Let $\mathfrak{G}$ be a split reductive group, $\mathbb{k}$ be a field and ${\varpi }$ be an indeterminate. In order to study $\mathfrak{G}(\mathbb{k}[{\varpi },{\varpi }^{-1}])$ and $\mathfrak{G}(\mathbb{k}({\varpi }))$, one can make them act on their twin building $\mathscr{I}=\mathscr{I}_\oplus \times \mathscr{I}_{\ominus }$, where $\mathscr{I}_{\oplus }$ and $\mathscr{I}_{\ominus }$ are related via a “codistance”.
Masures are generalizations of Bruhat–Tits buildings adapted to the study of Kac–Moody groups over valued fields. Motivated by the work of Dinakar Muthiah on Kazhdan–Lusztig polynomials associated with Kac–Moody groups, we study the action of $\mathfrak{G}(\mathbb{k}[{\varpi },{\varpi }^{-1}])$ and $\mathfrak{G}(\mathbb{k}({\varpi }))$ on their “twin masure”, when $\mathfrak{G}$ is a split Kac–Moody group instead of a reductive group.
Revised:
Accepted:
Published online:
Keywords: Kac–Moody groups, masures, twinning
Bardy-Panse, Nicole 1; Hébert, Auguste 1; Rousseau, Guy 1

@article{ART_2025__2_3_281_0, author = {Bardy-Panse, Nicole and H\'ebert, Auguste and Rousseau, Guy}, title = {Twin masures associated with {Kac{\textendash}Moody} groups over {Laurent} polynomials}, journal = {Annals of Representation Theory}, pages = {281--353}, publisher = {The Publishers of ART}, volume = {2}, number = {3}, year = {2025}, doi = {10.5802/art.25}, language = {en}, url = {https://art.centre-mersenne.org/articles/10.5802/art.25/} }
TY - JOUR AU - Bardy-Panse, Nicole AU - Hébert, Auguste AU - Rousseau, Guy TI - Twin masures associated with Kac–Moody groups over Laurent polynomials JO - Annals of Representation Theory PY - 2025 SP - 281 EP - 353 VL - 2 IS - 3 PB - The Publishers of ART UR - https://art.centre-mersenne.org/articles/10.5802/art.25/ DO - 10.5802/art.25 LA - en ID - ART_2025__2_3_281_0 ER -
%0 Journal Article %A Bardy-Panse, Nicole %A Hébert, Auguste %A Rousseau, Guy %T Twin masures associated with Kac–Moody groups over Laurent polynomials %J Annals of Representation Theory %D 2025 %P 281-353 %V 2 %N 3 %I The Publishers of ART %U https://art.centre-mersenne.org/articles/10.5802/art.25/ %R 10.5802/art.25 %G en %F ART_2025__2_3_281_0
Bardy-Panse, Nicole; Hébert, Auguste; Rousseau, Guy. Twin masures associated with Kac–Moody groups over Laurent polynomials. Annals of Representation Theory, Volume 2 (2025) no. 3, pp. 281-353. doi : 10.5802/art.25. https://art.centre-mersenne.org/articles/10.5802/art.25/
[1] Buildings: theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008 | DOI | MR | Zbl
[2] Presentation of affine Kac–Moody groups over rings, Algebra Number Theory, Volume 10 (2016), pp. 533-556 | DOI | MR | Zbl
[3] Steinberg groups as amalgams, Algebra Number Theory, Volume 10 (2016), pp. 1791-1843 | DOI | MR | Zbl
[4] Presentation of hyperbolic Kac–Moody groups over rings, J. Algebra, Volume 445 (2016), pp. 232-243 | DOI | MR | Zbl
[5] Systèmes de racines infinis, Mémoires de la Société Mathématique de France. Nouvelle Série, 65, Société Mathématique de France, 1996 | DOI | Zbl
[6] Iwahori–Hecke algebras for Kac–Moody groups over local fields, Pac. J. Math., Volume 285 (2016), pp. 1-61 | DOI | MR | Zbl
[7] Macdonald’s formula for Kac–Moody groups over local fields, Proc. Lond. Math. Soc. (3), Volume 119 (2019), pp. 135-175 | DOI | MR | Zbl
[8] On structure constants of Iwahori–Hecke algebras for Kac–Moody groups, Algebr. Comb., Volume 4 (2021), pp. 465-490 | DOI | Numdam | MR | Zbl
[9] Classification des formes réelles presque compactes des algèbres de Kac–Moody affines, J. Algebra, Volume 267 (2003), pp. 443-513 misprints corrected in J. Algebra 279, (2004), pp. 409–412 | DOI | MR | Zbl
[10] Iwahori–Hecke algebras for -adic loop groups, Invent. Math., Volume 204 (2016), p. 347-342 | DOI | MR | Zbl
[11] Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | MR | Zbl
[12] On the structure of the of a ring, Publ. Math., Inst. Hautes Étud. Sci., Volume 30 (1966), pp. 5-53 | DOI | MR | Zbl
[13] Zero-dimensionality and the of polynomial rings, J. Pure Appl. Algebra, Volume 50 (1988), pp. 223-229 | DOI | MR | Zbl
[14] Kac–Moody groups, hovels and Littelmann paths, Ann. Inst. Fourier, Volume 58 (2008), pp. 2605-2657 | DOI | Numdam | MR | Zbl
[15] Spherical Hecke algebras for Kac–Moody groups over local fields, Ann. Math. (2), Volume 180 (2014), pp. 1051-1087 | DOI | MR | Zbl
[16] A Coxeter group approach to Schubert varieties, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) (Mathematical Sciences Research Institute Publications), Volume 4, Springer, 1985, pp. 157-165 | DOI | MR | Zbl
[17] Gindikin–Karpelevich finiteness for Kac–Moody groups over local fields, Int. Math. Res. Not., Volume 22 (2017), pp. 7028-7049 | DOI | MR | Zbl
[18] Étude des masures et de leurs applications en arithmétique, Ph. D. Thesis, Univ. Jean Monnet de Saint Etienne (Université de Lyon) (2018)
[19] Study of masures and of their applications in arithmetic, Ph. D. Thesis, Université de Lyon, France (2018) https://hal.science/tel-01856620/document (english version)
[20] A New Axiomatics for Masures, Can. J. Math., Volume 72 (2020), pp. 732-773 | DOI | MR | Zbl
[21] A New Axiomatics for Masures. II, Adv. Geom., Volume 22 (2022), pp. 513-522 | DOI | MR | Zbl
[22] Topologies on split Kac–Moody groups over valued fields (2023) (preprint) | arXiv
[23] On affine Kazhdan–Lusztig R-polynomials for Kac–Moody groups (2024) (preprint) | arXiv
[24] Infinite dimensional Lie algebras, Cambridge University Press, 1990 | MR | Zbl
[25] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl
[26] Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser, 2002 | DOI | MR | Zbl
[27] An introduction to Kac–Moody groups over fields, EMS Textbooks in Mathematics, European Mathematical Society, 2018 | DOI | MR | Zbl
[28] Construction d’un groupe de Kac–Moody et applications, Compos. Math., Volume 69 (1989), pp. 37-60 | Numdam | Zbl
[29] Double affine Kazhdan–Lusztig polynomials via masures (2019) (preprint) | arXiv
[30] Local Birkhoff decompositions for loop groups and a finiteness result, Forum Mathematicum, Volume 37 (2025)
[31] Groupes de Kac–Moody déployés et presque déployés, Astérisque, 277, Société Mathématique de France, 2002 | Numdam | Zbl
[32] Twin trees. I, Invent. Math., Volume 116 (1994), pp. 463-479 | DOI | MR | Zbl
[33] Groupes de Kac–Moody déployés sur un corps local, immeubles micro-affines, Compos. Math., Volume 142 (2006), pp. 501-528 | DOI | MR | Zbl
[34] Masures affines, Pure Appl. Math. Q., Volume 7 (2011), pp. 859-921 | DOI | MR | Zbl
[35] Groupes de Kac–Moody déployés sur un corps local. II Masures ordonnées, Bull. Soc. Math. Fr., Volume 144 (2016), pp. 613-692 | DOI | MR | Zbl
[36] Almost split Kac–Moody groups over ultrametric fields, Groups Geom. Dyn., Volume 11 (2017), pp. 891-975 | DOI | MR | Zbl
[37] Euclidean buildings: Geometry and group actions, EMS Tracts in Mathematics, 35, European Mathematical Society, 2023 | DOI | MR | Zbl
[38] Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009 | DOI | MR | Zbl
[39] On the structure of the special linear group over polynomial rings, Math. USSR, Izv., Volume 11 (1977), pp. 221-238 | DOI | Zbl
[40] Groups and group functors attached to Kac–Moody data, Arbeitstagung, Bonn, 1984. Proceedings of the Meeting held by the Max-Planck-Institut für Mathematik, (Lecture Notes in Mathematics), Volume 1111, Springer, 1985, pp. 193-223 | MR | Zbl
[41] Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987), pp. 542-573 | DOI | MR | Zbl
Cited by Sources: