We establish a super duality as an equivalence between Whittaker module categories over a pair of classical Lie algebra and Lie superalgebra in the infinite-rank limit. Building on this result and utilizing the Losev–Shu–Xiao decomposition, we obtain a super duality which is an equivalence between module categories over a pair of finite $W$-algebras and $W$-superalgebras at the infinite-rank limit.
Revised:
Accepted:
Published online:
Keywords: Whittaker modules, lie superalgebras, finite $W$-algebras
Cheng, Shun-Jen 1; Wang, Weiqiang 2

@article{ART_2025__2_4_505_0, author = {Cheng, Shun-Jen and Wang, Weiqiang}, title = {Super duality for {Whittaker} modules and finite $W$-algebras}, journal = {Annals of Representation Theory}, pages = {505--535}, publisher = {The Publishers of ART}, volume = {2}, number = {4}, year = {2025}, doi = {10.5802/art.28}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.28/} }
TY - JOUR AU - Cheng, Shun-Jen AU - Wang, Weiqiang TI - Super duality for Whittaker modules and finite $W$-algebras JO - Annals of Representation Theory PY - 2025 SP - 505 EP - 535 VL - 2 IS - 4 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.28/ DO - 10.5802/art.28 LA - en ID - ART_2025__2_4_505_0 ER -
%0 Journal Article %A Cheng, Shun-Jen %A Wang, Weiqiang %T Super duality for Whittaker modules and finite $W$-algebras %J Annals of Representation Theory %D 2025 %P 505-535 %V 2 %N 4 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.28/ %R 10.5802/art.28 %G en %F ART_2025__2_4_505_0
Cheng, Shun-Jen; Wang, Weiqiang. Super duality for Whittaker modules and finite $W$-algebras. Annals of Representation Theory, Volume 2 (2025) no. 4, pp. 505-535. doi : 10.5802/art.28. https://art.centre-mersenne.org/articles/10.5802/art.28/
[1] Representation of the category in Whittaker categories, Int. Math. Res. Not., Volume 1997 (1997) no. 4, pp. 153-172 | DOI | MR | Zbl
[2] Kazhdan–Lusztig theory of super type D and quantum symmetric pairs, Represent. Theory, Volume 21 (2017), pp. 247-276 | DOI | MR | Zbl
[3] A new approach to Kazhdan–Lusztig theory of type via quantum symmetric pairs, Astérisque, 402, Société Mathématique de France, 2018 | Zbl
[4] Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compos. Math., Volume 41 (1980) no. 2, pp. 245-285 | Numdam | MR | Zbl
[5] Finite dimensional irreducible representations of finite -algebras associated to even multiplicity nilpotent orbits in classical Lie algebras, Math. Z., Volume 273 (2013) no. 1-2, pp. 123-160 | DOI | MR | Zbl
[6] Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra , J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 185-231 | DOI | MR | Zbl
[7] Good grading polytopes, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 155-180 | DOI | MR | Zbl
[8] Highest weight theory for finite -algebras, Int. Math. Res. Not., Volume 2008 (2008) no. 15, Paper no. rnn051, 53 pages | DOI | MR | Zbl
[9] Representations of shifted Yangians and finite -algebras, Memoirs of the American Mathematical Society, 918, American Mathematical Society, 2008 | DOI | MR | Zbl
[10] Tensor product categorifications and the super Kazhdan–Lusztig conjecture, Int. Math. Res. Not., Volume 2017 (2017) no. 20, pp. 6329-6410 | DOI | MR | Zbl
[11] Whittaker modules for classical Lie superalgebras, Commun. Math. Phys., Volume 388 (2021) no. 1, pp. 351-383 | DOI | MR | Zbl
[12] Whittaker categories of quasi-reductive Lie superalgebras and quantum symmetric pairs, Forum Math. Sigma, Volume 12 (2024), Paper no. e37, 29 pages | DOI | MR | Zbl
[13] Tilting modules for classical Lie superalgebras, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 3, pp. 870-900 | DOI | MR | Zbl
[14] Whittaker categories, properly stratified categories and Fock space categorification for Lie superalgebras, Commun. Math. Phys., Volume 401 (2023) no. 1, pp. 717-768 | DOI | MR | Zbl
[15] Projective modules over classical Lie algebras of infinite rank in the parabolic category, J. Pure Appl. Algebra, Volume 224 (2020) no. 1, pp. 125-148 | DOI | MR | Zbl
[16] Irreducible characters of Kac–Moody Lie superalgebras, Proc. Lond. Math. Soc. (3), Volume 110 (2015) no. 1, pp. 108-132 | DOI | MR | Zbl
[17] Irreducible characters of general linear superalgebra and super duality, Commun. Math. Phys., Volume 298 (2010) no. 3, pp. 645-672 | DOI | MR | Zbl
[18] Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math., Volume 183 (2011) no. 1, pp. 189-224 | DOI | MR | Zbl
[19] The Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras, Duke Math. J., Volume 164 (2015) no. 4, pp. 617-695 | DOI | MR | Zbl
[20] Brundan–Kazhdan–Lusztig and super duality conjectures, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 4, pp. 1219-1272 | DOI | MR | Zbl
[21] Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, American Mathematical Society, 2012 | DOI | MR | Zbl
[22] Super duality and Kazhdan–Lusztig polynomials, Trans. Am. Math. Soc., Volume 360 (2008) no. 11, pp. 5883-5924 | DOI | MR | Zbl
[23] Classification of good gradings of simple Lie algebras, Lie groups and invariant theory (American Mathematical Society Translations, Series 2), Volume 213, American Mathematical Society, 2005, pp. 85-104 | DOI | MR | Zbl
[24] -subcategories in , Manuscr. Math., Volume 102 (2000) no. 4, pp. 487-503 | DOI | MR | Zbl
[25] Des catégories abéLiennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | DOI | Numdam | MR | Zbl
[26] Good gradings of basic Lie superalgebras, Isr. J. Math., Volume 192 (2012) no. 1, pp. 251-280 | DOI | MR | Zbl
[27] Projective modules in the category : Loewy series, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 733-754 | DOI | MR | Zbl
[28] Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie Algebren, Math. Ann., Volume 226 (1977), pp. 53-65 | DOI | MR | Zbl
[29] On Whittaker vectors and representation theory, Invent. Math., Volume 48 (1978) no. 2, pp. 101-184 | DOI | MR | Zbl
[30] Graded super duality for general linear Lie superalgebras, Transform. Groups, Volume 25 (2020) no. 1, pp. 149-175 | DOI | MR | Zbl
[31] Finite W-algebras, Proceedings of the International Congress of Mathematicians. Vol. III: Invited lectures, Hindustan Book Agency (2010), pp. 1281-1307 | MR | Zbl
[32] Quantized symplectic actions and -algebras, J. Am. Math. Soc., Volume 23 (2010) no. 1, pp. 35-59 | DOI | MR | Zbl
[33] On the structure of the category for -algebras, Geometric methods in representation theory. II (Séminaires et Congrès), Volume 24, Société Mathématique de France, 2012, pp. 353-370 | MR | Zbl
[34] Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser, 2010 (reprint of the 1994 edition) | DOI | MR | Zbl
[35] Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module, Trans. Am. Math. Soc., Volume 357 (2005) no. 7, pp. 2939-2973 | DOI | MR | Zbl
[36] On modules induced from Whittaker modules, J. Algebra, Volume 96 (1985) no. 1, pp. 161-177 | DOI | MR | Zbl
[37] The composition series of modules induced from Whittaker modules, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 503-520 | DOI | MR | Zbl
[38] Special transverse slices and their enveloping algebras, Adv. Math., Volume 170 (2002) no. 1, pp. 1-55 (with an appendix by Serge Skryabin) | DOI | MR | Zbl
[39] Super formal Darboux–Weinstein theorem and finite -superalgebras, J. Algebra, Volume 550 (2020), pp. 242-265 | DOI | MR | Zbl
[40] Nilpotent orbits and finite -algebras, Geometric representation theory and extended affine Lie algebras (Fields Institute Communications), Volume 59, American Mathematical Society, 2011, pp. 71-105 | MR | Zbl
[41] Finite -superalgebras for basic Lie superalgebras, J. Algebra, Volume 438 (2015), pp. 188-234 | DOI | MR | Zbl
[42] Finite -superalgebras for queer Lie superalgebras, J. Pure Appl. Algebra, Volume 218 (2014) no. 7, pp. 1184-1194 | DOI | MR | Zbl
Cited by Sources: