Super duality for Whittaker modules and finite $W$-algebras
Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 505-535.

We establish a super duality as an equivalence between Whittaker module categories over a pair of classical Lie algebra and Lie superalgebra in the infinite-rank limit. Building on this result and utilizing the Losev–Shu–Xiao decomposition, we obtain a super duality which is an equivalence between module categories over a pair of finite $W$-algebras and $W$-superalgebras at the infinite-rank limit.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.28
Classification: 17B10, 17B20
Keywords: Whittaker modules, lie superalgebras, finite $W$-algebras

Cheng, Shun-Jen 1; Wang, Weiqiang 2

1 Institute of Mathematics, Academia Sinica, Taipei, Taiwan 10617
2 Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_4_505_0,
     author = {Cheng, Shun-Jen and Wang, Weiqiang},
     title = {Super duality for {Whittaker} modules and finite $W$-algebras},
     journal = {Annals of Representation Theory},
     pages = {505--535},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {4},
     year = {2025},
     doi = {10.5802/art.28},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.28/}
}
TY  - JOUR
AU  - Cheng, Shun-Jen
AU  - Wang, Weiqiang
TI  - Super duality for Whittaker modules and finite $W$-algebras
JO  - Annals of Representation Theory
PY  - 2025
SP  - 505
EP  - 535
VL  - 2
IS  - 4
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.28/
DO  - 10.5802/art.28
LA  - en
ID  - ART_2025__2_4_505_0
ER  - 
%0 Journal Article
%A Cheng, Shun-Jen
%A Wang, Weiqiang
%T Super duality for Whittaker modules and finite $W$-algebras
%J Annals of Representation Theory
%D 2025
%P 505-535
%V 2
%N 4
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.28/
%R 10.5802/art.28
%G en
%F ART_2025__2_4_505_0
Cheng, Shun-Jen; Wang, Weiqiang. Super duality for Whittaker modules and finite $W$-algebras. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 505-535. doi : 10.5802/art.28. https://art.centre-mersenne.org/articles/10.5802/art.28/

[1] Backelin, Erik Representation of the category 𝒪 in Whittaker categories, Int. Math. Res. Not., Volume 1997 (1997) no. 4, pp. 153-172 | DOI | MR | Zbl

[2] Bao, Huanchen Kazhdan–Lusztig theory of super type D and quantum symmetric pairs, Represent. Theory, Volume 21 (2017), pp. 247-276 | DOI | MR | Zbl

[3] Bao, Huanchen; Wang, Weiqiang A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs, Astérisque, 402, Société Mathématique de France, 2018 | Zbl

[4] Bernstein, Joseph; Gelfand, Sergeĭ I. Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compos. Math., Volume 41 (1980) no. 2, pp. 245-285 | Numdam | MR | Zbl

[5] Brown, Jonathan S.; Goodwin, Simon M. Finite dimensional irreducible representations of finite W-algebras associated to even multiplicity nilpotent orbits in classical Lie algebras, Math. Z., Volume 273 (2013) no. 1-2, pp. 123-160 | DOI | MR | Zbl

[6] Brundan, Jonathan Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(m|n), J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 185-231 | DOI | MR | Zbl

[7] Brundan, Jonathan; Goodwin, Simon M. Good grading polytopes, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 155-180 | DOI | MR | Zbl

[8] Brundan, Jonathan; Goodwin, Simon M.; Kleshchev, Alexander Highest weight theory for finite W-algebras, Int. Math. Res. Not., Volume 2008 (2008) no. 15, Paper no. rnn051, 53 pages | DOI | MR | Zbl

[9] Brundan, Jonathan; Kleshchev, Alexander Representations of shifted Yangians and finite W-algebras, Memoirs of the American Mathematical Society, 918, American Mathematical Society, 2008 | DOI | MR | Zbl

[10] Brundan, Jonathan; Losev, Ivan; Webster, Ben Tensor product categorifications and the super Kazhdan–Lusztig conjecture, Int. Math. Res. Not., Volume 2017 (2017) no. 20, pp. 6329-6410 | DOI | MR | Zbl

[11] Chen, Chih-Whi Whittaker modules for classical Lie superalgebras, Commun. Math. Phys., Volume 388 (2021) no. 1, pp. 351-383 | DOI | MR | Zbl

[12] Chen, Chih-Whi; Cheng, Shun-Jen Whittaker categories of quasi-reductive Lie superalgebras and quantum symmetric pairs, Forum Math. Sigma, Volume 12 (2024), Paper no. e37, 29 pages | DOI | MR | Zbl

[13] Chen, Chih-Whi; Cheng, Shun-Jen; Coulembier, Kevin Tilting modules for classical Lie superalgebras, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 3, pp. 870-900 | DOI | MR | Zbl

[14] Chen, Chih-Whi; Cheng, Shun-Jen; Mazorchuk, Volodymyr Whittaker categories, properly stratified categories and Fock space categorification for Lie superalgebras, Commun. Math. Phys., Volume 401 (2023) no. 1, pp. 717-768 | DOI | MR | Zbl

[15] Chen, Chih-Whi; Lam, Ngau Projective modules over classical Lie algebras of infinite rank in the parabolic category, J. Pure Appl. Algebra, Volume 224 (2020) no. 1, pp. 125-148 | DOI | MR | Zbl

[16] Cheng, Shun-Jen; Kwon, Jae-Hoon; Wang, Weiqiang Irreducible characters of Kac–Moody Lie superalgebras, Proc. Lond. Math. Soc. (3), Volume 110 (2015) no. 1, pp. 108-132 | DOI | MR | Zbl

[17] Cheng, Shun-Jen; Lam, Ngau Irreducible characters of general linear superalgebra and super duality, Commun. Math. Phys., Volume 298 (2010) no. 3, pp. 645-672 | DOI | MR | Zbl

[18] Cheng, Shun-Jen; Lam, Ngau; Wang, Weiqiang Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math., Volume 183 (2011) no. 1, pp. 189-224 | DOI | MR | Zbl

[19] Cheng, Shun-Jen; Lam, Ngau; Wang, Weiqiang The Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras, Duke Math. J., Volume 164 (2015) no. 4, pp. 617-695 | DOI | MR | Zbl

[20] Cheng, Shun-Jen; Wang, Weiqiang Brundan–Kazhdan–Lusztig and super duality conjectures, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 4, pp. 1219-1272 | DOI | MR | Zbl

[21] Cheng, Shun-Jen; Wang, Weiqiang Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics,  144, American Mathematical Society, 2012 | DOI | MR | Zbl

[22] Cheng, Shun-Jen; Wang, Weiqiang; Zhang, R. B. Super duality and Kazhdan–Lusztig polynomials, Trans. Am. Math. Soc., Volume 360 (2008) no. 11, pp. 5883-5924 | DOI | MR | Zbl

[23] Elashvili, Alexander G.; Kac, Victor G. Classification of good gradings of simple Lie algebras, Lie groups and invariant theory (American Mathematical Society Translations, Series 2), Volume 213, American Mathematical Society, 2005, pp. 85-104 | DOI | MR | Zbl

[24] Futorny, Vyacheslav; König, Steffen; Mazorchuk, Volodymyr 𝒮-subcategories in 𝒪, Manuscr. Math., Volume 102 (2000) no. 4, pp. 487-503 | DOI | MR | Zbl

[25] Gabriel, Pierre Des catégories abéLiennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | DOI | Numdam | MR | Zbl

[26] Hoyt, Crystal Good gradings of basic Lie superalgebras, Isr. J. Math., Volume 192 (2012) no. 1, pp. 251-280 | DOI | MR | Zbl

[27] Irving, Ronald S. Projective modules in the category 𝒪 S : Loewy series, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 733-754 | DOI | MR | Zbl

[28] Jantzen, Jens C. Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie Algebren, Math. Ann., Volume 226 (1977), pp. 53-65 | DOI | MR | Zbl

[29] Kostant, Bertram On Whittaker vectors and representation theory, Invent. Math., Volume 48 (1978) no. 2, pp. 101-184 | DOI | MR | Zbl

[30] Leonard, Christopher Graded super duality for general linear Lie superalgebras, Transform. Groups, Volume 25 (2020) no. 1, pp. 149-175 | DOI | MR | Zbl

[31] Losev, Ivan Finite W-algebras, Proceedings of the International Congress of Mathematicians. Vol. III: Invited lectures, Hindustan Book Agency (2010), pp. 1281-1307 | MR | Zbl

[32] Losev, Ivan Quantized symplectic actions and W-algebras, J. Am. Math. Soc., Volume 23 (2010) no. 1, pp. 35-59 | DOI | MR | Zbl

[33] Losev, Ivan On the structure of the category 𝒪 for W-algebras, Geometric methods in representation theory. II (Séminaires et Congrès), Volume 24, Société Mathématique de France, 2012, pp. 353-370 | MR | Zbl

[34] Lusztig, George Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser, 2010 (reprint of the 1994 edition) | DOI | MR | Zbl

[35] Mazorchuk, Volodymyr; Stroppel, Catharina Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module, Trans. Am. Math. Soc., Volume 357 (2005) no. 7, pp. 2939-2973 | DOI | MR | Zbl

[36] McDowell, Edward On modules induced from Whittaker modules, J. Algebra, Volume 96 (1985) no. 1, pp. 161-177 | DOI | MR | Zbl

[37] Miličić, Dragan; Soergel, Wolfgang The composition series of modules induced from Whittaker modules, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 503-520 | DOI | MR | Zbl

[38] Premet, Alexander Special transverse slices and their enveloping algebras, Adv. Math., Volume 170 (2002) no. 1, pp. 1-55 (with an appendix by Serge Skryabin) | DOI | MR | Zbl

[39] Shu, Bin; Xiao, Husileng Super formal Darboux–Weinstein theorem and finite W-superalgebras, J. Algebra, Volume 550 (2020), pp. 242-265 | DOI | MR | Zbl

[40] Wang, Weiqiang Nilpotent orbits and finite W-algebras, Geometric representation theory and extended affine Lie algebras (Fields Institute Communications), Volume 59, American Mathematical Society, 2011, pp. 71-105 | MR | Zbl

[41] Zeng, Yang; Shu, Bin Finite W-superalgebras for basic Lie superalgebras, J. Algebra, Volume 438 (2015), pp. 188-234 | DOI | MR | Zbl

[42] Zhao, Lei Finite W-superalgebras for queer Lie superalgebras, J. Pure Appl. Algebra, Volume 218 (2014) no. 7, pp. 1184-1194 | DOI | MR | Zbl

Cited by Sources: