In 2020, Brunat–Dudas–Taylor showed that the decomposition matrix of unipotent $\ell $-blocks of a finite reductive group in good characteristic has unitriangular shape, under some conditions on the prime $\ell $, in particular $\ell $ being good. We extend this result to $\ell $ bad by adapting their proof to include the $\ell $-special classes defined by Chaneb.
Revised:
Accepted:
Published online:
Keywords: finite reductive groups, decomposition numbers, character sheaves, generalised Gelfand–Graev representations
Roth, Marie 1

@article{ART_2025__2_4_537_0, author = {Roth, Marie}, title = {Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups}, journal = {Annals of Representation Theory}, pages = {537--574}, publisher = {The Publishers of ART}, volume = {2}, number = {4}, year = {2025}, doi = {10.5802/art.29}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.29/} }
TY - JOUR AU - Roth, Marie TI - Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups JO - Annals of Representation Theory PY - 2025 SP - 537 EP - 574 VL - 2 IS - 4 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.29/ DO - 10.5802/art.29 LA - en ID - ART_2025__2_4_537_0 ER -
%0 Journal Article %A Roth, Marie %T Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups %J Annals of Representation Theory %D 2025 %P 537-574 %V 2 %N 4 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.29/ %R 10.5802/art.29 %G en %F ART_2025__2_4_537_0
Roth, Marie. Unitriangularity of decomposition matrices of the unipotent $\ell $-blocks for simple adjoint exceptional groups. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 537-574. doi : 10.5802/art.29. https://art.centre-mersenne.org/articles/10.5802/art.29/
[1] Localisation de faisceaux caractères, Adv. Math., Volume 224 (2010) no. 6, pp. 2435-2471 | DOI | MR | Zbl
[2] Analyse et topologie sur les espaces singuliers. I, Astérisque, 100, Société Mathématique de France, 1982 | Numdam | Zbl
[3] Derived categories and Deligne–Lusztig varieties. II, Ann. Math. (2), Volume 185 (2017) no. 2, pp. 609-670 | DOI | MR | Zbl
[4] Catégories dérivées et variétés de Deligne–Lusztig, Publ. Math., Inst. Hautes Étud. Sci., Volume 97 (2003) no. 1, pp. 1-59 | DOI | MR | Zbl
[5] Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math., Volume 395 (1989), pp. 56-67 | DOI | MR | Zbl
[6] Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math. (2), Volume 192 (2020) no. 2, pp. 583-663 | DOI | MR | Zbl
[7] Finite groups of Lie type: conjugacy classes and complex characters, Pure and Applied Mathematics, Wiley, 1985 (reprinted 1993 as Wiley Classics Library Edition) | MR | Zbl
[8] Basic sets and decomposition matrices of finite groups of Lie type in small characteristic, Ph. D. Thesis, Université Paris Cité, Paris, France (2019) | Zbl
[9] Basic sets for unipotent blocks of finite reductive groups in bad characteristic, Int. Math. Res. Not., Volume 2021 (2021) no. 16, pp. 12613-12638 | DOI | MR | Zbl
[10] Unitriangular basic sets, Brauer characters and coprime actions, Represent. Theory, Volume 27 (2023), pp. 115-148 | DOI | MR | Zbl
[11] Verallgemeinerte Gelfand–Graev-Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie-Typ, Ph. D. Thesis, RWTH Aachen University, Germany (1990) | Zbl
[12] Basic sets of Brauer characters of finite groups of Lie type. III, Manuscr. Math., Volume 85 (1994) no. 1, pp. 195-216 | DOI | MR | Zbl
[13] Character sheaves and generalized Gelfand–Graev characters, Proc. Lond. Math. Soc., Volume 78 (1999) no. 1, pp. 139-166 | DOI | MR | Zbl
[14] Generalised Gelfand–Graev representations in bad characteristic?, Transform. Groups, Volume 26 (2021) no. 1, pp. 305-326 | DOI | MR | Zbl
[15] On the unipotent support of character sheaves, Osaka J. Math., Volume 45 (2008) no. 3, pp. 819-831 | MR | Zbl
[16] Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math., Volume 418 (1991), pp. 173-188 | DOI | MR | Zbl
[17] On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Am. Math. Soc., Volume 352 (2000) no. 1, pp. 429-456 | DOI | MR | Zbl
[18] The character theory of finite groups of Lie type: a guided tour, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2020 | DOI | MR | Zbl
[19] Weil representations associated to finite fields, J. Algebra, Volume 46 (1977) no. 1, pp. 54-101 | DOI | MR | Zbl
[20] Sur le support unipotent des faisceaux-caractères, Ph. D. Thesis, Université Lyon 1, Lyon, France (2004)
[21] Generalized Gelfand–Graev representations of exceptional simple algebraic groups over a finite field. I, Invent. Math., Volume 84 (1986) no. 3, pp. 575-616 | DOI | MR | Zbl
[22] Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977) no. 2, pp. 125-175 | DOI | MR | Zbl
[23] A class of irreducible representations of a Weyl group, Indag. Math., Volume 82 (1979) no. 1, pp. 323-335 | DOI | MR | Zbl
[24] Characters of reductive groups over a finite field, Annals of Mathematics Studies, Princeton University Press, 1984 no. 107 | DOI | MR | Zbl
[25] Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984) no. 2, pp. 205-272 | DOI | MR | Zbl
[26] Character sheaves. I, Adv. Math., Volume 56 (1985) no. 3, pp. 193-237 | DOI | Zbl
[27] Character sheaves. II, Adv. Math., Volume 57 (1985) no. 3, pp. 226-265 | DOI | Zbl
[28] Character sheaves. III, Adv. Math., Volume 57 (1985) no. 3, pp. 266-315 | DOI | Zbl
[29] Character sheaves. IV, Adv. Math., Volume 59 (1986) no. 1, pp. 1-63 | DOI | Zbl
[30] Character sheaves. V, Adv. Math., Volume 61 (1986) no. 2, pp. 103-155 | DOI | Zbl
[31] On the character values of ginite Chevalley groups at unipotent elements, J. Algebra, Volume 104 (1986) no. 1, pp. 146-194 | DOI | MR | Zbl
[32] A unipotent support for irreducible representations, Adv. Math., Volume 94 (1992) no. 2, pp. 139-179 | DOI | MR | Zbl
[33] Families and Springer’s correspondence, Pac. J. Math., Volume 267 (2014) no. 2, pp. 431-450 | DOI | MR | Zbl
[34] Restriction of a character sheaf to conjugacy classes, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 58 (106) (2015) no. 3, pp. 297-309 | MR | Zbl
[35] Character sheaves, Orbites unipotentes et représentations. III. Orbites et faisceaux pervers (Astérisque), Société Mathématique de France, 1989 no. 173-174, pp. 111-198 | Numdam | MR | Zbl
[36] Optimal -homomorphisms, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 391-426 | DOI | MR | Zbl
[37] Component groups of unipotent centralizers in good characteristic, J. Algebra, Volume 260 (2003) no. 1, pp. 323-337 | DOI | MR | Zbl
[38] The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl
[39] Character sheaves and almost caracters of reductive groups, Adv. Math., Volume 111 (1995) no. 2, pp. 244-313 | DOI | MR | Zbl
[40] Character sheaves and almost characters of reductive groups. II, Adv. Math., Volume 111 (1995) no. 2, pp. 314-354 | DOI | MR | Zbl
[41] Trigonometric sums, Green functions of finite groups and tepresentations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 | DOI | MR | Zbl
[42] On Unipotent Supports of Reductive Groups with a Disconnected Centre, J. Algebra, Volume 391 (2013), pp. 41-61 | DOI | MR | Zbl
[43] Generalized Gelfand–Graev Representations in Small Characteristics, Nagoya Math. J., Volume 224 (2016) no. 1, pp. 93-167 | DOI | MR | Zbl
Cited by Sources: