Twin masures associated with Kac–Moody groups over Laurent polynomials
Annals of Representation Theory, Volume 2 (2025) no. 3, pp. 281-353.

Let $\mathfrak{G}$ be a split reductive group, $\mathbb{k}$ be a field and ${\varpi }$ be an indeterminate. In order to study $\mathfrak{G}(\mathbb{k}[{\varpi },{\varpi }^{-1}])$ and $\mathfrak{G}(\mathbb{k}({\varpi }))$, one can make them act on their twin building $\mathscr{I}=\mathscr{I}_\oplus \times \mathscr{I}_{\ominus }$, where $\mathscr{I}_{\oplus }$ and $\mathscr{I}_{\ominus }$ are related via a “codistance”.

Masures are generalizations of Bruhat–Tits buildings adapted to the study of Kac–Moody groups over valued fields. Motivated by the work of Dinakar Muthiah on Kazhdan–Lusztig polynomials associated with Kac–Moody groups, we study the action of $\mathfrak{G}(\mathbb{k}[{\varpi },{\varpi }^{-1}])$ and $\mathfrak{G}(\mathbb{k}({\varpi }))$ on their “twin masure”, when $\mathfrak{G}$ is a split Kac–Moody group instead of a reductive group.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.25
Classification: 20G44, 20G25, 20G30, 20E42, 51E24
Keywords: Kac–Moody groups, masures, twinning

Bardy-Panse, Nicole 1; Hébert, Auguste 1; Rousseau, Guy 1

1 Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_3_281_0,
     author = {Bardy-Panse, Nicole and H\'ebert, Auguste and Rousseau, Guy},
     title = {Twin masures associated with {Kac{\textendash}Moody} groups over {Laurent} polynomials},
     journal = {Annals of Representation Theory},
     pages = {281--353},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {3},
     year = {2025},
     doi = {10.5802/art.25},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.25/}
}
TY  - JOUR
AU  - Bardy-Panse, Nicole
AU  - Hébert, Auguste
AU  - Rousseau, Guy
TI  - Twin masures associated with Kac–Moody groups over Laurent polynomials
JO  - Annals of Representation Theory
PY  - 2025
SP  - 281
EP  - 353
VL  - 2
IS  - 3
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.25/
DO  - 10.5802/art.25
LA  - en
ID  - ART_2025__2_3_281_0
ER  - 
%0 Journal Article
%A Bardy-Panse, Nicole
%A Hébert, Auguste
%A Rousseau, Guy
%T Twin masures associated with Kac–Moody groups over Laurent polynomials
%J Annals of Representation Theory
%D 2025
%P 281-353
%V 2
%N 3
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.25/
%R 10.5802/art.25
%G en
%F ART_2025__2_3_281_0
Bardy-Panse, Nicole; Hébert, Auguste; Rousseau, Guy. Twin masures associated with Kac–Moody groups over Laurent polynomials. Annals of Representation Theory, Volume 2 (2025) no. 3, pp. 281-353. doi : 10.5802/art.25. https://art.centre-mersenne.org/articles/10.5802/art.25/

[1] Abramenko, Peter; Brown, Kenneth S. Buildings: theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008 | DOI | MR | Zbl

[2] Allcock, Daniel Presentation of affine Kac–Moody groups over rings, Algebra Number Theory, Volume 10 (2016), pp. 533-556 | DOI | MR | Zbl

[3] Allcock, Daniel Steinberg groups as amalgams, Algebra Number Theory, Volume 10 (2016), pp. 1791-1843 | DOI | MR | Zbl

[4] Allcock, Daniel; Carbone, Lisa Presentation of hyperbolic Kac–Moody groups over rings, J. Algebra, Volume 445 (2016), pp. 232-243 | DOI | MR | Zbl

[5] Bardy-Panse, Nicole Systèmes de racines infinis, Mémoires de la Société Mathématique de France. Nouvelle Série, 65, Société Mathématique de France, 1996 | DOI | Zbl

[6] Bardy-Panse, Nicole; Gaussent, Stéphane; Rousseau, Guy Iwahori–Hecke algebras for Kac–Moody groups over local fields, Pac. J. Math., Volume 285 (2016), pp. 1-61 | DOI | MR | Zbl

[7] Bardy-Panse, Nicole; Gaussent, Stéphane; Rousseau, Guy Macdonald’s formula for Kac–Moody groups over local fields, Proc. Lond. Math. Soc. (3), Volume 119 (2019), pp. 135-175 | DOI | MR | Zbl

[8] Bardy-Panse, Nicole; Rousseau, Guy On structure constants of Iwahori–Hecke algebras for Kac–Moody groups, Algebr. Comb., Volume 4 (2021), pp. 465-490 | DOI | Numdam | MR | Zbl

[9] Ben Messaoud, Hechmi; Rousseau, Guy Classification des formes réelles presque compactes des algèbres de Kac–Moody affines, J. Algebra, Volume 267 (2003), pp. 443-513 misprints corrected in J. Algebra 279, (2004), pp. 409–412 | DOI | MR | Zbl

[10] Braverman, Alexander; Kazhdan, David; Patnaik, Manish M. Iwahori–Hecke algebras for p-adic loop groups, Invent. Math., Volume 204 (2016), p. 347-342 | DOI | MR | Zbl

[11] Bruhat, François; Tits, Jacques Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | MR | Zbl

[12] Cohn, Paul Moritz On the structure of the GL 2 of a ring, Publ. Math., Inst. Hautes Étud. Sci., Volume 30 (1966), pp. 5-53 | DOI | MR | Zbl

[13] Costa, Douglas L. Zero-dimensionality and the GE 2 of polynomial rings, J. Pure Appl. Algebra, Volume 50 (1988), pp. 223-229 | DOI | MR | Zbl

[14] Gaussent, Stéphane; Rousseau, Guy Kac–Moody groups, hovels and Littelmann paths, Ann. Inst. Fourier, Volume 58 (2008), pp. 2605-2657 | DOI | Numdam | MR | Zbl

[15] Gaussent, Stéphane; Rousseau, Guy Spherical Hecke algebras for Kac–Moody groups over local fields, Ann. Math. (2), Volume 180 (2014), pp. 1051-1087 | DOI | MR | Zbl

[16] Haddad, Ziad A Coxeter group approach to Schubert varieties, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) (Mathematical Sciences Research Institute Publications), Volume 4, Springer, 1985, pp. 157-165 | DOI | MR | Zbl

[17] Hébert, Auguste Gindikin–Karpelevich finiteness for Kac–Moody groups over local fields, Int. Math. Res. Not., Volume 22 (2017), pp. 7028-7049 | DOI | MR | Zbl

[18] Hébert, Auguste Étude des masures et de leurs applications en arithmétique, Ph. D. Thesis, Univ. Jean Monnet de Saint Etienne (Université de Lyon) (2018)

[19] Hébert, Auguste Study of masures and of their applications in arithmetic, Ph. D. Thesis, Université de Lyon, France (2018) https://hal.science/tel-01856620/document (english version)

[20] Hébert, Auguste A New Axiomatics for Masures, Can. J. Math., Volume 72 (2020), pp. 732-773 | DOI | MR | Zbl

[21] Hébert, Auguste A New Axiomatics for Masures. II, Adv. Geom., Volume 22 (2022), pp. 513-522 | DOI | MR | Zbl

[22] Hébert, Auguste Topologies on split Kac–Moody groups over valued fields (2023) (preprint) | arXiv

[23] Hébert, Auguste; Philippe, Paul On affine Kazhdan–Lusztig R-polynomials for Kac–Moody groups (2024) (preprint) | arXiv

[24] Kac, Victor G. Infinite dimensional Lie algebras, Cambridge University Press, 1990 | MR | Zbl

[25] Kazhdan, David; Lusztig, George Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979), pp. 165-184 | DOI | MR | Zbl

[26] Kumar, Shrawan Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser, 2002 | DOI | MR | Zbl

[27] Marquis, Timothée An introduction to Kac–Moody groups over fields, EMS Textbooks in Mathematics, European Mathematical Society, 2018 | DOI | MR | Zbl

[28] Mathieu, Olivier Construction d’un groupe de Kac–Moody et applications, Compos. Math., Volume 69 (1989), pp. 37-60 | Numdam | Zbl

[29] Muthiah, Dinakar Double affine Kazhdan–Lusztig polynomials via masures (2019) (preprint) | arXiv

[30] Patnaik, Manish M. Local Birkhoff decompositions for loop groups and a finiteness result, Forum Mathematicum, Volume 37 (2025)

[31] Rémy, Bertrand Groupes de Kac–Moody déployés et presque déployés, Astérisque, 277, Société Mathématique de France, 2002 | Numdam | Zbl

[32] Ronan, Mark A.; Tits, Jacques Twin trees. I, Invent. Math., Volume 116 (1994), pp. 463-479 | DOI | MR | Zbl

[33] Rousseau, Guy Groupes de Kac–Moody déployés sur un corps local, immeubles micro-affines, Compos. Math., Volume 142 (2006), pp. 501-528 | DOI | MR | Zbl

[34] Rousseau, Guy Masures affines, Pure Appl. Math. Q., Volume 7 (2011), pp. 859-921 | DOI | MR | Zbl

[35] Rousseau, Guy Groupes de Kac–Moody déployés sur un corps local. II Masures ordonnées, Bull. Soc. Math. Fr., Volume 144 (2016), pp. 613-692 | DOI | MR | Zbl

[36] Rousseau, Guy Almost split Kac–Moody groups over ultrametric fields, Groups Geom. Dyn., Volume 11 (2017), pp. 891-975 | DOI | MR | Zbl

[37] Rousseau, Guy Euclidean buildings: Geometry and group actions, EMS Tracts in Mathematics, 35, European Mathematical Society, 2023 | DOI | MR | Zbl

[38] Stichtenoth, Henning Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009 | DOI | MR | Zbl

[39] Suslin, Andrei A. On the structure of the special linear group over polynomial rings, Math. USSR, Izv., Volume 11 (1977), pp. 221-238 | DOI | Zbl

[40] Tits, Jacques Groups and group functors attached to Kac–Moody data, Arbeitstagung, Bonn, 1984. Proceedings of the Meeting held by the Max-Planck-Institut für Mathematik, (Lecture Notes in Mathematics), Volume 1111, Springer, 1985, pp. 193-223 | MR | Zbl

[41] Tits, Jacques Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987), pp. 542-573 | DOI | MR | Zbl

Cited by Sources: