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Super duality for Whittaker modules and finite
W -algebras

Shun-Jen Cheng and Weiqiang Wang

Abstract. We establish a super duality as an equivalence between Whittaker module categories over
a pair of classical Lie algebra and Lie superalgebra in the infinite-rank limit. Building on this result
and utilizing the Losev–Shu–Xiao decomposition, we obtain a super duality which is an equivalence
between module categories over a pair of finite W -algebras and W -superalgebras at the infinite-rank
limit.

1. Introduction

1.1. Super duality. Super duality refers to an equivalence of categories between para-
bolic BGG categories of modules over a suitable pair consisting of a reductive Lie algebra
and a basic classical Lie superalgebra in the infinite-rank limit (cf. [21, Chapter 6]). This
concept was first formulated as a conjecture in type A [20], generalizing the maximal para-
bolic case in [22], and was established in [17]; the duality has since been extended to other
classical types in [18] and then to Kac–Moody setting [16]. Super duality provides char-
acter formulas for irreducible or tilting modules in the suitable parabolic BGG categories
of Lie superalgebras. Moreover, it has led to a proof of Brundan–Kazhdan–Lusztig con-
jecture for the general linear Lie superalgebras [6, 19] (also cf. [10]) and the development
of a super Kazhdan–Lusztig theory for ortho-symplectic Lie superalgebras [2, 3].

1.2. The goal. The goal of this paper is to extend the concept of super duality to the
settings of Whittaker modules as well as finite W -superalgebras.

A finite W -(super)algebra U(g, e) is an associative (super)algebra constructed out of a
reductive Lie (super)algebra g and an even nilpotent element e ∈ g. They can be viewed as
generalizations of the universal enveloping algebras of Lie superalgebras as U(g, 0) reduces
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to U(g). A generalization of BGG category O for finite W -algebras has been formulated
in [8], with further parabolic generalizations in [5, 33].

On the other hand, Whittaker g-modules are associated with a nilpotent character ζ
in a reductive Lie algebra g [29, 36]. Suitable categories of Whittaker g-modules, denoted
MS(ζ) or MMS categories [36, 37], generalize the BGG categories when ζ = 0. Recent
work has extended these constructions to basic Lie superalgebras g [11, 12, 14].

1.3. Parabolic cokernel categories. In this paper, we consider the case when g is either
a reductive Lie algebra or a basic classical Lie superalgebra and ζ : n → C is a character
associated with an even Levi subalgebra l; see (2.9).

The Backelin functor Γζ : OZ → MS(ζ) (see [1] and (2.11)) allows us to connect
the BGG category OZ of integral weight g-modules to the MMS category of g-modules.
Denote by W(ζ) ⊂ MS(ζ) the image category of Γζ . This category can be identified
with a distinguished Serre quotient category OZ/Iζ . As a superalgebra generalization
of the construction in [35], a properly stratified cokernel subcategory Oζ -pres of OZ was
formulated in [14], and it was shown that the restriction of the quotient functor Γζ : OZ →
OZ/Iζ to Oζ -pres induces an equivalence Oζ -pres ∼= OZ/Iζ .

To summarize, we have the following commutative diagram without the superscript q
throughout:

Oq
Z

//

�� $$

MS(ζ)q

Oq,ζ -pres ∼= // Oq
Z/Iq

ζ

∼= // W(ζ)q
?�

OO

(1.1)

In this paper, we formulate a parabolic generalization of such a diagram by adding
a superscript q, resulting in the diagram (1.1). Here q is a parabolic subalgebra of g
associated with an even Levi subalgebra k such that the derived subalgebras of k and l
commute. In this way, we can define a parabolic MMS category MS(ζ)q of Whittaker
g-modules besides the parabolic BGG category Oq and its integral weight subcategory Oq

Z.
We show that Backelin functor Γζ restricts to a functor Γζ : Oq

Z −→ MS(ζ)q with favorable
properties (see Proposition 2.2), and we denote by W(ζ)q the image category of this
functor. (Setting q to be the Borel subalgebra b amounts to dropping the superscript q
in (1.1).)

1.4. Whittaker module categories. As in the super duality setting for parabolic BGG
categories (cf. [18], [20, Chapter 6]), we introduce two families of Lie algebras and super-
algebras, gn and gn, for n ≥ 1. Namely, starting from the same head Dynkin diagram and
connecting with 2 tail Dynkin diagrams associated to gl(1 + n) and gl(1|n) give us the
Dynkin diagrams for gn and gn, respectively. We consider the parabolic BGG category
O+

n,Z of integral weight gn-modules (and respectively, O+
n,Z of integral weight gn-modules)

which restrict to polynomial representations over gl(n). Here, gl(n) is regarded as sub-
algebra of the “tail” algebras gl(1|n) and gl(1 + n). We also formulate MMS categories
MS(ζ)+

n and MS(ζ)+
n of Whittaker modules over gn and gn which are polynomial over

the same subalgebra gl(n).
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Specializing the diagram (1.1) to the setting of Lie algebra gn gives us the following
commutative diagram (where the superscript + stands for “polynomial over gl(n)”):

O+
n,Z

//

�� %%

MS(ζ)+
n

Oζ -pres +
n

∼= // O+
n,Z/I+

ζ

∼= // W(ζ)+
n

?�

OO

(1.2)

On the other hand, specializing the diagram (1.1) to the setting of Lie superalgebra gn

gives us the following commutative diagram:

O+
n,Z

//

�� %%

MS(ζ)+
n

Oζ -pres +
n

∼= // O+
n,Z/I+

ζ

∼= // W(ζ)+
n

?�

OO

(1.3)

We can make sense of the above diagrams (1.2)–(1.3) at n = ∞, and we drop the index
n = ∞ for simplicity. By super duality [21] (and also [15, 30]), we have an equivalence
of highest weight categories: O+

Z
∼= O+

Z . This equivalence matches the corresponding
Serre subcategories I+

ζ
∼= I+

ζ , yielding an equivalence of properly stratified categories (see
Theorem 4.10)

W(ζ)+ ∼=−→ W(ζ)+;
This will be referred to as super duality for Whittaker modules.

1.5. Finite W -(super)algebras. A nilpotent element e and a nilpotent character ζ can
be chosen in a compatible way, up to conjugation, via the Killing form, with e = 0
corresponding to ζ = 0. We choose e and ζ to be associated with an even Levi subalgebra l;
cf. (2.9). Finite W -algebra U(g, e) admits a rich representation theory and has connection
to many other areas; see, e.g., [31, 40] for surveys.

The category of g-modules on which a subalgebra mχ, associated to e (see (5.5)), acts
nilpotently is equivalent to the module category over finite W -algebra U(g, e) thanks to
Skryabin equivalence [38, Appendix]. Losev developed an approach via Fedosov quantiza-
tion to establish an equivalence at the level of (variants of) category O of U(g, e)-modules
(for reductive Lie algebra g). Losev’s approach relies on a fundamental decomposition
theorem [32, 33] on a certain completion U(g)∧

m̃
of U(g) with respect to m̃ in (6.3). Shu–

Xiao [39] developed an algebraic approach for a super generalization of Losev’s construc-
tions in [32], where g is a basic classical Lie superalgebra (cf. [41, 42]).

We refine Losev–Shu–Xiao decomposition in Theorem 6.7 to suit our purpose for cate-
gory equivalences below. Following [33], we then derive equivalences of the corresponding
categories of MMS Whittaker g-modules and U(g, e)-modules, for a basic classical Lie
superalgebra g (see Theorem 6.11 and (6.8)). This, together with [11, 12, 14], implies that
the composition multiplicities of Verma modules in the category O of the finite W -super-
algebra of a basic classical Lie superalgebra are computed by the super Kazhdan–Lusztig
polynomials in the usual BGG category (see Remark 6.16). When g is a reductive Lie
algebra, such a relationship was conjectured in [8] and proved in [31].

Combining the category equivalences in Theorem 6.11 with the super duality for Whit-
taker modules in Theorem 4.10, we arrive at a super duality result for a pair of finite
W -(super)algebras of classical type in the infinite-rank limit (see Theorem 6.18).
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1.6. Organization. This paper is organized as follows. In Section 2, we formulate the
(parabolic) MMS category MS(ζ)q of Whittaker g-modules, for a basic classical Lie su-
peralgebra g and an even nilpotent character ζ. We review basic properties of the Backelin
functor and consider its parabolic analogue.

In Section 3, we introduce the parabolic cokernel categories Oq,ζ -pres and complete the
commutative diagram (1.1).

Section 4 presents Lie algebras gn and Lie superalgebras gn and formulates the dia-
grams (1.2)–(1.3). We describe BGG-type reciprocities and Ringel-type dualities for the
properly stratified categories Oζ -pres + and Oζ -pres +, and establish super duality for Whit-
taker modules.

Section 5 contains a review of the construction of finite W -superalgebras. In Section 6,
we formulate Losev–Shu–Xiao decomposition in the superalgebra setting, and establish
several equivalences of categories of Whittaker g-modules and U(g, e)-modules. Finally,
we derive super duality for finite W -algebras.

2. Categories of Whittaker modules

In this section, we formulate several categories including the MMS category and its
parabolic variants of Whittaker modules over a basic classical Lie superalgebra g.

2.1. Basic setup. The setup in this subsection will be used throughout the paper.
Let g = g0 ⊕ g1 be a basic classical Lie superalgebra of classical type, i.e., of type gl

or osp, with a non-degenerate invariant bilinear form (·|·), e.g., the super trace form. Let
e ∈ g be an even nilpotent element and {e, h, f} be an sl(2)-triple in g. We let h be a
Cartan subalgebra of g such that h ∈ h.

For a subset a ⊆ g, we denote ga = {x ∈ g | [x, y] = 0, ∀ y ∈ a}. Let

t := he = {a ∈ h | [a, e] = 0}. (2.1)

Recall that a subalgebra r ⊆ t (= he) is called a full subalgebra in [5, §3.1], if the center of
gr is equal to r.

Let T be the adjoint group of t. Let θ ∈ t be an integral element, i.e., θ is an element
in the cocharacter of T . The element θ ∈ t determines a minimal full subalgebra r of t,
minimal in the sense that θ ∈ r ⊆ t and θ is regular in r. We shall assume that

l := gr is an even subalgebra of g,

which is then clearly reductive. (This is all we need in the formulation of super duality
later on.) The inclusion of subalgebras 0 ⊆ r ⊆ t gives rise to an inclusion of Lie sub-
algebras gt ⊆ gr ⊆ g. It follows by definition of t in (2.1) that [e, t] = 0, and hence we
have

e ∈ l. (2.2)

We have an ad θ-eigenspace decomposition of g:

g =
⊕
k ∈Z

gθ,k,

gθ,k := {x ∈ g | [θ, x] = kx}, with l = gθ,0.
(2.3)

Let Φ be the root system for (g, h), and gα be the root space for α ∈ Φ. Note that
gα ⊆ gθ,α(θ).
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We choose a triangular decomposition

g = n− ⊕ h ⊕ n (2.4)

to be compatible with (2.3) in the following sense: α(θ) > 0 for α ∈ Φ implies that α ∈ Φ+,
where Π ⊂ Φ+ denote the simple system and positive root system for g associated to n
in (2.4), i.e., n = ⊕α∈Φ+gα. Denote

Φl = Φ ∩ {α ∈ Φ | α(θ) = 0}, Φ+
l = Φ+ ∩ Φl, Πl = Π ∩ Φl. (2.5)

Then l is a Levi subalgebra of g with simple system Πl, and

g = u− ⊕ l ⊕ u, l = h ⊕
⊕

α ∈ Φl

gα, (2.6)

where

u :=
⊕

α(θ) > 0
gα, u− :=

⊕
α(θ) > 0

g−α. (2.7)

Note that u ⊂ n and u− ⊂ n−. Denote the associated parabolic subalgebra by

p = l + n = l ⊕ u =
⊕
k ≥ 0

gθ,k. (2.8)

Denote the simple root vectors for g by Eα, for α ∈ Π. Associated to the root da-
tum (2.5), we define a character ζ of n by requiring

ζ : n −→ C, ζ(Eα) =
{

1, for α ∈ Πl,

0, for α ∈ Π \ Πl.
(2.9)

2.2. McDowell–Milicic–Soergel category. Recall the character ζ : n → C from (2.9)
associated to l. The McDowell–Milicic–Soergel (henceforth abbreviated MMS) category
([36, 37], [11, §3.1]), denoted by MS(ζ), is the category of finitely generated U(g)-modules
on which x − ζ(x), for x ∈ n, acts locally nilpotently, and furthermore on which the action
of Z(g0) is locally finite. Here Z(g0) denotes the center of the universal enveloping algebra
U(g0).

We set χl
λ : Z(l) → C to be the central character with kernel equals the annihilator of

Z(l) on the Verma module of highest weight λ ∈ h∗. Let Cζ denote the one-dimensional
n∩ l-module (as a restriction of ζ). Also let Wl denote the Weyl group of l. The standard
Whittaker module is defined as follows:

M(λ, ζ) := U(g) ⊗U(p) K(l; λ, ζ),

where

K(l; λ, ζ) := U(l)/
(
Ker χl

λ

)
U(l) ⊗U(n∩ l) Cζ

denotes Kostant’s simple Whittaker l-module [29]. One sees from the eigenvalues of θ that
M(λ, ζ) has a unique maximal submodule and hence a simple head, which we denote by
L(λ, ζ). Furthermore, we have [11, Theorem 6]

L(λ, ζ) ∼= L(µ, ζ) ⇔ M(λ, ζ) ∼= M(µ, ζ) ⇔ Wl · λ = Wl · µ, (2.10)

for any µ ∈ h∗, where the dot action of the Weyl group is used. We have M(λ, ζ) ∈ MS(ζ).
Then the set {L(λ, ζ) | λ ∈ h∗ is Wl-antidominant} is a complete set of pairwise non-

isomorphic simple objects in MS(ζ).
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2.3. Backelin functor. Let g be a basic classical Lie superalgebra with triangular decom-
position (2.4) and let O be the BGG category of finitely generated h-semisimple g-modules
on which the action of U(n) is locally finite. Denote by M(g, λ) and L(g, λ), respectively,
the Verma and irreducible modules in O of highest weight λ ∈ h∗. When there is no
confusion, we write M(λ) and L(λ) for M(g, λ) and L(g, λ), respectively.

Let ζ : n → C be a character of n as in (2.9).
If M is a g-module with weight space decomposition M = ⊕µ ∈ h∗Mµ where dim Mµ < ∞

for each µ, then we let M :=
∏

µ ∈ h∗ Mµ be its completion. The vector space M is naturally
a g-module, and hence so is

Γζ(M) :=
{

f ∈ M
∣∣∣ (x − ζ(x))kf = 0, ∀ x ∈ n, k ≫ 0

}
.

Then M → Γζ(M) gives rise to an exact functor from the BGG category of g-modules to
the category of MMS Whittaker g-modules, called the Backelin functor [1, Section 3]:

Γζ : O −→ MS(ζ). (2.11)

The following proposition in the case of simple Lie algebras was proved in [1, Proposi-
tion 6.9]. For Lie superalgebras it follows from [11, Theorem 20] and [12, Theorem 6].

Proposition 2.1. The Backelin functor (2.11) satisfies that

Γζ (M(λ)) = M(λ, ζ),

Γζ (L(λ)) =
{

L(λ, ζ), if λ is Wl-antidominant,
0, otherwise.

2.4. Parabolic MMS categories. We shall be interested in certain parabolic subcat-
egories of the category MS(ζ) of MMS Whittaker modules, where ζ : n → C is the
character from (2.9).

Suppose that k is another even Levi subalgebra of the Lie superalgebra g such that the
two semisimple subalgebras [l, l] and [k, k] commute. Let

q = k + n (2.12)

denote the parabolic subalgebra corresponding to k. We define MS(ζ)q to be the full
subcategory of MS(ζ) consisting of g-modules M such that the action of U(q) is locally
finite. In particular, any M ∈ MS(ζ)q is a direct sum of finite-dimensional irreducible
k-modules.

Let
P = l + k + n

denote the parabolic subalgebra of g associated with Levi subalgebra L := l+ k. Let z ⊆ h
be the center of L so that we have h = (h ∩ [L,L]) ⊕ z. Let λ ∈ h∗ be such that λ|h∩[k,k]
is dominant integral. We have a decomposition λ = λ|h∩[L,L] + λ⊥, where λ⊥ ∈ z∗ which
vanishes on h ∩ [L,L]. We form the irreducible L-module

K
(
[l, l]; λ|h∩ [l,l], ζ

)
⊗ L

(
[k, k]; λ|h∩ [k,k]

)
⊗ Cλ⊥ ,

where we recall that K([l, l]; λ|h∩ [l,l], ζ) is the irreducible Kostant Whittaker module of
[l, l], L([k, k]; λ|h∩ [k,k]) is the irreducible [k, k]-module of highest weight λ|h∩ [k,k], and Cλ⊥

is the one-dimensional module of z corresponding to the character λ⊥. This L-module
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extends trivially to a P-module so that we can form the parabolic standard Whittaker
module

N(λ, ζ) := Indg
P K

(
[l, l]; λ|h∩ [l,l], ζ

)
⊗ L

(
[k, k]; λ|h∩ [k,k]

)
⊗ Cλ⊥ . (2.13)

Then N(λ, ζ) ∈ MS(ζ)q. As N(λ, ζ) is a quotient of M(λ, ζ), N(λ, ζ) has a unique
irreducible quotient isomorphic to L(λ, ζ).

Let Oq denote the parabolic subcategory of O consisting of g-modules which are lo-
cally finite over U(n) and k-semisimple, and let N(λ) denote the parabolic Verma module
for λ ∈ h∗ with λ|h∩ [k,k] dominant integral. The following is the parabolic analogue of
Proposition 2.1.

Proposition 2.2. The functor Γζ : O → MS(ζ) restricts to an exact functor:

Γζ : Oq −→ MS(ζ)q.

Furthermore, for λ ∈ h∗ such that λ|h∩ [k,k] is dominant integral, we have

Γζ (N(λ)) = N(λ, ζ),

Γζ (L(λ)) =
{

L(λ, ζ), if λ is Wl-antidominant
0, otherwise.

Proof. For the first statement it suffices to show that for any M ∈ Oq, Γζ(M) ∈ MS(ζ)q.
Since ζ vanishes on [k, k]∩n, from the construction of the Backelin functor in [1, Section 3]
we see that if M is a direct sum of finite-dimensional modules over k, then so is its image
under the Backelin functor.

As an l-module we have

N(λ) ∼= U(u−) ⊗ M([l, l] + z; λ|(h∩ [l,l])+z) ⊗ L([k, k]; λ|h∩ [k,k]).

Since the Backelin and the restriction functors commute, for λ ∈ h∗, dominant integral on
h ∩ [k, k], we have:

Resgl ΓζN(λ) ∼= Γζ Resgl N(λ)
∼= Γζ

(
U(u−) ⊗ M

(
[l, l] + z; λ|(h∩ [l,l])+z

)
⊗ L

(
[k, k]; λ|h∩ [k,k]

))
∼= U(u−) ⊗ Γζ

(
M

(
[l, l] + z; λ|(h∩ [l,l])+z

))
⊗ L

(
[k, k]; λ|h∩ [k,k]

)
∼= U(u−) ⊗ K

(
[l, l] + z; λ|(h∩ [l,l])+z, ζ

)
⊗ L

(
[k, k]; λ|h∩ [k,k]

)
.

In the penultimate isomorphism above, we have use the fact that the Backelin functor
commutes with tensoring with finite-dimensional modules, and that L(λ|h∩ [k,k]) is a finite-
dimensional [k, k]-module and ζ is trivial on the simple roots of [k, k]. Thus, as l-modules we
have N(λ, ζ) ∼= Γζ(N(λ)). On the other hand, the above calculation shows that Γζ(N(λ))
has an l-submodule K([l, l] + z; λ|(h∩ [l,l])+z, ζ) ⊗ L([k, k]; λ|h∩ [k,k]) that is annihilated by
u since it does not have any positive θ-eigenvalue. Thus, we obtain, by Frobenius reci-
procity, a non-zero homomorphism from N(λ, ζ) to Γζ(N(λ)), which maps surjectively onto
this l-module. Now, it is known that Γζ(M(λ)) is generated by its top, and hence so is
Γζ(N(λ)). Hence this g-homomorphism is surjective. As N(λ, ζ) and Γζ(N(λ)) are iso-
morphic as l-modules, we conclude that they are also isomorphic as g-modules.

The last statement on Γζ(L(λ)) follows by Proposition 2.1. □
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3. Parabolic cokernel categories

In this section, we formulate a “parabolic cokernel subcategory” of the parabolic BGG
category Oq

Z of integral weight g-modules and show it is a quotient category of Oq
Z. This

parabolic cokernel subcategory admits favorable homological property known as properly
stratified structure.

3.1. Category Oq,ζ -pres. Recall the triangular decomposition g = n− ⊕ h ⊕ n (2.4) and
a character ζ : n → C associated with the Levi subalgebra l (determined by an integral
element θ ∈ h). We let OZ ⊂ O be the full subcategory of integral weight g-modules.

As in Section 2.4, we take a second even Levi subalgebra k such that the two semisimple
Lie subalgebras [l, l] and [k, k] commute with each other. We let Oq

Z ⊂ Oq be the full
subcategory of integral weight g-modules; recall q = k + n from (2.12).

Denote by Λ the set of integral weights in h∗. Denote

Λ(ζ) := {λ ∈ Λ | λ is Wl-antidominant} ,

Λ(ζ)q := {λ ∈ Λ(ζ) | λ is dominant on h ∩ [k, k]} .
(3.1)

A projective module in OZ (respectively, in Oq
Z) is said to be ζ-admissible, if it is a

direct sum of projective covers of simple objects of highest weights in Λ(ζ) (respectively,
in Λ(ζ)q); see (3.1).

Define the cokernel subcategory Oζ -pres of OZ (respectively, Oq,ζ -pres of Oq
Z) to be the

full subcategory consisting of objects M such that there exists an exact sequence of the
form

Q −→ P −→ M −→ 0,

such that Q and P are ζ-admissible projective modules in OZ (respectively, in Oq
Z) (c.f.,

e.g., [35, Section 2.3]).
Let Iζ denote the Serre subcategory of OZ generated by simple objects of the form L(λ)

with λ ∈ Λ \ Λ(ζ). Similarly, let Iq
ζ be the Serre subcategory of Oq

Z generated by simple
objects of the form L(λ) with λ ∈ Λ \ Λ(ζ)q such that λ is dominant on h ∩ [k, k].

Associated to Iζ and Iq
ζ we have the corresponding quotient categories OZ/Iζ and

Oq
Z/Iq

ζ and quotient functors

′π : OZ −→ OZ/Iζ , π : Oq
Z −→ Oq

Z/Iq
ζ .

Since Oq
Z is a full abelian subcategory of OZ with compatible abelian structure, and Iq

ζ =
Iζ ∩ Oq

Z, we conclude, from the definitions of quotient category and quotient functor, that
′π|Oq

Z
= π.

In [14, Lemma 12] it was proved that the restriction of the functor ′π : OZ → OZ/Iζ to
Oζ -pres gives an equivalence of categories Oζ -pres ∼= OZ/Iζ . The arguments therein can be
adapted to prove the following parabolic analogue.

Proposition 3.1. The restriction of the quotient functor π : Oq
Z → Oq

Z/Iq
ζ to the subca-

tegory Oq,ζ-pres gives an equivalence of categories:

πq : Oq,ζ -pres ∼=−→ Oq
Z/Iq

ζ .
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3.2. Properly stratified structure on Oq,ζ -pres. When g is a Lie algebra, it is known
that the category Oζ -pres is a properly stratified category (cf. [35]). In the case when g is a
basic classical Lie superalgebra the category Oζ -pres is properly stratified as well according
to [14, Section 5] and [12, Section 4].

The arguments in [35, Section 2] can be adapted to prove that the parabolic subcategory
Oq,ζ -pres of Oζ -pres is properly stratified in the case when g is a Lie algebra. Using this, we
can then apply the arguments in [12, 14] to prove that the parabolic subcategory Oq,ζ -pres

is properly stratified in the case when g is a basic classical Lie superalgebra as well. Below
we shall give more precise statements.

For λ ∈ Λ(ζ)q let P (g, λ) ∈ Oq
Z denote the projective cover of L(g, λ). We shall write

P (λ) for P (g, λ) when g is clear from the context. We define the following module in
Oq,ζ -pres:

S(λ) := P (λ)/
(
rad P (λ)tr)

,

where we have denoted by Mtr the sum of all homomorphic images of ζ-admissible projec-
tive modules in Oq

Z to a module M in Oq
Z. Furthermore, we define the following standard

and proper standard modules, respectively:
∆(λ) = Indg

P P (L, λ),
▲(λ) = P (λ)/

(
Q(λ)tr)

,

where P (L, λ) ∼= P ([l, l] ⊕ z, λ|h∩ [l,l]+z) ⊗ L([k, k], λ|h∩ [k,k]) is the projective cover of the
irreducible L-module L(L, λ) in the corresponding parabolic category of L-modules, and
Q(λ) is the kernel of the canonical map P (λ) → N(λ) → 0. Both ∆(λ) and ▲(λ) lie in
Oq,ζ -pres. The arguments in [35, Section 2] and [12, Section 4] can be adapted now to show
that Oq,ζ -pres is properly stratified with indecomposable projective objects P (λ), standard
and proper standard objects ∆(λ) and ▲(λ), respectively, and simple objects S(λ), where
λ ∈ Λ(ζ)q. In particular, P (λ) has a filtration, subquotients of which are ∆(µ) with µ ⪰ λ.
Also, ∆(λ) has a filtration of length |Wl · λ| with each subquotient isomorphic to ▲(λ).
We summarize the above discussion in the following.

Proposition 3.2. The category Oq,ζ -pres is a properly stratified category with indecom-
posable projective, standard, proper standard, and simple objects P (λ), ∆(λ), ▲(λ) and
S(λ), for λ ∈ Λ(ζ)q, respectively. Furthermore, the following BGG-type reciprocity holds
in Oq,ζ -pres:

(P (λ) : ∆(µ)) = [▲(µ) : S(λ)], for λ, µ ∈ Λ(ζ)q.

3.3. Tilting modules in Oq,ζ -pres. It is well known that there exists a duality functor ·∨
on OZ which restricts to a simple-preserving duality functor on Oq

Z. We note that for
λ ∈ Λ(ζ)q, the projective module P (λ), as an L-module, is a direct sum of self-dual
projective modules. Now, we can show, following the arguments in [35, Propositions 2.8
and 2.9], that if M ∈ Oq

Z, such that, as an L-module, M is a direct sum of self-dual
projective modules, then M ∈ Oq,ζ -pres. This in particular implies that

∇(λ) := ∆(λ)∨ ∈ Oq,ζ -pres.

Let F(∆) be the full subcategory of Oq,ζ -pres of modules with finite ∆-flags. We define
similarly F(∇) to be the full subcategory of Oq,ζ -pres of modules that have finite ∇-flags.
A module T ∈ Oq,ζ -pres is called a tilting module if T ∈ F(∆) ∩ F(∇). Any tilting
module is a direct sum of indecomposable tilting modules, and the indecomposable tilting
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modules in Oq,ζ -pres are parametrized by Λ(ζ)q. We denote the indecomposable tilting
module corresponding to λ ∈ Λ(ζ)q by T (λ) with λ as its highest weight. Denote the
indecomposable tilting module in Oq

Z of highest weight λ ∈ Λ, dominant on h ∩ [k, k],
by T Oq

Z(λ). Denote by wk
0 (respectively, wl

0) the longest element in the Weyl group of k
(respectively, l).

Proposition 3.3. Let λ ∈ Λ(ζ)q. Then

T (λ) = T Oq
Z

(
wl

0 · λ
)

.

Furthermore, the following Ringel-type duality holds:

(T (λ) : ∆(µ)) =
[
▲

(
−wl

0wk
0 · µ − ρ

)
: S

(
−wl

0wk
0 · λ − ρ

)]
.

Proof. We shall first establish the proposition for g a Lie algebra. To do that we will prove
that tilting modules in Oq

Z of the form T Oq
Z(wl

0 · λ) indeed have ∆-flags by adapting the
arguments in [24, Lemma 18].

Let ν ∈ Λ be an anti-dominant weight that is regular on the [k, k]. Let wk
0 be the longest

element in Weyl group of the subalgebra [k, k]. We observe that the parabolic Verma
module N(wk

0 · ν) is irreducible (see, e.g., [28, Lemma 2]). Thus, in particular, L(wk
0 · ν) is

the socle of a parabolic Verma module, and hence, by a classical theorem of Irving [27], its
projective cover P (wk

0 · ν) is self-dual and hence a tilting module. On the other hand, we
have that P (wk

0 · ν) = ∆(wk
0 · ν) by the same argument as [35, Proposition 2.9(i)]. Thus,

we conclude that ∆(wk
0 · ν) ∼= T Oq

Z(wl
0wk

0 · ν) and T Oq
Z(wl

0wk
0 · ν) has a ∆- and a ∇-flag.

One sees that every other tilting module T Oq
Z(λ), with λ ∈ Λ(ζ)q, can be obtained as

a direct summand of the tensor product of such a tilting module as above with a finite-
dimensional module of g. Since they have ∆- and ∇-flags, they are indeed tilting module
in Oq,ζ -pres. From this it is clear that T Oq

Z(wl
0 · λ) contains ∆(λ) as a submodule, and

hence, by a standard uniqueness argument, is isomorphic to T (λ).
The Ringel-type duality in the second statement is now a consequence of the Ringel

duality for the parabolic category Oq
Z (see, e.g, [13, Corollary 3.8]) and the fact that

(T Oq
Z(wl

0 · λ) : N(µ)) = (T Oq
Z(wl

0 · λ) : N(w · µ)), for any w ∈ Wl. The reader is referred
to [12, Corollary 18] for more details.

Now suppose that g is a basic classical Lie superalgebra that is not a Lie algebra. The
existence of tilting modules in Oq,ζ -pres can now be derived using the existence of tilting
modules in the parabolic cokernel category for the Lie algebra g0 following the arguments
in [12, Section 4.4]. □

3.4. Properly stratified Whittaker categories. Let g be a basic classical Lie super-
algebra with ζ : n → C as in (2.9). Let W(ζ) ⊂ MS(ζ) be the image category of the
Backelin functor Γζ : OZ → MS(ζ), where we keep the same notation to denote the
restriction of the Backelin functor to OZ. It was shown in [14, Corollary 38] and [12,
Corollary 28] that the functor Γζ : OZ → W(ζ) satisfies the universal property of the
Serre quotient functor corresponding to the Serre subcategory Iζ , and hence it induces an
equivalence of categories

′Γζ : OZ/Iζ
∼=−→ W(ζ). (3.2)

Now, W(ζ) contains the standard Whittaker modules and also all simple modules of
integral central characters in MS(ζ). Furthermore, since Oζ -pres is properly stratified
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by Proposition 3.2, it follows that the category W(ζ) is also properly stratified. In this
section we shall give a parabolic analogue of this result.

Let q is another parabolic subalgebra of g with even Levi subalgebra k satisfying compat-
ibility condition with p as in previous sections. We consider the restriction of the Backelin
functor Γζ : OZ → W(ζ) to the parabolic subcategory Oq

Z. Denote the corresponding
image subcategory of W(ζ) by W(ζ)q so that we have a functor Γq

ζ : Oq
Z → W(ζ)q.

Proposition 3.4. The functor Γq
ζ : Oq

Z → W(ζ)q induces an equivalence of categories

′Γq
ζ : Oq

Z/Iq
ζ

∼=−→ W(ζ)q,

and the category W(ζ)q inherits a properly stratified structure. Furthermore, W(ζ)q con-
tains N(λ, ζ) and simple Whittaker module L(λ, ζ), for λ ∈ Λ(ζ)q.

Proof. The functor Γζ vanishes on objects in Iζ and hence vanishes on objects in Iqζ . Indeed,
since we have Iζ ∩ Oq

Z = Iq
ζ , we conclude that Γq

ζ vanishes on Iq
ζ . Thus, by the universal

property of Serre quotient, [25, Corollaires III.1.2 and III.1.3], the restriction Γq
ζ induces

a quotient functor ′Γq
ζ : Oq

Z/Iq
ζ → W(ζ)q. Since Oq

Z is a full abelian subcategory of OZ
with compatible abelian structure, by definition of the morphisms in a quotient category
(see, e.g. [14, Section 4.2]), we see that Oq

Z/Iq
ζ is a full subcategory of OZ/Iζ and ′Γq

ζ =
′Γζ |Oq

Z/Iq
ζ
. Now, we have that ′Γζ : OZ/Iζ → W (ζ) is full and faithful by [14, Theorem 37]

and [12, Corollary 29]. It follows that ′Γζ |Oq
Z/Iq

ζ
is full and faithful. Be definition, it is

essentially surjective. This proves that ′Γq
ζ : Oq

Z/Iq
ζ → W(ζ)q is an equivalence.

By Propositions 3.1 and 3.2, we have Oq,ζ -pres ∼= Oq
Z/Iq

ζ and they are properly stratified.
Thus W(ζ)q is also properly stratified by the equivalence ′Γq

ζ .

Now by Proposition 2.2, the modules N(λ, ζ) and their unique irreducible quotients
L(λ, ζ) lie in the category W(ζ)q, for λ ∈ Λ(ζ)q. □

4. Super duality for Whittaker modules

In this section we formulate Lie superalgebras gn and Lie algebras gn of classical type,
for 0 ≤ n ≤ ∞. We apply the results in the prior sections to obtain an equivalence of
certain parabolic categories between Whittaker modules over gn and gn as n tends to
infinity.

4.1. Super duality for parabolic BGG categories. We shall recall the setup from [21,
Section 6.1] below.

We have head diagrams Hx , where x = a, b, c, d, representing Dynkin diagrams of simple
Lie algebras of type A, B, C, D, respectively, and tail diagrams Tn and Tn , representing
Dynkin digrams of Lie superalgebras gl(1 + n) and gl(1|n), respectively. Connecting the
type A end of the head diagram Hx with the first vertex of the tail diagrams Tn and

Tn , we get Dynkin diagrams of Lie algebras and Lie superalgebras of type A, B, C, D.
(We remark that our Hx here is denoted by kx in [21, Chapter 6].)

We denote by (gn, gn) a pair consisting of a Lie algebra gn and a Lie superalgebra gn,
where gn is the Lie algebra corresponding to the Dynkin diagram Hx — Tn and gn is the

Lie superalgebra corresponding the Dynkin diagram Hx — Tn , respectively.
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Example 4.1.

(1) Let Ha be the Dynkin diagram for gl(m). Then we have gn
∼= gl(m + n) and

gn
∼= gl(m|n).

(2) Let Hb be the Dynkin diagram for so(2m+1). Then we have gn
∼= so(2m+2n+1)

and gn
∼= osp(2m + 1|2n).

We have natural embeddings gn ⊂ gn+1 and gn ⊂ gn+1, and hence the respective direct
limits g∞ and g∞ are valid. In the cases of x = b, c, d we recall that to deal with g∞
and g∞ and truncations to gn and gn for finite n, it is more convenient and conceptual
to introduce trivial central extensions of gn and gn by a one-dimensional central element
and work with these instead. But we shall ignore this issue as much as possible to keep
subsequent notation and presentation simpler, the reader is referred to [21, Section 6.1.6]
for the precise details. We let On and On denote the corresponding BGG categories of gn-
and gn-modules, respectively. Denote the corresponding Verma modules of highest weight
λ ∈ h∗ by Mn(λ) and Mn(λ), and their simple heads by Ln(λ) and Ln(λ), respectively.
Here, h denotes the Cartan subalgebra of either gn or gn.

Let k be the Levi subalgebra of gn with semisimple summand [gl(n), gl(n)], where gl(n) ⊂
gl(1|n) and gl(1|n) is the Lie superalgebra corresponding to the Dynkin diagram Tn . We
also regard the same k as a Levi subalgebra of gn, where gl(n) ⊂ gl(1 + n) for gl(1 + n)
corresponding to the Dynkin diagram Tn . We shall use k denote this copy of gl(n).
Let b and b denote the standard Borel subalgebras containing h corresponding to the
Dynkin diagrams of gn and gn, respectively. Denote the associated parabolic subalgebras
by q = b + k and q = b + k, respectively. We let O+

n and O+
n be the full subcategories of

Oq
n and Oq

n, respectively, consisting of objects M on which the action of k is polynomial.
The corresponding parabolic Verma modules in O+

n and O+
n of highest weight λ ∈ h∗

are denoted by Nn(λ) and Nn(λ), respectively. We note that if {Eii|1 ≤ i ≤ n}, is the
standard basis for the Cartan subalgebra h of k, and {ϵi|1 ≤ i ≤ n} is its dual basis,
then λ|h =

∑n
i=1 λiϵi for a partition (λ1, . . . , λn). The subset of such weights in h∗ will

be denoted by h∗,+. For λ ∈ h∗,+, we let λ♮ ∈ h∗,+ be obtained from λ by replacing
λ|h =

∑n
i=1 λiϵi by

∑
i=1 λ′

iϵi, where (λ′
1, λ′

2, . . .) is the conjugate partition of (λ1, λ2, . . .).
Furthermore, the categories O+

n and O+
n have indecomposable tilting modules of highest

weight λ ∈ h∗,+, denoted by Tn(λ) and T n(λ), respectively.
The relationships between O+

n , for various n, between O+
n , for various n, are given

by the truncation functors, which we shall recall below. The reader is referred to [21,
Section 6.2.5] for more details.

Let M ∈ O+
n . The k-module Resgk M is a direct sum of finite-dimensional irreducible

polynomial k-modules. Thus we have a weight space decomposition:

M =
∑

µ ∈ h∗
Mµ,

such that µ|h =
∑n

i=1 µiϵi, with µi ∈ N. For m < n, we define

Trn
m(M) :=

∑
µj=0,∀j > m

Mµ.

Then it is easy to see that Trn
m(M) ∈ O+

m.
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Proposition 4.2. For 1 ≤ m < n ≤ ∞, Trn
m : O+

n → O+
m defines an exact functor.

Furthermore, for X = N, L, T , and λ ∈ h∗,+ with λ|h =
∑n

i=1 λiϵi, we have

Trn
m(Xn(λ)) =

{
Xm(λ), if λm+1 = 0,

0, otherwise.

We remark that we can define analogously an exact truncation functor Trn
m : O+

n → O+
m,

for n > m, and have a super-analogue of Proposition 4.2.

Proposition 4.3. Let 1 ≤ m < n ≤ ∞. For X = N, L, T , and λ ∈ h∗,+ with λ|h =∑n
i=1 λiϵi, we have

Trn
m(Xn(λ)) =

{
Xm(λ), if λm+1 = 0,

0, otherwise.

A relationship between O+
n and O+

n is given by the so-called super duality [21, Chap-
ter 6], which holds only at n = ∞. In the sequel we shall make it a convention of notation
to sometimes drop the subscript n when considering n = ∞.

Theorem 4.4. [17, 18, 20] We have an equivalence of the BGG categories for g∞ and g∞:

O+ ∼= O+
,

under which N(λ), L(λ) and T (λ) correspond to N(λ♮), L(λ♮) and T (λ♮), respectively, for
λ ∈ h∗,+.

Let H denote the Lie subalgebra of gn and gn whose Dynkin diagram is Hx . Let n be
a nilradical of the standard Borel of H and ζ : n → C be a character of n. Let nn and nn

be the nilradicals of the standard Borel subalgebras of gn and gn, respectively. Thanks to
n ⊂ nn and n ⊂ nn, we can extend ζ trivially to a character of nn and nn, respectively. We
shall again denote them by ζ by abuse of notation.

Recall the MMS categories introduced in Section 2.2. Denote the categories of MMS
Whittaker modules of gn and gn by MS(ζ)n and MS(ζ)n, respectively. Denote by
MS(ζ)+

n (and respectively, MS(ζ)+
n ) the full subcategory of MS(ζ)n (and respectively,

MS(ζ)n) consisting of objects on which the gl(n)-action is polynomial. We recall the
construction of parabolic standard Whittaker modules from (2.13). We denote the cor-
responding parabolic standard Whittaker modules of gn and gn by N(λ, ζ) and N(λ, ζ),
respectively. Similarly, we have the self-explanatory notations of L(λ, ζ) and L(λ, ζ).

We shall denote the Backelin functor for gn and gn by Γζ and Γζ , respectively.

Lemma 4.5. The functors Γζ and Γζ restrict to the following functors:

Γ+
ζ : O+

n −→ MS(ζ)+
n , Γ+

ζ : O+
n −→ MS(ζ)+

n .
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Furthermore, for λ ∈ h∗,+, we have

Γζ (N(λ)) = N(λ, ζ),

Γζ (L(λ)) =
{

L(λ, ζ), if λ is Wl-antidominant
0, otherwise;

Γζ

(
N(λ)

)
= N(λ, ζ),

Γζ

(
L(λ)

)
=

{
L(λ, ζ), if λ is Wl-antidominant
0, otherwise.

Proof. By Proposition 2.2 if M is a direct sum of finite-dimensional irreducible gl(n)-
modules, then so is Γ+

ζ (M). The double dual construction in the proof of [1, Lemma 3.2]
also shows that if M is polynomial, then so is the image under the Backelin functor. □

4.2. Properly stratified categories Oζ -pres +
n and Oζ -pres +

n . We shall now apply the
results in Section 3.2 to our setting of gn- and gn-modules. We let On,Z ⊂ On (and
respectively, On,Z ⊂ On) denote the full subcategory of integral weight gn-modules (and
respectively, gn-modules).

The set Λ of integral weights will be denoted by Λn and Λ(ζ)q from (3.1) will be denoted
by Λ(ζ)qn in our current setting for gn and gn. Denote further

Λ+
n :=

{
λ ∈ Λn

∣∣∣ λ|h is polynomial
}

,

Λ(ζ)+
n :=

{
λ ∈ Λ(ζ)qn

∣∣∣ λ|h is polynomial
}

.
(4.1)

Recall from Section 3.1 the parabolic cokernel categories of gn- and gn-modules, which
we shall denote by Oq,ζ -pres

n and Oq,ζ -pres
n , respectively. We define subcategories

Oζ -pres +
n ⊆ Oq,ζ -pres

n and Oζ -pres +
n ⊆ Oq,ζ -pres

n

consisting of modules M in the respective categories on which the gl(n)-action is polyno-
mial.

The same arguments in Section 3.1 gives us equivalences of categories

Oζ -pres +
n

∼= O+
n,Z/I+

ζ , Oζ -pres +
n

∼= O+
n,Z/I+

ζ ,

where O+
n,Z/I+

ζ and O+
n,Z/I+

ζ denote the Serre quotient categories by the respective Serre
subcategories I+

ζ = Iq
ζ ∩ O+

n,Z and I+
ζ = Iq

ζ ∩ O+
n,Z.

Furthermore, the arguments in Section 3.2 show that Oζ -pres +
n and Oζ -pres +

n are both
properly stratified, with standard, proper standard, projective and simple objects given by
the same ∆(λ), ▲(λ), P (λ) and S(λ) as in Section 3.2, now with λ ∈ Λ(ζ)+

n in (4.1). To
continue to distinguish between gn- and gn-modules, we shall denote the gn-counterparts
by ∆(λ), ▲(λ), P (λ) and S(λ) accordingly. We remark that the existence of projective
covers in these categories in the limit n → ∞ is established in [15, Theorem 3.5] and [30,
Theorem 3.12]. We summarize the above discussion in the following.

Proposition 4.6. For n ≤ ∞, the categories Oζ -pres +
n and Oζ -pres +

n are categories with
properly stratified structures with indecomposable projective, standard, proper standard,
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and simple objects described above. Furthermore, for λ, µ ∈ Λ(ζ)+
n , we have the following

BGG-type reciprocity:
(P (λ) : ∆(µ)) = [▲(µ) : S(λ)],
(P (λ) : ∆(µ)) = [▲(µ) : S(λ)].

We denote the indecomposable tilting module corresponding to λ ∈ Λ(ζ)+
n in Oζ -pres +

n

by T (λ). Denote the indecomposable tilting module in O+
n,Z of highest weight λ ∈ Λ+ by

T O+
Z (λ). Similarly, we have the notations T (λ) and T

O+
Z (λ).

Proposition 4.7. Let λ, µ ∈ Λ(ζ)+
n . For n ≤ ∞, we have

T (λ) ∼= T O+
Z

(
wl

0 · λ
)

and T (λ) ∼= T
O+

Z
(
wl

0 · λ
)

.

Furthermore, for n < ∞, the following Ringel-type dualities hold:

(T (λ) : ∆(µ)) =
[
▲

(
−wl

0wn
0 · µ − ρ

)
: S

(
−wl

0wn
0 · λ − ρ

)]
,

(T (λ) : ∆(µ)) =
[
▲

(
−wl

0wn
0 · µ − ρ

)
: S

(
−wl

0wn
0 · λ − ρ

)]
,

where wn
0 is the longest element in Weyl group of the subalgebra gl(n).

Proof. The case n < ∞ is a direct consequence of Proposition 3.3. So it remains to prove
the first statement for n = ∞.

For n = ∞, we observe that the tilting modules of the form T O+
Z (wl

0 · λ), by Propo-
sition 4.2, truncate to the corresponding tilting modules of the same highest weight for
n ≫ 0 having the same parabolic Verma flag length. Furthermore, since the ∆- and ∇-
flags are also compatible under the truncation functors, these tilting modules have ∆- and
∇-flags as well, and thus, they are indeed tilting modules T (λ) for Oζ -pres + at n = ∞.

Similarly, we have the identity for T (λ) ∼= T
O+

Z (wl
0 · λ) for n = ∞ using Proposi-

tion 4.3. □

4.3. Categories W(ζ)+
n and W(ζ)+

n of Whittaker modules. Following Section 3.4,
we let W(ζ)+

n and W(ζ)+
n denote the image categories of Γ+

ζ : O+
n,Z → MS(ζ)+

n and
Γ+

ζ : O+
n,Z → MS(ζ)+

n , respectively.

Proposition 4.8. Let n ≤ ∞. The functor Γ+
ζ : O+

n,Z → W(ζ)+
n induces an equivalence

of categories
′Γ+

ζ : O+
n,Z/I+

ζ

∼=−→ W(ζ)+
n .

Furthermore, Γζ(N(λ)) = N(λ, ζ), for λ ∈ Λ+
n , and

Γζ (L(λ)) =
{

L(λ, ζ), if λ ∈ Λ(ζ)+
n ;

0, otherwise.

Hence W(ζ)+
n contains N(λ, ζ) and the simple Whittaker modules L(λ, ζ), for λ ∈ Λ(ζ)+

n .

Proof. The case of n < ∞ is a direct consequence of Proposition 3.4.
Now suppose that n = ∞. The same type of arguments as Proposition 2.2 also shows

that the Backelin functor sends the parabolic Verma and irreducible modules in O+ to
parabolic standard Whittaker and irreducible modules, respectively, in the case as well.
So, it remains to prove the first statement for n = ∞.
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Suppose that P, Q are two projective modules in Oζ -pres + ⊆ O+
Z , which exist and have

finite (parabolic) Verma flags by [15, Theorem 3.5] and [30, Theorem 3.12]. That is,
both P, Q are direct sums of indecomposable projective covers of irreducible modules of
Wl-antidominant highest weights. Furthermore, by [15, Theorem 3.2] for n ≫ 0, we have

HomO+
Z

(P, Q) ∼= HomO+
n,Z

(Trn P, Trn Q). (4.2)

Note that ΓζP and ΓζQ are projective modules in W(ζ)+ and have finite flags of stan-
dard Whittaker modules, since Γζ is exact and sends parabolic Verma modules to the
corresponding standard Whittaker modules. It follows from (4.2) that HomW (ζ)+(ΓζP,
ΓζQ) < ∞. Since Γζ is compatible with Trn, we have for n ≫ 0

HomW(ζ)+(ΓζP, ΓζQ) ∼= HomW(ζ)+
n

(Γζ Trn(P ), Γζ Trn(Q))
∼= HomOζ -pres +

n
(Trn(P ), Trn(Q))

∼= HomO+
n,Z

(Trn(P ), Trn(Q))
∼= HomO+

Z
(P, Q) ∼= HomOζ -pres +(P, Q)

It follows, e.g., from [4, Proposition 5.10], Oζ -pres + is equivalent to the cokernel category
with projective objects ΓζP , where P ∈ Oζ -pres +. However, this category is W(ζ)+. This
completes the proof. □

Analogously, we have the following super counterpart.

Proposition 4.9. Let n ≤ ∞. The functor Γ+
ζ : O+

n,Z → W(ζ)+
n induces an equivalence

of categories

′Γ+
ζ : O+

n,Z/I+
ζ

∼=−→ W(ζ)+
n .

Furthermore, Γζ

(
N(λ♮)

)
= N(λ♮, ζ), for λ ∈ Λ+

n , and

Γζ

(
L(λ♮)

)
=

{
L(λ♮, ζ), if λ ∈ Λ(ζ)+

n ;
0, otherwise.

Hence W(ζ)+ contains N(λ♮, ζ) and simple Whittaker module L(λ♮, ζ), for λ ∈ Λ(ζ)+
n .

Theorem 4.10 (Super duality for Whittaker modules). There exists an equivalence of
properly stratified categories

W(ζ)+ ∼=−→ W(ζ)+,

which maps N(ζ, λ) and L(ζ, λ) to N(λ♮, ζ) and L(λ♮, ζ), respectively, for λ ∈ Λ(ζ)+.

Proof. By Theorem 4.4 we have an equivalence of categories between the highest weight
categories O+

Z and O+
Z under which N(λ) and L(λ) correspond to N(λ♮) and L(λ♮), respec-

tively. Now the simple objects in the Serre subcategory I+
ζ correspond to the simple objects

in the Serre subcategory I+
ζ . Thus, we have O+

Z /I+
ζ

∼= O+
Z /I+

ζ .
Now, by Propositions 4.8 and 4.9 the categories W(ζ)+ (and respectively, W(ζ)+)

of MMS Whittaker modules are equivalent, respectively, to the Serre quotient category
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O+
Z /I+

ζ (and respectively, O+
Z /I+

ζ ). Summarizing we have the following commutative
diagrams:

O+
Z

//

∼=
��

O+
Z /I+

ζ

∼= //

∼=
��

W(ζ)+

��
O+

Z
// O+

Z /I+
ζ

∼= // W(ζ)+

Thus, the equivalence W(ζ)+ ∼= W(ζ)+ follows.
The correspondence of the standard and simple objects follows from the fact that the

quotient functors are isomorphic to the respective Backelin functors and according to
Propositions 4.8–4.9 the corresponding Backelin functors send the parabolic Verma mod-
ules and simple modules in O+

Z and O+
Z to the standard Whittaker and simple modules

(if nonzero) in W(ζ)+ and W(ζ)+, respectively. □

Remark 4.11. In case when ζ = 0, Theorem 4.10 reduces to the super duality between
parabolic BGG categories modules over g∞ and g∞ (see [17, 20, 22] for type A and [18]
for type BCD; also cf. [21, Chapter 6]). Our proof of Theorem 4.10 uses the super duality
in this special case when ζ = 0, and so does not yield a new proof of this special case.

4.4. Categorification of Fock spaces. Let us be specific by setting gn = gl(m + n)
and gn = gl(m|n), i.e., the head diagram Ha is the Dynkin diagram of gl(m). Denote by
[O+

n,Z] and [O+
n,Z] the Grothendieck groups of the categories O+

n,Z and O+
n,Z, respectively.

It was shown in [19] (as a parabolic version of Brundan-Kazhdan–Lusztig conjecture [6])
that there exists a U(gl∞)Z-module isomorphism[

O+
n,Z

]
∼= V⊗m ⊗ ∧nV,[

O+
n,Z

]
∼= V⊗m ⊗ ∧nW,

(4.3)

where V (respectively, W) is the natural representation (respectively, its restricted dual)
of the integral form U(gl∞)Z of U(gl∞). Here and below ∧kV and SkV denote the kth
exterior and symmetric powers of V, respectively.

The isomorphisms (4.3) at n = ∞ become[
O+

Z

]
∼= V⊗m ⊗ ∧∞V,[

O+
Z

]
∼= V⊗m ⊗ ∧∞W.

(4.4)

Indeed, one first constructs q-versions of the right-hand side (4.3)–(4.4) as modules over
the (Lusztig integral form of) quantum group U(gl∞)Z[q,q−1] (cf. [34]) and then specialize
them at q = 1. In this case, one constructs the standard basis, canonical and dual canonical
bases on (a completion of) V⊗m⊗∧nV and other variants of tensor spaces. Similar remarks
on q-deformation and canonical bases apply to (4.5) below.

On the other hand, by the results in this section we have, for n ≤ ∞,[
W(ζ)+

n

]
∼= SmζV ⊗ ∧nV,[

W(ζ)+
n

]
∼= SmζV ⊗ ∧nW,

(4.5)

which is a parabolic variant of the categorification in [14, Theorem 44]. Here SmζV =
Sm1V⊗ . . . ⊗ SmrV, where m = m1 + . . . + mr is the Jordan block type of ζ corresponding
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to a Levi subalgebra of gl(m). (SmζV was denoted as Tm
ζ in [14].) One can view (4.3)–

(4.4) as a special case of (4.5) for ζ = 0, since in this case W(ζ)+ reduces to O+, SmζV
reduces to V⊗m, and so on, and we are back to the setting. Indeed, one shows, as in [14]
(generalizing [19]), that the standard Whittaker, tilting and simple modules in W(ζ)+

correspond to proper standard, canonical and dual canonical bases for SmζV ⊗ ∧∞W,
respectively. (There are two versions of standard bases.)

As noted in [22], there is a natural isomorphism
∧∞V ∼= ∧∞W,

both as the basic representation of U(gl∞)Z-module of level one. This induces a natural
isomorphism between the two right-hand sides in (4.4) (and respectively, in (4.5) for
n = ∞) and an identification of standard, (dual) canonical bases between them. Building
on [14], such an isomorphism in the setting of (4.5) for n = ∞ is a main motivation behind
the super duality in Theorem 4.4.

Similarly, for gn and gn with head diagrams of type BCD, we have isomorphisms (as
modules over certain ıquantum group of type AIII) as in (4.3), (4.4) and (4.5), and all
discussions above remain valid once we replace Lusztig (dual) canonical bases of type
A by Bao–Wang (dual) ıcanonical bases of type AIII; see [3, 12] for an ıcanonical basis
formulation of Kazhdan–Lusztig theories for BGG module category and Whittaker module
category over gn and gn.

We conclude this section by remarking that one can construct more general parabolic
variants of the categorification of [14, Theorem 44] than the ones discussed above for the
Fock spaces in (4.5). In fact, arbitrary tensor products of symmetric and exterior powers
of V and W can be categorified by parabolic Whittaker categories of gl(m|n)-modules,
with appropriately chosen simple system Π and compatible parabolic subalgebras p and q.
A similar remark applies to the ıquantum group versions in [12] as well.

5. Module categories for finite W -superalgebras

In this section, we formulate the finite W -superalgebras U(g, e) associated to a basic
classical Lie superalgebra g and an even nilpotent element e which lies in an even Levi
subalgebra l of g. Then we formulate a parabolic category O of U(g, e)-modules with “Levi
subalgebra” U(l, e).

5.1. Finite W -superalgebras. We continue the setup in Section 2.1. Recall the Z-
grading (2.3) of a basic classical Lie superalgebra g given by ad θ for an integral element
θ ∈ h, whose degree 0 component is an even Levi subalgebra l = gθ,0. Recall the triangular
decomposition (2.4) and (2.6).

Recall the sl(2)-triple {e, h, f} in g. The eigenspace decomposition of ad h gives rise to
a Dynkin grading of g:

g =
⊕
j ∈Z

g(j), where g(j) := {x ∈ g | [h, x] = jx} .

Note that e ∈ g(2). The element e defines a linear map
χ : g −→ C, χ(x) = (e|x). (5.1)

This leads to an even super-skewsymmetric bilinear form
ωχ : g × g −→ C, ωχ(x, y) = χ([x, y]). (5.2)
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This form restricts to a non-degenerate super-symplectic bilinear form ωχ : g(−1) ×
g(−1) → C. Note that dim g(−1)0 is even. Throughout we shall assume that

dim g(−1)1 is even. (5.3)

Remark 5.1. We observe that Condition (5.3) is automatically satisfied in the setup for
super duality. To this end, we note that the nilpotent element e in the construction of
the W -(super)algebras U(gn, e) and U(gn, e), and in fact the corresponding sl(2)-triple
{e, h, f}, lies in the Lie subalgebra corresponding to the head diagram Hx of gn and gn;
see Section 4.1. It follows that the dimensions of the ad h-eigenspaces gn(−1) and gn(−1)
coincide. Since gn is a reductive Lie algebra, dim gn(−1) is even; so is dim gn(−1)0. Hence
dim gn(−1)1 is even, i.e., (5.3) holds.

One checks by (2.1) that t preserves the super-symplectic form ωχ|g(−1). Hence we can
choose a t-invariant Lagrangian subspace l of g(−1) with respect to ωχ and define

m := l ⊕
⊕

j < −1
g(j). (5.4)

Note that χ is a character of m which vanishes on m1. Set
mχ := {m − χ(m) | m ∈ m} (5.5)

and let Iχ be the left ideal of U(g) generated by mχ. Also let Qχ denote the left U(g)-
module U(g)/Iχ. The finite W -superalgebra associated to e is defined to be the associative
superalgebra

U(g, e) = Endg(Qχ)opp.

Therefore, Qχ is a
(
U(g), U(g, e)

)
-bimodule. It is well known (cf., e.g., [40]) that we can

identify
U(g, e) = (U(g)/Iχ)adm

= {u + Iχ ∈ U(g)/Iχ | [m, u] ∈ Iχ, ∀ m ∈ m} .

Since, by choice, the Lagrangian subspace l is t-invariant, we have that m is t-invariant,
and thus, χ([t, x]) = 0, for all t ∈ t and x ∈ m. Therefore, we conclude that

t ⊆ U(g, e). (5.6)

Thus, Sk := Qχ ⊗U(g,e) − defines a functor from the category of U(g, e)-modules to the
category of g-modules on which mχ acts locally nilpotently.

Proposition 5.2 ([39, 42]). The functor Sk is an equivalence of categories from the cate-
gory of U(g, e)-modules to the category of g-modules on which mχ acts locally nilpotently.
(It remains an equivalence when restricting to subcategories of finitely generated modules.)

Proof. The equivalence Sk for a reductive Lie algebra g was due to Skryabin ([38, Appen-
dix]). For a Lie superalgebra g with g(−1) even-dimensional (which is assumed throughout
this paper), it was observed in [42, Remark 3.10] that Skryabin’s proof can be “superized”.
For Lie algebras, Losev in [32, Theorem 1.1.4] gave a very different proof from Skryabin’s
using his decomposition theorem, see Section 6.2 below. This proof was then generalized
to the superalgebra setting in [39, Theorem 4.1].

Since U(g) is Noetherian, we have that finitely generated modules over U(g) are Noe-
therian. From this, it follows that Skryabin’s equivalence Sk restricts to an equivalence of
the respective subcategories of finitely generated modules. □
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Remark 5.3. Finite W -superalgebras are usually defined starting with a more general
grading called good grading ([23, Introduction]) instead of a Dynkin grading, as we have
done here. However, for our main purpose, the ones constructed from Dynkin gradings
will be sufficient. Hence we shall restrict ourselves to this case.

5.2. Categories of U(g, e)-modules. Denote the centralizer of e in g by
ge := {x ∈ g | [e, x] = 0}. (5.7)

By [8, Theorem 3.8] and its straightforward super variant, we have a (non-unique) t-module
isomorphism:

U(ge) ∼= U(g, e). (5.8)
By the t-module isomorphism (5.8) we have an ad θ-eigenspace decomposition

U(g, e) = U(g, e)0 +
∑
k ∈Z

U(g, e)k. (5.9)

Set U(g, e)≥0 =
∑

k ≥ 0 U(g, e)k and U(g, e)>0 =
∑

k > 0 U(g, e)k. Furthermore let
U(g, e)# = U(g, e)≥ 0 ∩ U(g, e)U(g, e)> 0,

which is a two-sided ideal of U(g, e)≥ 0. We have by [33, Theorem 4.1] (or by Remark 6.8
below)

U(g, e)≥ 0/U(g, e)# ∼= U(l, e). (5.10)

Denote by Õ(θ, e) the category of finitely generated U(g, e)-modules M such that for any
x ∈ M there exists kx ∈ Z with U(g, e)kx = 0 for all k ≥ kx.

Now, given a U(l, e)-module V , we can regard it as a U(g, e)≥ 0-module via the isomor-
phism (5.10). Thus, we can define the induced module

Mθ,e(V ) = U(g, e) ⊗U(g,e)≥ 0 V. (5.11)

This gives rise to a functor Mθ,e from the category of finitely generated U(l, e)-modules
to Õ(θ, e).

On the other hand, for M ∈ Õ(θ, e) we let
F(M) = {x ∈ M | ux = 0, ∀ u ∈ U(g, e)> 0}

so that F(M) is naturally a U(l, e)-module by (5.10) again. The functor F is right adjoint
to Mθ,e.

Let O(θ, e) be the subcategory of Õ(θ, e) of U(g, e)-modules M for which dim F(M)<∞.
The functor Mθ,e restricts to a functor from the category of finite-dimensional U(l, e)-
modules to O(θ, e) with right adjoint being the restriction of the functor F above:

U(l, e) -mod Mθ,e
// O(θ, e), U(l, e) -mod O(θ, e).Foo

Also, we let Or(θ, e) be the full subcategory of O(θ, e) consisting of objects on which r
acts semisimply.

Now if V is a finite-dimensional irreducible U(l, e)-module, then Mθ,e(V ) has a com-
position series and a unique irreducible quotient, denoted by Lθ,e(V ) according to [8,
Corollary 4.11] (see also [33, Corollary 3.6, Proposition 3.7]). Note that if V is finite
dimensional and semisimple over r, then the module Mθ,e(V ) lies in Or(θ, e).

Suppose that we have two integral elements θ, θ′ ∈ t that give rise to two minimal full
subalgebras r, r′ such that r ⊆ r′ ⊆ t. Since the parabolic subalgebras (2.8) determined by
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θ and θ′ are assumed to be compatible with the same triangular decomposition (2.4) we
conclude that O(θ, e) ⊆ O(θ′, e) and Or(θ, e) ⊆ Or′(θ′, e).

Example 5.4. When r = t the category Ot(θ, e) is the original category O for finite
W -algebra defined in [9]. In this case e is principal nilpotent in the Levi subalgebra l,
and hence the irreducible U(l, e)-modules are one-dimensional according to [29]. If V is a
one-dimensional U(l, e)-module, then Mθ,e(V ) ∈ Ot(θ, e) is the Verma module of [9].

5.3. An example. Let g = gl(7) and let e be the nilpotent element associated with the
following pyramid, see, e.g., [9, Section 3.1].

1
2 3 4
5 6 7

(5.12)

The corresponding nilpotent element is e = E23 + E34 + E56 + E67 with the grading
operator h = 2E22 + 2E55 − 2E44 − 2E77. Together with the element f = 2(E32 + E43 +
E65 + E76) they form an sl(2)-triple inside g = gl(7). Here we have used Eij to denote
the usual elementary matrix of gl(n). The eigenvalues of adh give rise to the Dynkin
grading g = ⊕j ∈Zg(j). Note that g(0) is the subalgebra corresponding to the columns,
i.e., g(0) ∼= gl(2) ⊕ gl(3) ⊕ gl(2), generated by the root vectors corresponding to the roots{

±(ϵ2 − ϵ5), ±(ϵ1 − ϵ3), ±(ϵ3 − ϵ6), ±(ϵ4 − ϵ7)
}
.

This grading determines a W -algebra U(g, e). The subalgebra t is 3-dimensional and
spanned by the following basis{

E11, E22 + E33 + E44, E55 + E66 + E77
}
.

We have a t-module isomorphism between U(g, e) and U(ge). An “integral element” θ ∈ t
is of the form

θ = θ1E11 + θ2 (E22 + E33 + E44) + θ3 (E55 + E66 + E77) ,

where θi ∈ Z. The eigenvalues of θ gives rise to a Z-gradation g = ⊕k ∈Zgk with l = g0.
In the case when all θi are the same, θ is a multiple of the identity element I, and hence

it gives the eigenvalue decomposition g = g0 = l and hence g(0) ∩ g0 = g(0). The “Levi
subalgebra” U(l, e) of U(g, e) is U(g, e) itself.

Now consider the case when all θi are distinct, i.e., θ is regular (e.g., θ1 = 1, θ2 = 0,
θ3 = −1). In this case l = g0 is the subalgebra corresponding to the rows, i.e., l ∼=
gl(1)⊕gl(3)⊕gl(3), generated by the Cartan subalgebra and the root vectors corresponding
to the roots {

±(ϵ2 − ϵ3), ±(ϵ3 − ϵ4), ±(ϵ5 − ϵ6), ±(ϵ6 − ϵ7)
}
.

The “Levi subalgebra” U(l, e) of U(g, e) in this case is commutative and isomorphic to the
center of U(l).

6. Losev–Shu–Xiao decomposition and finite W -superalgebras

In this section, we set up (in a slightly extended form which we need) Shu–Xiao’s super
generalization of Losev’s approach to finite W -algebras. As consequences we formulate
equivalences between categories of Whittaker g-modules and module categories for finite
W -superalgebras. Then we formulate the super duality between a finite W -algebra and a
finite W -superalgebra at infinite-rank limit.
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6.1. Super Darboux-Weinstein decomposition. Recall the sl(2)-triple {e, h, f} in a
basic classical Lie superalgebra g as in Section 2.1, the linear map χ : g → C from (5.1)
given by (e|−). We have a vector space decomposition: g = ge ⊕ [f, g], and the super-
skewsymmetric bilinear form ωχ from (5.2) restricted on [f, g] is non-degenerate. Recall
our assumption (5.3) that dimC g(−1) is even. Let m be as in (5.4), which is a Langragian
subspace of [f, g] lying in the negative degree component of g, and let m∗ ⊆ [f, g] be a
“dual” of m with respect to ωχ. Let V := mχ ⊕ m∗. We note that h acts on both V and
ge via the Kazhdan grading, which is the grading on g determined by the eigenvalues of
ad h shifted by 2.

Write gχ = {g − χ(g)|g ∈ g} so that we have:
gχ = ge ⊕ V.

Note that S(g) has a Poisson structure given by the Lie super bracket. On the other hand,
since V is a symplectic superspace it has a Poisson structure given by the super-symplectic
form.

The adjoint action of t × Ch on S(g) integrates to an action of the adjoint group
T ×C×, where C× corresponds to a subgroup in the adjoint group of g0 that gives rise to
the Kazhdan grading.

The following is an equivariant version of super Darboux–Weinstein theorem [39, Theo-
rem 1.3]. The version stated and proved in loc. cit. is a C×-equivariant version, but
the same proof works in the T × C×-equivariant version below (cf. the proof of [32,
Theorem 3.3.1]).

Proposition 6.1. We have a T × C×-equivariant isomorphism of Poisson algebras
S(g)∧

χ
∼= S(ge)∧

χ⊗̂S(V )∧
0 .

The notation ·∧χ denotes completion with respect to the maximal ideal corresponding to the
point χ. Furthermore, S(ge) and S(V ) Poisson commute with each other.

Remark 6.2. Though not explicitly addressed in [39], the notation ⊗̂ in Proposition 6.1
(and similarly in Theorem 6.5 below) means taking the completion of the tensor product
with respect to the maximal ideal corresponding to the point (χ, 0) ∈ g∗

e × V ∗ (see [33,
Proposition 2.1]). Here, as a vector superspace, this “completed” tensor product is iso-
morphic to S(ge × V )∧

(χ,0). Note also that S(V )∧
0 is just the formal power series in the

variables of V .

6.2. A super setting for Losev’s decomposition. We shall need a quantum version
of Proposition 6.1 for applications to finite W -(super)algebras. The quantum analogue of
a Poisson structure is given by a star product.

Given a Poisson superalgebra (A, {·, ·}) over C, a star product on A is an associative
product ∗ on A[[ℏ]] = A ⊗C C[[ℏ]] of the form:

f ∗ g = fg +
∞∑

i=1
Di(f, g)ℏ2i

where ℏ is a formal parameter and Di(f, g) ∈ A. Furthermore, it needs to satisfy among
others the following condition:

f ∗ g − (−1)|f |·|g|g ∗ f − {f, g} ∈ ℏ3A[[ℏ]],
where f, g ∈ A are assumed to be Z2-homogeneous of degree |f |, |g|. We will not list the
other so-called continuity conditions which can be found in [33, Section 2]. They are in
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place to assure that the star product is homogeneous with respect to the Kazhdan grading
and that it can be extended to various completions, and also makes sense when we set
ℏ = 1.

Example 6.3. Let g be a Lie superalgebra. As the standard quantization of the Poisson
superalgebra (S(g), [·, ·]), we have (S(g)[[ℏ]], ∗) := T (g)[[ℏ]]/I, where I is the ideal generated
by a⊗b− (−1)|a|·|b|b⊗a− [a, b]ℏ2, for a, b ∈ g Z2-homogeneous. By a PBW-type argument
we see that the T (g)[[ℏ]]/I is an associative superalgebra isomorphic to S(g)[[ℏ]] as a vector
space, and hence gives rise to a star product on S(g), called the Gutt star product.

Example 6.4. Suppose that (V, ω) is a symplectic superspace so that S(V ) is naturally
a Poisson superalgebra with Poisson bracket determined by {v, w} := ω(v, w), v, w ∈ V .
It has a standard quantizaton (S(V )[[ℏ]], ∗) satisfying the relation v ∗ w − (−1)|v|·|w|w ∗ v =
ω(v, w)ℏ2. The corresponding star product is a Moyal–Weyl star product associated with
a constant nondegenerate bivector on V .

Recall the action of the group T × C× on S(g), where C× is a subgroup in the adjoint
group of g0 determining the Kazhdan grading. Letting t · ℏ = tℏ for t ∈ C×, we see that
star product of (S(g)[[ℏ]], ∗) is homogeneous and T × C×-equivariant. Furthermore, as
mentioned above, the “continuity” conditions of the star product allows us to extend the
quantum algebra structures in Examples 6.3–6.4 to their respective completions as defined
in Proposition 6.1.

We are now ready to state a slight upgrade of [39, Theorem 1.6], which was formulated
as a C×-equivariant version only. However, the proof in loc. cit. extends to the T × C×-
version that we shall need for our application to the category O of W -superalgebras. We
note that in the case when g is a reductive Lie algebra an even stronger equivariant version
of the theorem was proved in [33, Proposition 2.1] derived from the earlier results in [32].

Theorem 6.5 (cf. [39, Theorem 1.6]). We have a T ×C×-equivariant isomorphism of the
quantum algebras

S(g)∧
χ[[ℏ]] ∼= S(ge)∧

χ[[ℏ]]⊗̂C[[ℏ]]S(V )∧
0 [[ℏ]]. (6.1)

Example 6.6. The isomorphism in Theorem 6.5 is equivariant with respect to the Kazh-
dan grading. Now, suppose that the Dynkin grading on g is even (i.e., g =

⊕
j ∈ 2Z g(j)) so

that the subalgebra mχ consists precisely of the non-positively graded components of g in
the Kazhdan grading. The isomorphism in Theorem 6.5 restricts to an isomorphism of the
corresponding C×-finite part (with respect to the Kazhdan grading). Setting ℏ = 1, we
get the following isomorphism of associative superalgebras. The left-hand side is precisely
U(g)∧

mχ
, while the right-hand side is the tensor product of the Weyl algebra of mχ ⊕ m∗

(completed with respect to mχ) and S(ge)[[ℏ]]/(ℏ − 1), since ge is positively graded with
respect to the Kazhdan grading. From the representation theory of Weyl algebra, it fol-
lows that the category of g-modules on which mχ acts locally nilpotently is equivalent to
the S(ge)[[ℏ]]/(ℏ − 1)-module category. Now, we observe that

U(g, e) = (U(g)/U(g)mχ)adm ∼=
(
U(g)∧

mχ
/U(g)∧

mχ
mχ

)adm ∼= S(ge)[[ℏ]]/(ℏ − 1).

Therefore, the S(ge)[[ℏ]]/(ℏ − 1)-module category above is just the category of U(g, e)-
module. Thus, in the case when the Dynkin grading is even, Theorem 6.5 readily implies
the Skryabin equvalence in Proposition 5.2.
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For the case when the Dynkin grading is not even, and especially in order to make
connection between categories of Whittaker modules over Lie superalgebras of Section 4
and categories modules over finite W -(super)algebras, we need to extend the isomorphism
in Theorem 6.5 between the C×-finite parts which we shall explain below.

Let θ ∈ t be an integral element giving rise to a parabolic decomposition of g = u−⊕l⊕u
as in (2.7). Let d be the maximal eigenvalue of adh. Let m > 2d + 2, and consider the
element h − mθ ∈ t ⊕ Ch. The eigenvalue of this element gives rise to a Z-gradation on
gχ = ⊕i ∈Zgχ(i), where we recall that h acts by the Kazhdan grading. That is

gχ(i) := {x ∈ gχ | [h − mθ, x] = (i − 2)x}. (6.2)
Let

m̃ := mχ + u, (6.3)
where mχ is the Levi l analogue of mχ in (5.5) for g. Observe that, since θ ∈ t, the subspace
m̃∩ V is Langragian in V . Again, if θ = 0, this is just the Kazhdan grading, and m̃ = mχ.

Let C× → T ×C× be the diagonal embedding such that the pull-back C×-action induces
the grading (6.2), i.e., the differential of the embedding at 1 equals (h, −mθ). The fol-
lowing theorem follows from [39, Lemma 3.7], adapted to our new C×-equivariant setting
and [33, Proposition 5.1]. We observe that the theorem below in the special case θ = 0 is
precisely [39, Theorem 1.7].

Theorem 6.7. The new C×-equivariant isomorphism induced from the one in (6.1)
restricts to an isomorphism of the corresponding C×-finite parts. This C×-finite part
isomorphism in turn extends uniquely to an isomorphism of algebras

U(g)∧
m̃

∼= U(g, e)∧
m̃∩ ge

⊗ A(V )∧
m̃∩V

, (6.4)

where A(V ) is the Weyl superalgebra of the supersympectic space V .

Remark 6.8. Following [33, (5.6)] we can take the subalgebras of non-negative ad θ-
eigenspaces divided by their left ideals generated by positive ad θ-eigenspaces in both
sides of the isomorphism (6.4). Since the subspace consisting of ad θ-positive eigenspaces
is a two-sided ideal in the algebra of non-negative ad θ-eigenspaces, we see that these left
ideals are indeed two-sided ideals, and hence the quotients are indeed algebras. Thus, we
obtain an isomorphism of algebras

U(l)∧
m

∼= U(g, e)≥ 0/U(g, e)# ⊗ A(V ∩ l)∧
m.

Now dividing by the left ideal generated by mχ and then taking m-invariants on both sides,
we obtain the isomorphism (5.10).

6.3. Categories of generalized Whittaker modules. We continue the setup in Sec-
tion 2.1 with h ⊂ l ⊂ g and an sl(2)-triple {e, h, f}. Since h ∈ h and h ⊂ l by (2.6), ad h
preserves l. Thus l inherits a Z-gradation from the Dynkin grading (with respect to ad h)
g = ⊕j ∈Zg(j):

l = ⊕j ∈Zl(j), where l(j) := l ∩ g(j).
Recall from (2.2) that e ∈ l. From now on, we further assume that

e is of standard Levi type, (6.5)
that is, it is principal nilpotent in a Levi subalgebra of l (or of g).

As in Section 5.1 (with l in place of g), we have the finite W -algebra U(l, e) associated
to the nilpotent element e ∈ l. By Skryabin equivalence in Proposition 5.2, the category
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of U(l, e)-modules is equivalent to the category of U(l)-modules on which a corresponding
subalgebra m in l transforms by the character χ, i.e., the algebra mχ = {x − χ(x)|x ∈ m}
acts locally nilpotently.

Definition 6.9. A finitely generated U(g)-module is called a generalized Whittaker mo-
dule corresponding to the pair (θ, e), if the subalgebra mχ + u acts locally nilpotently.

Denote the category of generalized Whittaker g-modules by W̃h(θ, e), cf. [33, Section 4].
Given a finite-dimensional U(l, e)-module V , we have by Proposition 5.2 a U(l)-module

Sk(V ), which we can extend trivially to a U(p)-modules and then parabolically induce to
a U(g)-module

M θ,e(V ) := Indg
p Sk(V ).

Then M θ,e(V ) is a generalized Whittaker module associated with (θ, e). In this way, M θ,e

defines a functor from finitely generated U(l, e)-modules to W̃h(θ, e). On the other hand,
given a generalized Whittaker g-module M we can define F (M) := {m ∈ M | xm = 0,
∀ x ∈ mχ + u}. Then F (M) is a U(l, e)-module. The functor F is right adjoint to M θ,e.

The subcategory Wh(θ, e) of W̃h(θ, e) is the category of generalized Whittaker modules
M associated with (θ, e) such that dim F (M) < ∞. Furthermore, we define Whr(θ, e)
to be the full subcategory of Wh(θ, e) on which r acts semisimply. In the superalgebra
setting, it is convenient to consider the full subcategory Wh′(θ, e) of Wh(θ, e) consisting
of objects M such that dim Mu0̄+mχ < ∞; see Lemma 6.10 below in the case when θ is
regular in t (i.e., e is a principal nilpotent element in the Levi subalgebra l).

In the case when θ is regular in t, we shall sometimes drop θ, i.e., we write M e(V ),
W̃h(e), Wh(e), Wh′(e) etc.

Lemma 6.10. Suppose that e is principal nilpotent in l, i.e., θ ∈ t is regular.
(1) Let M ∈ W̃h(e). Then (Mu0̄)mχ is finite dimensional if and only if M ∈ MS(ζ).
(2) We have an equivalence of categories MS(ζ) ∼= Wh′(e).

Proof. When g is a Lie algebra it is shown in [33, Lemma 4.2] that M ∈ MS(ζ) if and
only if dim F (M) < ∞.

Suppose that g is a basic classical Lie superalgebra and M ∈ Wh′(e). By defini-
tion (Mu0̄)mχ is finite dimensional. Thus, by [33, Lemma 4.2] the Noetherian g0-module
Resgg0̄

M lies in the MMS category of Whittaker modules of g0, and hence is Z(g0)-finite.
Therefore, it lies in MS(ζ).

Conversely, if M ∈ MS(ζ), then, by definition, the Noetherian g0-module Resgg0̄
M is

Z(g0)-finite, and hence by [33, Lemma 4.2] again, (Mu0̄)mχ is finite dimensional. Hence
M ∈ Wh′(e). □

6.4. Several category equivalences. Now we shall interpret the Losev–Shu–Xiao
decomposition in Theorem 6.7 from the viewpoints of Whittaker modules and U(g, e)-
modules.

Recall from parabolic decomposition determined by an integral element θ: g = u−⊕l⊕u.
Recall the subalgebra m̃ = mχ + u from Theorem 6.7. So the category of U(g)∧

m̃
-modules

above is precisely W̃h(θ, e).
On the other hand, we have m̃ ∩ ge = u ∩ ge. Also, recall that for α ∈ Φ we have

α(θ) > 0 if and only if α is a root in u. Therefore, the category of finitely generated

Ann. Repr. Th. 2 (2025), 4, p. 505–535 https://doi.org/10.5802/art.28

https://doi.org/10.5802/art.28


530 Shun-Jen Cheng & Weiqiang Wang

U(g, e)m̃∩ ge
-modules consists precisely of U(g, e)-modules on which U(g, e)> 0 acts locally

nilpotently, i.e., the category Õ(θ, e) in Section 5.2.
Finally, we have already observed earlier that the space m̃∩V is a Lagrangian subspace

of V . Hence A(V ) is just the Weyl superalgebra of (m̃∩V )⊕ (m̃∩V )∗. Thus, the category
of A(V )m̃∩ V -modules is semisimple with a unique simple object.

Thus we have obtained a functor

K : W̃h(θ, e) −→ Õ(θ, e), (6.6)

which is an equivalence.
Recall the subcategory O(θ, e) ⊂ Õ(θ, e) from Section 5.2 and the subcategory Wh(θ, e)

⊂ W̃h(θ, e) from Section 6.3. By restriction, we obtain a category equivalence

Wh(θ, e)
∼=−−→ O(θ, e). (6.7)

Now consider the case when e is principal nilpotent in l. Up to conjugation we can
assume that e =

∑
α ∈ Πl

E−α, where the simple root vectors are normalized so that
(E−α|Eβ) = δα,β, for even simple roots α, β. Since e is principal nilpotent in l, we see
that the algebra m̃ = m + u in this case is a maximal nilpotent subalgebra of g, and so
b := H + m̃ is a Borel subalgebra of g with simple system Π. Note that for α ∈ Π, we
have that ζ(Eα) := (e|Eα) = 1, if and only α ∈ Πl. This determines a unique character
ζ of the nilradical [b, b] ⊆ b and hence the category of U(g)∧

m̃
in this case is the category

g-modules on which x − ζ(x) acts locally nilpotently for all x ∈ [b, b]. In particular, if we
further restrict to the subcategory of Z(g0)-finite modules, then we obtain precisely the
category of Whittaker modules MS(ζ), considered in [36, 37] in the case when g is a Lie
algebra, and in [11] in the case when g is a Lie superalgebra.

We define O′(θ, e) to be the full subcategory of O(θ, e) which is the image category of
MS(ζ) under the equivalence K. Summarizing we have obtained the following.

Theorem 6.11. We have the following commutative diagram:

MS(ζ)

∼=
��

� � //Wh(θ, e)

∼=
��

� � // W̃h(θ, e)

K ∼=
��

O′(θ, e) �
� // O(θ, e) �

� // Õ(θ, e)

(6.8)

Proof. The equivalence K follows from the isomorphism of superalgebras in Theorem 6.7
and the discussion above. The remaining two equivalences follow by restriction. □

Remark 6.12. When g is a reductive Lie algebra, the equivalence (6.7) was first conjec-
tured in [8, Conjecture 5.3], and then established, along with (6.6), in [33, Theorem 4.1].
In this case, MS(ζ) ∼= Wh(θ, e); see Lemma 6.10.

Remark 6.13. Setting θ = 0, K gives Skryabin equivalence for finite W -superalgebras
associated with a general not necessarily even grading [39, Theorem 4.1], which extends
the case considered in Example 6.6.

Corollary 6.14. Assume that θ is regular so that e is principal nilpotent in l. The U(g, e)-
Verma module lies in O′(θ, e), and so does its irreducible quotient.
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Proof. For M ∈ W̃h(θ, e), we have the following isomorphism of U(l, e)-modules by Theo-
rem 6.7:

F (K(M)) ∼= G(M).

Thus, these two functors are isomorphic, and hence so are their left adjoints K ◦ M θ,e

and Mθ,e. Taking N to be the irreducible one-dimensional U(l, e)-module, we conclude
that

K
(
M θ,e(N)

) ∼= Mθ,e(N).
That is, the standard Whittaker modules of g under K correspond to the Verma modules
of U(g, e). But we have seen earlier that the abelian category MS(ζ) contains all standard
Whittaker modules of g. □

Remark 6.15. The Grothendieck groups of MS(ζ) and Wh(θ, e) coincide as these two
categories have the same simple objects. It follows by Theorem 6.11 that the Grothendieck
groups of O′(θ, e) and O(θ, e) coincide as well.

Remark 6.16. Let g be a basic classical Lie superalgebra and e an even nilpotent el-
ement that is principal nilpotent in an even Levi subalgebra of g. Suppose that the
corresponding integral element θ is regular so that we have the corresponding category
O(e) of U(g, e)-modules. Let ζ be the nilcharacter corresponding to e, and consider the
corresponding category MS(ζ) of MMS Whittaker modules so that we have, as in Theo-
rem 6.11, MS(ζ) ∼= O′(e) ⊂ O(e). Now by [12, Theorem 1] (which extends [11, Theo-
rem 20]), the multiplicities of composition factors of standard Whittaker modules are
given by the corresponding super Kazhdan–Lusztig polynomials for the BGG category O
of g-modules. Together with Theorem 6.11, it now follows that these same Kazhdan–
Lusztig polynomials also compute the multiplicities of composition factors of the Verma
modules in O(e). When g is a reductive Lie algebra such a relationship was first conjec-
tured in [8, Conjecture 5.3] and proved in [31, Theorem 4.1]. So, combining Theorem 6.11
with [12, Theorem 1] indeed establishes the analogue of the Brundan-Goodwin-Kleshchev-
Losev result for basic classical Lie superalgebras.

Let θ and θ′ be compatible as in Section 5.2. Assume that θ is regular so that e is
principal nilpotent in the Levi subalgebra l in the parabolic subalgebra determined by θ.
Then the abelian subcategory O′(θ′, e) := O(θ′, e) ∩ O′(θ, e) of O′(θ, e) contains all Verma
modules in O(θ′, e), since they are quotient of the Verma modules of O(θ, e), which by
Corollary 6.14 are all contained in O′(θ, e). Hence all simple objects in O(θ′, e) are also
contained in O′(θ′, e). Under the equivalence of categories the corresponding category
of generalized Whittaker modules, which we denote by Wh′(θ′, e), is a full subcategory
of MS(ζ). Namely, the category Wh′(θ′, e) is the full subcategory of MS(ζ) consisting
of modules M with dim Mu′+m′

χ < ∞, where u′ and m′
χ are the respective subalgebras

defined for the integral element θ′. In particular when θ′ = 0 so that u′ = 0, the condition
becomes dim Mmχ < ∞, i.e., the Whittaker modules in MS(ζ) which, under the Skryabin
equivalence, correspond to finite-dimensional modules of U(g, e).

6.5. Super duality for finite W -algebras. In this last subsection, we are back to the
setting of Section 4.1, where we introduced a pair of Lie algebra gn and Lie superalgebra
gn, for n ≥ 1.

Now, we can combine our results to establish a super duality between categories of
modules over the finite W -algebra U(gn, e) and U(gn, e) in the limit n → ∞. Recall that
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H and k ∼= gl(n) denote the Lie algebras corresponding to the head and tail diagrams,
respectively, of the Dynkin diagrams of gn and gn that form a super duality pair when
n → ∞. We have that e is of standard Levi type in H, and hence in gn and gn.

Lemma 6.17. The algebra U(gl(n)) is a subalgebra of both U(gn, e) and U(gn, e), for
n ≤ ∞.

Proof. We prove for U(gn, e) only; the proof for U(gn, e) is the same. To simplify notation,
for the remainder of the proof, we let g stand for gn.

In the case when the Dynkin grading is even, we have g(0)e ⊆ U(g, e), which follows
from the fact that χ([X, Y ]) = 0, for X ∈ g(0)e and Y ∈ m. Since the [e, gl(n)] = 0 and
gl(n) ⊆ g(0), the lemma follows in this case.

In the case when the Dynkin grading is not even, in light of the previous discussion,
it therefore suffices to prove that, in the construction of the W -(super)algebra, we may
choose the Lagrangian subspace in l ⊆ g(−1) so that it is gl(n)-invariant. This in indeed
can be accomplished, and can be seen as follows. From the classification of good gradings
(which includes all the Dynkin gradings) of these Lie (super)algebras in [7, 23, 26] one
sees that g(−1), as a gl(n)-module, is a direct sum of copies of Cn, Cn∗ or the trivial
representation. Now, the action of t on g(−1) preserves the symplectic form ωχ, and
hence g(−1)∗ ∼= g(−1) as a t-module. As t contains a Cartan of gl(n), it follows that
g(−1)∗ ∼= g(−1) as a gl(n)-module. As the space g(−1) is even dimensional, this allows us
to choose the subspace l to be gl(n)-invariant. □

Let e be of standard Levi type in H as above and suppose that it gives rise to the
nilcharacter ζ : n → C. That is, e is principal nilpotent in a Levi subalgebra of H, and
hence in a Levi subalgebra l of gn and gn, and ζ is defined to take value 1 on the simple root
vectors in l and 0 elsewhere, see (2.9). Recall our equivalence of categories for Whittaker
categories of gn-modules W(ζ)+

n and of gn-modules W(ζ)+
n in Theorem 4.10. In the case

of finite n, they are subcategories of W(ζ)n and W(ζ)n, which, in turn, are subcategories
of MMS categories MS(ζ) ⊆ W(θ, e), respectively. The proof of the super analogue of
Losev’s decomposition theorem in [39, Theorem 1.6] works in the setting of these Lie
superalgebras gn and gn in the limit n → ∞, as the (super)symplectic spaces V = [f, gn]
and V = [f, gn] are both finite-dimensional. Thus, we can restrict the equivalence of
categories K in (6.8) to the subcategories W(ζ)+

n and W(ζ)+
n . Therefore, Theorem 4.10

and Theorem 6.11 imply the following equivalence of categories in the limiting case n → ∞.

Theorem 6.18. There exists an equivalence of categories between the category K(W(ζ)+)
of U(g, e)-modules and the category K(W(ζ)+) of U(g, e)-modules under which the para-
bolic Verma modules correspond.

Below, we shall provide additional detail on the correspondence between the para-
bolic Verma modules in Theorem 6.18. For the sake of concreteness, we take an integral
element θ satisfying the following: (1) θ is non-negative on all simple roots, (2) θ is regu-
lar on H and singular on k, and (3) θ is positive on all positive roots not lying in H

and k. Recall the categories O′(θ, e) and O′(θ, e) of U(g, e)- and U(g, e)-modules. For
M ∈ O′(θ, e) and M ∈ O′(θ, e), ResU(g,e)

U(k) M and ResU(g,e)
U(k) M are direct sums of finite-

dimensional irreducible k-modules. We define the full subcategories O(θ, e)+ ⊂ O′(θ, e)
and O(θ, e)+ ⊂ O′(θ, e) consisting of objects M such that the k-action is polynomial.
We then have K(W(ζ)+) ⊂ O(θ, e)+ and K(W(ζ)+) ⊂ O(θ, e)+. As we have observed
in the proof of Corollary 6.14, we have K ◦ M θ,e ∼= Mθ,e, and hence we conclude that
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the parabolic standard Whittaker modules in W(ζ)+ (respectively, W(ζ)+) correspond
to the parabolic Verma modules in O′(θ, e) (respectively, O(θ, e)) such that the k-action
is polynomial. They are parabolically induced as in (5.11), where V therein is now re-
placed by a tensor product of an irreducible polynomial k-module and a one-dimensional
U(l ∩ H, e)-module (corresponding, under Sk, to an irreducible Kostant (l ∩ H)-module).
Since the parabolic standard Whittaker modules in W(ζ)+ and W(ζ)+ correspond under
super duality, it follows that the parabolic Verma modules correspond as well.

Remark 6.19. Via the equivalences of categories K in (6.8), we can reformulate (4.5) as[
K(W(ζ)+)

]
∼= SmζV ⊗ ∧∞V,

[
K(W(ζ)+)

]
∼= SmζV ⊗ ∧∞W.

Remark 6.20. For integral central characters, the Grothendieck groups of K(W(ζ)+)
and O(θ, e)+ coincide as these two categories have the same simple objects. A parallel
statement holds for K(W(ζ)+) ⊂ O(θ, e)+.
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[4] Joseph Bernstein and Sergĕı I. Gelfand, Tensor products of finite- and infinite-dimensional represen-

tations of semisimple Lie algebras, Compos. Math. 41 (1980), no. 2, 245–285.
[5] Jonathan S. Brown and Simon M. Goodwin, Finite dimensional irreducible representations of finite W-

algebras associated to even multiplicity nilpotent orbits in classical Lie algebras, Math. Z. 273 (2013),
no. 1-2, 123–160.

[6] Jonathan Brundan, Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra
gl(m|n), J. Am. Math. Soc. 16 (2003), no. 1, 185–231.

[7] Jonathan Brundan and Simon M. Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3) 94
(2007), no. 1, 155–180.

[8] Jonathan Brundan, Simon M. Goodwin, and Alexander Kleshchev, Highest weight theory for finite
W-algebras, Int. Math. Res. Not. 2008 (2008), no. 15, Paper no. rnn051 (53 pages).

[9] Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite W-
algebras, Memoirs of the American Mathematical Society, vol. 918, American Mathematical Society,
2008.

[10] Jonathan Brundan, Ivan Losev, and Ben Webster, Tensor product categorifications and the super
Kazhdan–Lusztig conjecture, Int. Math. Res. Not. 2017 (2017), no. 20, 6329–6410.

[11] Chih-Whi Chen, Whittaker modules for classical Lie superalgebras, Commun. Math. Phys. 388 (2021),
no. 1, 351–383.

[12] Chih-Whi Chen and Shun-Jen Cheng, Whittaker categories of quasi-reductive Lie superalgebras and
quantum symmetric pairs, Forum Math. Sigma 12 (2024), Paper no. e37 (29 pages).

Ann. Repr. Th. 2 (2025), 4, p. 505–535 https://doi.org/10.5802/art.28

https://doi.org/10.5802/art.28


534 Shun-Jen Cheng & Weiqiang Wang

[13] Chih-Whi Chen, Shun-Jen Cheng, and Kevin Coulembier, Tilting modules for classical Lie superalge-
bras, J. Lond. Math. Soc. (2) 103 (2021), no. 3, 870–900.

[14] Chih-Whi Chen, Shun-Jen Cheng, and Volodymyr Mazorchuk, Whittaker categories, properly stratified
categories and Fock space categorification for Lie superalgebras, Commun. Math. Phys. 401 (2023),
no. 1, 717–768.

[15] Chih-Whi Chen and Ngau Lam, Projective modules over classical Lie algebras of infinite rank in the
parabolic category, J. Pure Appl. Algebra 224 (2020), no. 1, 125–148.

[16] Shun-Jen Cheng, Jae-Hoon Kwon, and Weiqiang Wang, Irreducible characters of Kac–Moody Lie
superalgebras, Proc. Lond. Math. Soc. (3) 110 (2015), no. 1, 108–132.

[17] Shun-Jen Cheng and Ngau Lam, Irreducible characters of general linear superalgebra and super duality,
Commun. Math. Phys. 298 (2010), no. 3, 645–672.

[18] Shun-Jen Cheng, Ngau Lam, and Weiqiang Wang, Super duality and irreducible characters of ortho-
symplectic Lie superalgebras, Invent. Math. 183 (2011), no. 1, 189–224.

[19] , The Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras, Duke Math.
J. 164 (2015), no. 4, 617–695.

[20] Shun-Jen Cheng and Weiqiang Wang, Brundan–Kazhdan–Lusztig and super duality conjectures, Publ.
Res. Inst. Math. Sci. 44 (2008), no. 4, 1219–1272.

[21] , Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144,
American Mathematical Society, 2012.

[22] Shun-Jen Cheng, Weiqiang Wang, and R. B. Zhang, Super duality and Kazhdan–Lusztig polynomials,
Trans. Am. Math. Soc. 360 (2008), no. 11, 5883–5924.

[23] Alexander G. Elashvili and Victor G. Kac, Classification of good gradings of simple Lie algebras,
in Lie groups and invariant theory, American Mathematical Society Translations, Series 2, vol. 213,
American Mathematical Society, 2005, pp. 85–104.

[24] Vyacheslav Futorny, Steffen König, and Volodymyr Mazorchuk, S-subcategories in O, Manuscr. Math.
102 (2000), no. 4, 487–503.

[25] Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. Fr. 90 (1962), 323–448.

[26] Crystal Hoyt, Good gradings of basic Lie superalgebras, Isr. J. Math. 192 (2012), no. 1, 251–280.

[27] Ronald S. Irving, Projective modules in the category OS: Loewy series, Trans. Am. Math. Soc. 291
(1985), no. 2, 733–754.

[28] Jens C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie Algebren,
Math. Ann. 226 (1977), 53–65.

[29] Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2,
101–184.

[30] Christopher Leonard, Graded super duality for general linear Lie superalgebras, Transform. Groups
25 (2020), no. 1, 149–175.

[31] Ivan Losev, Finite W-algebras, Proceedings of the International Congress of Mathematicians. Vol. III:
Invited lectures, Hindustan Book Agency, 2010, pp. 1281–1307.

[32] , Quantized symplectic actions and W-algebras, J. Am. Math. Soc. 23 (2010), no. 1, 35–59.

[33] , On the structure of the category O for W-algebras, in Geometric methods in representation
theory. II, Séminaires et Congrès, vol. 24, Société Mathématique de France, 2012, pp. 353–370.

[34] George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser, 2010,
reprint of the 1994 edition.

[35] Volodymyr Mazorchuk and Catharina Stroppel, Translation and shuffling of projectively presentable
modules and a categorification of a parabolic Hecke module, Trans. Am. Math. Soc. 357 (2005), no. 7,
2939–2973.

[36] Edward McDowell, On modules induced from Whittaker modules, J. Algebra 96 (1985), no. 1, 161–177.

Ann. Repr. Th. 2 (2025), 4, p. 505–535 https://doi.org/10.5802/art.28

https://doi.org/10.5802/art.28


Super duality for Whittaker modules and finite W -algebras 535

[37] Dragan Miličić and Wolfgang Soergel, The composition series of modules induced from Whittaker
modules, Comment. Math. Helv. 72 (1997), no. 4, 503–520.

[38] Alexander Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002),
no. 1, 1–55, with an appendix by Serge Skryabin.

[39] Bin Shu and Husileng Xiao, Super formal Darboux–Weinstein theorem and finite W-superalgebras,
J. Algebra 550 (2020), 242–265.

[40] Weiqiang Wang, Nilpotent orbits and finite W-algebras, in Geometric representation theory and ex-
tended affine Lie algebras, Fields Institute Communications, vol. 59, American Mathematical Society,
2011, pp. 71–105.

[41] Yang Zeng and Bin Shu, Finite W-superalgebras for basic Lie superalgebras, J. Algebra 438 (2015),
188–234.

[42] Lei Zhao, Finite W-superalgebras for queer Lie superalgebras, J. Pure Appl. Algebra 218 (2014), no. 7,
1184–1194.

— Shun-Jen Cheng —
Institute of Mathematics, Academia Sinica, Taipei, Taiwan 10617
E-mail address: chengsj@as.edu.tw

— Weiqiang Wang —
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA
E-mail address: ww9c@virginia.edu

Ann. Repr. Th. 2 (2025), 4, p. 505–535 https://doi.org/10.5802/art.28

https://doi.org/10.5802/art.28

	1. Introduction
	1.1. Super duality
	1.2. The goal
	1.3. Parabolic cokernel categories
	1.4. Whittaker module categories
	1.5. Finite W-(super)algebras
	1.6. Organization

	2. Categories of Whittaker modules
	2.1. Basic setup
	2.2. McDowell–Milicic–Soergel category
	2.3. Backelin functor
	2.4. Parabolic MMS categories

	3. Parabolic cokernel categories
	3.1. Category mc O  mf q, zeta-pres
	3.2. Properly stratified structure on mc O  mf q, zeta-pres
	3.3. Tilting modules in mc O  mf q, zeta-pres
	3.4. Properly stratified Whittaker categories

	4. Super duality for Whittaker modules
	4.1. Super duality for parabolic BGG categories
	4.2. Properly stratified categories mc Onzeta-pres+ and ov mc On zeta-pres+
	4.3. Categories calW(zeta) n + and ov calW(zeta) n + of Whittaker modules
	4.4. Categorification of Fock spaces

	5. Module categories for finite W-superalgebras
	5.1. Finite W-superalgebras
	5.2. Categories of U(g,e)-modules
	5.3. An example

	6. Losev–Shu–Xiao decomposition and finite W-superalgebras
	6.1. Super Darboux-Weinstein decomposition
	6.2. A super setting for Losev's decomposition
	6.3. Categories of generalized Whittaker modules
	6.4. Several category equivalences
	6.5. Super duality for finite W-algebras

	Acknowledgments
	References

