Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups
Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 537-574.

In 2020, Brunat–Dudas–Taylor showed that the decomposition matrix of unipotent $\ell $-blocks of a finite reductive group in good characteristic has unitriangular shape, under some conditions on the prime $\ell $, in particular $\ell $ being good. We extend this result to $\ell $ bad by adapting their proof to include the $\ell $-special classes defined by Chaneb.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.29
Classification: 20C33, 20C20
Keywords: finite reductive groups, decomposition numbers, character sheaves, generalised Gelfand–Graev representations

Roth, Marie 1

1 FB Mathematik, RPTU Kaiserslautern-Landau, Postfach 3049, 67653 Kaiserslautern, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_4_537_0,
     author = {Roth, Marie},
     title = {Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups},
     journal = {Annals of Representation Theory},
     pages = {537--574},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {4},
     year = {2025},
     doi = {10.5802/art.29},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.29/}
}
TY  - JOUR
AU  - Roth, Marie
TI  - Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups
JO  - Annals of Representation Theory
PY  - 2025
SP  - 537
EP  - 574
VL  - 2
IS  - 4
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.29/
DO  - 10.5802/art.29
LA  - en
ID  - ART_2025__2_4_537_0
ER  - 
%0 Journal Article
%A Roth, Marie
%T Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups
%J Annals of Representation Theory
%D 2025
%P 537-574
%V 2
%N 4
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.29/
%R 10.5802/art.29
%G en
%F ART_2025__2_4_537_0
Roth, Marie. Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 537-574. doi : 10.5802/art.29. https://art.centre-mersenne.org/articles/10.5802/art.29/

[1] Achar, Pramod N.; Aubert, Anne-Marie Localisation de faisceaux caractères, Adv. Math., Volume 224 (2010) no. 6, pp. 2435-2471 | DOI | MR | Zbl

[2] Beilinson, Aleksandr A.; Bernstein, Joseph N.; Deligne, Pierre Analyse et topologie sur les espaces singuliers. I, Astérisque, 100, Société Mathématique de France, 1982 | Numdam | Zbl

[3] Bonnafé, Cédric; Dat, Jean-François; Rouquier, Raphaël Derived categories and Deligne–Lusztig varieties. II, Ann. Math. (2), Volume 185 (2017) no. 2, pp. 609-670 | DOI | MR | Zbl

[4] Bonnafé, Cédric; Rouquier, Raphaël Catégories dérivées et variétés de Deligne–Lusztig, Publ. Math., Inst. Hautes Étud. Sci., Volume 97 (2003) no. 1, pp. 1-59 | DOI | MR | Zbl

[5] Broué, Michel; Michel, Jean Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math., Volume 395 (1989), pp. 56-67 | DOI | MR | Zbl

[6] Brunat, Olivier; Dudas, Olivier; Taylor, Jay Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math. (2), Volume 192 (2020) no. 2, pp. 583-663 | DOI | MR | Zbl

[7] Carter, Roger W. Finite groups of Lie type: conjugacy classes and complex characters, Pure and Applied Mathematics, Wiley, 1985 (reprinted 1993 as Wiley Classics Library Edition) | MR | Zbl

[8] Chaneb, Reda Basic sets and decomposition matrices of finite groups of Lie type in small characteristic, Ph. D. Thesis, Université Paris Cité, Paris, France (2019) | Zbl

[9] Chaneb, Reda Basic sets for unipotent blocks of finite reductive groups in bad characteristic, Int. Math. Res. Not., Volume 2021 (2021) no. 16, pp. 12613-12638 | DOI | MR | Zbl

[10] Feng, Zhicheng; Späth, Britta Unitriangular basic sets, Brauer characters and coprime actions, Represent. Theory, Volume 27 (2023), pp. 115-148 | DOI | MR | Zbl

[11] Geck, Meinolf Verallgemeinerte Gelfand–Graev-Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ, Ph. D. Thesis, RWTH Aachen University, Germany (1990) | Zbl

[12] Geck, Meinolf Basic sets of Brauer characters of finite groups of Lie type. III, Manuscr. Math., Volume 85 (1994) no. 1, pp. 195-216 | DOI | MR | Zbl

[13] Geck, Meinolf Character sheaves and generalized Gelfand–Graev characters, Proc. Lond. Math. Soc., Volume 78 (1999) no. 1, pp. 139-166 | DOI | MR | Zbl

[14] Geck, Meinolf Generalised Gelfand–Graev representations in bad characteristic?, Transform. Groups, Volume 26 (2021) no. 1, pp. 305-326 | DOI | MR | Zbl

[15] Geck, Meinolf; Hézard, David On the unipotent support of character sheaves, Osaka J. Math., Volume 45 (2008) no. 3, pp. 819-831 | MR | Zbl

[16] Geck, Meinolf; Hiss, Gerhard Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math., Volume 418 (1991), pp. 173-188 | DOI | MR | Zbl

[17] Geck, Meinolf; Malle, Gunter On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Am. Math. Soc., Volume 352 (2000) no. 1, pp. 429-456 | DOI | MR | Zbl

[18] Geck, Meinolf; Malle, Gunter The character theory of finite groups of Lie type: a guided tour, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2020 | DOI | MR | Zbl

[19] Gérardin, Paul Weil representations associated to finite fields, J. Algebra, Volume 46 (1977) no. 1, pp. 54-101 | DOI | MR | Zbl

[20] Hézard, David Sur le support unipotent des faisceaux-caractères, Ph. D. Thesis, Université Lyon 1, Lyon, France (2004)

[21] Kawanaka, Noriaki Generalized Gelfand–Graev representations of exceptional simple algebraic groups over a finite field. I, Invent. Math., Volume 84 (1986) no. 3, pp. 575-616 | DOI | MR | Zbl

[22] Lusztig, George Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977) no. 2, pp. 125-175 | DOI | MR | Zbl

[23] Lusztig, George A class of irreducible representations of a Weyl group, Indag. Math., Volume 82 (1979) no. 1, pp. 323-335 | DOI | MR | Zbl

[24] Lusztig, George Characters of reductive groups over a finite field, Annals of Mathematics Studies, Princeton University Press, 1984 no. 107 | DOI | MR | Zbl

[25] Lusztig, George Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984) no. 2, pp. 205-272 | DOI | MR | Zbl

[26] Lusztig, George Character sheaves. I, Adv. Math., Volume 56 (1985) no. 3, pp. 193-237 | DOI | Zbl

[27] Lusztig, George Character sheaves. II, Adv. Math., Volume 57 (1985) no. 3, pp. 226-265 | DOI | Zbl

[28] Lusztig, George Character sheaves. III, Adv. Math., Volume 57 (1985) no. 3, pp. 266-315 | DOI | Zbl

[29] Lusztig, George Character sheaves. IV, Adv. Math., Volume 59 (1986) no. 1, pp. 1-63 | DOI | Zbl

[30] Lusztig, George Character sheaves. V, Adv. Math., Volume 61 (1986) no. 2, pp. 103-155 | DOI | Zbl

[31] Lusztig, George On the character values of ginite Chevalley groups at unipotent elements, J. Algebra, Volume 104 (1986) no. 1, pp. 146-194 | DOI | MR | Zbl

[32] Lusztig, George A unipotent support for irreducible representations, Adv. Math., Volume 94 (1992) no. 2, pp. 139-179 | DOI | MR | Zbl

[33] Lusztig, George Families and Springer’s correspondence, Pac. J. Math., Volume 267 (2014) no. 2, pp. 431-450 | DOI | MR | Zbl

[34] Lusztig, George Restriction of a character sheaf to conjugacy classes, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 58 (106) (2015) no. 3, pp. 297-309 | MR | Zbl

[35] Mars, Jean-Gérard; Springer, Tonny A. Character sheaves, Orbites unipotentes et représentations. III. Orbites et faisceaux pervers (Astérisque), Société Mathématique de France, 1989 no. 173-174, pp. 111-198 | Numdam | MR | Zbl

[36] McNinch, George J. Optimal SL(2)-homomorphisms, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 391-426 | DOI | MR | Zbl

[37] McNinch, George J.; Sommers, Evans Component groups of unipotent centralizers in good characteristic, J. Algebra, Volume 260 (2003) no. 1, pp. 323-337 | DOI | MR | Zbl

[38] Michel, Jean The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl

[39] Shoji, Toshiaki Character sheaves and almost caracters of reductive groups, Adv. Math., Volume 111 (1995) no. 2, pp. 244-313 | DOI | MR | Zbl

[40] Shoji, Toshiaki Character sheaves and almost characters of reductive groups. II, Adv. Math., Volume 111 (1995) no. 2, pp. 314-354 | DOI | MR | Zbl

[41] Springer, Tonny A. Trigonometric sums, Green functions of finite groups and tepresentations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl

[42] Taylor, Jay On Unipotent Supports of Reductive Groups with a Disconnected Centre, J. Algebra, Volume 391 (2013), pp. 41-61 | DOI | MR | Zbl

[43] Taylor, Jay Generalized Gelfand–Graev Representations in Small Characteristics, Nagoya Math. J., Volume 224 (2016) no. 1, pp. 93-167 | DOI | MR | Zbl

Cited by Sources: