the notion of ind-(mod G)-stability of objects of Db(mod A) as in
the same way of Definition 3.12. Then we can prove by the same method of Lemma 3.13
that every irreducible left or irreducible right silting mutation µsilt,±

i (S) of an ind-(mod G)-
stable silting complex S over A is again ind-(mod G)-stable. On the other hand, as is men-
tioned in the proof of Theorem 3.11, the A-module Abasic is ind-(mod G)-stable. Therefore,
if we denote by µsilt,Z

• (A) the set of all silting complexes over A obtained by iterated irre-
ducible silting mutations from Abasic, then µsilt,Z

• (A) ⊂ (silt A)mod G.
Thus we only have to show that every silting complex T over A belongs to µsilt,Z

• (A).
Shifting the cohomological grading, we may assume that T ∈ [A[n], A] for some n ≥ 0.
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Assume that T /∈ µsilt,Z
• (A). Then there exists an infinite sequence of irreducible left silting

mutations starting from A that is bounded by T and hence by A[n].

Abasic µsilt,−
i1−−−−−→ T1

µsilt,−
i2−−−−−→ T2

µsilt,−
i3−−−−−→ · · · > T > Abasic[n].

Thus the set (silt A)mod G ∩ [A[n], A] contains an infinite set {A, T1, T2, . . . }. It follows
from Theorem 4.3 that |(silt Λ)G ∩ [Λ[n], Λ]| =∞, a contradiction. □

4.5. The case that Λ is Frobenius. In this section we assume that Λ is (finite dimen-
sional) Frobenius.

4.5.1. Preliminary. We always equip a Frobenius algebra Λ with a Nakayama automor-
phism νΛ and a Nakayama form ⟨−, +⟩Λ : Λ×Λ→ k, which now we recall. A Nakayama
automorphism νΛ : Λ → Λ is an algebra automorphism and a Nakayama form ⟨−, +⟩Λ :
Λ×Λ→ k is a non-degenerate bilinear form that satisfies the equations ⟨rs, t⟩Λ = ⟨r, st⟩Λ =
⟨s, tνΛ(r)⟩ for any r, s, t ∈ Λ. We note that a Nakayama automorphism is unique up to
inner automorphisms. We also note that the map ϕ : Λ→ D(Λ), ϕr(s) := ⟨r, s⟩Λ gives an
isomorphism ϕ : Λ→ νD(Λ) of Λ-Λ-bimodules.

Following [7, Definition 11], we say that a group action G ↷ Λ on a Frobenius algebra Λ
preserves the Nakayama form if we have ⟨g(r), g(s)⟩Λ = ⟨r, s⟩Λ for all r, s ∈ Λ and g ∈ G.

Proposition 4.8 (cf. [7, Proposition 4.4, Corollary 4.5]). Let Λ be a Frobenius algebra
with an action of G that preserves the Nakayama form. Then the skew group algebra
A = Λ ∗G is a Frobenius algebra with a Nakayama automorphism νA given by

νA(r ∗ g) := νΛ(r) ∗ g (r ∈ Λ, g ∈ G) .

Proof. For simplicity we write ν = νΛ, ⟨−, +⟩ = ⟨−, +⟩Λ. First we claim that νg(r) =
gν(r) for all r ∈ Λ. Indeed we can verify, as below, that the equation ⟨ν−1g−1νg(r), s⟩ =
⟨r, s⟩ holds for any s ∈ Λ:〈

ν−1g−1νg(r), s
〉

=
〈
s, g−1νg(r)

〉
= ⟨g(s), νg(r)⟩ = ⟨g(r), g(s)⟩ = ⟨r, s⟩.

Now it is straightforward to check that the bilinear form ⟨−, +⟩A : A×A→ k given by
⟨r ∗ g, s ∗ h⟩A := δg,h−1⟨r, g(s)⟩ (r, s ∈ Λ, g, h ∈ G)

is a Nakayama form whose Nakayama automorphism is νA. □

4.5.2. Twist by Nakayama automorphism of finite order. Let Λ be a Frobenius algebra.
Now we assume that Λ has a Nakayama automorphism ν of order N < ∞ in the group
Aut Λ of algebra automorphisms of Λ. Let ⟨ν⟩ ∼= Z/NZ be the subgroup of Aut Λ generated
by ν. We consider the canonical action ⟨ν⟩ ↷ Λ to be νn · r := νn(r) for r ∈ Λ and
n ∈ Z/NZ.

We denote the posets of ⟨ν⟩-stable objects by (sτ - tilt Λ)ν := (sτ - tilt Λ)⟨ν⟩, (silt Λ)ν :=
(silt Λ)⟨ν⟩ etc.

We point out the lemma below that follows from [3, Theorem A.4.], [2, Propositions 2.5,
2.6].

Lemma 4.9. We have the following equalities and an isomorphism of the posets
2-tilt Λ = (2-tilt Λ)ν ∼= (sτ - tilt Λ)ν , tilt Λ = (silt Λ)ν .

The following corollary plays a key role in applications given in the next section.
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Corollary 4.10. In the above setup, the skew group algebra A := Λ ∗ ⟨ν⟩ is symmetric
and we have the following equalities and an isomorphism of posets

2-tilt A = 2-tilt A ∼= sτ - tilt A, tilt A = silt A.

Proof. By Proposition 4.8, the automorphism νA of A given by νA(r ∗ νm) := νΛ(r) ∗ νm

is a Nakayama automorphism of A. It is straightforward to check that νA is the inner
automorphism adϵ = ϵ · − · ϵ−1 associated to the element ϵ := 1Λ ∗ ν. It follows that A
is symmetric. Applying Lemma 4.9 to the algebra A, we obtain the desired equalities of
posets. □

Applying Theorem 3.3, Theorem 4.3 and Proposition 4.4, we obtain the following result.

Theorem 4.11. The adjoint pair (IndA
Λ , ResA

Λ) induces the following isomorphisms of
posets

2-tilt Λ ∼= (2-tilt A)mod⟨ν⟩ ∼= (sτ - tilt A)mod⟨ν⟩, tilt Λ ∼= (silt A)mod⟨ν⟩.

Finally, applying Theorem 3.11 and Theorem 4.7, we obtain the following result.

Theorem 4.12. Assume that the action ⟨ν⟩↷ Λ preserves idempotent elements and has
local stabilizers and that Λ is tilting discrete. Then the adjoint pair (IndA

Λ , ResA
Λ) induces

the following isomorphisms of posets
2-tilt Λ ∼= 2-tilt A ∼= sτ - tilt A, tilt Λ ∼= silt A.

5. Application to preprojective algebras and folded mesh algebras

In this section, applying results obtained in the previous sections, we study silting theory
and τ -tilting theory of preprojective algebras and folded mesh algebras.

5.1. The preprojective algebra Π(Ln) of type Ln. In this section, we determine the
posets sτ - tilt Π(Ln), silt Π(Ln) in terms of the Weyl group and the braid group.

5.1.1. Recall that the generalized Dynkin diagrams introduced by Happel–Preiser–Ringel
[33] consist of the usual Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, G2 and one
additional case Ln defined as

Ln 1 2 3 · · · n− 1 n

We recall from [28, Section 7], the definition of the preprojective algebra Π(Ln) of type Ln.
The algebra Π(Ln) is given by the following quiver

1
β1 // 2

β2 //
β∗

1

oo 3
β3 //

β∗
2

oo · · ·
βn−2//

β∗
3

oo n− 1
βn−1 //

β∗
n−2

oo n
β∗

n−1

oo γ
yy

with the relation γ2 +
∑n

i=1(βiβ
∗
i −β∗

i−1βi−1), where we set β0 = β∗
0 = βn = β∗

n := 0. Rep-
resentation theory of Π(Ln) and its deformations have been studied by several researchers
(see e.g., [12, 34]). The generalized Dynkin diagrams and their preprojective algebras also
appear in the study of the quantum groups and tensor categories related to conformal field
theory (see e.g., [30, 38, 42]). We note that in this area the diagram Ln is usually named
as Tn.

The main theorem of this section tells that the posets sτ - tilt Π(Ln), silt Π(Ln) are
isomorphic to the Weyl group W and the braid group B of type Bn (and Cn) equipped
with the right weak orders respectively, which now we recall.
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Recall that the underlying valued graphs |∆Bn |, |∆Cn | of the Dynkin diagrams ∆Bn , ∆Cn

of types Bn,Cn coincide to each other. It follows that the Weyl groups and the braid groups
of types Bn and Cn coincide to each other. For simplicity we set |∆| := |∆Bn | = |∆Cn |.

|∆| : 1 4 2 · · · · · · n− 1 n.

Recall that the Weyl group W := W|∆| is defined by the generators si and relations
(sisj)m(i,j) = 1, where

m(i, j) :=


1 if i = j,
2 if no edge between i and j in ∆,
3 if there is an edge i — j in ∆,
4 if there is an edge i 4— j in ∆.

(We refer to [13, 36, 37] for the background of Weyl groups and braid groups.) We regard
W as a poset defined by the right weak order.

The braid group B = B|∆| is defined by generators ai and relations (aiaj)m(i,j) = 1 for
i ̸= j (i.e. the difference with W∆ is that we do not require the relations a2

i = 1 for any
i). We regard B as a poset defined by right-divisibility order.

Now we can state the main result of this section which gives a classification of (2-term)
tilting complexes for preprojective algebra of type Ln.

Theorem 5.1. Let Π(Ln) be the preprojective algebra of type Ln.
(1) We have the following anti-isomorphism of posets

W −→ sτ - tilt Π(Ln).

(2) We have the following anti-isomorphism of posets

B −→ silt Π(Ln).

5.1.2. Proof of Theorem 5.1. Recall that the preprojective algebra Π(An) of type An is
given by the following quiver

1
α1 // 2

α2 //
α∗

1

oo 3
α3 //

α∗
2

oo · · ·
αn−2//

α∗
3

oo n− 1
αn−1 //

α∗
n−2

oo n
α∗

n−1

oo

with the mesh relation
∑n

i=1(αiα
∗
i − α∗

i−1αi−1), where we set α0 = α∗
0 = αn = α∗

n := 0.
By [16, Definition 4.6, Theorem 4.8], the algebra automorphism ν of Π(An) given below
is a Nakayama automorphism of Π(An).

ν : ei 7−→ en−i+1, αi 7−→ α∗
n−i, α∗

i 7−→ αn−i.

Observe that the map ν has order 2. Therefore we can take the Nakayama twisted algebra
Π(An) ∗ ⟨ν⟩.

To prove Theorem 5.1, we need the following observation, which seems to be well-known
for experts and proved by a straightforward computation. But for the convenience of the
readers, we give a sketch of the proof.

Lemma 5.2 (cf. [28, Section 7]). The following assertions hold.
(1) The skew group algebra Π(A2n) ∗ ⟨ν⟩ is Morita equivalent to Π(Ln).
(2) The algebra Π(Ln) is symmetric.
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Proof. (1) For simplicity we set Λ := Π(A2n), G := ⟨ν⟩, A := Λ∗G. The subset {e1, . . . , en}
of vertexes is a complete set of the representative of the quotient set {e1, . . . , e2n}/⟨ν⟩. It
follows from Lemma 3.10 that if we set ϵ :=

∑n
i=1 ei then the algebra A′ := ϵAϵ is a basic

algebra which is Morita equivalent to A. Thus we only have to prove A′ ∼= Π(Ln).
For i = 1, 2, . . . , n − 1 we set βi := αi, β∗

i := α∗
i and γ := αn(en+1 ∗ ν) where we

regard these as elements of A′. It follows from the mesh relation of Λ = Π(A2n) that for
i = 1, 2, . . . , n− 1 we have βiβ

∗
i − β∗

i−1βi−1 = 0. It also follows from the mesh relation of
Λ = Π(A2n) that γ2 = αnα∗

n = α∗
n−1αn−1 = β∗

n−1βn−1. Thus we have γ2 − β∗
n−1βn−1 = 0.

Now we obtain a canonical algebra homomorphism f : Π(Ln)→ A′. It is straightforward
to check that elements γ, βi, β∗

i (i = 1, 2, . . . , n − 1) are generators of the algebra A′ and
hence that the map f is surjective. Finally we can compute the dimensions of both algebras
and check that they are of the same dimension. Thus we conclude that the map f is an
isomorphism.

(2) follows from (1) and Corollary 4.10. □

We recall the following result.

Theorem 5.3.
(1) We have the following anti-isomorphism of posets

W −→ 2-tilt Π(A2n).
(2) We have the following anti-isomorphism of posets

B −→ tilt Π(A2n).

Proof. They follows from [5, 43]. □

Now we see that our main theorem is a simple consequence of a combination of the
above preparations and our general result developed in the previous sections.

Proof of Theorem 5.1. By Lemma 5.2, Π(A2n) ∗ ⟨ν⟩ is Morita equivalent to Π(Ln). Ob-
serve that the action ⟨ν⟩ ↷ Π(A2n) preserves canonical idempotent elements and trivial
stabilizers. Thus, by applying Theorem 4.12, we have a poset isomorphism

2-tilt Π(A2n) ∼= 2-tilt Π(Ln) ∼= sτ - tilt Π(Ln) and tilt Π(A2n) ∼= silt Π(Ln).
Then the conclusion follows from Theorem 5.3. □

5.2. The generalized preprojective algebra Π(Cn) of type Cn in the sense of [32]
(char k = 2 case). In the previous section, we deal with the Nakayama twisted algebra
Π(A2n) ∗ ⟨ν⟩. A natural question is that how about Π(A2n+1) ∗ ⟨ν⟩. The point here is that
the stabilizer group stab(n) of the middle vertex n is a group of order 2 and its group
algebra k stab(n) is local if and only if char k = 2.

In this section, we deal with the Nakayama twisted algebra Π(A2n+1) ∗ ⟨ν⟩ in the case
char k = 2. A key observation given in the following lemma tells that Π(A2n+1) ∗ ⟨ν⟩ is
Morita equivalent to the preprojective algebra Π(Cn) of type Cn in the sense of Geiss–
Leclerc–Schröer in [32]. Thus the same method with the previous section determines the
posets of support τ -tilting modules and silting complexes over Π(Cn).

Lemma 5.4. Assume that char k = 2. Then the following assertions hold.
(1) The action ⟨ν⟩ ↷ Π(A2n+1) preserves the canonical idempotents and has local

stabilizers.
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(2) The skew group algebra A = Π(A2n+1) ∗ ⟨ν⟩ is Morita equivalent to the generalized
preprojective algebra Π(Cn) of type Cn in the sense of [32].

Proof. (1) follows from Lemma 1.3. (2) can be proved a direct computation similar to
that in the proof of Lemma 5.2. □

Remark 5.5. After finishing the first draft of this paper, R. Wang notified to us that she
and X-W Chen [20, Theorem B] independently obtained a general result which gives a
relationship between skew group algebras of preprojective algebras (which is not necessarily
the action on Nakayama automorphism) and the generalized preprojective algebras in the
sense of Geiss–Leclerc–Schröer. We leave it to a future work to obtain a generalization of
Theorem 5.6 below by applying our results to the results of [20].

As a consequence, we obtain the following result by the same argument of Theorem 5.1.

Theorem 5.6. Assume that char k = 2. Let Π(Cn) be the preprojective algebra of type
Cn.

(1) We have the following anti-isomorphism of posets
W −→ sτ - tilt Π(Cn).

(2) We have the following anti-isomorphism of posets
B −→ silt Π(Cn).

Remark 5.7. Fu–Geng [31] studied τ -tilting theory of the generalized preprojective alge-
bras Π(C, D) in the sense of [32] over a field k of arbitrary characteristic and established
a bijective correspondence between the support τ -tilting modules over Π(C, D) and the
corresponding Weyl group W (C).

The poset isomorphism of (1) in the above theorem can be looked as an refinement of
the bijection by Geng–Fu for Π(Cn) in the case char k = 2. We can expect that there are
the similar poset isomorphisms for any Π(C, D) over a base field of arbitrary characteristic.

We note that if char k ̸= 2, then the Nakayama twisted algebra Π(A2n+1)∗⟨ν⟩ is Morita
equivalent to the preprojective algebra of type Cn given in [28, Section 7].

5.3. The folded mesh algebra K(m)(An) of type An. Adachi–Kase [2] constructed
two examples of algebras which are tilting discrete but not silting discrete. One of them
is given by the m-fold mesh algebra K(m)(An) of type An, which is called the stable
Auslander algebra in [2]. Indeed, Adachi–Kase [2, Theorem 4.1] proved that K(m)(An) is
tilting discrete, but not silting discrete, provided that n, m ≥ 5, n is odd and m is coprime
to n− 1.

It is natural to ask how is the case that n is even. The same method with Adachi–Kase
works and we can show that K(m)(An) is not silting discrete even in the case that n is even.
As to tilting discreteness, Adachi–Kase proved it by detailed and long analysis of tilting
modules over K(m)(An). The aim of this section is that using our methods developed
in the paper, we show that in the case that n is even, the tilting poset of K(m)(An) is
isomorphic to that of Π(An) and K(m)(An) is tilting discrete.

Theorem 5.8. Let K := K(m)(An) of the m-fold mesh algebra of type An. Assume
that n is even and that m is coprime to n − 1. Then, there exists a poset isomorphism
tilt K

∼=−→ tilt Π(An) that sends K[l] to Π(An)[l] for any l ∈ Z. Consequently K is tilting
discrete.
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Before giving a proof, we recall basic facts about the folded mesh algebras. We basically
follows the notation and conventions of [6, Section 3, 4].

Let K(ZAn) be the mesh algebra of the stable translation quiver ZAn and τ the canon-
ical translation of ZAn. Then recall that for a non-negative integer m, the m-folded mesh
algebra K(m)(An) is defined to be the orbit category K(m)(An) := K(ZAn)/⟨τm⟩ (regarded
as an algebra). We also recall that the 1-folded mesh algebra K(1)(An) is nothing but the
preprojective algebra Π(An).

We need the following lemma.

Lemma 5.9. The Nakayama twisted algebra K(m)(An) ∗ ⟨ν⟩ is Morita equivalent to the
orbit category K(ZAn)/⟨τm, ν⟩.

Proof. By general relationship between orbit categories and skew group algebras, given
in [8, Definition 3.6], we see that the Nakayama twisted algebra K(m)(An) ∗ ⟨ν⟩ is Morita
equivalent to the orbit category (K(ZAn)/⟨τm⟩)/⟨ν⟩. On the other hand, by [6, Theo-
rem 4.2], the Nakayama automorphism ν of K(m)(An) is induced from that of K(ZA). It
follows that (K(ZAn)/⟨τm⟩)/⟨ν⟩ ∼= K(ZAn)/⟨τm, ν⟩. □

Now we proceed the proof of the main theorem of this section.

Proof of Theorem 5.8. First, we claim that the Nakayama twisted algebra K ′ := K ∗⟨ν⟩ is
Morita equivalent to Π(An) ∗ ⟨ν⟩ and hence is Morita equivalent to Π(Ln/2). Indeed, from
the explicit description of the Nakayama functor ν of K(ZAn) given in [6, Theorem 4.2],
we observe that ν2 = τ−n+1. Since m and n − 1 are coprime to each other, we have
τ ∈ ⟨τm, ν⟩. It follows that ⟨τm, ν⟩ = ⟨τ, ν⟩ and that K(ZAn)/⟨τm, ν⟩ = K(ZAn)/⟨τ, ν⟩.
Thanks to Lemma 5.9 and the fact K(1)(An) ∼= Π(An), we can conclude that the desired
statement holds.

It follows from the claim and Theorem 5.1 that silt K ′ ∼= silt Π(Ln/2) ∼= tilt Π(An).
We note that under this isomorphism, K ′ corresponds to Π(An). Therefore, the interval
[K ′[l], K ′] in (silt K ′)mod⟨ν⟩ ⊂ silt K ′ is finite for any l ≥ 0. Since tilt K = (silt K)ν ∼=
(silt K ′)mod⟨ν⟩, we see that K is tilting discrete. By [6, Theorem 4.2], the action ⟨ν⟩↷ K
preserves the canonical idempotent elements and has trivial stabilizers. Finally applying
Theorem 4.7, we conclude that all silting complexes over K ′ is mod⟨ν⟩-stable and tilt K
is isomorphic to tilt Π(An). □

In a subsequent work, we study m-fold mesh algebras of other types.

Appendix A. Reinterpretation to G-graded algebras

In this section, we briefly explain that our results given in the main body of
the paper reinterpreted to results for a finite dimensional G-graded algebra A =

⊕
g ∈ G Ag

via Cohen–Montgomery duality [22].
We also explain that in the special case that A is strongly G-graded, we can obtain

results for the canonical inclusion Ae ↪→ A where Ae denotes the degree e-part of A
(where e is the unit element of G). These are generalizations of the results given in the
paper [15] in which the authors dealt with a finite dimensional strongly G-graded algebra
A and often assumed that Ae is selfinjective and that char k ∤ |G|. Given a group H and a
normal subgroup N of H, the group algebra kH acquires a canonical G := H/N -grading
such that (kH)e = kN . Thus, our results can be regarded as generalizations of results
given in [40] for a group extension N ◁ H.
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A.1. G-graded algebras. Let G be a finite group and A :=
⊕

g ∈ G Ag a finite dimensional
G-graded algebra and grmod A the category of finite dimensional G-graded modules.

We denote the dual Hopf algebra of the group Hopf algebra kG by kG∗ := Homk(kG, k).
By [22, Proposition 1.3], a finite dimensional G-graded algebra A =

⊕
g ∈ A Ag may be

regarded as kG∗-module algebra. Let Λ := A#kG∗ be the smash product [22, p. 241].
Then by [22, Theorem 2.2] there is an equivalence mod Λ ≃ grmod A.

By [22, Lemma 3.3], the group G acts on Λ. One of the main result of the paper [22,
Theorem 3.5(Duality for coactions)] tells that the skew group algebra Ã := Λ ∗ G =
(A#kG∗) ∗G is isomorphic to the matrix algebra M|G|(A) of the order |G|. In particular
the algebra Ã is Morita equivalent to A and we have an equivalence mod A ≃ mod Ã.

Then it is tedious but straightforward to check that the induction functor IndÃ
Λ :

mod Λ → mod Ã corresponds to the functor U : grmod A → mod A which forgets the
grading of G-graded A-modules via the equivalences given above. Namely the left dia-
gram is commutative up to natural isomorphism:

mod Ã
∼ mod A

mod Λ

IndÃ
Λ

OO

∼ grmod A,

U

OO mod Ã
∼

ResÃ
Λ
��

mod A

V
��

mod Λ ∼ grmod A.

It is also straightforward to check that the functor V : mod A→ grmod A defined below
corresponds to the restriction functor ResÃ

Λ : Ã mod→ mod Λ via the above equivalences.
Let N be an (ungraded) A-module, we define a graded A-module V (N) in the follo-
wing way. The underlying k-vector space of V (N) is defined to be kG ⊗ N . For g ∈ G,
the degree g-component V (N)g is defined to be V (N)g := g ⊗N . Finally the action of a
homogeneous element ah ∈ Ah on g ⊗ n for n ∈ N is given by

ah ·V (N) (g ⊗ n) := hg ⊗ ahn.

The assignment N 7→ V (N) gives a functor V : mod A→ grmod A.

Definition A.1. Let N be an (ungraded) A-module and X a G-module. We define an
A-module X ⊗G

k N in the following way. The underlying k-vector space is defined to be
X ⊗k N . The action of a homogeneous element ag ∈ Ag is given by

ag · (x⊗ n) := gx⊗ agn.

where x ∈ X, n ∈ N .

We note that UV (N) = kG⊗G
k N .

Definition A.2. An A-module N is called (mod G)-stable if X ⊗G
k N ∈ add N for any

G-modules X.

We explain G-stability of G-graded A-modules M . Let g ∈ G. We define the degree
shift M(g) of a graded A-module M =

⊕
g ∈ G Mg in the following way: The underlying

A-module of M(g) is defined to be that of M . The grading is defined by (M(g))h :=
Mhg−1 . It is straightforward to check that under the identification of graded A-modules
and Λ = A#kG∗-modules the degree shift M(g) corresponds to the twist gM given in
Section 2.1.1.

grmod A←→ mod Λ, M(g)←→ gM.

Thus we introduce the following terminology.
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Definition A.3. A graded A-module M is called G-stable if M ∼= M(g) for any g ∈ G.

Using these preparations, we can reinterpret the results in the main body of the paper
for G-graded and ungraded A-modules. Among other things, we point out the following
reinterpretation of Theorem 3.3. We denote by (grsτ tilt A)G the poset of G-stable basic
graded support τ -tilting Λ-module, by (sτ - tilt A)mod G the poset of (mod G)-stable basic
support τ -tilting A-modules. Then

Theorem A.4. The adjoint pair (U, V ) induces an isomorphism of posets

U : (grsτ tilt A)G ←→ (sτ - tilt A)mod G : V.

A.2. Strongly graded case. Now we discuss the spacial case that a graded algebra A =⊕
g ∈ G Ag is strongly graded [22, p. 245]. In this section, we denote the degree e-subalgebra

by Λ := Ae (where e is the unit element of G). Then by [22, Theorem 2.2, Theorem 2.12],
the category grmod A is equivalent to mod Λ via the functor (−)e : grmod A → mod Λ
that takes the degree e-part of graded A-modules. Its quasi-inverse is the functor A⊗Λ− :
mod Λ→ grmod A.

(−)e : grmod A ⇄ mod Λ : A⊗Λ − (A.1)
Let g ∈ G. Under the equivalence, the degree shift functor (g) corresponds to the functor
Ag−1 ⊗Λ −.

Definition A.5. A Λ-module M is called G-stable if Ag−1 ⊗Λ M ∼= M for any g ∈ G.

The composition U ◦ (A⊗Λ −) : mod Λ → mod A is nothing but the induction functor
IndA

Λ and that the composition (−)e ◦V : mod A→ mod Λ is the restriction functor ResA
Λ .

IndA
Λ = U ◦ (A⊗Λ −) : mod Λ ⇄ mod A : (−)e ◦ V = ResA

Λ .

Using these preparations, we can specialize the results for a G-graded algebra A (that
are obtained as reinterpretations of results in the main body) to the induction and the
reduction functors associated to the canonical injection Λ ↪→ A. As a consequence, we
obtain generalizations of the results given in the paper [15] in which the authors dealt
with a finite dimensional strongly G-graded algebra A and often assumed that Λ = Ae is
selfinjective and that char k ∤ |G|.

Let H be a group and N a normal subgroup of H. We set G := H/N . Then the group
algebra A := kH becomes a strongly G-graded algebra such that Ae = kN by setting
Ag := kNg for g ∈ G where g denotes a representative of g. Thus, our results can be
regarded as generalizations of results given in [40] for a group extension N ◁ H.

Among other things, we point out the following theorem obtained as a specialization of
Theorem A.4.

Theorem A.6. The adjoint pair (IndA
Λ , ResA

Λ) induces an isomorphism of posets

IndA
Λ : (sτ - tilt Λ)G ←→ (sτ - tilt A)mod G : ResA

Λ .

Remark A.7. Let Λ be an algebra with an action of G and A := Λ ∗ G as in the main
body of the paper. Then if we define Ag := Λ ∗ g for g ∈ G, then A := Λ ∗ G becomes
a strongly G-graded algebra. Hence, applying Theorem A.6 to this case, we can recover
Theorem 3.3.

In a similar way, we can obtain results of the main body of the paper by first establishing
results for a G-graded algebra and functors U, V .
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Appendix B. A formalism by theory of Hopf algebras and tensor
categories

In this section, we discuss a formal aspect of the paper including (mod G)-action on
A = Λ ∗ G-modules given in Definition 2.2, by using theory of Hopf algebras and tensor
categories. For unexplained terminology, we refer [29].

Since the group algebra kG has a canonical structure of a Hopf algebra, the module
category mod G = mod kG has a canonical structure of a symmetric monoidal category
CkG := (mod G,⊗G

k , k). (We remark that the tensor product of the monoidal category
CkG is usually denoted by ⊗k.)

A pair Λ̃ = (Λ, ρ) of an algebra Λ and an action ρ : G ↷ Λ may be identified with
an algebra object Λ̃ of CG. It is well-known that the category Λ̃ modCkG

of Λ̃-module
objects in CkG is equivalent to the category mod A of (ordinary) modules over the skew
group algebra A := Λ ∗ G. On the other hand, the tensor product ⊗G

k of CkG induces a
functor ⊗G

k : CkG × modCkG
Λ̃ → modCkG

Λ̃, which gives modCkG
Λ̃ a structure of a CkG-

module category [29, Proposition 7.8.10]. It is straightforward to check that under the
equivalence modCkG

Λ̃ ≃ mod A, this functor gives the tensor product (X, N) 7→ X ⊗G
k N

of Definition 2.2.
Let kG∗ := Homk(G, k) be the dual Hopf algebra of kG. An action ρ : G ↷ Λ may be

regarded as a map ρ : kG⊗Λ→ Λ that gives a kG-module algebra structure on the algebra
Λ. The induced map ρ∗ : Λ → kG∗ ⊗ Λ gives Λ a structure of kG∗-comodule algebra.
For a Λ-module M and a kG∗-module Y , we can construct a Λ-module Y ⊗kG∗

k M in the
following way: the underlying k-vector space is defined to be the usual tensor product
Y ⊗M of the underlying spaces. The multiplication Λ ⊗ (Y ⊗kG∗

k M) → Y ⊗kG∗
k M is

defined by the following composition

Λ⊗ (Y ⊗M) ρ∗⊗id−−−→ kG∗ ⊗ Λ⊗ (Y ⊗M) ∼= (kG∗ ⊗ Y )⊗ (Λ⊗M) −→ Y ⊗M

where the third map is the tensor product of the action maps of Y and M . Let CkG∗ =
(mod kG∗,⊗kG∗

k , k) be the symmetric monoidal category of kG∗-modules. Then the in-
duced functor ⊗kG∗

k : CkG∗ × mod Λ → mod Λ gives mod Λ a structure of CkG∗-module
category.

The dual basis {g∗}g ∈ G ⊂ kG∗ of the canonical basis {g}g ∈ G ⊂ kG is a complete set
of primitive orthogonal idempotent elements of kG∗ and hence kG∗ ∼=

∏
g ∈ G kg∗ ∼= k×|G|

is semi-simple as an algebra. Thus a kG∗-module Y is a direct sum of simple kG∗-
modules kg∗ for g ∈ G and the tensor product Y ⊗kG∗

k − is completely determined by
kg∗ ⊗kG∗

k − for g ∈ G. Let g ∈ G and M a Λ-module. Then the Λ-module kg∗ ⊗kG∗
k M

is isomorphic to gM . Hence, we see that G-stability for basic modules coincides with
(mod kG∗)-stability (defined in the same way of Definition 2.2). We understand that the
difference between the characterization of G-stability (Corollary 2.14) and that of (mod G)-
stability (Proposition 2.15) is caused by the fact that kG∗ is semi-simple as an algebra
but kG is not in general. Finally, our main results Theorem 3.11 and Theorem 4.3 can be
looked as bijections between (mod kG∗)-stable objects and (mod kG)-stable objects.

It is worth pointing a possible generalization obtained by replacing the group Hopf
algebra kG with a (finite dimensional) Hopf algebra H. The above constructions works
for an H-modules algebra Λ and the smash product algebra A := Λ#H. Thus we can
expect that we have bijections between (mod H)-stable objects and (mod∗)-stable objects.
(Furthermore, we can expect more general statements by using tensor categories as in [24].)
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Some of the result of the paper may be easily generalized for a general Hopf algebra H and
its module algebra Λ. However, we remark that one of the key step Lemma 2.23(2) does not
hold true for a general Hopf algebra H (see, e.g., [22, Theorem 3.2], [44, Corollary 9.3.4]).
Thus, we decided to leave generalizations for Hopf algebras to our future research.
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