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unipotent ℓ-blocks for simple adjoint exceptional
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Abstract. In 2020, Brunat–Dudas–Taylor showed that the decomposition matrix of unipotent
ℓ-blocks of a finite reductive group in good characteristic has unitriangular shape, under some con-
ditions on the prime ℓ, in particular ℓ being good. We extend this result to ℓ bad by adapting their
proof to include the ℓ-special classes defined by Chaneb.

Introduction

One approach to the representation theory of a finite group G is to link the ordinary
representations of G to its modular representations, defined over a field k of positive
characteristic ℓ > 0. In other words, it boils down to knowing the ℓ-decomposition matrix
of G. In general, finding the decomposition numbers is a difficult problem, which is
not solved yet even for symmetric groups. However, as a first approximation, one could
focus on the shape of the ℓ-decomposition matrix. In his PhD thesis [11], Geck stated a
conjecture for finite groups of Lie type:

Conjecture A (Geck). If G is a finite group of Lie type of characteristic different from
ℓ, then its ℓ-decomposition matrix is unitriangular.

Recall that ℓ-decomposition matrices have a block decomposition along the blocks of G.
One union of blocks of particular interest is the unipotent ℓ-blocks. In [6, Theorem A],
Brunat–Dudas–Taylor gave a positive answer to Geck’s conjecture for these blocks under
some mild assumptions on the primes p and ℓ. They assume that both of them are good
for G. The condition that a prime number is good depends on the root system of the
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algebraic group (see Table A.1). If G is simple of type An, then all primes numbers are
good. In general, all primes greater or equal to 7 are said to be good.

Theorem B (Brunat–Dudas–Taylor). Let G be a connected reductive group over k, an
algebraically closed field of characteristic p > 0. Let F : G → G be a Frobenius endo-
morphism endowing G with an Fq-structure, for q a power of the prime p. Assume the
following:

(1) the prime p is good for G and p ̸= ℓ,
(2) the prime ℓ is good for G,
(3) and ℓ does not divide the order of the largest quotient of Z(G) on which F acts

trivially.
Then the ℓ-decomposition matrix of the unipotent ℓ-blocks of GF is lower-unitriangular,
with respect to a suitable ordering.

Note in particular that if G is simple of adjoint type then Z(G) is trivial and the last
condition is trivially satisfied. When ℓ is good, the unipotent characters of G are known
to form a basic set for the unipotent ℓ-blocks [16]. However, when ℓ is bad, the situation is
more intricate as the hypothetical basic set conjectured in [9] might contain non-unipotent
isolated characters.

In this work, we extend Brunat–Dudas–Taylor’s theorem to ℓ bad and G simple excep-
tional of adjoint type.

Theorem C. Let G be a simple exceptional algebraic group of adjoint type defined over k,
an algebraically closed field of characteristic p > 0. Let F : G → G be a Frobenius
endomorphism. Assume that p is good for G and ℓ is bad for G. Then the ℓ-decomposition
matrix of the unipotent ℓ-blocks of GF is lower-unitriangular.

For classical groups of adjoint type at the unique bad prime ℓ = 2, a similar result was
already obtained by Geck [12, Theorem 2.5]. Hence, our result combined with the Brunat–
Dudas–Taylor’s theorem and Geck’s result concludes the proof of the unitriangularity of
ℓ-decomposition matrix of the unipotent ℓ-blocks at any prime ℓ for simple groups of
adjoint type in non-defining characteristic.

Corollary D. Let G be a simple algebraic group of adjoint type defined over k, an alge-
braically closed field of characteristic p > 0. Let F : G→ G be a Frobenius endomorphism.
Assume that p is good for G. If ℓ ̸= p, then the ℓ-decomposition matrix of the unipotent
ℓ-blocks of GF is lower-unitriangular.

On the methods. Let k be an algebraically closed field of characteristic ℓ ̸= 0.

Strategy. Let us describe a strategy to show that B, a union of ℓ-blocks of kG, has a
lower-unitriangular decomposition matrix.

(Step 1) Compute the number n of projective indecomposable modules in B.
(Step 2) Choose n ordinary irreducible KG-modules V1, . . . , Vn belonging to B.
(Step 3) Find n projective modules P1, . . . , Pn of kG.
(Step 4) Check that the decomposition matrix given by ⟨Vi, PO

j ⊗O K⟩ for 1 ≤ i, j ≤ n is
lower-unitriangular.

It is enough to consider projective kG-modules and not necessarily the projective inde-
composable kG-modules belonging to the union of ℓ-blocks B ([12, Lemma 2.6]). In this
paper, we focus on the unipotent ℓ-blocks.
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The first two steps are considered in Section 1. When ℓ is good (as in the case of Brunat–
Dudas–Taylor), the unipotent characters form a basic set for the unipotent block. In other
words, the decomposition matrix restricted to these rows is invertible over Z. The ordering
of the basic set is then based on the unipotent support of the unipotent characters, i.e. on
the special unipotent conjugacy classes of G. When ℓ is bad, we have to choose another
basic set, based on some characters of G with ℓ-special unipotent support (as described
by Chaneb [8]).

We treat (Step 3) and (Step 4) in Section 2 when ℓ is good following [6]. The rest of
the paper is concerned with these last steps when ℓ is bad.

A first good set of candidates for the projective kG-modules in the third step are the
generalised Gelfand–Graev characters (GGGCs). By construction, a unipotent conjugacy
class is also associated to each GGGC. We now order the unipotent conjugacy classes
according to their dimension. This yields a partial order on the GGGCs. We also group
the irreducible KG-modules V1, . . . , Vn according to their unipotent support. From the
properties of the GGGCs, we know at this point that the decomposition matrix is lower-
triangular by block. However, there are usually not enough GGGCs. The idea of Brunat–
Dudas–Taylor is to decompose these characters into other characters called Kawanaka
(see Definition 2.13). When ℓ is bad, their construction might not yield characters coming
from projective kG-modules. We therefore slightly extend the definition of Kawanaka
characters to adapt it to our case (Definition 3.7).

We now have fixed n ordinary irreducible KG-modules V1, . . . , Vn belonging to B and
n projective modules P1, . . . , Pn of kG. We also know that the decomposition matrix
given by ⟨Vi, PO

j ⊗O K⟩ for 1 ≤ i, j ≤ n is lower-unitriangular by block. To complete
the (Step 4), we consider each family of irreducible characters with the same unipotent
support individually. We need the values of the characters of the KG-modules V1, . . . , Vn
at some conjugacy classes with unipotent part their unipotent support. However, these
data are usually difficult to obtain directly.

One approach is to apply a change of basis on the space spanned by the class functions,
from the basis of the irreducible characters of G to the basis of the characteristic functions
of the F -stable character sheaves on G. This is a consequence of a conjecture of Lusztig
proven by Shoji [40] in the connected center case. We then still need the value of character
sheaves at certain conjugacy classes. In the ℓ good case, the character sheaves we consider
are unipotent and we can apply a result of Lusztig [34]. When ℓ is bad, we need similar
results for character sheaves in isolated series. We study this question in the principal
series case in Section 4. We show a formula (see Proposition 4.19) which could be of
independent interest, as it gives information on certain character sheaves, and hence their
characteristic functions on mixed conjugacy classes.

Note that to avoid too many computations, we treat most of the families of KG-modules
of our basic set using results of Geck–Hézard [15] and modifying the results obtained by
Brunat–Dudas–Taylor (see Section 3). We need the results on character sheaves obtained
in Section 4 only for two leftover cases in Section 5. We complete the proof of our main
Theorem in Section 6. The characters V1, . . . , Vn chosen in (Step 2) will then form a
unitriangular basic set.

The assumption that p is good is crucial since we use many properties for the generalised
Gelfand–Graev characters which are not yet proven for the extension to bad primes as
defined by Geck [14]. Since we do not know yet a basic set for the unipotent ℓ-blocks for
groups with a non-trivial center, we cannot extend our result to any finite reductive group
of exceptional type. Despite focusing on the unipotent ℓ-blocks, our results should be
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extendable to most other union of ℓ-blocks, the non-isolated ones, since they are Morita
equivalent to the unipotent ℓ-blocks of smaller groups (by Bonnafé–Dat–Rouquier [3]).
This was applied in the ℓ good case by Feng–Späth [10]. We plan to consider the isolated
ℓ-blocks in following work.

Notation. We fix ℓ a prime number.

On finite groups and their representation theory. Let A be a finite group and F a field.
We denote by IrrF(A) the set of isomorphisms classes of irreducible FA-modules of the
group A. For any FA-modules V,W , we let

⟨V,W ⟩F := dimF HomFA(V,W ).
To denote the ordinary irreducible characters of the group A, we will use Irr(A).

We fix a splitting ℓ-modular system (O,K,k), as follows:
• O is a complete discrete valuation ring of characteristic 0 with a unique maximal

ideal M ,
• K is the field of fractions of O, also of characteristic zero. We assume that K is

big enough for the group A we are considering, that is it contains all |A|th roots
of unity. In particular, with respect to an inclusion K ⊆ C, we have IrrK(A) ∼=
IrrC(A) via scalar extension.
• k = O/M is a field of characteristic ℓ. We will also assume that k that contains

all |A|th roots of unity. For instance, we could take k = Fℓ.
Each W ∈ Irrk(A) has a unique projective indecomposable cover PW . Recall that to any
projective indecomposable kA-module P corresponds a projective OA-module PO such
that PO ⊗O k ∼= P , unique up to isomorphism. On the other hand, to any KA-module
V corresponds at least one OA-module VO, free over O such that VO ⊗O K ∼= V . For
any KA-module V and any projective indecomposable kA-module P , we have by Brauer
reciprocity,

⟨P, VO ⊗O k⟩k =
〈
PO ⊗O K, V

〉
K

=: [P, V ].

We denote the decomposition matrix of A by DA = (dAV,W )V ∈ IrrK(A), W ∈ Irrk(A) with
entries

dAV,W := [PW , V ].
For P a projective kG-module, let ΨP denotes the character associated to the module

PO ⊗O K. We may sometimes write dψV ,ΨP
= [PW , V ] = ⟨ΨP , ψV ⟩, where ψV is the

character of the irreducible KA-module V.
We define M(A) as the set of A-conjugacy classes of pairs [a, ϕ] with a ∈ A and

ϕ ∈ Irr(CA(a)). We also define a pairing coming from [23, § 4]:
{ , } :M(A)×M(A)→ C,

([a, ϕ], [b, ψ]) 7→ 1
|CA(a)| |CA(b)|

∑
g ∈A, a∈CA(gbg−1)

ϕ
(
gbg−1)

ψ
(
g−1a−1g

)
.

Let Ã be another finite group such that A is a normal subgroup of Ã and Ã/A is cyclic
of order c with a generator aA for some a ∈ Ã.

The set M(A ⊆ Ã) consists of all Ã-conjugacy classes of pairs (b, σ) such that b ∈ aA
and σ ∈ Irr(CA(b)). We denote by Mℓ(A) and Mℓ(A ⊆ Ã) the same sets as above
where instead of considering ordinary irreducible characters of the centralizers, we consider
irreducible k-modules of the same centralizers.
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On finite reductive groups. We let G be a connected reductive group over k, an alge-
braically closed field of characteristic p > 0. Let F : G→ G be a Frobenius endomorphism
endowing G with an Fq-structure, for q a power of the prime p. We write G := GF .

We fix a maximally split torus T ⊆ G contained in an F -stable Borel subgroup B with
unipotent radical U.

We denote by Φ+ ⊆ Φ the set of (positive) roots determined by T and B. We set
∆ = {α1, . . . , αn} the set of simple roots of Φ.

To each root α ∈ Φ corresponds a 1-dimensional root subgroup Uα of G and a root
subspace gα of the Lie algebra g of G. We also write X(T) for characters and Y (T) for
the cocharacters of T.

The Weyl group of G associated to T will be denoted by W := NG(T)/T. For any
root α ∈ Φ, we set sα ∈ W the corresponding reflection. For each w ∈ W , we fix a
representative ẇ ∈ NG(T). We will often abuse notation and write w instead of ẇ.

We write G∗ for the dual group of G with corresponding Frobenius map F ∗, and W ∗

for the corresponding Weyl group.
We denote by σ the automorphism of W induced by F .

Hypothesis 0.1. We always assume σ to be ordinary as defined in [24, § 3.1].
For g ∈ G, we write gs for its semisimple part and gu for its unipotent part. More

generally, for any subset J of G, we denote by Js the set of semisimple parts of elements
in J and Ju the set of unipotent parts of elements in J . For any algebraic group H, we
write Huni for its unipotent variety consisting of the unipotent elements of H.

For u ∈ G unipotent, we define AG(u) := CG(u)/C◦
G(u). We fix XG the set of all

unipotent conjugacy classes of the connected reductive group G. We denote by uC any
F -stable element of C such that AG(uC) = AG(uC)F . If the center Z(G) of G is connected
and G/Z(G) is simple, such an element uC will always exists for any C ∈ XG by [42,
Proposition 2.4].

We will use the notation from [38, CHEVIE] for the names of unipotent classes and
unipotent characters.

1. A candidate for a basic set for the unipotent ℓ-blocks

In this section, we consider the first two steps of our strategy. We recall results of Geck
and Hiss giving the number n of projective indecomposable kG-modules in the union of
unipotent ℓ-blocks (Step 1). Using the parameterisation of the ordinary modules of G,
we choose a subset of the irreducible KG-modules, say B ⊆ IrrK(G) such that |B| = n
(Step 2). Our hope is that to each V ∈ B, we can associate an indecomposable kG-module
PV , such that the matrix (⟨W,PO

V ⊗OK⟩K)W,V ∈ B is lower-unitriangular. In other terms,
we want to find a unitriangular basic set.
Hypotheses 1.1. In this section, we always assume that Z(G) is connected and G/Z(G)
is simple. Moreover, the prime p is different from ℓ and p is good for G.
1.1. Parametrisation of the ordinary characters of G. In [24], Lusztig gave a pa-
rameterisation of the ordinary irreducible characters of G. We very briefly summarise
these results.

One can partition the irreducible characters of G into series indexed by semisimple
elements of the dual group ([22, § 7.6]), called Lusztig series:

Irr(G) =
⊔
s

E(G, s),
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where s runs over representatives of the conjugacy classes of semisimple elements of (G∗)F ∗ .
The unipotent series Uch(G) := E(G, 1) is of particular interest, thanks to the Jordan de-
composition of characters. Indeed, by [24, Theorem 4.23], there is a bijection

Uch
(
CG∗(s)F ∗)

←→ E(G, s) ∀ s ∈ (G∗)F ∗
.

The set Uch(G) can itself be decomposed into families which could be defined through the
notion of unipotent support, a unique unipotent conjugacy class of G associated to each
irreducible character. Thanks to [17, Proposition 4.2 and Corollary 5.2], we say that two
unipotent characters are in the same family if and only if they have the same unipotent
support.

Lastly, to each family F of Uch(G) with unipotent support C ∈ XG, Lusztig defined an
ordinary canonical quotient ΩG,C , a certain quotient of AG(uC) ([24, Theorem 4.23 and
§ 13.1.3], [33]). He showed that there exists a finite group Ω̃G,C such that ΩG,C is a normal
subgroup of Ω̃G,C , |Ω̃G,C : ΩG,C | = c, where c is the order of the automorphism σ and such
that there is a bijection between M(ΩG,C ⊆ Ω̃G,C) and F .

As a consequence of the Jordan decomposition, for any semisimple element s ∈ (G∗)F ∗ ,
we have a partition

E(G, s) =
⊔
F
E(G, s)F ,

where F runs over the families of Uch(CG∗(s)F ∗). However, we do not know yet the
unipotent support of these families E(G, s)F of characters of G.

Lusztig defined a surjective map Φ from the special G∗-conjugacy classes to the unipo-
tent conjugacy classes of G, that allows us to get the unipotent support of the non-
unipotent characters. We recall a few notions needed for this definition.

We say that a unipotent class in G is special if it is the unipotent support of a unipotent
character. More generally, we call an element g ∈ G∗ special if (gu)CG∗ (gs) is the unipotent
support of a unipotent character of CG∗(gs), with gs ∈ (G∗)F ∗ . If F is the family of
Uch(CG∗(gs)F

∗) with unipotent support (gu)G∗ , we set
Irr(G)g := E(G, gs)F ,

under a fixed Jordan decomposition of characters.
We define NG to be the set of all pairs (C, ϕ) with C ∈ XG and ϕ ∈ Irr(AG(u)). The

Springer correspondence gives an injective map iG : Irr(W )→ NG, see [25, 41].
Recall that for ψ ∈ Irr(W ), the b-invariant of ψ is defined as the smallest non-negative

integer n ∈ N such that ψ occurs in the character of the nth symmetric power of the natural
representation of W ([23, § 2]). If W ′ is a subgroup of W generated by reflections, then
for each ψ′ ∈ Irr(W ′) there exists a unique ψ ∈ Irr(W ) such that ⟨ψ, IndWW ′(ψ′)⟩ = 1 and
the b-invariants of ψ and ψ′ agree. It is called the j-induction of ψ′ and denoted jWW ′(ψ′)
[23, § 3].

For ψ ∈ Irr(W ), the a-invariant is defined as the largest n ∈ N such that qn divides the
generic degree of ψ, for an indeterminate q ([23, § 2]). We say that ψ ∈ Irr(W ) is special
if aψ = bψ.

Definition 1.2. Lusztig’s map Θ from the special conjugacy classes of G∗ to XG is then
constructed as follows.

(1) We start with g = sv ∈ G∗ special where we assume that s ∈ T∗ and v ∈ CG∗(s)
is unipotent.
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(2) Since (v)CG∗ (s) is special, there is a unique special ψ′ ∈ Irr(WCG∗ (s)) such that
iCG∗ (s)(ψ′) = ((v)C◦

G∗ (s), 1).
(3) We apply j-induction and construct a character jW ∗

WCG∗ (s)
(ψ′).

(4) Since W ∼= W ∗, there is an associated character ψ of W which corresponds to
jW

∗
WCG∗ (s)

(ψ′).
(5) Lastly, we apply Springer correspondence iG(ψ) = (C, ϕ) ∈ NG. We then set

Θ(g) = C.

By [32, Theorem 10.7] for ρ ∈ Irr(G) if g ∈ G∗ is special such that ρ ∈ Irr(G)g, then
Θ(g) is the unipotent support of ρ.

1.2. Basic sets and their parameterisation.

Hypothesis 1.3. We further assume in this subsection that ℓ does not divide the order
of the largest quotient of Z(G) on which F acts trivially.

We only consider the unipotent blocks, which can be defined thanks to [5, Theorem 2.2] as

B1(G) :=
⊔
E(G, s),

where s runs over representatives of conjugacy classes of semisimple ℓ-elements of (G∗)F ∗ .
These unipotent blocks are particularly important as most other unions of blocks are
Morita equivalent to them, thanks to Bonnafé and Rouquier [4, Theorem 11.8].

When ℓ is good, we know a basic set of ordinary irreducible characters for the unipotent
blocks.

Theorem 1.4 ([16, Theorem 5.1]). Recall that p ̸= ℓ and ℓ are good for G and Z(G) is con-
nected. Then, the number of irreducible Brauer characters in the unipotent blocks B1(G) is

|E(G, 1)| =
∑

C

∣∣∣M(
ΩG,C ⊆ Ω̃G,C

)∣∣∣ ,
where C runs over the F -stable special unipotent conjugacy classes of G.

In the case where ℓ is bad, the set of unipotent characters E(G, 1) does not give a basic
set for B1(G). However, Chaneb [9] found another parameterisation, which involves more
unipotent conjugacy classes in the sum.

Recall that t ∈ G a semisimple element is called quasi-isolated if CG(t) is not included
in a proper Levi subgroup of G. If moreover, C◦

G(t) is not contained in a proper Levi
subgroup of G, then we say that t is isolated.

Definition 1.5 (Chaneb). We say that a unipotent class C ∈ XG is ℓ-special if there exists
s ∈ G∗ an isolated semisimple ℓ-element and v ∈ CG∗(s) unipotent such that Θ(sv) = C.

In particular, any special unipotent class of G is ℓ-special. Analogously to Lusztig,
Chaneb defined another quotient of AG(uC), the ℓ-canonical quotient Ωℓ

G,C associated to
an ℓ-special class C. Note that when ℓ is good and G is simple and adjoint, then AG(uC)
is an ℓ′-group for all special unipotent conjugacy classes C of G and Ωℓ

G,C = ΩG,C . This
new definition gave the following result:

Theorem 1.6 ([9, Theorem 3.16]). Assume that G is a simple exceptional group of ad-
joint type. For each unipotent class C of G, there exists a finite group Ω̃ℓ

G,C such that Ωℓ
G,C
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is a normal subgroup of Ω̃ℓ
G,C and |Ω̃ℓ

G,C : Ωℓ
G,C | = c, where c is the order of the automor-

phism σ on W . Then, the number of irreducible Brauer characters in the unipotent blocks
B1(G) is ∑

C

∣∣∣M(
Ωℓ

G,C ⊆ Ω̃ℓ
G,C

)∣∣∣ ,
where C runs over the F -stable ℓ-special unipotent conjugacy classes of G.

For each F -stable ℓ-special unipotent class C, we write αℓC := |Mℓ(Ωℓ
G,C ⊆ Ω̃ℓ

G,C)|. Recall
that when p is good and G simple adjoint of exceptional type all unipotent conjugacy
classes of G are F -stable [20, Section 5.1].

2. A unitriangular basic set for the unipotent blocks when ℓ is good

In the previous section, we have chosen n irreducible KG-modules V1, . . . , Vn in the
unipotent ℓ-blocks that we hope is a good set of candidates for a unitriangular basic set
of size n ((Step 1) and (Step 2)).

We now consider the last two steps of our strategy in the case where ℓ is good. In other
words, we recall the main results of Brunat–Dudas–Taylor [6] leading to the proof of their
Theorem A.

A first good set of candidates for the projective kG-modules (Step 3) are the generalised
Gelfand–Graev characters. They are associated to the unipotent conjugacy classes of G.
Regrouping the GGGCs in terms of their unipotent conjugacy class and the unipotent
characters in terms of their unipotent support should yield a decomposition matrix which
is lower-triangular by block. The main issue is that we will in general not be able to
construct enough GGGCs. Following Brunat–Dudas–Taylor, we decompose them into
Kawanaka characters in Subsection 2.2. In the last subsection, we illustrate how to use
character sheaves in order to complete (Step 4) and show that the decomposition matrix
of the unipotent ℓ-blocks of G is lower-unitriangular when ℓ is good.

Hypothesis 2.1. In this section, we assume that p is good for G.

2.1. Generalised Gelfand–Graev characters. We now recall the construction of the
generalised Gelfand–Graev characters (GGGCs) following the notation in [6, Section II.6].
These characters were first defined in [21], and another construction was given in [43].

2.1.1. Unipotent conjugacy classes and nilpotent orbits. We parameterize the unipotent
conjugacy classes of G. Firstly we introduce some notation, following [7, Chapter 5].

Definition 2.2. Let λ ∈ Y (T) be a cocharacter of T. We define the following subgroups
of G:

Pλ :=
〈
T,Uα

∣∣ α ∈ Φ with ⟨α, λ⟩ ≥ 0
〉
,

Lλ :=
〈
T,Uα

∣∣ α ∈ Φ with ⟨α, λ⟩ = 0
〉
,

Uλ :=
〈
Uα

∣∣ α ∈ Φ with ⟨α, λ⟩ > 0
〉
.

Observe that Pλ is a parabolic subgroup of G with Levi subgroup Lλ and unipotent
radical Uλ. For any integer i > 0 we also define

Uλ(i) :=
〈
Uα

∣∣∣α ∈ Φ+ with ⟨α, λ⟩ ≥ i
〉
,

Uλ(−i) :=
〈
Uα

∣∣∣α ∈ Φ+ with ⟨α, λ⟩ ≤ −i
〉
.

Observe that Uλ(−i) = U−λ(i).
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We set Fq : Fp → Fp the standard Frobenius endomorphism defined by Fq(x) = xq

for x ∈ Fp. We define an F -action on Y (T) as follows: F · λ = F ◦ λ ◦ F−1
q .

2.1.2. Step a: Parameterizing unipotent conjugacy classes reduces to parameterizing nilpo-
tent orbits. We denote by N the variety of nilpotent elements of the Lie algebra g associ-
ated to G and by U the variety of unipotent elements of G. By [36, § 10], we have
Proposition 2.3 (Springer, Serre). There exists a homeomorphism of varieties Ψspr :
U → N such that for all elements g ∈ G and unipotent elements u ∈ U , we have

Ψspr(gu) = Ad(g)(Ψ(u)).
The induced map between the unipotent conjugacy classes of G and the nilpotent orbits
of g does not depend on the choice of Ψspr.

This map is called the Springer homeomorphism. If the group is proximate ([43,
Definition 2.10]) then any Springer homeomorphism is an isomorphism of varieties [43,
Lemma 3.4].

2.1.3. Step b: Nilpotent orbits are parametrized by weighted Dynkin diagrams. Recall that
we assume that p is good for G. We let GC be a reductive group defined over C with Borel
subgroup BC and maximal torus TC such that it defines an isomorphic root datum to the
one associated to (G,B,T). To each non-zero nilpotent orbit O, one can associate an
sl2-triple {e, f, h} ⊆ gC = Lie(GC) such that e ∈ O, by the Jacobson–Morozov theorem.
We may further assume that α(h) ≥ 0 for all simple roots α. We then define the weighted
Dynkin diagram associated to O as the map dO : ∆ → Z, dO(α) = α(h), that we extend
linearly to a map on all roots of G. The weighted Dynkin diagram dO defined above does
not depend on the choice of {e, f, h} up to conjugation. Moreover, two nilpotent orbits O
and O′ have the same weighted Dynkin diagram if and only if they are the same. Lastly,
there is a unique cocharacter λdO ∈ Y (T) such that for all roots α

dO(α) = ⟨α, λdO⟩,
for the pairing between X(T) and Y (T). We write D for the set of all the weighted Dynkin
diagrams constructed as above. We also define

Y G
D := {gλd | d ∈ D, g ∈ G} .

Lastly for u ∈ U we define Y G
D (u) the subset of λ ∈ Y G

D is such that Ψspr(u) is in the
unique dense open Lλ-orbit of Lie(Uλ(2)\Uλ(3)).

2.1.4. Definition of the generalised Gelfand–Graev characters.
Hypothesis 2.4. From now on, we assume that G is proximate.

We fix a Kawanaka datum K = (Ψspr, κ, χp) as in [6, Definition 6.1, Lemma 6.3]. For
each u ∈ UF a rational unipotent element and λ ∈ Y G

D (u)F , we fix a certain irreducible
character ξGu,λ of Uλ(−1)F ([6, Eq. (6.4)]). We can associate to ξGu,λ an irreducible kG-
module as Uλ(−1)F is a p-group, whence an ℓ′-group. Moreover, by [6, Eq. (6.5)], for any
x ∈ G,

xξGu,λ = ξGxu,xλ.

Definition 2.5 (Kawanaka). For u ∈ UF a rational unipotent element and λ ∈ Y G
D (u)F

an F -stable cocharacter, we define the generalised Gelfand–Graev character (GGGC) of
G as

γGu := IndGUλ(−1)F

(
ξGu,λ

)
.
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One can show that γGu does not depend on the choice of cocharacter λ ∈ Y G
D (u)F ([6,

below Definition 6.6]). Moreover, for any x ∈ G,

γGu = γGxu.

In particular, for an F -stable unipotent conjugacy class C, one could obtain at most as
many different generalised Gelfand–Graev characters of the form γGu for some u ∈ CF as
there are conjugacy classes of AG(uC).

Observe as well that since Uλ(−1)F is a p-group, whence an ℓ′-group and since induction
preserves projectivity, we can associate to each GGGC a projective kG-module. In other
words, there exists a projective kG-module ΓGu such that γGu is the character associated
to (ΓGu )O ⊗O K.

2.1.5. Wave front set. We define a dual concept to the unipotent support using GGGCs.

Definition 2.6. Let ρ ∈ Irr(G). A wave front set of ρ is an F -stable unipotent conjugacy
class C of G such that:

(1) there is v ∈ CF such that ⟨γGv , ρ⟩ ≠ 0 and
(2) for any unipotent conjugacy class C′ of G such that ⟨γGv′ , ρ⟩ ≠ 0 for some v′ ∈ C′,

we have dim(C′) ≤ dim(C).

Similarly to the unipotent support, the wave front set is in fact unique.

Theorem 2.7 ([43, Theorems 14.10 and 15.2]). Let ρ ∈ Irr(G). Then ρ has a unique
wave front set, which we denote by C∗

ρ . Moreover, for any unipotent element u ∈ G,

if ⟨γG
u , ρ⟩ ≠ 0, then (u)G ⊆ C∗

ρ .

For an irreducible character ρ ∈ Irr(G), we write

ρ∗ := ±DG(ρ),

where the sign is the unique choice making the Alvis–Curtis dual DG(ρ) an irreducible
character of G, see [18, Definition 3.4.1] for a definition of DG.

Unipotent supports and wave front sets are deeply linked:

Lemma 2.8 ([43, Lemma 14.15]). Let ρ ∈ Irr(G). Then the unipotent support Cρ∗ of ρ∗

is the wave front set C∗
ρ of ρ, (and conversely the unipotent support of ρ is the wave front

set of ρ∗).

Remark 2.9. Let us look at our plan we explained in the introduction. We have chosen
a basic set in Theorem 1.4. We fix a total ordering of the special unipotent conjugacy
classes such that Ci < Cj if dim Ci < dim Cj for all 1 ≤ i < j ≤ r. For each such special
unipotent conjugacy class C, we choose irreducible unipotent KG-modules with wave front
set C. They are the duals of the unipotent KG-modules with unipotent support C and
there αℓC :=

∑
C |M(Ωℓ

G,C ⊆ Ω̃ℓ
G,C)| of them. We would also like to choose GGGCs of the

form ΓGu for u ∈ C. However, if the number of conjugacy classes of AG(uC) is smaller than
αℓC , we do not have enough projective kG-modules.

2.2. Admissible coverings and Kawanaka characters. To overcome the difficulty
that there might not be enough generalised Gelfand–Graev characters, Brunat–Dudas–
Taylor decompose the GGGCs into a direct sum of other characters called Kawanaka
characters. To do so, they first define a lift of each ordinary canonical quotient.
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2.2.1. Definition and existence of an admissible covering.

Definition 2.10 ([6, Definition 7.1]). Let u ∈ UF be a rational unipotent element. Let
A ≤ CG(u) be a subgroup and λ ∈ Y G

D (u)F be an F -stable cocharacter. We say that the
pair (A, λ) is admissible for u if the following hold:

(1) the subgroup A ⊆ LFλ ,
(2) the subgroup A contains only semisimple elements,
(3) and for all a ∈ A, we have a ∈ C◦

Lλ
(CA(a)).

If A is a quotient of AG(u) on which F acts, we say that the pair (A, λ) is an admissible
covering for A if:

(4) the restriction of the map CG(u)→ A to A→ A fits into the following short exact
sequence

1 −→ Z −→ A −→ A −→ 1
where Z ≤ Z(A) is a central subgroup with Z ∩ [A,A] = {1}.

Proposition 2.11 ([6, Sections 9 and 10]). Assume that G is simple and adjoint. Let C
be a special unipotent conjugacy class of G. Then there always exist

• an F -stable unipotent element uC ∈ C such that F acts trivially on AG(uC) and
• an admissible pair (AC , λ) for uC which is an admissible covering of ΩG,C, and

such that AC is abelian or AC ∼= ΩG,C.
Moreover |AC | is divisible only by bad primes for G.

We describe in more details the case of exceptional groups.

Proposition 2.12 ([6, Section 10]). Assume that G is simple adjoint of exceptional type.
Let C be a special unipotent conjugacy class of G. We distinguish between the following
cases:

(1) If ΩG,C is trivial, then we choose AC = {1} ⊆ G for an admissible covering.
(2) If G is of type E8 and C = E8(b6), then AG(uC) ∼= S3 and ΩG,C ∼= AC ∼= S2.
(3) If G is of type E7 and C = A4 + A1 or G is of type E8 and C is one of E6(a1) +

A1, D7(a2), A4 +A1, then AG(uC) ∼= ΩG,C ∼= S2 and AC ∼= C4.
(4) Else, ΩG,C is not trivial and AG(uC) ∼= ΩG,C ∼= AC.

2.2.2. Definition of a Kawanaka character. We fix u ∈ UF a rational unipotent element
and (A, λ) an admissible pair for u. To each a ∈ A, one can find an element ua ∈ ((u)G)F
such that the set {ua | a ∈ A} satisfies certain conditions [6, Lemma 7.6]. It is called a set
of admissible representatives.

For any a ∈ A, we define an extension ξ̃Gua,λ
∈ Irr(CA(a) ⋉ Uλ(−1)F ) of ξGua,λ

as in [6,
Section 7.4]. It is called the Weil extension and is well-understood, by [6, Lemma 7.11],
[19].

Definition 2.13 ([6, Definition 7.13]). Let a ∈ A and ϕ ∈ Irr(CA(a)). We define the
Kawanaka character associated to the pair (a, ϕ) to be

KG
(a,ϕ) := IndGCA(a)⋉Uλ(−1)F

(
ξ̃Gua,λ ⊗ InfCA(a)⋉Uλ(−1)F

CA(a) ϕ
)
.

We observe that
γGua

=
∑

ϕ∈ Irr(CA(a))
ϕ(1)KG

(a,ϕ). (2.1)
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Moreover, for any a, b ∈ A and ϕ ∈ Irr(CA(a)), we have KG
(ba,bϕ) = KG

(a,ϕ). We denote
by KG

[a,ϕ] the Kawanaka character KG
(a,ϕ) for each orbit [a, ϕ] in M(A).

Lastly, we see that if A is an ℓ′-group, then there exist projective kG-modules KG[a,ϕ]
such that KG

[a,ϕ] is the character associated to (KG[a,ϕ])
O ⊗O K for any [a, ϕ] ∈ M(A). In

particular, if ℓ is good for G, then the Kawanaka characters allow us to overcome the
difficulty raised in Remark 2.9. However, we still have to check that the decomposition
matrix is lower-unitriangular. The idea of Brunat–Dudas–Taylor is to use characteristic
functions of character sheaves instead of irreducible characters.

2.3. Decomposition of the Kawanaka characters.

2.3.1. Character sheaves and characteristic functions. We very briefly recall some results
about characteristic functions of character sheaves, for more details see Section 4. Charac-
ter sheaves are certain irreducible perverse sheaves on G. We denote the set of isomorphism
classes of character sheaves of G by Ĝ. We have

Ĝ =
⊔

Ĝs,

where s runs over representatives of the W -orbits on T∗ (see [26, Definition 2.10], [28,
Corollary 11.4], for an isomorphism between the Kummer local systems on T and T∗).
We say that a character sheaf is unipotent if it belongs to Ĝ1.

Hypotheses 2.14. In this subsection, we assume that G is simple and of adjoint type.

The parameterisation of Ĝ is very similar to the one of Irr(G). Fix s a representative of
a W -orbit on T∗. To each family F of Irr(WC∗

G(s)) one can associate a family of character
sheaves (Ĝs)F parametrised by a variant of M(GF ) for a certain finite group GF . In the
unipotent case, we have GF = ΩG,F ([29, § 17.8.3]).

To each family F of Ĝ, we can associate a unipotent conjugacy class CF of G, called
unipotent support. It is the unique unipotent class of G satisfying the following properties:

(1) there exists a conjugacy class D of G and a character sheaf A ∈ F such that the
unipotent part of D is C and A|D ̸= 0,

(2) and for any conjugacy class D of G such that the unipotent part of D is different
from C and which has dimension bigger than or equal to the one of C and for any
character sheaf A ∈ F , we have A|D = 0.

Now, we want to consider the character sheaves A which are F -stable. In that case,
we fix an isomorphism F ∗A ∼= A as in [30, § 25.1] and we can define a class function
χA, called the characteristic function of A. It depends on the choice of the isomorphism
up to a scalar multiple of norm 1. Then by [30, § 25], the set of characteristic functions
of F -stable character sheaves forms an orthonormal basis of the space of class functions
of GF .

This time, by [40, § 5], the F -stable character sheaves in Ĝs are parametrised by the
F ∗-stable families F of Irr(WC∗

G(s)) for s a representative of a W -orbit on T∗ such that
F ∗(s) = w.s for some w ∈W .

Theorem 2.15 ([39, 40]). The space spanned by the unipotent characters with wave front
set C is equal to the space spanned by the Alvis–Curtis duals of the characteristic functions
of the F -stable unipotent character sheaves with unipotent support C.
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2.3.2. Fourier transform of Kawanaka characters and some of their properties. We collect
some results about Kawanaka characters, coming from [6, Section 8]. We fix an F -stable
unipotent conjugacy class C ∈ XG, u ∈ CF , an admissible pair (A, λ) for u and a set
{ua | a ∈ A} of admissible representatives.

Definition 2.16. The Fourier transform of Kawanaka characters is given as follows. For
[a, ϕ] ∈M(A), we set

FG[a,ϕ] :=
∑

[b,ψ] ∈ M(A)
{[a, ϕ], [b, ψ]}KG

[b,ψ].

Using the previous results and knowledge about the characteristic function of some
character sheaves, one can get interesting results. We explain one simplified proof of [6,
Theorem 8.9] in a particular case.

Note 2.17. Let C ∈ XG and g ∈ G∗ such that Θ(g) = C. We write Ĝg for the set of
F -stable character sheaves in Ĝgs with unipotent support C. For θ a class function of G,
we denote by prg(θ) the projection of θ to the space spanned by DG(Irr(G)g) := {DG(ρ) |
ρ ∈ Irr(G)g}. By [39], we observe that the space spanned by DG(Irr(G)g) equals the space
spanned by {DG(χA) | A ∈ Ĝg}.

Proposition 2.18. Assume that G is simple adjoint of exceptional type. Let g ∈ G∗ such
that Θ(g) = C. We write s := gs, v := gu and G∗

s := CG∗(s). Assume the following:
(K1) F ∗ acts trivially on ΩG∗

s ,(v)G∗
s
,

(K2) there exists an F -stable unipotent element uC ∈ C such that F acts trivially on
AG(uC) and an admissible pair (AC , λ) for uC which is an admissible covering of
AG(uC),

(K3) AC ∼= AG(uC) ∼= ΩG∗
s ,(v)G∗

s
,

(K4) there exists an F -stable character sheaf A ∈ Ĝg such that for all [b, ϕ] ∈M(AC)〈
FG[b,ϕ], DG(χA)

〉
=

{
xA if [b, ϕ] = [1, 1]
0 otherwise,

for some xA ∈ C×.
Then prg(KG

[a,ϕ]) is irreducible for all [a, ϕ] ∈M(AC). Furthermore,{
prg

(
KG

[a,ϕ]

) ∣∣∣ [a, ϕ] ∈M(AC)
}

= DG(Irr(G)g)

and KG
[a,ϕ] = KG

[b,ψ] if and only if [a, ϕ] = [b, ψ], for [a, ϕ], [b, ψ] ∈M(AC).

Proof. We let E := {DG(χA) | A ∈ Ĝg}. We fix [a, ϕ] ∈M(AC). Then, we have

KG
[a,ϕ] =

∑
[b,ψ] ∈ M(AC)

{[a, ϕ], [b, ψ]}FG[b,ψ]

= {[a, ϕ], [1, 1]}FG[1,1] +
∑

[b,ψ] ∈ M(AC)\[1,1]
{[a, ϕ], [b, ψ]}FG[b,ψ]

= 1
|CA(a)|F

G
[1,1] +

∑
[b,ψ] ∈ M(AC)\{[1,1]}

{[a, ϕ], [b, ψ]}FG[b,ψ].
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Thus
prg

(
KG

[a,ϕ]

)
= xA
|CAC (a)|DG(χA) +

∑
A′ ∈ Ĝg\{A}

x
[a,ϕ]
A′ DG(χA′),

with x
[a,ϕ]
A′ ∈ C for all A′ ∈ Ĝg\{A}.

The set E forms an orthonormal family. Therefore, we get〈
prg

(
KG

[a,ϕ]

)
,prg

(
KG

[a,ϕ]

)〉
= |xA|2

|CAC (a)|2 +
∑

A′∈ Ĝg\{A}

x
[a,ϕ]
A′ x

[a,ϕ]
A′ > 0.

Now by construction, prg(KG
[a,ϕ]) is a character of G, thus for all [a, ϕ], [b, ψ] ∈ M(AC),

we have 〈
prg

(
KG

[a,ϕ]

)
, prg

(
KG

[a,ϕ]

)〉
≥ 1 and

〈
prg

(
KG

[a,ϕ]

)
,prg

(
KG

[b,ψ]

)〉
≥ 0.

By the decomposition of GGGCs into Kawanaka characters (Eq. (2.1)), we get for all
a ∈ AC , 〈

prg (Γua) ,prg (Γua)
〉
≥

∑
ϕ∈ Irr(CAC (a))

ϕ(1)2
〈
prg

(
KG

[a,ϕ]

)
, prg

(
KG

[a,ϕ]

)〉
≥

∑
ϕ∈ Irr(CAC (a))

ϕ(1)2.

On the other hand, since AG(uC) ∼= ΩG∗
s ,(v)G∗

s
, we can apply [15, Remark 4.4] to get〈

prg
(
Γua),prg(Γua

)〉
=

∑
ϕ∈ Irr(CAC (a))

ϕ(1)2.

Consequently, for all [a, ϕ] ̸= [b, ψ] in M(AC),〈
prg

(
KG

[a,ϕ]

)
,prg

(
KG

[a,ϕ]

)〉
= 1, and

〈
prg

(
KG

[a,ϕ]

)
, prg

(
KG

[b,ψ]

)〉
= 0.

In particular, prg(KG
[a,ϕ]) is irreducible for all [a, ϕ] ∈ M(AC). Since by assumption, F

acts trivially on ΩG∗
s ,(v)G∗

s
, we have that |M(ΩG∗

s ,(v)G∗
s
)| = | Irr(G)g| = |DG(Irr(G)g)| and

we can conclude. □

In the unipotent case, we know more about the characteristic functions of unipotent
character sheaves thanks to [34, Theorem 2.4]. In particular, the last condition (K4) is
most of the time satisfied. Using this, Brunat–Dudas–Taylor showed a similar result to
the above proposition in more generality.

Proposition 2.19 ([6, Theorem 8.9]). Assume that ℓ is good for G. Assume that C ∈ XG
is special and F -stable. Let AC be as in Proposition 2.11. Given [a, ϕ] ∈ M(AC), the
character KG

[a,ϕ] has at most one unipotent constituent with wave front set C and it occurs
with multiplicity one. Furthermore, every unipotent character with wave front set C occurs
in some KG

[a,ϕ] for some [a, ϕ] ∈M(A). Moreover, if A ∼= ΩG,C, then KG
[a,ϕ] = KG

[b,ψ] if and
only if [a, ϕ] = [b, ψ], for [a, ϕ], [b, ψ] ∈M(A).

Remark 2.20. We observe that [34, Theorem 2.4] does not hold in full generality. For in-
stance, if we consider G simple adjoint of type E7, there are two cuspidal unipotent chara-
cter sheaves [29, Proposition 20.3(c)]. Their support is the closure of the G-conjugacy
class (su)G where s ∈ G is semisimple with connected centralizer of type SL4×SL4×SL2
and u ∈ C◦

G(s) is unipotent such that (u)C◦
G(s) is the regular class. Their associated
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local systems correspond to the two non-real characters of AG(su) ∼= C4. They belong
to the same family of exceptional character sheaves with unipotent support (u)G denoted
A4 +A1 in CHEVIE notation. [34, Theorem 2.4] claims that the restriction of those chara-
cter sheaves to their support is a local system corresponding to the lift of a character of
AG(u) ∼= S2, which is necessarily real.

Similar situations occur for G of type E8, when considering cuspidal characters in an
exceptional family. However, by explicit computations in [38, CHEVIE], we have checked
that the theorem [34, Theorem 2.4] holds true in exceptional type groups for all the other
cases.

This discussion does not really matter for the proof of the result of Brunat–Dudas–
Taylor. For instance, we could apply Proposition 2.18 in the cases for which [34, Theo-
rem 2.4] fails to hold.

3. The unipotent blocks for ℓ bad: first cases

Hypotheses 3.1. In this section, we assume that G is simple exceptional of adjoint type
and p is good for G.

We now want to show the unitriangularity of the ℓ-decomposition matrix of the unipo-
tent ℓ-blocks for ℓ bad. We follow the strategy lied out in the introduction. Thanks to
Theorem 1.6, we have chosen a set of candidates of n irreducible KG-modules V1, . . . , Vn.
We recall the information we have on these modules. We consider all the ℓ-special classes,
say C1, . . . , Cr. For each ℓ-special class Ci, we need to choose

αℓi :=
∣∣∣M(

Ωℓ
G,Ci
⊆ Ω̃ℓ

G,Ci

)∣∣∣
KG-modules which belong to the unipotent ℓ-blocks. In other words, these modules must
belong to a series E(G, s) where s is an isolated ℓ-element of (G∗)F ∗ and have unipotent
support Ci (which can be computed via Lusztig’s map, c.f. Definition 1.2).

We now need to find n candidates for the projective kG-modules and compute the
decomposition matrix ⟨Vi, PO

j ⊗O K⟩ for 1 ≤ i, j ≤ n. The projective kG-modules will
be GGGCs or a slighlty modified version of the Kawanaka characters associated to one of
the ℓ-special class. Therefore, the decomposition matrix will be lower-triangular by block,
similarly as in Remark 2.9.

To achieve the last two steps, we will distinguish between three cases according to the
ℓ-special class Ci and the prime ℓ:

(1) the unipotent class Ci is ℓ-P -special (Definition 3.2) and αℓi ≤ 2 (Corollary 3.5),
(2) the unipotent class Ci is special and ℓ as well as Ωℓ

G,Ci
satisfy certain properties

(Corollary 3.12),
(3) three leftover cases: Ci = E8(b6) and ℓ = 3 (Lemma 3.15) as well as Ci = E7(a5)

and ℓ = 2 or Ci = E6(a3) +A1 and ℓ = 3 (Section 5).
In the first case, we will apply result from Geck and Hézard [15], which uses GGGCs for

the projective modules and certain non necessarily unipotent KG-modules with unipotent
support Ci. In the second case, we will see how to adapt [6, Theorem 8.9] to the spe-
cial classes when ℓ is bad, adapting the definition of Kawanaka characters and choosing
unipotent KG-modules with unipotent support Ci. Lastly, we consider the leftover cases
in Section 5 after studying character sheaves in more detail in Section 4.
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3.1. Using generalised Gelfand–Graev characters. We study ℓ-special unipotent
conjugacy classes. If we add some conditions on these classes, then it will be enough
to choose generalised Gelfand–Graev characters, instead of Kawanaka characters. Recall
that a unipotent conjugacy class is said to be ℓ-special if its preimage under Lusztig’s
map Θ (Definition 1.2) contains an element g whose semisimple part is isolated and an
ℓ-element. We could ask for another property of g.

Definition 3.2 ([20, Theorem A]). Let C be an F -stable unipotent class of G and g be a
special element of G∗. We say that g satisfies the property (P ) with respect to C if:

(1) Θ((g)G∗) = C,
(2) |ΩCG∗ (gs),gu

| = |AG(uC)|, and
(3) the image of gs in the adjoint quotient of G∗ is quasi-isolated.

If there exists such a g ∈ G∗ such that moreover, gs is isolated and an ℓ-element, we say
that C is ℓ-P -special.

In general, for any F -stable unipotent conjugacy class of G, there exists a special
element g ∈ G∗ satisfying (P ) with respect to C and such that the class (g)G∗ is F ∗-stable
([20, Theorem B]). By the Lang–Steinberg theorem, we may choose g ∈ (G∗)F ∗ . However,
not all ℓ-special classes are ℓ-P -special.

Lemma 3.3. Let C be an F -stable unipotent class of G. Assume that ℓ is bad for G.
Then

• C is ℓ-P -special if and only if Ωℓ
G,C = AG(uC),

• if C is ℓ-special but not special then C is ℓ-P -special, and
• if C is ℓ-special but not ℓ-P -special, then Ωℓ

G,C
∼= ΩG,C ̸= AG(uC).

Proof. We get these results by computations using CHEVIE [38], which has all the data
for the j-induction, the Springer correspondence and the isolated semisimple elements. □

For C ∈ XG an F -stable class, we know part of the restriction of the GGGCs coming
from C to irreducible characters of G with unipotent support C.

Proposition 3.4 ([15, Proposition 3.4]). Assume that p is good for G. Let C be an F -
stable unipotent class of G and u1, . . . , ud be representatives for the G-conjugacy classes
contained in CF . Let g ∈ (G∗)F ∗ satisfying property (P ) with respect to C. Assume that
ΩCG∗ (gs),gu

is abelian. Then there exist ρ1, . . . , ρd ∈ Irr(G)g such that ⟨ρ∗
i , γuj ⟩ = δij for

1 ≤ i, j ≤ d.

As a corollary, if C as above is ℓ-P -special and d = αℓC , then considering the generalised
Gelfand–Graev characters is sufficient.

Corollary 3.5. Let C be an F -stable ℓ-P -special unipotent class of G. If Ωℓ
G,C is trivial

or ℓ = 2 and Ωℓ
G,C
∼= S2, then there exist ρ1, . . . , ραℓ

C
∈ Irr(G) in the unipotent ℓ-blocks

with unipotent support C and generalised Gelfand–Graev characters Γ1, . . . ,Γαℓ
C

such that
for 1 ≤ i, j ≤ αℓC ,

⟨ρ∗
i , γj⟩ = δij .

Proposition 3.6. If G is simple adjoint of exceptional type and ℓ is bad for G, the
only ℓ-special but not special unipotent conjugacy classes of G for which we can not apply
Corollary 3.5 are when G is of type E8

(1) ℓ = 2 and the unipotent conjugacy class is E7(a5) and
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(2) ℓ = 3 and the unipotent conjugacy class is E6(a3) +A1.
Proof. This follows by inspection of the tables in Appendix A. □

3.2. Adapting the general approach for the special classes. When we cannot apply
Corollary 3.5, we would like to adapt the proof of [6, Theorem 8.9] and use Kawanaka
characters. We fix C an F -stable unipotent conjugacy class, u ∈ CF , an admissible pair
(A, λ) for u and a set {ua | a ∈ A} of admissible representatives.

The main issue is that Kawanaka characters might not be characters of projective OG-
modules anymore, because the group A might not be an ℓ′-group.

3.2.1. ℓ-Kawanaka characters.
Definition 3.7. Assume a ∈ A and let Ψ be the character of a projective indecomposable
kCA(a)-module P (i.e. the character associated to the KCA(a)-module PO ⊗O K). We
also write Wua for a module of KCA(a) ⋉ Uλ(−1)F affording the character ξ̃Gua

for any
a ∈ A. We define the ℓ-Kawanaka module associated to the pair (a,Ψ) to be

KG(a,Ψ) := IndGCA(a)⋉Uλ(−1)F

((
(Wua)O ⊗O k

)
⊗ InfCA(a)⋉Uλ(−1)F

CA(a) P
)

and denote by KG
(a,Ψ) the character afforded by the module (KG(a,Ψ))

O ⊗O K.

Remark 3.8. Observe that if CA(a) is an ℓ′-group, Ψ is an irreducible character of CA(a).
Lemma 3.9. Let a ∈ A and let Ψ be the character of a projective indecomposable
k[CA(a) ⋉ Uλ(−1)F ]-module P . Then KG(a,Ψ) is a projective kG-module.

Proof. Since Uλ(−1)F is a p-group, and p ̸= ℓ, the inflation of P is a projective kCA(a)-
module. Tensoring and inducing preserve projectivity, thus KG(a,Ψ) is projective. □

Lemma 3.10. Fix a ∈ A and let Ψ be the character of a projective indecomposable
kCA(a)-module P . Then

KG
(a,Ψ) =

∑
ψ ∈ Irr(CA(a))

dψ,ΨK
G
(a,ψ).

Proof. For any ψ ∈ Irr(CA(a)) we write Vψ for an irreducible KCA(a)-module affording
the character ψ. We observe that KG

(a,Ψ) is the character of

IndGCA(a)⋉Uλ(−1)F

(
((Wua)O ⊗ k)⊗ InfCA(a)⋉Uλ(−1)F

CA(a) P
)O
⊗O K

= IndGCA(a)⋉Uλ(−1)F

((
(Wua)O ⊗ k⊗ InfCA(a)⋉Uλ(−1)F

CA(a) P
)O
⊗O K

)
= IndGCA(a)⋉Uλ(−1)F

(
Wua ⊗

(
InfCA(a)⋉Uλ(−1)F

CA(a) P
)O
⊗O K

)
= IndGCA(a)⋉Uλ(−1)F

(
Wua ⊗ InfCA(a)⋉Uλ(−1)F

CA(a) PO ⊗O K
)

= IndGCA(a)⋉Uλ(−1)F

Wua ⊗ InfCA(a)⋉Uλ(−1)F

CA(a)
∑

ψ ∈ Irr(CA(a))
dψ,ΨVψ


=

∑
ψ ∈ Irr(CA(a))

dψ,Ψ IndGCA(a)⋉Uλ(−1)F

(
Wua ⊗ InfCA(a)⋉Uλ(−1)F

CA(a) Vψ
)
.

Thus, KG
(a,Ψ) =

∑
ψ ∈ Irr(CA(a)) dψ,ΨK

G
(a,ψ). □
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As a consequence, since for any a, b ∈ A and ϕ ∈ Irr(CA(a)), we have KG
(ba,bϕ) = KG

(a,ϕ),

it makes sense to write KG
[a,Ψ] := KG

(a,Ψ) for any [a,Ψ] ∈Mℓ(A).

3.2.2. Special unipotent conjugacy classes. For the special conjugacy classes, we want to
use what we know about the decomposition of Kawanaka characters into irreducible char-
acters of G to deduce the decomposition of the ℓ-Kawanaka characters.

Proposition 3.11. Assume that G is adjoint simple of exceptional type. Let C be a spe-
cial F -stable unipotent conjugacy class of G and (A, λ) be the admissible covering of the
ordinary canonical quotient of AG(uC) as in Proposition 2.12. Let d = |Mℓ(ΩG,C)|. As-
sume that either ℓ does not divide |A| or A ∼= ΩG,C. Then, there exist unipotent characters
ρ1, . . . , ρd of G with unipotent support C and [a1,Ψ1], . . . , [ad,Ψd] ∈ Mℓ(A) such that for
1 ≤ i, j ≤ d, 〈

ρ∗
i ,K

G
[aj ,Ψj ]

〉
=

{
0 i < j,

1 i = j.

Proof. Let v ∈ (G∗)F ∗ be unipotent such that Θ(v) = C.
We observe that, by Lemma 3.10,

prv
(
KG

(a,Ψ)

)
=

∑
ψ ∈ Irr(CA(a))

dψ,Ψ prv
(
KG

(a,ψ)

)
.

Let us first assume that ℓ does not divide |A|. Since Mℓ(ΩG,C) = M(ΩG,C), which is
in bijection with the set of unipotent characters with unipotent support C, this is just a
reformulation of Proposition 2.19.

Suppose now that A ∼= ΩG,C . Thanks to Proposition 2.19, up to reindexing, we can
write prv(K[a,ψ]) = ρ∗

[a,ψ], where ρ[a,ψ] is a unipotent character with unipotent support C
for all [a, ψ] ∈M(ΩG,C). In other words, for each a ∈ A and Ψ the character of a projective
indecomposable kCA(a)-module, we have

prv
(
KG

(a,Ψ)

)
=

∑
ψ ∈ Irr(CA(a))

dψ,Ψ prv
(
KG

(a,ψ)

)
=

∑
ψ ∈ Irr(CA(a))

dψ,Ψρ
∗
[a,ψ].

Now, we observe that for ψ,ψ′ ∈ Irr(CA(a)), we have [a, ψ] = [a, ψ′] if and only if ψ = ψ′.
Therefore, 〈

ρ∗
[a,ψ], prv

(
KG

[a,Ψ]

)〉
= dψ,Ψ.

On the other hand, for b ∈ A not A-conjugate to a, and any ϕ ∈ Irr(CA(b)), we have
⟨ρ∗

[b,ϕ], prv(KG
[a,Ψ])⟩ = 0. Assume that for each a ∈ A, we have fixed a total ordering of {Ψj |

1 ≤ j ≤ sa}, the set of characters of CA(a) associated to the projective indecomposable
kCA(a)-modules, and an ordering of {ψi | 1 ≤ i ≤ ta} = Irr(CA(a)) such that for all
1 ≤ j ≤ sa and for 1 ≤ i ≤ j,

dψi,Ψj
=

{
0 if i < j

1 if i = j.

Then for each 1 ≤ j ≤ sa, we set ρ[a,Ψj ] := ρ[a,ψj ] and the sets {ρ[a,Ψ] | [a,Ψ] ∈ Mℓ(A)}
and {KG

[a,Ψ] | [a,Ψ] ∈Mℓ(A)} satisfy the statement of the proposition.
In other terms, we are left to check that the ℓ-decomposition matrix of CA(a) is lower-

unitriangular for each a ∈ A. One can easily check that this holds since by Propo-
sition 2.12, the group A is either S2, S3, S4 or S5 and the primes are ℓ ∈ {2, 3, 5}.
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We need to check the ℓ-decomposition matrices of the following groups: S2, S3, S4, S5,
C3, C2 ×C2, D8, C4, C5 and D12 (group with 12 elements) and C6. We already know that
the ℓ-decomposition matrix of the symmetric group is unitriangular. Moreover, it is also
trivially the case for groups of order a prime power. We can easily check that it is also
true for the last two cases. □

Corollary 3.12. Assume that G is simple exceptional of adjoint type. Let C be a special F -
stable unipotent conjugacy class of G and (A, λ) be the admissible covering of the ordinary
canonical quotient of AG(uC), as in Proposition 2.12. Assume that ΩG,C ∼= Ωℓ

G,C and
that either ℓ does not divide |A| or A ∼= ΩG,C. Then, there exist ρ1, . . . , ραℓ

C
unipotent

characters of G with unipotent support C and [a1,Ψ1], . . . , [aαℓ
C
,Ψαℓ

C
] ∈ Mℓ(A) such that

for 1 ≤ i, j ≤ αℓC, 〈
ρ∗
i ,K[a,Ψ]j

〉
=

{
0 i < j,

1 i = j.

Observe that the proof of Proposition 3.11 also shows the following result:
Proposition 3.13. Assume that G is adjoint simple of exceptional type. Let C be an
F -stable unipotent conjugacy class of G. Assume that
(Kℓ1) there exists an F -stable unipotent element uC ∈ C such that F acts trivially on

AG(uC) and an admissible pair (AC , λ) for uC which is an admissible covering of
AG(uC),

(Kℓ2) there is g ∈ (G∗)F ∗ such that Θ(g) = C and gs is an ℓ-element,
(Kℓ3) ΩG∗

s ,(v)G∗
s

∼= Ωℓ
G,C,

(Kℓ4) there is g ∈ (G∗)F ∗ such that Θ(g) = C and gs is an ℓ-element, and
(Kℓ5) {prg(KG

[a,ϕ]) | [a, ϕ] ∈ M(AC)} = DG(Irr(G)g) and if AC ∼= ΩG∗
s ,(v)G∗

s
and F ∗

acts trivially on ΩG∗
s ,(v)G∗

s
, then KG

[a,ϕ] = KG
[b,ψ] if and only if [a, ϕ] = [b, ψ], for

[a, ϕ], [b, ψ] ∈M(AC).
If either ℓ does not divide |AC | or AC ∼= ΩG∗

s ,(v)G∗
s
, then there exist ρ1, . . . , ραℓ

C
∈ Irr(G)g in

the unipotent blocks with unipotent support C and [a1,Ψ1], . . . , [aαℓ
C
,Ψαℓ

C
] ∈ Mℓ(AC) such

that for 1 ≤ i, j ≤ αℓC, 〈
ρ∗
i ,K[a,Ψ]j

〉
=

{
0 i < j,

1 i = j.

Lemma 3.14. If G is simple exceptional of adjoint type, the only special unipotent classes
of G for which we can not apply Corollary 3.12 are given in Table 3.1.

Table 3.1. Special unipotent conjugacy classes where we can not apply
Corollary 3.12.

G ℓ = 2 ℓ = 3
F4 A2, F4(a2)
E7 A4 +A1, E7(a4), A3 +A2
E8 E6(a1)+A1, D7(a2), A4+A1, E8(b4), D7(a1),

D5 +A2, E7(a4), D4 +A2, A3 +A2

E8(b6)

Moreover, the unipotent class E8(b6) for G of type E8 when ℓ = 3 is the only one of
those exceptions which is not ℓ-P -special.
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Proof. This follows from the description of the admissible covering in Proposition 2.12
and from explicit computations in CHEVIE [38] of the ordinary and ℓ-canonical quo-
tients, as well as the computation of Lusztig’s map, which uses the data in CHEVIE for
the j-induction, the Springer correspondence and the isolated elements. □

We thus have three cases left where cannot apply Corollary 3.5 nor Corollary 3.12: two
cases where the unipotent class is ℓ-special but not special and one where the unipotent
class is special. We study the latter case now.

Lemma 3.15. Let G be a simple group of type E8 and C the F -stable unipotent class
E8(b6). Then, there exist α3

C irreducible characters in the unipotent 3-blocks with unipo-
tent support C and α3

C projective characters (either Kawanaka or GGGC) such that the
decomposition matrix restricted to these rows and columns is unitriangular.

Proof. We observe using CHEVIE [38] that AG(uC) ∼= Ω3
G,C
∼= S3 and α3

C = 5.
Firstly, thanks to Proposition 2.12, we can find an admissible covering A of the or-

dinary canonical quotient associated to C. In this case, we have A ∼= ΩG,C ∼= S2. We
denote the elements of M(A) by [1, 1], [1, sgn], [−1, 1], [−1, sgn], where sgn denotes the
sign character. Thanks to Proposition 3.11 and since ℓ does not divide A, we can find four
unipotent characters ρ[1,1], ρ[1,sgn], ρ[−1,1], ρ[−1,sgn] with unipotent support C, and construct
four Kawanaka characters with respect to A and C such that for [b, ϕ], [a, ψ] ∈M(A),〈

ρ∗
[b,ϕ],K

G
[a,ψ]

〉
=

{
1 b = a and ϕ = ψ,

0 otherwise.

Since |M3(Ω3
G,C)| = 5, we need to find an irreducible character of G in the unipotent

ℓ-blocks, which has unipotent support C but is not unipotent. As in [15, Proof of Propo-
sition 4.3], we have for any unipotent character ρ with unipotent support C,

3∑
i=1

[
AG(ui) : AG(ui)F

] 〈
ρ∗, γGui

〉
= |AG(u)|

nρ
, (3.1)

where nρ is given by [24, § 4.26.3]. In our case, since ρ is unipotent and ΩG,C ∼= S2, we
have nρ = 2. Moreover, as in [18, Example 2.7.8(c)], we may assume that u1 corresponds
to 1 (whence [AG(u1) : AG(u1)F ] = 1), u2 corresponds to a 2-cycle (whence [AG(u2) :
AG(u2)F ] = 3), and u3 to a 3-cycle (whence [AG(u3) : AG(u3)F ] = 2).

Let ϕ ∈ Irr(S2) and i, j ∈ {±1}. By Equation (2.1), there are two distinct GGGCs,
say γGv1 and γGv−1 such that ⟨ρ∗

[i,ϕ], γ
G
vj
⟩ = δi,j . By construction, we have γGv1 = γGu1 and

γGv−1 = γGu2 . Applying to (3.1), we must have〈
ρ∗

[1,ϕ], γ
G
u3

〉
= 1 and

〈
ρ∗

[−1,ϕ], γ
G
u3

〉
= 0.

Moreover, we can check using CHEVIE [38] that the conjugacy class C is 3-P -special.
In other words, there is g = sv = vs ∈ (G∗)F ∗ with s ∈ (G∗)F ∗ semisimple of order a
power of 3, and v ∈ (G∗)F ∗ unipotent such that ΩCG∗ (s),v ∼= S3 and Θ(g) = C. Now
by [13, Proposition 6.7] and [20, Remark 4.4], there is a character µ ∈ E(G, s)g such that〈

µ∗, γGui

〉
= δ3i.

We then choose the irreducible characters µ, ρ[1,1], ρ[1,sgn], ρ[−1,1], ρ[−1,sgn] and the projec-
tive kG-characters γGu3 ,K

G
[1,1],K

G
[1,sgn],K

G
[−1,1],K

G
[−1,sgn] in these orders. We can check that
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the decomposition matrix of G restricted to these rows of irreducible KG-modules and
columns of projective kG-modules has the following shape, where the empty entries are 0:

1
1 1
1 1

1
1

 . □

Thanks to Proposition 3.6 and the above discussion on the special classes, we have only
two ℓ-special but not special classes to consider, which occur when G is of type E8. In or-
der to apply Proposition 3.13, we need to understand the decomposition of the Kawanaka
characters into non-unipotent characters (condition (Kℓ1)). We would like to use Propo-
sition 2.18. To do so, we need to study Condition (K4) of this proposition and thus the
value of non-unipotent character sheaves.

4. Restriction of principal series character sheaves to conjugacy classes

In this section, we consider the restriction of character sheaves coming from the prin-
cipal series to a mixed conjugacy class. This will allow us to check Condition (K4) of
Proposition 2.18 in Section 5 for the two leftover cases.

Remark 4.1. All the perverse sheaves are defined over Qℓ. We do not make assumptions
on the center of G nor on the prime p.

4.1. Induction of character sheaves. From certain local systems on the maximal
torus T, we construct G-equivariant semisimple perverse sheaves on G, following [26,
Sections 1 and 2].

4.1.1. Kummer local systems on the torus and character sheaves. We consider a certain
class of local systems on the torus. Firstly, we fix an injective homomorphism

ψ :
{
x ∈ k× ∣∣xn = 1 for some n ∈ N

}
→ Q×

ℓ .

Definition 4.2. We say that a Q×
ℓ -local system L on T is Kummer if there is n ∈ N,

coprime to p, such that L⊗n = Qℓ.

Kummer local systems are constructed as follows:
(1) Let n ∈ N such that (p, n) = 1, and µn := {x ∈ k× | xn = 1}. Define ρn : k → k,

x 7→ xn. Then µn acts on the local system (ρn)∗ Qℓ.
(2) Set En,ψ the summand of (ρn)∗ Qℓ on which µn acts according to ψ.
(3) Fix λ ∈ Hom(T, k×) and consider the Q×

ℓ -local systems on T of the form λ∗En,ψ.
We denote by S(T) the set of isomorphism classes of Kummer Q×

ℓ -local systems on T.
The action of w ∈ W on T induces an action on S(T) sending the isomorphism class

of L to the isomorphism class of ad(ẇ)∗L. For L = λ∗En,ψ ∈ S(T) with n ∈ N and
λ ∈ Hom(T, k×), we define

WL :=
{
w ∈W

∣∣∣ ad(w−1)∗L ∼= L
}
.

Observe that WL is not always a Coxeter group (see for instance [18, § 2.4.13]). We define

ΦL := {α ∈ Φ | sα ∈WL} ,
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and W ◦
L the Weyl group generated by {sα | α ∈ ΦL}. By [26, § 2.2.2], for each w ∈ WL,

there exists a character λw ∈ X(T) such that ad(w−1)∗L = ad(w−1)∗λ∗En,ψ = (λnwλ)∗En,ψ.
To each L ∈ S(T) corresponds a set of character sheaves ĜL as defined by Lusztig

in [26, Definition 2.10]. We have, by [28, Proposition 11.2]

Ĝ =
⊔

L ∈ S(T)/W
ĜL.

4.1.2. Induction of character sheaves. As for representations of finite groups, we would
like to obtain character sheaves of G from character sheaves of subgroups of G, and in
particular from Levi subgroups. For our purpose, we only describe the parabolic induction
coming from a torus, following [35, § 7.1] and [28, §§ 3 and 4].

We write G×B B for the quotient of G×B by the B-action b.(g, q) = (gb−1, bqb−1) for
b, q ∈ B, g ∈ G. We have the following diagram:

T G×B G×B B Gα β δ

with
• the map α : (g, ut) 7→ t for g ∈ G, u ∈ U and t ∈ T,
• the quotient map β,
• and the map δ : (g, b) 7→ gbg−1 for g ∈ G,∈ B.

If K is a T-equivariant perverse sheaf on T, then α∗K[dim G + dim U] is a B-equivariant
perverse sheaf on G×B. There exists a unique perverse sheaf K̃ (up to isomorphism) on
G×B B such that α∗K[2 dim U] = β∗(K̃). We put

IndG
B(K) = δ∗(K̃).

Any irreducible perverse sheaf on a variety X can be obtained as the intersection co-
homology complex IC(U, E) where U ⊆ X is open and E is a local system on U [2,
Theorem 4.3.1]. We fix

K := IC(T,L)[dim T]
where L = λ∗(En,ψ) ∈ S(T) is a Kummer local system on T. We construct an intersection
cohomology complex isomorphic to the induced perverse sheaf IndG

B(K) as follows.
We have the following diagram:

T G×Treg G×T Treg YT
α β δ

with
• the set Treg := {g ∈ T | C◦

G(g) = T} and the set YT :=
⋃
g ∈ G gTregg

−1,
• the set G×T Treg, quotient of G×Treg by the T-action t.(g, a) = (gt−1, tat−1) =

(gt−1, a) for t ∈ T, g ∈ G and a ∈ Treg,
• the map α which is the projection onto the second coordinate,
• the quotient map β,
• and the map δ : (g, a) 7→ gag−1 for g ∈ G, a ∈ Treg.

Note that YT = G. There exists a unique local system L̃ on G ×T Treg such that
α∗L = β∗(L̃) (up to isomorphism). Then, thanks to [25, Theorem 4.5]

IndG
B(K) ∼= IC(YT, δ∗

(
L̃)

)
[dimYT] = IC(G, δ∗

(
L̃)

)
[dim G].
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It is semisimple and decomposes into a direct sum of character sheaves. In fact, we can
write

IndG
B(K) ∼=

⊕
E ∈ Irr(End(IndG

B (K)))
AE ⊗ VE ,

where AE are the irreducible character sheaves in IndG
B(K) and VE = Hom(AE , IndG

B(K))
are the irreducible End(IndG

B(K))-modules. This algebra is closely related to some relative
Weyl groups.

Theorem 4.3 ([27, § 10.2]). The algebra End(IndG
B(K)) is isomorphic to the group algebra

Qℓ[WL] twisted by a 2-cocycle.

4.1.3. The algebras End(IndG
B(K)) and Qℓ[WL]. In the principal series case, Lusztig made

this isomorphism more explicit and showed that the cocycle is trivial [31, § 2.3]. Observe
that for any w ∈W , the following diagram commutes:

T G×Treg G×T Treg YT

T G×Treg G×T Treg YT

ad(ẇ−1) φw

βα

φw

δ

id

α β δ

with the T-equivariant map φw : G×Treg → G×Treg, (g, a) 7→ (gẇ, ẇ−1aẇ).
We define HL := End(δ∗(L̃)). For each w ∈W , we consider the action of w. We set

HL,w := Hom
(
φ∗
w

(
L̃

)
, L̃

)
.

Since L is irreducible, this vector space is non-trivial (and hence has dimension 1) if and
only if φ∗

w(L̃) ∼= L̃ if and only if ad(ẇ−1)∗(L) ∼= L.
There is a natural pairing for w,w′ ∈WL:

HL,w ×HL,w′ → HL,ww′

f × g 7→ g ◦ φ∗
w′(f).

Since δ∗(L̃) ∼= δ∗(φ∗
w(L̃)), we obtain a natural algebra isomorphism

HL ∼=
⊕

w∈WL

HL,w.

For w ∈ WL, we fix the unique isomorphism ϕL
w : ad(w−1)∗L → L such that (ϕL

w)1 is
the identity. It induces an isomorphism ϕ̃L

w ∈ HL,w. Observe that ϕ̃L
ww′ = ϕ̃L

w × ϕ̃L
w′ for all

w,w′ ∈ WL. Therefore, HL ∼= Qℓ[WL] as algebras. Thanks to this construction, we can
write

IC
(
G, δ∗(L̃)

)
[dim G] ∼=

⊕
E ∈ Irr(WL)

AL
E ⊗ VE ,

where AL
E are the irreducible character sheaves in the induction of K to G and VE =

Hom(AL
E , IndG

B(K)) are this time seen as the irreducible Qℓ[WL]-modules.
Moreover, we get an identification as follows

HL,w = Hom
(
ad(w−1)∗L̃, L̃

)
= Qℓϕ̃

L
w ←→ Qℓϕ̃

Qℓ
w = HQℓ,w

:= Hom
(
φ∗
w

(
Qℓ

)
,Qℓ

)
.
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This embedding of algebras HL → HQℓ
leads to a canonical isomorphism [31, § 2.6.e]:(

AL
E

)
|Guni

∼=
⊕

E′ ∈ Irr(W )

〈
E,ResWWL E

′
〉 (
AQℓ
E′

)
|Guni

.

4.2. Central translation of character sheaves with unipotent support. We would
like to consider translation of character sheaves by an element of the center of G. For
z ∈ Z(G), we define the translation z : T→ T, t 7→ zt for t ∈ T.

4.2.1. Translation of Kummer systems. We want to get a better understanding of the
isomorphism ϕL

w : ad(w−1)∗L → L for L ∈ S(T) and w ∈WL.
We fix n ∈ N and c ∈ k×. The stalk ((ρn)∗Qℓ)c can be seen as the n-dimensional

Qℓ-vector space Qℓ[ρ−1
n (c)], with action of µn on ρ−1

n (c) by multiplication. In that setting,
(En,ψ)c is the Qℓ-vector subspace of dimension one on which the action of x ∈ µn is simply
multiplication by ψ(x).

We start by a few observations, defining some morphisms and keeping track of their
restriction to the stalks. Fix λ, γ ∈ X(T). Firstly, we have a µn-equivariant morphism:

(λγ)∗ (ρn)∗ Qℓ → (λ)∗ (ρn)∗ Qℓ ⊗µn (γ)∗ (ρn)∗ Qℓ,

On the stalk t ∈ T, we get a morphism of µn-modules from

Qℓ

[
ρ−1
n (λ(t)γ(t))

]
to Qℓ

[
ρ−1
n (λ(t))

]
⊗µn Qℓ

[
ρ−1
n (γ(t))

]
.

Now, we denote by Qℓ[µn]
V

the constant sheaf on a variety V . The adjunction (ρn)∗

(ρn)∗Qℓ → Qℓ is given by the µn-equivariant isomorphism:
(ρn)∗ (ρn)∗ Qℓ → Qℓ[µn]

k× .

Taking the pullback by γ, we get a µn-equivariant morphism
(γn)∗ (ρn)∗ Qℓ = γ∗ (ρn)∗ (ρn)∗ Qℓ → γ∗Qℓ[µn]

k× → Qℓ[µn]T.

On the stalk at t ∈ T, we get an isomorphism of µn-modules from Qℓ[ρ−1
n (γn(t))] =

Qℓ[γ(t)µn] to Qℓ[µn], by multiplication by γ−1(t).
Combining the two previous µn-equivariant morphisms, we get

(λγn)∗ (ρn)∗ Qℓ → (λ)∗ (ρn)∗ Qℓ ⊗µn (γn)∗ (ρn)∗ Qℓ

→ (λ)∗ (ρn)∗ Qℓ ⊗µn Qℓ[µn]T
→ (λ)∗ (ρn)∗ Qℓ.

On the stalk t ∈ T, we get a morphism of µn-modules from Qℓ[ρ−1
n (λ(t)γn(t))] =

Qℓ[γ(t)ρ−1
n (λ(t))] to Qℓ[ρ−1

n (λ(t))], given by multiplication by γ−1(t).
This µn-equivariant morphism restricts to an isomorphism:

νλ,γ,n : (λγn)∗En,ψ → λ∗En,ψ.
Let t ∈ T such that tn = 1. The definition of En,ψ implies that the isomorphism (νλ,γ,n)t
of µn-modules from (En,ψ)λ(t) ⊆ Qℓ[ρ−1

n (λ(t))] to (En,ψ)λ(t) ⊆ Qℓ[ρ−1
n (λ(t))] is in fact given

by multiplication by ψ(γ(t)−1). More generally, since we always have λ∗En,ψ isomorphic to
(λm)∗Enm,ψ for all m ∈ N, for any element t ∈ T of finite order, the isomorphism (νλ,γ,n)t
of µn-modules is simply multiplication by ψ(γ(t)−1).

We can now consider the particular case of the isomorphism between ad(w−1)∗L → L
for L ∈ S(T) and w ∈WL. The above discussion leads to the following result:
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Lemma 4.4. Let L = λ∗En,ψ ∈ S(T) for n ∈ N and λ ∈ X(T). Let w ∈ WL. Recall that
there is λw ∈ X(T) such that λw = λλnw. Then ϕL

w is in fact νλ,λw,n.
Proof. Since L is irreducible, it suffices to check that (νλ,λw,n)1 is equal to (ϕL

w)1, which is
the identity. It clearly follows from the previous discussion. □

Lemma 4.5. Let z ∈ Z(G), w ∈ WL, then there is λw ∈ Hom(T, k×) depending on L
such that

ψ (λw(z)) z∗
(
ϕL
w

)
= ϕz

∗L
w and ψ (λw(z)) z∗

(
ϕ̃L
w

)
= ϕ̃z

∗L
w .

Proof. We have Wz∗L = WL and ϕz
∗L
w is well-defined. Since z∗(ϕL

w) ∈ Hz∗L,w, the two
isomorphisms z∗(ϕL

w) and ϕz
∗L
w differ by a scalar. To determine it, it suffices to consider

the stalks at 1. On one hand, by definition, (ϕz∗L
w )1 is the identity. On the other hand, by

Lemma 4.4, (z∗(ϕL
w))1 = (νλ,λw,n)1 is given by multiplication by ψ(λw(z))−1 and we can

conclude. □

Remark 4.6. Observe that the map WL → Q×
ℓ , w 7→ ψ(λw(z)) is a group homomorphism

since z∗ϕL
w′ ◦ ad((ẇ′)−1)∗z∗(ϕL

w) = z∗(ϕL
w′ ◦ ad((ẇ′)−1)∗(ϕL

w)) = z∗ϕL
ww′ for all w,w′ ∈WL.

Thus, ψ(λw′(z))−1 ◦ ψ(λw(z))−1 = ψ(λww′(z))−1.

We gather different facts on ψ(λw(z)) from [28, § 11.8]:
Lemma 4.7. Let z ∈ Z(G), L = λ∗(En,ψ). Then

(1) ψ(λw(z)) = 1 if z ∈ Z◦(G) or w ∈W ◦
L,

(2) the map WL/W
◦
L → Hom(Z(G)/Z◦(G), Q×

ℓ ), w 7→ (z → ψ(λw(z))) is injective.
4.2.2. Translation of character sheaves.
Lemma 4.8. For z ∈ Z(G), E ∈ Irr(WL) we have

AL
E
∼= Az

∗L
E·χz ,

where χz : WL → Q×
ℓ is given by w 7→ ψ(λw(z)).

Proof. For w ∈WL, we can define two embeddings ofHz∗L,w intoHQℓ,w
: the first one being

the usual one identifying ϕz∗L
w with ϕQℓ

w and the second one identifying z∗(ϕL
w) with ϕQℓ

w . So
we get two isomorphisms between Qℓ [WL] and End(IC(G, δ∗(z̃∗L))). From Lemma 4.5,
we see that they differ by multiplication with ψ(λw(z)). We define χz : WL → Qℓ by
w 7→ ψ(λw(z)) for any w ∈WL. On one hand we have,

AL
E
∼= HomEnd(IC(G,δ∗(L̃)))

(
E, IC

(
G, δ∗(L̃)

))
∼= HomWL

(
E, IC

(
G, δ∗(L̃)

))
(ϕL
w ↔ ϕQℓ

w )

∼= z∗ HomWL

(
E, z∗IC(G, δ∗(L̃))

) (
z∗ϕL

w ↔ ϕQℓ
w

)
∼= HomWL

(
E, IC(G, δ∗(z̃∗L))

)
.

On the other hand, for E′ ∈ Irr(WL), we have

Az
∗L
E′ ∼= z∗ Hom

End
(
IC(G,δ∗(z̃∗L))

) (
E′, IC

(
G, δ∗(z̃∗L)

))
∼= HomWL

(
E′, IC(G, δ∗(z̃∗L))

) (
ϕz

∗L
w = χz(w)z∗ϕL

w ↔ ϕQℓ
w

)
∼= HomWL

(
E′ · (χz)−1, IC

(
G, δ∗(z̃∗L)

))
.

(
z∗ϕL

w ↔ ϕQℓ
w

)
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We conclude that AL
E
∼= Az

∗L
E′ if and only if E′ = E · χz. □

4.3. Restriction of an induced cuspidal perverse sheaf to a mixed conjugacy
class. We fix a character sheaf K := IC(T,L) on the torus where L = λ∗(En,ψ) ∈ S(T).
We also fix s ∈ G a semisimple element. For any g ∈ G, we define the left translation
g : G → G, h 7→ gh. To simplify notation, we set H := C◦

G(s) and Hx := C◦
G(x−1sx) for

any x ∈ G. We also write WH := NH(T)/T and WHx := NHx(T)/T.

Definition 4.9. We let
M :=

{
m ∈ G

∣∣∣m−1sm ∈ T
}

and Γ := H\M/T.

For each γ ∈ Γ, we define
Tγ := γ̇Tγ̇−1 ∩H ⊆ γ̇Bγ̇−1 ∩H =: Bγ .

We set Lγ the local system on Tγ obtained as the inverse image of E under the map
τγ : Tγ → T, g 7→ γ̇−1sgγ̇. By [27, Proposition 7.11] we can then define irreducible
cuspidal character sheaves on Tγ ,

Kγ := IC(Tγ ,Lγ)[dim Tγ ].

The induced perverse sheaf IndH
Bγ

(Kγ) is semisimple and decomposes into a direct sum of
character sheaves on H.

Remark 4.10. We will often abuse notation and write only γ for γ̇ for any γ ∈ Γ.

Remark 4.11. Let γ ∈ Γ. We set B0,γ := B ∩Hγ .
We also fix L0,γ the local system on T obtained as the inverse image of L under the

map T→ T, g 7→ γ−1sγg. We define the perverse sheaf on T,
K0,γ := IC(T,L0,γ)[dim T].

We observe that Lγ = τ∗
γL = ad(γ−1)∗(γ−1sγ)∗L = ad(γ−1)∗L0,γ . Therefore,

IndH
Bγ

(Kγ̇) ∼= ad
(
γ̇−1

)∗ (
IndHγ̇

B0,γ
(K0,γ)

)
.

By [35, Proposition 8.2.3] and [27, § 8], we can decompose s∗((IndG
B(K))|sHuni) into a

direct sum of the various (IndH
Bγ

(Kγ))Huni for γ ∈ Γ:

Proposition 4.12 ([27, § 8]). There is an open neighborhood U of s in H, such that
sHuni ⊆ U and

s∗
((

IndG
B(K)

)
|U

)
∼=

⊕
γ ∈ Γ

(
IndH

Bγ
(Kγ)

)
s−1U

[dim(G)− dim(H)].

We describe the isomorphism on the level of local systems thanks to the proof of [35,
Proposition 8.2.3] and the discussion following it.

For each γ ∈ Γ, we have the following commutative diagram:

Tγ H×Tγ,reg H×Tγ Tγ,reg YTγ

T G×Treg G×T Treg YT

τγ

αγ βγ δγ

sγ s

α β δ

with
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• the sets Treg, Tγ,reg := {g ∈ Tγ | C◦
H(g) ⊆ Tγ}, YT :=

⋃
g ∈G gTregg

−1 and
YTγ

:=
⋃
h∈C◦

G(T) hTγ,regh
−1,

• the map α (resp. αγ) the projection on T (resp. Tγ) of the second coordinate,
• the map β (resp. βγ) induced by quotienting,
• the maps δ : (g, a) 7→ gag−1 for g ∈ G, a ∈ Treg and δγ : (g, a) 7→ gag−1 for g ∈ G

and a ∈ Tγ,reg,
• the map τγ : g 7→ γ̇−1sgγ̇,
• the map sγ : (h, g) 7→ (hγ̇, γ̇−1sgγ̇), for h ∈ H and g ∈ Tγ,reg
• and the map s : g 7→ sg for g ∈ YTγ .

We define Q := δ−1(U ∩ YT) and S := Q ∩ G ×T Treg. For each γ ∈ Γ, we set Qγ :=
{(g, g′) ∈ Q | g ∈ γ} and Sγ := S ∩Qγ = G×T Treg ∩Qγ . We observe that sγ induces an
isomorphism from δ−1

γ (s−1U ∩ YTγ ) to Qγ . There exists a local system L̃ on G ×T Treg

such that α∗(L) = β∗(L̃). We set L̃γ := s∗
γ(L̃). We then have

α∗
γ

(
Lγ

)
= α∗

γτ
∗
γ (L) ∼= β∗

γs
∗
γ

(
L̃

)
= β∗

γ

(
L̃γ

)
.

Moreover, by the change of basis theorem, since the diagram is commutative,

s∗
(
δ∗(L̃)|δ(Sγ)

)
∼= (δγ)∗

(
(sγ)∗(

L̃|Sγ

))
∼= (δγ)∗

(
(sγ)∗

(
L̃|G×TTreg ∩ sγ(δ−1

γ (s−1U ∩YTγ ))
))

∼= (δγ)∗
(
(L̃γ)|H×Tγ Tγ reg ∩ δ−1

γ (s−1U ∩YTγ )
)

∼= (δγ)∗
(
(L̃γ)|δ−1

γ (s−1(U ∩YTγ ))
)

∼=
(
(δγ)∗(L̃γ)

)
|s−1(U ∩YTγ ) .

We then have U ∩ YT =
⋃
γ∈Γ δγ(Sγ) ([27, § 8.2.17]) and a canonical isomorphism

s∗
(
δ∗

(
L̃

)
|U ∩YT

)
∼=

⊕
γ ∈ Γ

((
δγ)∗(L̃γ

))
|s−1(U ∩YTγ ) .

Observe that IndH
Bγ

(Kγ) = IC(YTγ , δγ∗L̃γ)[dimYTγ ] = IC(H, δγ∗L̃γ)[dim H]. The iso-
morphism above gives rise to an isomorphism

s∗

(
IndG

B(K)
)

|U ∩YT
) ∼=

⊕
γ ∈ Γ

(
IndH

Bγ
(Kγ

)
s−1(U ∩YT)

[dim(G)− dim(H)].

By [27, Sections 8.8.4–8.8.7], this isomorphism can be uniquely extended to the isomor-
phism in Proposition 4.12:

s∗
((

IndG
B(K)

)
|U

)
∼=

⊕
γ ∈ Γ

(
IndH

Bγ
(Kγ)

)
s−1U

[dim(G)− dim(H)].
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Observe that s∗((IndG
B(K))|U ) might not be a semisimple perverse sheaf. However,

Lusztig showed in [34, Proposition 1.4] that

s∗
((

IndG
B(K)

)
|sHuni

)
[−dim(G) + dim(H)− dim(T)]

∼=
⊕
γ ∈ Γ

(
IndH

Bγ
(Kγ)

)
s−1Huni

[−dim(T)],

is indeed semisimple.

Remark 4.13. Observe that the right hand side of the isomorphism does not depend on s
but rather on its conjugacy class. Therefore, from now on, we will assume that s ∈ T.

4.4. Restriction of a character sheaf to a mixed conjugacy class. By Proposi-
tion 4.12, we know how to decompose the restriction of the induction of a cuspidal charac-
ter sheaf K to a mixed conjugacy class as a direct sum of inductions of cuspidal character
sheaves on a smaller group. The main goal is to understand how this decomposition be-
haves with respect to the action of the endomorphism algebra of K or rather the relative
Weyl group associated to K.

4.4.1. Action of WL on Γ. As in [34], we define an action of WL on Γ.

Definition 4.14. We define an action of NG(T,L) on M by n.m := mn−1 for all m ∈M
and n ∈ NG(T,L). It induces a well defined action of WL on Γ by ẇγ = ẇHγ̇T :=
Hγ̇ẇ−1T for all γ ∈ Γ, w ∈WL.

Definition 4.15. We fix a set Λ of orbit representatives for the action of WL on Γ,

Γ =
⊔
λ∈ Λ

WL.λ.

Lemma 4.16. Let w ∈WL and λ ∈ Λ. Then
Tw.λ = Tλ.

Moreover,
Lw.λ ∼= Lλ and L0,w.λ ∼= ad(w−1)∗L0,λ.

Proof. It follows from the definition of WL and from the fact that τw.λ = ad(w) ◦ τλ. □

Let γ ∈ Γ, then the stabilizer of γ̇ by the action of NG(T,L) is NG(T,L) ∩ Hγ =
NHγ (L). Thus, the stabilizer of γ by the action of WL is NHγ (T,L)/T. We would like to
better understand this group. To ease notation, we write W γ

L := NHγ (T,L)/T.

Lemma 4.17. Let γ ∈ Γ, then
NHγ (L) = NHγ

L0,γ
and W γ

L = WHγ

L0,γ
.

Proof. Let h ∈ NHγ (L). Recall that L0,γ = (γ−1sγ)∗L and h ∈ CG(γ−1sγ). We therefore
have

ad(h)∗L0,γ = ad(h)∗(
γ−1sγ

)∗L ∼=
(
γ−1sγ

)∗ ad(h) ∗ L ∼=
(
γ−1sγ

)∗L = L0,γ .

Thus, h ∈ NHγ

L0,γ
. On the other hand, let h ∈ NHγ

L0,γ
. Symmetrically we have L ∼=

(γ−1s−1γ)∗L0,γ and h ∈ CG(γ−1s−1γ) and we conclude that h ∈ NHγ (L). The claims
follow. □
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Lemma 4.18. There is a bijection ω between WH\W/WL and the WL-orbits on Γ.
Proof. We define a WL-equivariant bijection

ω : WH\W → Γ
WHw 7→ HẇT.

We first show that the map is well-defined. Fix WHw ∈WH\W and let n1 ∈ NG(T) and
n2 ∈ NH(T) such that n2Tn1T = w. Then, there is t ∈ T such that n2n1t = ẇ. Then we
see that

ω
(
WHw

)
= Hn2n1tT = Hn1T = ω

(
WHn1T

)
.

Observe that ω is WL-equivariant. Indeed, let’s fix WHw in WH\W and v ∈WL. Then

ω
(
WHwv−1

)
= Hẇv̇−1T = vHẇT = vω

(
WHw

)
.

To show surjectivity, we fix m ∈ M . We observe that mT ⊆ H and T ⊆ H. Therefore,
there is h ∈ H such that mT = hT. Thus, h−1m ∈ NG(T). Let w ∈ W such that w =
h−1mT, i.e. ẇ = h−1mt for some t ∈ T. Then ω(WHw) = HẇT = Hh−1mtT = HmT
and ω is surjective. Injectivity is clear. □

4.4.2. Restriction of a character sheaf to a mixed conjugacy class. We define an action of
WL on the right hand side of Proposition 4.12, so that it commutes with the isomorphism.

We write Y := YT and Yγ := YTγ for each γ ∈ Γ. For each λ ∈ Λ, we fix a set V λ of
left cosets representatives such that WL :=

⊔
v ∈V λ W λ

Lv. In other words, we have

WL.λ =
{
v. λ | v ∈ V λ

}
.

Proposition 4.12 becomes

s∗
(
IC

(
Y , δ∗L̃

)
|U

)
∼=

⊕
λ∈ Λ

⊕
v ∈V λ

IC
(
Y λ, δ∗s

∗
v.λL̃

)
s−1U

.

Since for any λ ∈ Λ and v ∈ V λ, sv.λ = φv−1 ◦ sλ, we in fact have

s∗
(
IC

(
Y , δ∗L̃

)
|U

)
∼=

⊕
λ∈ Λ

⊕
v ∈V λ

IC
(
Y λ, δ∗s

∗
λφ

∗
v−1L̃

)
s−1U

.

By [35, above Lemma 8.6] or [27, § 8.7.13], we have that δ(Sγ) = δ(Sw.γ) for all γ ∈ Γ
and w ∈ WL. Fix w ∈ WL. For each λ ∈ Λ and v ∈ V λ, there is v′ ∈ V λ and w0 ∈ W λ

L
such that wv = w0v

′. Then we get

s∗
(
IC

(
Y , δ∗φ

∗
w−1L̃

)
|U

)
∼=

⊕
λ∈ Λ

⊕
v ∈V λ

IC
(
Y λ, δ∗s

∗
λφ

∗
v−1φ∗

w−1L̃
)
s−1U

∼=
⊕
λ∈ Λ

⊕
v ∈V λ

IC
(
Y λ, δ∗s

∗
λφ

∗
(v′)−1φw−1

0
L̃

)
s−1U

.

Recall that we fixed an isomorphism ϕ̃L
w : ϕ∗

w(L̃) → L̃ in Subsection 4.2. Observe that
the following diagram commutes:(

s∗(
δ∗φ

∗
w−1L̃

))
|δ(Sλ)

(
δ∗s

∗
λφ

∗
(v′)−1φ∗

w−1
0
L̃|Sλ

)

(
s∗(δ∗L̃)

)
|δ(Yλ)

(
δ∗s

∗
λφ

∗
(v′)−1L̃|Sλ

)s∗δ∗(ϕ̃L
w) δ∗s∗

λφ
∗
(v′)−1(ϕ̃L

w0)
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where the horizontal lines are given by the canonical isomorphisms from the change of
basis.

Hence, we define an isomorphism

IC
(
Y λ, δ∗s

∗
λφ

∗
v−1φ∗

w−1L̃
)
s−1U

→ IC
(
Y λ, δ∗s

∗
λφ

∗
(v′)−1L̃

)
s−1U

by rearranging the terms and acting on each component via δ∗s
∗
λφ(v′)−1(ϕ̃L

w0). By defini-
tion, it commutes with the isomorphism in Proposition 4.12.

The set of maps aλw := s∗
λ(ϕ̃L

w) for w ∈W λ
L = WHλ

L0,λ
lifts to a basis of HL0,λ

and therefore
induces an algebra isomorphism between

Qℓ

[
WHλ

L0,λ

]
and End

(
IC(Y ,L0,λ)

)
.

We would like to link the aλw for w ∈ W λ
L to the isomorphisms ϕL0,λ

w . Here aλw is simply
the translation of ϕL0,λ

w by sλ ∈ Z(Hλ). Therefore, we can apply Lemma 4.5 and we see
that

ψ
(
λw(sλ)

)
aλw = ϕ(sλ)∗L

w .

We finally obtain a formula for the restriction of a character sheaf. We write

IC
(
G, L̃

)
[dim G] ∼=

⊕
E ∈ Irr(WL)

VE ⊗AE

and

IC
(
Hλ, L̃0,λ

)
[dim H] ∼=

⊕
E′ ∈ Irr

(
WL0,λ

)VE′ ⊗AλE′ ∀ λ ∈ Λ.

We let χλ : W λ
L → Q×

ℓ , w 7→ ψ(λw(sλ)). We let d := dim(H)− dim(T) and for any symbol
S, any WHwWL, we write Sw := Sω(w), for ω as in Lemma 4.18.

Proposition 4.19. For E ∈ Irr(WL), let AE as above. Then s∗((AE)|sHuni)[d− dim(G)]
is isomorphic to⊕

w∈WH\W/WL

⊕
E′ ∈ Irr(WHw)

〈
ResWL

Ww
L
E · χsw

,ResWHw

Ww
L

E′
〉
Ww

L

(
AQℓ
E′

)
|Hw

uni

[d− dim(H)].

Proof. Firstly, we see that s∗((AE)|sHuni)[−dim(G) + d] is isomorphic to

HomQℓ[WL]

(
VE , s

∗
(
IC(Y , L̃)|sHuni [d]

))
∼= HomQℓ[WL]

VE , ⊕
λ∈ Λ

IndQℓ[WL]
Qℓ[Wλ

L ] ResQℓ[WLλ
]

Qℓ[Wλ
L ] IC(Y λ, L̃λ)Huni [d]


∼=

⊕
λ∈ Λ

HomQℓ[Wλ
L ]

(
ResQℓ[WL]

Qℓ[Wλ
L ] VE ,ResQℓ[WLλ

]
Qℓ[Wλ

L ] IC(Y λ, L̃λ)Huni [d]
)

∼=
⊕
λ∈ Λ

⊕
VE′ ∈ Irr(Qℓ[WLλ ])

HomQℓ[Wλ
L ]

(
ResQℓ[WL]

Qℓ[Wλ
L ] VE ,ResQℓ[WLλ

]
Qℓ[Wλ

L ] VE′

) (
AλE′

)
Huni

[−dim(T)].
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Here the action of W λ
L on IC(Hλ, L̃0,λ) is induced by the maps aλv for v ∈ W λ

L . Now
if instead we consider the usual action of W λ

L on IC(Hλ, L̃0,λ) induced by ϕ(sλ)∗L
v , we are

in a similar situation as in Lemma 4.8. We thus obtain s∗((AE)|sHuni)[−dim(G) + d] is
isomorphic to ⊕

w∈WH\W/WL

⊕
E′ ∈ Irr(Ww

L )

〈
ResWL

Ww
L
E · χsw

, E′
〉
Ww

L

(
AλE′

)
|Hw

uni
[−dim T].

By [31, § 2.6], IndHw

B (IC(T,Qℓ))|Hw
uni
∼= IndHw

B (IC(T,L))|Hw
uni
, and we get

s∗
(
(AE)|sHuni

)
[−dim(G) + d]

∼=
⊕
w

⊕
E′

〈
ResWL

Ww
L
E · χsw

,ResWHw

Ww
L

E′
〉
Ww

L

(
AQℓ
E′

)
|Hw

uni

[−dim(T)],

where w runs over the double cosets representatives of WH\W/WL and E′ over the irre-
ducible modules of Qℓ[WHw ]. □

Remark 4.20. It is usually more practical to see s∗((AE)|sHuni)[d− dim(G)] isomorphic
to ⊕

w

⊕
E′

〈
ResWL

Ww
L
E · χsw

,ResWHw

Ww
L

E′w
〉
Ww

L

(
AQℓ
E′

)
|Huni

[−dim(T)],

where w runs over the double cosets representatives of WH\W/WL and E′ over the irre-
ducible modules of Qℓ[WH].

5. The two leftover cases in E8

We now have the tools to check the conditions in Proposition 3.13 for the two ℓ-special
unipotent conjugacy classes of G for which we can not apply Corollary 3.5.

Lemma 5.1. The unipotent classes in Proposition 3.6 satisfy the conditions of Proposi-
tion 3.13.

It suffices to show the existence of an admissible covering and the conditions in Propo-
sition 2.18.

For the rest of this section, we assume that G is simple of type E8. For each simple
root β ∈ ∆, we set ωβ the fundamental dominant coweight corresponding to β. We fix a
bijection α from the semisimple elements of T∗ to the Kummer local systems on T. For
t ∈ T∗, by [1, Proposition 4.4], we have

WL ∼= WCG∗ (t)(T∗).

5.1. The unipotent conjugacy class E6(a3)+A1 when ℓ = 3. We fix the setting in the
case where the F -stable unipotent class is C = E6(a3) + A1. We choose t ∈ T∗ such that
CG∗(t) is of type E6 ×A2 and v ∈ CG∗(t) lies in the unipotent class A2, 111 of E6 ×A2.

5.1.1. Admissible covering. We follow [6, § 10.2]. We can choose s = ωα1(1/2) and uC ∈
C◦

G(s) F -fixed. In that case CG(s) is of type D8. We set H := CG(s). Thanks to [6,
Algorithm 5.2], since only one unipotent class of H fuses into C, we know that uC lies in
the unipotent class 6631 of H which fuses into E6(a3) + A1. The group A := ⟨s⟩ can be
chosen as an admissible covering of AG(uC) for a fixed cocharacter. Observe that

A ∼= AG(uC) ∼= ΩCG∗(t),(v)CG∗ (t)
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and if ℓ = 3, then A ∼= Ωℓ
G,C .

We are left to check the last condition of Proposition 2.18.

5.1.2. Character sheaves. We fix L := α(t) ∈ S(T). We now consider a principal series
character sheaf of G coming from L with unipotent support E6(a3) + A1. Thanks to
Lusztig’s map ([32, Theorem 10.7]), in CHEVIE notation, we choose the one corresponding
to the character ϕ30,15, 111 of WL. Observe that A := AL

ϕ30,15,111 is F -stable.
Using CHEVIE, we compute that WH\W/WL = {1, g} for some g ∈ W . The groups

WH ∩WL and WHg ∩WL are both Weyl groups. Therefore χs and χs
g are trivial, by

Lemma 4.7. We can thus use the Mackey formula to simplify Proposition 4.19. In that
case, it becomes for any E ∈ Irr(WL)

s∗
(
(AE)|sHuni

)
[−dim(G) + d]

∼=
⊕

E′ ∈ Irr(WH)

〈
IndWWL E, IndWWH E

′
〉
W

(
AQℓ
E′

)
|Huni

[−dim(T)].

We consider the restriction to (suC)G. By the same argument as in [34, Proof of Theo-
rem 2.4], we need to consider only the character sheaves of H which correspond under the
Springer correspondence to the unipotent class 6631, that is character sheaves such that
(AQℓ

E′ )Huni = IC((u)H, E ′)[dim(T ) − dim((u)H)] for E′ ∈ Irr(WH) and E ′ a local system
on (u)H. Indeed, if v ∈ H is unipotent such that (u)H ̸⊆ (v)H, then IC((v)H, E ′)|(u)H = 0
for E ′ a local system on (v)H. On the other hand, if (u)H ⊆ (v)H − (v)H, then (u)G ⊆
(v)G − (v)G. By definition of the unipotent support, we must have s∗((AE)|s(v)H) = 0.
Thus the character sheaf of the form AQℓ

E′ = IC((v)H, E ′)[dim(T) − dim((u)H)] can not
appear in the decomposition of s∗((AE)|sHuni).

By the Springer correspondence, there is only one character E′ ∈ Irr(WH) such that
AQℓ
E′ [−dim(T)] is of the form IC((u)H, E ′)[dim(u)H] for E′ ∈ Irr(WH) and E ′ a local

system on (u)H. In that case, AQℓ
E′ = IC((u)H,Ltrivial)[dim(u)H] where Ltrivial is the local

system on (u)H corresponding to the trivial character of AH(u) = CH(u)/C◦
H(u). Using

CHEVIE, we conclude that ⟨IndWWL(ϕ30,15, 111), IndWWH E′⟩W = 0, whence
A(su)H = 0.

We see that there is an F -stable character sheaf A with unipotent support C such that
• A|(suC)C◦

G(s)
= 0, and

• A|(uC)G [−dim(C)−dim(T)] is a local system corresponding to the trivial character
of AG(uC).

Therefore, we can apply the same proof as for [6, Proposition 8.8], and we get that for all
[b, ϕ] ∈M(A) 〈

FG[b,ϕ], DG(χA)
〉

=
{
xA if [b, ϕ] = [1, 1]
0 otherwise,

for some xA ∈ C×.

5.2. The unipotent conjugacy class E7(a5) when ℓ = 2. We fix the setting in the
case where the F -stable unipotent class is C = E7(a5). We choose t ∈ T∗ such that CG∗(t)
is of type E6 ×A2 and v ∈ CG∗(t) lies in the unipotent class D4(a1), 11 of E7 ×A1.
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5.2.1. Admissible covering. We fix M the Levi subgroup of G of type E7. We fix an
element uC ∈ MF such that (uC)G is the unipotent conjugacy class E7(a5) and F acts
trivially on AM(uC) ∼= S3. We write CM := (uC)M. Then the unipotent conjugacy class
CM is distinguished in M. We fix a cocharacter λ ∈ Y M

D (u)F . By the same reasoning as
in [6, § 10.4], the group A = CLM(λ)(uC) is an admissible covering of AM(uC). Then, by
the argument at the end of [6, § 10.5], where they apply [6, Lemma 4.4], the admissible
pair (A, λ) is also an admissible covering for AG(uC). Observe that

A ∼= AG(uC) ∼= ΩCG∗(t),(v)CG∗ (t)

and if ℓ = 2, then A ∼= Ωℓ
G,C .

Remark 5.2. Observe that by [37, Theorem 1] we have,

AG(uC) ∼=
〈
ωα1(1/2)h1C◦

G(uC), ωα2(1/3)h2C◦
G(uC)

〉
for some h1, h2 ∈ G.

5.2.2. Character sheaves. We fix L := α(s) ∈ S(T). We consider a principal series char-
acter sheaf of G coming from L with unipotent support E7(a5). Thanks to Lusztig’s map
([32, Theorem 10.7]), we choose the one corresponding to the character of WL denoted by
ϕ315,16, 11. In order to apply the same argument as in the proof of [6, Proposition 8.8],
we need to compute the value of the characteristic function of A := AL

ϕ315,16,11 on the
conjugacy classes (auC)C◦

G(a) for each a ∈ A.

Let us look at the case where a in an involution. Then, there exists x ∈ G such that
ax = ωα1(1/2) ∈ T. We fix s := ωα1(1/2) ∈ T such that H := CG(s) is of type D8.
Thanks to [6, Algorithm 5.2], since only one unipotent class of H fuses into C, we know
that u := uxC lies in the unipotent class 7522 of H which fuses into E7(a5).

We want to compute the restriction of the previous character sheaf to the mixed conju-
gacy class (su)H. We compute WH\W/WL = {1, g} for some g ∈W . The group WH∩WL
is a Weyl group. On the other hand, W g

L := WHg ∩WL is not a Weyl group and we have
W g

L/(W
g
L)◦ ∼= C2 ∼= Z(Hg). Thus, by Lemma 4.7, χs is the sign character.

Using CHEVIE, we can compute that1

A|(su)H = 0.
Lastly, we consider the case where a has order 3. By similar arguments as before, using

CHEVIE, we compute that
A|(auC)CG(a) = 0.

We see that there is an F -stable character sheaf A with unipotent support C such that
• A|(auC)C◦

G(s)
= 0 if a ̸= 1 for any a ∈ A.

• A|(uC)G [−dim(C)−dim(T)] is a local system corresponding to the trivial character
of AG(uC).

Therefore, we can apply the same proof as for [6, Proposition 8.8], and we get that for all
[b, ϕ] ∈M(A) 〈

FG[b,ϕ], DG(χA)
〉

=
{
xA if [b, ϕ] = [1, 1]
0 otherwise,

1If we did not tensor by the sign character when applying Proposition 4.19, we would have had
(A)(su)H ̸= 0.
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for some xA ∈ C×.

6. Unitriangularity of the ℓ-decomposition matrix of the unipotent
ℓ-blocks

We are now ready to prove our main result.

Proposition 6.1. Let G be an adjoint simple group of exceptional type defined over k,
an algebraically closed field of characteristic p with Frobenius endomorphism F . Assume
that p is good for G. If ℓ is bad for G, then the decomposition matrix of the unipotent
ℓ-blocks of G is unitriangular.

Proof. We fix a total ordering of the ℓ-special unipotent conjugacy classes of G, C1, . . . , Cr
such that n < m if dim(Cn) < dim(Cm).

Let Cn be a unipotent ℓ-special conjugacy class and αn := |Mℓ(Ωℓ
G,Cn

)|. Thanks to our
previous discussion, we can find projective kG-modules Pn1 , . . . , Pnαn

with characters πnj
associated to their lift to KG-modules and irreducible characters of G in the unipotent
ℓ-blocks with unipotent support Cn, ρn1 , . . . , ρnαn

, such that for all 1 ≤ i, j ≤ αn〈
(ρni )∗, πnj

〉
=

{
0 i < j,

1 i = j.

In particular, for a fixed n the Pni are all distinct.
Let Cm ̸= Cn be another unipotent ℓ-special conjugacy class of G and ρ′ be an irreducible

character of G with unipotent support Cm. Suppose that there is 1 ≤ j ≤ αn, such that
⟨(ρ′)∗, πnj ⟩ ≠ 0.

We observe that if ⟨(ρ′)∗, πnj ⟩ ≠ 0, then there exists v ∈ CFn and a generalised Gelfand–
Graev character γv, such that ⟨(ρ′), γv⟩ ̸= 0. If Pnj is itself a GGGC, then it is obvious.
Otherwise it is a consequence of Lemma 3.10 and Equation (2.1). In any case, since (ρ′)∗

has wave front set Cm, we conclude by the unicity of the wave front set [43, Theorem 15.2])
that (v)G = Cn ⊆ Cm, whence dim(Cn) < dim(Cm) and thus n < m.

Now for each 1 ≤ n ≤ r and 1 ≤ i ≤ αn, we set µni := (ρni )∗. The irreducible character
µni lies in the unipotent ℓ-blocks. Moreover, for 1 ≤ m ≤ r and 1 ≤ j ≤ αm, we have〈

µni , π
m
j

〉
=

{
0 if n < m or (n = m and i < j),
1 if n = m and i = j.

Therefore, summing over all the ℓ-special unipotent conjugacy classes, we obtain the exact
number of indecomposable projective kG-modules in the unipotent ℓ-blocks.

We conclude thanks to [12, Lemma 2.6] that the decomposition matrix of the unipotent
ℓ-blocks is lower-unitriangular. □
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Appendix A. Tables for the exceptional groups

Table A.1. Bad primes for the simple algebraic groups

An : none
Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4) : 2

G2, F4, E6, E7 : 2, 3
E8 : 2, 3, 5

Table A.2. The ℓ-special but not special classes of F4

C AG(u) Ω2
u Ω3

u

A1 1 1
A2 + Ã1 1 1
B2 S2 S2
C3(a1) S2 S2
Ã2 +A1 1 1

Table A.3. The ℓ-special but not special classes of G2

C AG(u) Ω2
u Ω3

u

Ã1 1 1
A1 1 1

Table A.4. The ℓ-special but not special classes of E6

C AG(u) Ω2
u Ω3

u

A5 1 1
A3 +A1 1 1
3A1 1 1
2A2 +A1 1 1
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Table A.5. The ℓ-special but not special classes of E7

C AG(u) Ω2
u Ω3

u

D6 1 1
D6(a2) 1 1
A′

5 1 1
D4 +A1 1 1
A3 + 2A1 1 1
(A3 +A1)′ 1 1
4A1 1 1
3A′

1 1 1
A5 +A1 1 1
2A2 +A1 1 1

Table A.6. The ℓ-special but not special classes of E8

C AG(u) Ω2
u Ω3

u Ω5
u

E7 1 1
D7 1 1
E7(a2) 1 1
D6 1 1
A7 1 1
D5 +A1 1 1
E7(a5) S3 S3
D6(a2) S2 S2
D5(a1) +A2 1 1
A5 1 1
D4 +A1 1 1
2A3 1 1
A3 +A2 +A1 1 1
A3 + 2A1 1 1
A3 +A1 1 1
A2 + 3A1 1 1
4A1 1 1
3A1 1 1
E6 +A1 1 1
E6(a3) +A1 S2 S2
2A2 + 2A1 1 1
2A2 +A1 1 1
A4 +A3 1 1
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