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Twin masures associated with Kac–Moody groups
over Laurent polynomials

Nicole Bardy-Panse, Auguste Hébert and Guy Rousseau

Abstract. Let G be a split reductive group, k be a field and ϖ be an indeterminate. In order to
study G(k[ϖ, ϖ−1]) and G(k(ϖ)), one can make them act on their twin building I = I⊕ × I⊖,
where I⊕ and I⊖ are related via a “codistance”.

Masures are generalizations of Bruhat–Tits buildings adapted to the study of Kac–Moody groups
over valued fields. Motivated by the work of Dinakar Muthiah on Kazhdan–Lusztig polynomials
associated with Kac–Moody groups, we study the action of G(k[ϖ, ϖ−1]) and G(k(ϖ)) on their
“twin masure”, when G is a split Kac–Moody group instead of a reductive group.
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1. Introduction

1.1. Context.

Split reductive groups over valued fields and Bruhat–Tits buildings. Let G be a split re-
ductive group with maximal split torus T. Let K be a field, G = G(K) and T = T(K).
If ω : K → R ∪ {∞} is a nontrivial valuation of K, one can construct a Bruhat–Tits
building Iω = I (G,K, ω) on which G acts, and study G via its action on Iω. This build-
ing is a union of apartments, which are all translates by an element of G of a standard
apartment Aω.

The action of G on Iω takes into account the valuation ω. More precisely, let Φ
be the root system of (G,T ), which can be regarded as a subset of the dual A∗

ω of the
real vector space Aω. Then G = ⟨T, xα(u), α ∈ Φ, u ∈ K⟩, where for each α ∈ Φ,
xα : (K,+) ↪→ (G, .) is an algebraic group morphism. Let N be the normalizer of T in G.
Then N is the stabilizer of Aω in G and T acts by translation on Aω. If t ∈ T , then t acts
by translation on Aω by a vector depending on the values of ω(χ(t)), where χ runs over
the characters of T . If α ∈ Φ and u ∈ K, xα(u) fixes the half-apartment (or half-space)
Aω ∩ xα(u).Aω = {a ∈ Aω | α(a) + ω(u) ≥ 0}.

Twin building of G(k[ϖ,ϖ−1]). Suppose now that K = k(ϖ), where k is a field and ϖ
is an indeterminate. Let ω⊕, ω⊖ be the valuations on K, trivial over k and such that
ω⊕(ϖ) = 1 = ω⊖(ϖ−1). Let O = k[ϖ,ϖ−1]. In order to study G = G(K) and GO =
G(O), it is natural to make them act on I = I⊕ × I⊖, where I⊕ = I (G,K, ω⊕) and
I⊖ = I (G,K, ω⊖). The buildings I⊕ and I⊖ are related by a GO-invariant codistance
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d∗ : C(I⊕) × C(I⊖) → W , where C(I⊕), C(I⊖) are the sets of local chambers of I⊕ and
I⊖ and W is the affine Weyl group of A⊕ := Aω⊕ (which is isomorphic to the affine Weyl
group of A⊖ := Aω⊖). Equipped with this codistance, I⊕ × I⊖ is called a twin building
(see [32] for the case of G = SL2 and [1] for a general study of twin buildings).

This codistance is also called a twinning and it is deduced from some Birkhoff de-
composition in G. We may describe it slightly differently. Let C∞ be the “fundamental
local chamber of A⊖”, C+

0 be the “fundamental local chamber” C+
0 of A⊕, I∞ be the

fixator of C∞ in GO and I be the fixator of C+
0 in G. Then using the Birkhoff decom-

position G = I∞NI, one can prove that there exists a unique I∞-invariant retraction
ρC∞ : I⊕ ↠ A⊕ (see § 4.4.2). We can then recover d∗ from ρC∞ .

Kazhdan–Lusztig polynomials. Let (W ′, S′) be a Coxeter group. In their fundamental
paper [25], Kazhdan and Lusztig associated to this data a family (Pv,w)v,w ∈ W ′ of poly-
nomials of Z[q], where q is an indeterminate. These polynomials are now known as the
Kazhdan–Lusztig polynomials. In order to define them, they began by defining auxiliary
polynomials - called “R-polynomials” - Rv,w ∈ Z[q], for v,w ∈ W ′. When W ′ = W , these
polynomials are defined by the following equation (see [29, (1.2)])

Rv,w(q) = |(I ·wI ∩ I∞
·vI)/I|, for v,w ∈ W, for all prime power q, (1.1)

with I = I(q) and I∞ = I∞(q) defined as above in G = Gq = G(Fq(ϖ)), with Fq the field
of cardinality q, where ·v, ·w are liftings of v,w in N ⊂ G. This formula, is implicitly used
by D. Kazhdan and G. Lusztig in [25], and was proven by Z. Haddad ([16]).

Split Kac–Moody groups over valued field and masures. Split Kac–Moody groups are infi-
nite dimensional generalizations of split reductive groups. There are many possible defini-
tions of such groups but in this paper, we are mainly interested in the minimal one defined
in [41] (although we also use Mathieu’s completion). Let G be such a group, K be a field
equipped with a nontrivial valuation ω : K → R ∪ {∞} and G = G(K). In [35], gener-
alizing results of [14], Rousseau defined a “masure” Iω = I (G,K, ω) on which G acts.
This masure is a kind of Bruhat–Tits building adapted to the Kac–Moody framework.
We still have Iω =

⋃
g ∈ G g.Aω, where A = Aω is the “fundamental apartment”. This

apartment is an affine space of the same dimension as T equipped with an arrangement
of hyperplanes. Using Iω, one can define the Iwahori subgroup I = Iω of G, which is
the fixator of the fundamental local chamber C+

0 of A. The Borel subgroup B± = T.U±

is well known (cf. § 2.2.1). In the following, a Bruhat or Birkhoff decomposition will be
called more precisely a Bruhat–Borel or Birkhoff–Borel (resp. Bruhat–Iwahori or Birkhoff–
Iwahori) decomposition, when it involves B± (resp. I). As the Iwahori case is frequently
used, we often omit this name Iwahori.

Let Y be the cocharacter lattice and W v be the vectorial Weyl group of (G,T). Then,
W := N/T = W v ⋉ Y and the Bruhat decomposition does not hold in G: IWI ⊊ G
(where we regard W as a subset of N by choosing for each element of W a lifting in N).
Because of this, one often restricts attention to a subsemi-group G+ = G+

ω of G defined
as follows. Let Cv

f be the fundamental vectorial chamber of A, T :=
⋃

w ∈ W v w.Cv
f be the

Tits cone, Y + = Y ∩ T and W+ = W v ⋉ Y +. Then G+ := IW+I is a set of elements
of G admitting a Bruhat decomposition. An equivalent definition of G+ is as follows. If
x, y ∈ A, we write x ≤ y if y − x ∈ T . Then ≤ extends to a G-invariant preorder ≤ on I
and we have G+ = {g ∈ G | g.0 ≥ 0} (where 0 is the vertex of C+

0 ).
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Kazhdan–Lusztig polynomials in the Kac–Moody setting. In general, neither W nor W+,
which is not even a group (except if G is reductive), is a Coxeter group. In [29], Muthiah
suggests to take (1.1), for v,w ∈ W+, as a definition of the R-polynomials associated
with G and then to define the Kazhdan–Lusztig polynomials. With this approach, two
questions naturally arise: are the cardinalities in (1.1) finite and how to compute them if
they are?

In [29], Muthiah partially solves these questions, when G is untwisted affine of type A,
D or E, under the assumption that the retraction ρC∞ : I⊕ ↠ A⊕ is well-defined (for
every prime power q, where I⊕ = I (G,Fq (ϖ) , ω⊕)), or at least that it is well-defined
on a sufficiently large subset of I⊕. These works are generalized to general Kac–Moody
groups in [23], under the same assumption on the retraction ρC∞ , with similar techniques.
Muthiah’s method is as follows. Let v,w ∈ W+. Then the set involved in (1.1) is in
bijection with a set Ev,w of local chambers of I⊕, which are in some “sphere”, and whose
image by ρC∞ is in v.C+

0 . He proves that the image by ρC∞ of a line segment of I⊕
(satisfying certain conditions) is an I∞−Hecke path of A⊕, i.e. it is a piecewise linear path
satisfying certain precise conditions. He proves finiteness results for the number of these
I∞−Hecke paths in A⊕ (in the untwisted affine case of type A, D or E) and proves that
for a given I∞−path, the number of line segments of I⊕ retracting on it is finite and
polynomial in q (in the general case, not necessarily affine). However, he does not study
the existence of ρC∞ .

1.2. Content of this paper. Let k be a field (not necessarily finite) and G be a split
Kac–Moody group. In this paper, we study the action of G = G(k(ϖ)) and Gtwin := GO =
G(O) on I⊕ × I⊖. As O is not a field, the meaning of G(O) is not clear, but we give a
definition of it as a subgroup of G in § 2.2.1. We begin by studying the action of GO on a
single masure I⊕ or I⊖. We actually study the slightly more general situation where O is
replaced by R, a dense subring of a field K equipped with a discrete valuation (satisfying
the additional assumption (2.1), i.e, such that ω(R∗) = ω(K∗) = Z). We prove that GR
admits Bruhat and Iwasawa decompositions, using the corresponding decompositions of
G(K). For ϵ ∈ {−,+}, set U ϵϵ

R = ⟨xα(R) | α ∈ Φϵ⟩ ⊂ GR (where Φ+ and Φ− are the
sets of positive and negative real roots respectively). Note that greater groups U ϵ

R will be
defined in § 2.2.1. Set IR = I ∩ GR and NR = N ∩ GR. Then we prove the following
theorem (see Corollary 3.10 and Corollary 3.11):

Theorem. We have
(1) GR = U ϵϵ

RNRIR, for both ϵ ∈ {−,+},
(2) GR ∩G+ = IRW

+IR.

We then go back to the situation where R = O = k[ϖ,ϖ−1] and study the action of
GO on I⊕ × I⊖. We do not prove the existence of ρC∞ , but we prove that if (GO)+

⊕ :=
{g ∈ GO | g.0⊕ ≥ 0⊕} admits a Birkhoff decomposition (see § 4.4 for the precise meaning),
then ρC∞ is well-defined on I

≥0⊕
⊕ = {x ∈ I⊕ | x ≥ 0⊕} (see § 4.4.2). Following the ideas

of Muthiah, we conjecture that this decomposition holds (see § 4.4.1) and that the same
decompositions with (GO)+

⊕ replaced by (GO)−
⊕ := {g ∈ GO | g.0⊕ ≤ 0⊕} hold, which

would be sufficient for applying Muthiah’s method. With such Birkhoff decompositions,
we might really say that I⊕ and I⊖ are twin masures. Unfortunately the decompositions
proved by M. Patnaik in [30] concern a completion of G(O), see § 4.4.1.

We then study the image by ρC∞ of a line segment [x, y], with x ≤ y or y ≤ x and such
that ρC∞(z) is well-defined for every z ∈ [x, y] (the second condition is always satisfied
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if our conjecture is true). We prove that they are C∞−Hecke paths. We then obtain a
formula counting the number of liftings of a given C∞−Hecke path, and proving that it is
polynomial in the cardinality of k (see Theorem 5.9).

To get this number of liftings of a C∞−Hecke path as a line segment, we first prove
that, after choosing some superdecorations, it is the product of the numbers of local liftings
around a finite number of points (the points where the path crosses a wall in some specific
way). Then we compute each of these numbers of local liftings. We get a precise formula,
which seems more explicit than Muthiah’s formula in [29] (where our paths are called
I∞−Hecke paths).

Eventually, we study the case where G is affine SL2. We prove that G ⊋ I∞NI:
the Birkhoff decomposition does not hold on the entire G. This was expected since this
is already the case for the Bruhat decomposition. We give an example of an element
g ∈ G \ I∞NI. As g /∈ G+

⊕ ∪ G−
⊕, this does not contradict our conjecture. We also study

explicit examples of C∞−Hecke paths.

Remark 1.1.
(1) Our conventions differ from the one of [29]. Our Tits cone is the opposite of the

Tits cone for Muthiah, and thus what Muthiah denotes G+ corresponds to G− for
us. For this reason, our definition of C∞−Hecke path and our formulas slightly
differ from the one of [29].

(2) The fixators of objects in the masure (like I or I∞) are subgroups of G or GO
defined by sets of generators. Even in the affine case, it is a delicate issue to
describe them explicitly. For example, if G(K) = SL2(k(ϖ)[u, u−1]), where u is an
indeterminate, then the fixator of 0⊕ in G is SL2(O⊕[u, u−1]), where O⊕ = {a ∈
k(ϖ) | ω⊕(a) ≥ 0} (see Lemma 6.11). However, for I∞, we prove that

I∞ ⊂
(

ϖ−1k[ϖ−1][u,u−1]+k[u−1] ϖ−1k[ϖ−1][u,u−1]+u−1k[u−1]
ϖ−1k[ϖ−1][u,u−1]+k[u−1] ϖ−1k[ϖ−1][u,u−1]+k[u−1]

)
,

(see Lemma 6.12), but we do not know if it is an equality.

The paper is organized as follows.
In § 2, we introduce the general framework, in particular Kac–Moody groups and ma-

sures.
In § 3, we study GR for R a dense subring of a valued field K (satisfying Assump-

tion (2.1)). We prove the Bruhat and Iwasawa decompositions of GR.
In § 4, we study the action of Gtwin := GO, where O = k[ϖ,ϖ−1] on I⊕ × I⊖. We

define ρC∞ under some conjecture.
In § 5, we study C∞−Hecke paths and their liftings in I⊕.
In § 6, we study the case where G is affine SL2.

2. Split Kac–Moody groups over valued fields and masures

2.1. Standard apartment of a masure.

2.1.1. Root generating system. A Kac–Moody matrix (or generalized Cartan matrix) is a
square matrix A = (ai,j)i,j ∈ I indexed by a finite set I, with integral coefficients, and such
that:

(i) ∀ i ∈ I, ai,i = 2;
(ii) ∀ (i, j) ∈ I2, (i ̸= j) ⇒ (ai,j ≤ 0);
(iii) ∀ (i, j) ∈ I2, (ai,j = 0) ⇔ (aj,i = 0).

Ann. Repr. Th. 2 (2025), 3, p. 281–353 https://doi.org/10.5802/art.25

https://doi.org/10.5802/art.25


286 Nicole Bardy-Panse et al.

A root generating system is a 5-tuple S = (A,X, Y, (αi)i ∈ I , (α∨
i )i ∈ I) made of a Kac–

Moody matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite
rank, and of a free family (αi)i ∈ I (resp. a free family (α∨

i )i ∈ I) of elements in X (resp.
Y ) called simple roots (resp. simple coroots) that satisfy ai,j = αj(α∨

i ) for all i, j in I.
Elements of X (respectively of Y ) are called characters (resp. cocharacters).

Fix such a root generating system S = (A,X, Y, (αi)i ∈ I , (α∨
i )i ∈ I) and set A := Y ⊗ R.

Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A∗. In particular, the αi’s (with i ∈ I) will be seen as linear forms on A. This allows us to
define, for any i ∈ I, an involution ri of A by setting ri(v) := v − αi(v)α∨

i for any v ∈ A.
One defines the Weyl group of S as the subgroup W v of GL(A) generated by {ri | i ∈ I}.
The pair (W v, {ri | i ∈ I}) is a Coxeter system.

The following formula defines an action of the Weyl group W v on A∗:

∀ x ∈ A, w ∈ W v, α ∈ A∗, (w.α)(x) := α
(
w−1.x

)
.

Let Φ := {w.αi | (w, i) ∈ W v × I} (resp. Φ∨ = {w.α∨
i | (w, i) ∈ W v × I}) be the set of real

roots (resp. real coroots): then Φ (resp. Φ∨) is a subset of the root lattice Q :=
⊕

i ∈ I Zαi

(resp. coroot lattice Q∨ =
⊕

i ∈ I Zα∨
i ). If α ∈ Φ, there exist i ∈ I, w ∈ W v such that

α = w.αi. One sets α∨ = w.α∨
i and rα = rα∨ = wriw

−1 ∈ W v. This does not depend on
the choice of i and w. By [26, 1.2.2(2)], one has Rα∨ ∩ Φ∨ = {±α∨} and Rα ∩ Φ = {±α}
for all α∨ ∈ Φ∨ and α ∈ Φ. We set Q+ =

⊕
i ∈ I Nαi, Q∨,+ =

⊕
i ∈ I Nα∨

i , Φ+ = Φ ∩ Q+

and Φ− = Φ ∩ −Q+ = −Φ+. We define ht : Q⊗ R → R by ht(
∑

i ∈ I niαi) =
∑

i ∈ I ni for
(ni) ∈ RI and we call ht the height.

2.1.2. Local chambers, sectors, chimneys.
(1) Vectorial facets: Let (αi)1 ≤ i ≤ ℓ be the above basis of the system Φ of roots. Then

Cv
f = {v ∈ A | αi(v) > 0,∀ i} is the canonical vectorial chamber. Its facets

are the cones F v(J) = {v ∈ A | αi(v) = 0,∀ i ∈ J, αi(v) > 0, ∀ i ̸∈ J} for
J ⊂ {1, . . . , ℓ} = I. The facet F v(J) and J are said spherical if the group W v(J)
generated by the reflections ri = rαi for i ∈ J is finite.

A positive (resp. negative) vectorial facet of type J is a conjugate by W v of
F v(J) (resp. −F v(J)). It is a chamber if J = ∅ and a panel if |J | = 1.

The Tits cone T (resp. its interior T ◦) is the union of all positive (resp. and
spherical) vectorial facets. It is a convex cone.

(2) Local facets and segment germs: A local facet in A is the germ F (x, F v) =
germx(x+ F v) where x ∈ A and F v is a vectorial facet (i.e. F (x, F v) is the filter
of all neighbourhoods of x in x+F v). It is a local chamber, a local panel, positive,
or negative if F v has this property, it is of type 0 if x ∈ Y ⊂ A. We denote by C+

0
the fundamental local chamber, i.e. C+

0 = germ0(Cv
f ).

Let x, y in A be such that x ̸= y. The germ of [x, y] at x is the filter [x, y) =
germx([x, y]) consisting of the subsets of the form Ω ∩ [x, y], where Ω is a neigh-
bourhood of x in A. It is said to be preordered if y − x ∈ ±T .

(3) Sectors and sector germs: A sector in A is a subset q = x+Cv, for x a point in A
and Cv a vectorial chamber. Its sector germ is the filter Q = germ∞(q) of subsets
of A containing another sector x+ y + Cv, with y ∈ Cv. It is entirely determined
by its direction Cv. This sector or sector germ is said positive (resp. negative) if
Cv has this property.

For example, we consider Q±∞ = germ∞(±Cv
f ).
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(4) A half-apartment: (resp. an open-half-apartment, a wall) of A is a set of form
D(α−k) = α−1([k,+∞[) (resp. D◦(α−k) = α−1(]k,+∞[), M(α−k) = α−1({k})),
where k ∈ Z and α ∈ Φ.

A subset E of A is said to be enclosed if it is the intersection of a finite number
of half-apartments. The enclosure cl(E) of a subset (or filter) E of A is the filter
consisting of the subsets containing an enclosed set containing E.

(5) Chimneys: Let F = F (x, F v
1 ) be a local facet and F v be a vectorial facet. The

chimney r(F, F v) = cl(F + F v) is the filter consisting of the sets containing an
enclosed set containing F + F v. A shortening of a chimney r(F, F v), with F =
F (x, F v

1 ) is a chimney of the form r(F (x+ ξ, F v
1 ), F v) for some ξ ∈ F v. The germ

R = germ∞(r) of a chimney r is the filter of subsets of A containing a shortening
of r. The chimney r(F, F v) or its germ R is said splayed of sign ε if its direction F v

is a spherical facet of sign ε. A sector is a splayed chimney.

2.2. Split Kac–Moody groups over valued fields.

2.2.1. Minimal split Kac–Moody groups. Let G = GS be the group functor associated
in [41] with the root generating system S, see also [31, 8]. Let (K, ω) be a valued field
where ω : K ↠ Z ∪ {+∞} is a normalized, discrete valuation. Let G = G(K) be the split
Kac–Moody group over K associated with S. The group G is generated by the following
subgroups:

• the fundamental torus T = T(K), where T = Spec(Z[X]),
• the root subgroups Uα = Uα(K), each isomorphic to (K,+) by an isomorphism xα.

The groups X and Y correspond to the character lattice and cocharacter lattice of T
respectively. One writes U± the subgroup of G generated by the Uα, for α ∈ Φ± and
U± = U±(K).

Let R be a subring of K (with 1 ∈ R). In this paper, we are interested in the group of
R-points of G. It seems that there is currently no consensus on what this should mean.
We mainly study the case where R = O = k[ϖ,ϖ−1] ⊂ K = k(ϖ), for k a field and ϖ an
indeterminate. When G is a split reductive group over k, one knows that G(O) is given
by some well known generators. This is a consequence of O being a principal ideal domain
by [40, top of p. 205]. So in this paper, we take the same kind of generators and set

GR := ⟨xα(R),T(R) |α ∈ Φ⟩ ⊂ G(K) = G.

For ϵ ∈ {−,+}, we set U ϵ
R = GR ∩ U ϵ = GR ∩ ⟨xα(K) | α ∈ Φϵ⟩. Let U ϵϵ

R = ⟨xα(u) |
u ∈ R, α ∈ Φϵ⟩. We have U ϵϵ

R ⊂ U ϵ
R. However, this inclusion is strict in general, see [41,

3.10.d p. 555] for a counter-example.
Timothée Marquis [27, Definition 8.126] defines a minimal Kac–Moody group functor

Gmin
S and proves [l.c. proof of Proposition 8.128] that the morphism Gmin

S (k1) → Gmin
S (k2)

is injective when k1 ↪→ k2 is an injective morphism of rings. Moreover when R is a
Euclidean ring (e.g. R = O = k[ϖ,ϖ−1]), we know that SL2(R) is generated by its torus
and root subgroups [27, Exercice 7.2(3)]. So our GR is equal to the group Gmin

S (R) defined
by Timothée Marquis. It is perhaps not equal to G(R) as the morphisms ι(R) : G(R) →
Gpma(R) (see below in § 2.2.3) and G(R) → G(K) might be non injective.

Note that general Kac–Moody groups over rings are defined and studied in [2, 3] and [4].
It seems more difficult to relate them with the group we study.

Remark 2.1. We chose to work with any discretely valued field (K, ω). For our main
purpose, which is to develop a Kazhdan–Lusztig theory in the Kac–Moody setting, we only
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need the case where the residual cardinality of K is finite, and even where K = k(ϖ),
where k is a finite field. However, as it would not really simplify our proofs to impose
these restrictions on K, we work in this more general frameworks.

2.2.2. Subgroups N and NR. Let N be the group functor on rings such that if R′ is a ring,
N(R′) is the subgroup of G(R′) generated by T(R′) and the s̃αi , for i ∈ I, where s̃αi is
defined in [35, 1.6]. Then if R′ is a field with at least 4 elements, N(R′) is the normalizer
of T(R′) in G(R′).

Let N = N(K) and Aut(A) be the group of affine automorphisms of A. Then by [35,
4.2], there exists a group morphism ν : N → Aut(A) such that:

(1) for i ∈ I, ν(s̃αi) is the simple reflection ri ∈ W v, it fixes 0,
(2) for t ∈ T(K), ν(t) is the translation on A by the vector ν(t) defined by χ(ν(t)) =

−ω(χ(t)), for all χ ∈ X. This action is compatible with the action of W v on A,
(3) we have ν(N) = W v ⋉ Y := W .

Let R be a dense subring of K. We often assume:

∃ ϖ ∈ R∗ | ω(ϖ) = 1. (2.1)

This assumption is in particular satisfied by R = k[ϖ,ϖ−1], K = k(ϖ) or k((ϖ)), for k
a field and ϖ an indeterminate or by R = Z[1

p ], K = Q or Qp, for p a prime number.
Let NR = N(R) ⊂ N . Then NR normalizes TR := T(R). For λ ∈ Y = Hom(Mult,T),

we setϖλ := λ(ϖ)∈T(R). Then ν(ϖλ) is the translation on A by the vector −λ. Moreover,
s̃αi ∈ NR. In particular, we have:

ν(NR) = W v ⋉ Y = W. (2.2)

2.2.3. The completion Gpma of the Kac–Moody group G. In order to study the group
G = G(K) (for K a field), we consider the group-functor homomorphism ι : G → Gpma from
G to the (positive) completion Gpma of G (we shall also use the negative completion Gnma).
We know that ι(K) : G(K) → Gpma(K) is injective for any field K [35, Proposition 3.13], so
we consider G as a subgroup of Gpma(K). Actually Gpma is the Kac–Moody group defined
by Olivier Mathieu in [28] as a functor on the category of rings; we refer here to [35, § 3].
This group is hard to define. However the following important subgroups have simpler
definitions.

One starts with the split Kac–Moody algebra gZ over Z (see [27, Definition 7.5] for the
definition of gZ), with system of (real or imaginary) roots ∆ = ∆+ ⊔ ∆− ⊂ Q (see [26,
1.2.2] for the definition of ∆). We have Φ ⊂ ∆. The elements of Φ = ∆re are called real
roots and the elements of ∆im = ∆ \ Φ are called imaginary roots. To each α ∈ ∆ is
associated a subgroup Uα.

Let Ψ ⊂ ∆+. We say that Ψ is closed if for all α, β ∈ Ψ, for all p, q ∈ N∗, pα+ qβ ∈ ∆+

implies pα+qβ ∈ Ψ. Let Ψ be a closed subset of ∆+ and R a ring (commutative with unit),
then a pro-unipotent group scheme Uma

Ψ is described as follows in [35, Propositions 3.2
& 3.4]:

Uma
Ψ (R) =

∏
α ∈ Ψ

Xα(gα,Z ⊗R). (2.3)

One chooses an order on Ψ, e.g. such that the height of α is increasing.
gα,Z is the eigenspace associated to α in gZ andXα : gα,Z⊗R → Uma

Ψ (R),
∑

x ∈ Bα
λx.x 7→∏

x ∈ Bα
[exp]λx.x is one to one (where Bα is a Z-basis of gα,Z).
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When α is real (i.e. α ∈ Φ = ∆re), then Uα(R) = Xα(gα,Z ⊗ R). One chooses eα (one
of the two bases of gα,Z) and one writes xα(a) = Xα(a.eα) for a ∈ R. One gets thus an
isomorphism xα : (R,+) → Uα(R), a 7→ xα(a) and xα : Add → Uα.

When α is imaginary (i.e. α ∈ ∆im), then Uα(R) =
∏

n ≥ 1 Xnα(gnα,Z ⊗R).
Uma

Ψ may be seen as “topologically generated” by the Uα for α ∈ Ψ.
One writes Uma+ = Uma

∆+ . It contains U+. The positive Borel subgroup of Gpma is
T⋉ Uma+ = Bma+.

2.2.4. Parahoric subgroups. In [14] and [35], the masure I of G is constructed as follows.
To each x ∈ A is associated a group P̂ x = Gx. Then I is defined in such a way that Gx

is the fixator of x in G for the action on I (see § 2.3). We actually associate to each filter
Ω on A a subgroup GΩ ⊂ G (with G{x} = Gx for x ∈ A). Even though the masure is not
yet defined, we use the terminology “fixator” to speak of GΩ, as this will be the fixator of
Ω in G. The definition of GΩ involves the completed groups Gpma and Gnma.

(1) Let Ω ⊂ A be a non empty set or filter. One defines a function fΩ : ∆ → Z∪{+∞},
fΩ(α) = inf{r ∈ Z | Ω ⊂ D(α + r)} = inf{r ∈ Z | α(Ω) + r ⊂ [0,+∞[} and, for
r ∈ Z, Kω ≥ r = {x ∈ K | ω(x) ≥ r}, Kω=r = {x ∈ K | ω(x) = r}. The filter Ω
is said almost open (resp. narrow) if for all α ∈ Φ, fΩ(α) + fΩ(−α) ≥ 1 (resp.
fΩ(α) + fΩ(−α) ≤ 1). For example, segment germs and local facets are narrow
and local chambers and sectors are almost open.

(2) If Ω is a set, we define the subgroup Uma+
Ω =

∏
α ∈ ∆+ Xα(gα,Z ⊗ Kω ≥ fΩ(α)), see

§ 2.2.3. Actually, for α ∈ Φ+ = ∆+
re, Xα(gα,Z ⊗ Kω ≥ fΩ(α)) = xα(Kω ≥ fΩ(α)) =:

Uα,Ω. We then define Upm+
Ω = Uma+

Ω ∩ G = Uma+
Ω ∩ U+, see [35, 4.5.2, 4.5.3

and 4.5.7]. When Ω is a filter, we set Uma+
Ω := ∪S ∈ Ω U

ma+
S and Upm+

Ω := Uma+
Ω ∩G

We may also consider the negative completion Gnma = Gnma(K) of G, and
define the subgroup Uma−

Ω =
∏

α ∈ ∆− Xα(gα,Z ⊗ Kω ≥ fΩ(α)). For α ∈ Φ− = ∆−
re,

Xα(gα,Z ⊗ Kω ≥ fΩ(α)) = xα(Kω ≥ fΩ(α)) =: Uα,Ω. We then define Unm−
Ω = Uma−

Ω ∩
G = Uma−

Ω ∩ U−.
(3) Let Ω be a filter on A. We denote by NΩ the fixator of Ω in N (for the action of

N on A). If Ω is not a set, we have NΩ =
⋃

S ∈ ΩNS . Note that we drop the hats
used in [35] to avoid confusions with the hats related to the completion K̂ω of K,
that we shall consider in § 4. When Ω is almost open one has NΩ = NA = T0 :=
T(Kω ≥ 0) = T(Kω=0) (written H in l.c. , but we avoid this here), see [l.c. 4.3.1].

If x ∈ A, we set Gx = Upm+
x .Unm−

x .Nx. This is a subgroup of G. If Ω ⊂ A is a set,
we set GΩ =

⋂
x ∈ ΩGx and if Ω is a filter, we set GΩ =

⋃
S ∈ ΩGS . Note that in [35],

the definition of Gx is much more complicated (see [35, Définition 4.13]). However it is
equivalent to this one by [35, Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [35, Définition 5.3]. There are many
examples of filters with good fixators [l.c. 5.7]: points, preordered segment germs, local
facets, sectors, sector germs, A, walls, half apartments, . . . For such a filter Ω, we have:

GΩ = Upm+
Ω .Unm−

Ω .NΩ = Unm−
Ω .Upm+

Ω .NΩ.

We then have: Upm+
Ω = GΩ ∩ U+ =: U+(Ω) and Unm−

Ω = GΩ ∩ U− =: U−(Ω), as
U− ∩ U+.N = U+ ∩N = {1}, by [l.c. Remarque 3.17] and [31, 1.2.1(RT3)].

Note that for the sector germ Ω = Q+∞, Unm−
Ω = {1}, NΩ = NA = T0 and Upm+

Ω = U+.
So GQ+∞ = T0U

+. Similarly, GQ−∞ = T0U
−.
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When Ω is a local facet, GΩ is called a parahoric subgroup (this is a little more general
than in [11]).

When Ω = C+
0 = germ0(Cv

f ) is the (fundamental) positive local chamber in A, I = GΩ
is called the (fundamental) Iwahori subgroup.

(4) For Ω a set or a filter, one defines:
UΩ = ⟨Uα,Ω |α ∈ Φ⟩ , U±

Ω = UΩ ∩ U± and U±±
Ω =

〈
Uα,Ω

∣∣α ∈ Φ±〉 .
Then one has UΩ = U−

Ω .U
+
Ω .N

u
Ω = U+

Ω .U
−
Ω .N

u
Ω, where Nu

Ω = UΩ ∩N ⊂ NΩ, see [l.c.
4.6.1]. And also U+

Ω ⊂ Upm+
Ω , U−

Ω ⊂ Unm−
Ω , see [l.c. 4.3.2 and 4.5.3].

The inclusion U±±
Ω ⊂ U±

Ω is clear, but it is not always an equality, see [l.c. 4.3.2 and
4.12.3.a].

When Ω is narrow and has a good fixator, then GΩ = Upm+
Ω .U−

Ω .NΩ = Unm−
Ω .U+

Ω .NΩ,
see [l.c. 4.13.4 and 5.3].

2.3. Masure associated with G.

2.3.1. Masure. We now define the masure I = I (G,K, ω). As a set, I = G × A/ ∼,
where ∼ is defined as follows:

∀ (g, x), (h, y) ∈ G× A, (g, x) ∼ (h, y) ⇔ ∃ n ∈ N | y = ν(n).x and g−1hn ∈ Gx.

We regard A as a subset of I by identifying x and (1, x), for x ∈ A. The group G acts on
I by g.(h, x) = (gh, x), for g, h ∈ G and x ∈ A. An apartment is a set of the form g.A,
for g ∈ G. The stabilizer of A in G is N and if x ∈ A, then the fixator of x in G is Gx.
More generally, when Ω ⊂ A has a good fixator, then GΩ is the fixator of Ω in G and GΩ
permutes transitively the apartments containing Ω. If A is an apartment, we transport
all the notions that are preserved by W (e.g segments, walls, facets, chimneys, etc.) to A.
Then by [21, Corollary 3.7], I satisfies the following properties:

(MA II) Let A,A′ be two apartments. Then A∩A′ is a finite intersection of half-apartments
and there exists g ∈ G such that g.A = A′ and g fixes A ∩A′.

(MA III) If R is the germ of a splayed chimney and if F is a facet or a germ of a chimney,
then there exists an apartment containing R and F .

We also have:
• The stabilizer of A in G is N and N acts on A ⊂ I via ν.
• If Ω has a good fixator, N.GΩ = {g ∈ G | g.Ω ⊂ A}.
• The group Uα,r := {xα(u) | u ∈ K, ω(u) ≥ r}, for α ∈ Φ, r ∈ Z, fixes the half-

apartment D(α + r) = {x ∈ A | α(x) + r ≥ 0}. It is actually the fixator in Uα

of any point in the wall M(α + r) = {x ∈ A | α(x) + r = 0}. It acts simply
transitively on the set of apartments in I containing D(α+ r).

For x, y ∈ I , we write x ≤ y (resp. x<̊y, x≤̊y) if there exists g ∈ G such that g.y, g.x ∈
A and g.y − g.x ∈ T (resp. g.y − g.x ∈ T̊ , g.y − g.x ∈ T̊ ∪ {0}). Note that by (MA II), if
x ≤ y, then for all g′ ∈ G such that g′.x, g′.y ∈ A, we have g′.y − g′.x ∈ T . The relation
x ≤ y (resp. x

◦
≤ y) is G-invariant and is a preorder relation by [34, Théorème 5.9]; in

particular it is transitive.
Let H be a subgroup of G. An H-apartment is a set of the form h.A, where h ∈ H.

We denote by A(H) the set of H-apartments. Note that implicitly, an apartment is a
G-apartment. As we shall see (Corollary 3.8), every point of I lies in a GR-apartment.
However, A(GR) can be strictly smaller than A(G).
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Let Ω1,Ω2 be two filters on I . We say that Ω1 and Ω2 are H-friendly if there exists
A ∈ A(H) containing Ω1 ∪ Ω2.

Let H be a subgroup of G. Then one may consider the semigroups H+ := {g ∈ H |
g.0 ≥ 0} and H− := {g ∈ H | g.0 ≤ 0}. We will often apply this definition with H = G or
H = GR and consider the semigroups G+ and G+

R.

Remark 2.2. In § 2.1.1, we made the assumption that the family (α∨
i )i ∈ I is free. This

is more convenient and it enables us to use the results of [21] for example. However this
assumption is not necessary to define Kac–Moody groups (see [27] for example). For
example, G := SLn(K[u, u−1]) ⋊ K∗ is naturally equipped with the structure of a Kac–
Moody group associated with a root generating system S having nonfree coroots. This
group is particularly interesting for examples, since it is one of the only Kac–Moody groups
in which we can make explicit computations. To handle this kind of group, a solution is
to consider a central extension G̃ of G having free coroots. Then if Ĩ is the masure
associated with G̃, we have a natural surjection π : Ĩ ↠ I , that is compatible with the
actions of G and G̃. Then we can deduce properties of I and G̃ from properties of Ĩ
and G̃. We detail this reasoning in § 6 for the case n = 2. It should be possible to study
groups with non necessarily free coroots in general with the same reasoning, using the
results of [27, 7.4.5].

2.3.2. Decompositions of subgroups of G, retractions. Let H be a subgroup of G and E1, E2
be two subsets or filters in A. We write NH(A) the stabilizer of A in H and HEi the
(pointwise) fixator of Ei in H. We are interested in decompositions H = HE1 .NH(A).HE2
or H+ = HE1 .(NH(A) ∩H+).HE2 , where H+ is a subsemigroup of H. We say that it is a
Bruhat (resp. Iwasawa; mixed Iwasawa) decomposition if the pair (E1, E2) is made of two
local chambers (resp. a local chamber and a sector germ; a local chamber and a chimney
germ).

There is a geometric translation of such a decomposition, when each HEi is transitive
on the set of apartments in A(H) containing Ei (here A(H) = {h.A | h ∈ H}). Then such
a decomposition (involving H and not H+) means that, for any h1, h2 ∈ H, the subsets or
filters h1E1 and h2E2 are in a same apartment of A(H) (they are “H−friendly”). Actually,
the axiom (MA III) is a geometric translation of decompositions of G.

Let A be an apartment of I and Q be a sector germ of A. Let x ∈ I . Then by
(MA III), there exists an apartment B containing x and Q. By (MA II), there exists
h ∈ G such that h.B = A and h fixes A ∩ B. Then h.x does not depend on the choices
of B and h and we set ρA,Q(x) = h.x. The map ρA,Q : I ↠ A is the retraction onto A
centred at Q. When Q = Q±∞, i.e when Q is the germ at infinity of ±Cv

f and A = A, we
write ρ±∞ instead of ρA,Q±∞ .

2.4. A precise decomposition of GΩ, for Ω a local chamber.

Proposition 2.3. Let Ω ⊂ A ⊂ I be a non empty set or filter. Suppose that Ω is narrow,
almost open and has a good fixator (for example Ω is a local chamber). Then:

GΩ = U+
Ω .U

−
Ω .T0 = U+

Ω .T0.U
−
Ω = UΩ.T0 = ⟨T0, (Uα,Ω)α ∈ Φ⟩,

actually Upm+
Ω = U+

Ω = U+ ∩GΩ =: U+(Ω) and Unm−
Ω = U−

Ω = U− ∩GΩ =: U−(Ω).

Proof. By § 2.2.4 and the fact that T0 normalizes U±
Ω , U

pm+
Ω , Unm−

Ω , one has clearly that
GΩ = Upm+

Ω .U−
Ω .T0 = Upm+

Ω .T0.U
−
Ω = Unm−

Ω .T0.U
+
Ω = U+

Ω .T0.U
nm−
Ω . But G is a Kac–

Moody group, so one has the Birkhoff–Borel decomposition G = ⊔n ∈ N U+.n.U− and the
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uniqueness result U− ∩N.U+ = U+ ∩N = {1}, see [35, Remark 3.17] and [31, 1.2.4(i) +
(RT3)]. In particular in the subset U+.T.U− of G, the decomposition is unique. So the
third and fifth formula for GΩ above give Upm+

Ω = U+
Ω and Unm−

Ω = U−
Ω . □

N.B. The proposition above is a simple improvement of [35, Property 4.13.4] when Ω is
moreover almost open. But the trick below in Consequence 2.4.1(2), enables us to get the
decomposition of Gx guessed in [35, Property 4.13.5].

2.4.1. Consequences.
(1) In particular the Iwahori group I = GC+

0
(fixator in G of the fundamental local

chamber C+
0 = germ0(Cv

f )) is ⟨T0, (Uα,C+
0

)α ∈ Φ⟩. This is the same definition as
in [10] (given there in the untwisted affine case). This result was also proved in [6,
7.2.2], using the results of [10]. We get here a direct proof and a more general
result.

(2) Let x ∈ A and C±
x = germx(x ± Cv

f ) be the two opposite chambers at x with
respective directions ±Cv

f . Then Uma+
C+

x
= Uma+

x , hence Upm+
C+

x
= Upm+

x . So
Upm+

x = Upm+
C+

x
= U+

C+
x

⊂ U+
x ⊂ Upm+

x and Upm+
x = U+

x = Gx ∩ U+. Similarly
Unm−

x = U−
x = Gx ∩ U−.

So (as x has a good fixator) we get Gx = Upm+
x .Unm−

x .Nx = U+
x .U

−
x .Nx = U−

x .U
+
x .Nx =

Ux.Nx = ⟨Nx, (Uα,x)α ∈ Φ⟩.
When x is a special point Nx/T0 = W v and Nx = Nu

x .T0, so Gx = ⟨T0, (Uα,x)α ∈ Φ⟩.
Moreover Gx = Pmin

x = P pm
x = Pnm

x with the notations of [35, 4.6.a].

Lemma 2.4. Let Ain =
⋂

α ∈ Φ ker(α) =
⋂

i ∈ I ker(αi) and Ω be a filter on A. Then we
have GΩ = GΩ+Ain.

Proof. We begin by the case where Ω = {x}, for some x ∈ A. Let y ∈ x + Ain. Then
we have Uα,y = Uα,x for all α ∈ Φ, since α(x) = α(y). Let n ∈ Nx and w ∈ W be the
automorphism of A induced by n. Write w = a+ w, where a ∈ Y and w ∈ W v. Then we
have a = x−w.x. As W v fixes Ain, we deduce y−w.y = a and hence w fixes y. Otherwise
said, n fixes y and we have Nx ⊂ Ny. By symmetry, Nx = Ny and thus Gx = Gy. Let
now Ω be a nonempty set. Then GΩ =

⋂
x ∈ ΩGx =

⋂
x ∈ Ω

⋂
y ∈ x+Ain

Gy = GΩ+Ain .
Assume now that Ω is a filter. Let S be a subset of A. Then S ∈ Ω +Ain if and only if

there exists S′ ∈ Ω such that S = S′ + Ain. Therefore
GΩ+Ain =

⋃
S ∈ Ω+Ain

GS =
⋃

S′ ∈ Ω
GS′+Ain

= GΩ. □

(3) In particular the fixator K = G0 of the origin point in A is K = G0 = ⟨T0,
(Uα,0)α ∈ Φ⟩. This is the same definition as in [10] (given there in the untwisted
affine case). This result was also proved in [15, Remark 3.4], using the results
of [10]. We get here a direct proof and a more general result.

(4) Let x ∈ A and Fx ⊂ C+
x be a segment germ or a local facet. Then Uma+

C+
x

= Uma+
Fx

hence Upm+
C+

x
= Upm+

Fx
. So

Upm+
Fx

= Upm+
C+

x
= U+

C+
x

⊂ U+
Fx

⊂ Upm+
Fx

and Upm+
Fx

= U+
Fx

= GFx ∩ U+.

If Fx ⊂ C−
x , then we get Unm−

Fx
= U−

Fx
= GFx ∩ U−. But we do not get the two

series of equalities in general.
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2.4.2. Generalization of Proposition 2.4 to the almost-split case. In § 2.4.1, we obtained
a decomposition of the fixator GΩ of certain filters Ω ⊂ A and deduced a decomposition
of Gx, for x ∈ A. The advantage of these decompositions is that they involve only the
minimal Kac–Moody group G and not its completions. As this result could be interesting
on its own, we extend it to almost-split Kac–Moody groups below. This result will not be
used in the sequel.

We consider an almost split Kac–Moody group G over a field K endowed with a real
valuation ω. We suppose that G is quasi-split over a tamely ramified extension and, if
G is not split, that the valuation ω may be extended functorially and uniquely to any
separable extension of K (e.g. ω is complete). Then, by [36, 6.9], there exists a masure
I with a strongly transitive action of G = G(K) and the fixators Gx of the points in
the canonical apartment A are a very good family of parahorics. For Ω ⊂ A, we write
UΩ = ⟨Uα,Ω | α ∈ Φ⟩ ⊂ GΩ, U±

Ω = UΩ ∩ U± ⊂ GΩ and NΩ = N ∩ GΩ, where GΩ is the
fixator of Ω in G.
Proposition 2.5. For any point x ∈ A, one has Gx = U+

x .U
−
x .Nx = U−

x .U
+
x .Nx =

Ux.Nx, U±
x = Gx ∩ U±. And for any local chamber Ω in A, one has GΩ = U+

Ω .U
−
Ω .NΩ =

U−
Ω .U

+
Ω .NΩ = UΩ.NΩ, U±

Ω = GΩ ∩ U±.
N.B. This result is also true if Ω ⊂ A is narrow, non empty, almost open, with good
fixator.
Proof. When G is actually split, the proof is exactly the same as above in § 2.2.4, § 2.4
and § 2.4.1(1), (2), (3). In the general almost split case, we have mainly to replace T by
the centralizer Z of a maximal split subtorus of G [l.c. 2.7]. For any vectorial chamber
Cv = ±wCv

f ⊂ A, we write U(Cv) = wU±w−1 and UΩ(Cv) = UΩ ∩ U(Cv). When Ω ⊂ A
has a good fixator, we have

GΩ = U
(+)
Ω .U

(−)
Ω .NΩ = U

(−)
Ω .U

(+)
Ω .NΩ,

where U (±)
Ω = GΩ ∩ U± ⊃ U±

Ω [l.c. 4.4.b, 4.5]. We shall use this for Ω a point or a local
chamber.

When Ω is a local chamber, NΩ = Z0 := Z ∩GΩ, GΩ = U
(+)
Ω .Z0.U

(−)
Ω and the Iwasawa

decomposition [l.c. 4.3.3] gives G = U+.N.UΩ, so GΩ = (U+.N ∩ GΩ).UΩ. Now, by the
uniqueness in the Birkhoff–Borel decomposition [l.c. 1.6.2],

U+.N ∩GΩ = U
(+)
Ω .Z0.U

(−)
Ω ∩ U+.N.{1} = U

(+)
Ω .Z0;

so GΩ = U
(+)
Ω .Z0.UΩ. But, for Cv

1 , C
v
2 ⊂ A adjacent chambers along the wall kerα (with

α(Cv
1 ) ≥ 0), we get from [l.c. 4.4.a] UΩ((Cv

1 )) := GΩ ∩ U(Cv
1 ) = Uα,Ω ⋉ (GΩ ∩ U(Cv

1 ) ∩
U(Cv

2 )). From this we deduce, as in [14, Proposition 3.4], that UΩ(Cv
1 ).UΩ(−Cv

1 ).Z0 is
independent of the choice of the (positive) chamber Cv

1 and
UΩ ⊂ UΩ(Cv

1 ).UΩ(−Cv
1 ).Z0 = U+

Ω .Z0.U
−
Ω .

So GΩ = U
(+)
Ω .Z0.U

−
Ω and, symmetrically, GΩ = U+

Ω .Z0.U
(−)
Ω . The uniqueness in the

Birkhoff–Borel decomposition gives U (±)
Ω = U±

Ω , hence GΩ = U+
Ω .U

−
Ω .NΩ = U−

Ω .U
+
Ω .NΩ =

UΩ.NΩ.
For x ∈ A and C±

x = germx(x± Cv
f ), we have U (±)

x = U
(±)
C±

x
[36, beginning of 4.5.3]. So

U (±)
x = U

(±)
C±

x
= U±

C±
x

⊂ U±
x ⊂ U (±)

x and U (±)
x = U±

x .

Now Gx = U+
x .U

−
x .Nx = U−

x .U
+
x .Nx is equal to Ux.Nx, as U±

x ⊂ Ux ⊂ Gx. □
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3. Study of GR, for R a dense subring of a valued field K

Let R be a dense subring of K (for the main applications, we make the additional
assumption (2.1)). In this section, we study decompositions of GR. Our main results are
the Bruhat decomposition and the Iwasawa decompositions of GR (see Corollaries 3.10
and 3.11). To do that, we study the action of GR on the masure I of G. Given a
subset P of a K-apartment, we study the existence of an R-apartment containing P
(see Theorem 3.7). We then deduce the desired decompositions from the corresponding
decompositions of G.

3.1. Commutators in Uma+. Let β ∈ Φ. We want to understand the actions of xβ(u)
on I , for u ∈ K satisfying ω(u) ≫ 0. To do so, we begin by studying commutators in
Uma+.

For α, β ∈ ∆+, one would like a formula for the commutators in [Uα,Uβ].
Assume α and β are not collinear. Let Ψ′ = {pα + qβ ∈ ∆+ | p ≥ 1, q ≥ 0} and

Ψ = Ψ′ ∪ ((N> 0 β) ∩ ∆). They are closed subsets of ∆+. Moreover Ψ′ is an ideal of Ψ; so
Uma

Ψ′ (R) ◁ Uma
Ψ (R) by [35, Lemma 3.3].

In particular:

Xβ(uβ).Xα(uα).Xβ(uβ)−1 =
p ≥ 1, q ≥ 0∏
pα+qβ ∈ ∆

Xpα+qβ(vpα+qβ).

One chooses an order such that e.g. the height of pα+ qβ is increasing and uα ∈ gα,Z ⊗R,
uβ ∈ gβ,Z ⊗R. Then vpα+qβ ∈ gpα+qβ,Z ⊗R.

We now restrict to the case where β is real.

Proposition 3.1. Let α ∈ ∆+, β ∈ Φ+, cα ∈ gα,Z and u, v ∈ R. Then

xβ(u).Xα(v.cα).xβ(−u) =
p ≥ 1, q ≥ 0∏
pα+qβ ∈ ∆

Xpα+qβ (vpuq.cpα+qβ) ,

for some cpα+qβ ∈ gpα+qβ,Z independent of u and v.

N.B.
(1) For p = 1, q = 0, cpα+qβ is certainly equal to cα, i.e. the factor on the left of the

right hand side is Xα(v.cα). This is suggested by the notation, but not proven
here.

(2) When α is imaginary and p ≥ 2, q = 0, one should have cpα = 0. But we do not
prove this here.

Proof. If α and β are collinear, then α = β, {(p, q) ∈ N∗ × N | pα + qβ ∈ ∆+} = {(1, 0)}
and xβ(u) and xα(v) commute so the formula is clear in this case. We now assume that α
and β are not collinear. From the above formula,

xβ(u).Xα(v.cα).xβ(−u)

=
p ≥ 1, q ≥ 0∏
pα+qβ ∈ ∆

Xpα+qβ(vpα+qβ(u, v)), with vpα+qβ(u, v) ∈ gpα+qβ,Z ⊗R

and the map R2 → gpα+qβ,Z ⊗ R, (u, v) 7→ vpα+qβ(u, v) is polynomial (defined over Z), as
we have unipotent groups defined over Z by [35, § 3.4]. One will determine this polynomial
map by using R = C and u, v ∈ C∗ (we can assume u, v algebraically independent over Q).
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There exists t ∈ T(C) such that α(t) = v and β(t) = u, hence (pα + qβ)(t) = vpuq.
Following the first paragraph of [35, § 3.5], one has t.Xγ(vγ).t−1 = Xγ(γ(t).vγ) for γ ∈ ∆+

and vγ ∈ gγ . Hence:

xβ(u).Xα(v.cα).xβ(−u) = t.xβ(1).Xα(cα).xβ(−1).t−1

=
p ≥ 1, q ≥ 0∏
pα+qβ ∈ ∆

t.Xpα+qβ (vpα+qβ(1, 1)) .t−1

=
p ≥ 1, q ≥ 0∏
pα+qβ ∈ ∆

Xpα+qβ (vpuq.cpα+qβ) ,

if one writes cpα+qβ = vpα+qβ(1, 1) ∈ gpα+qβ,Z. □

Lemma 3.2. One writes T the closed Tits cone in A = Y ⊗ R = hR, T ∨ its analogue in
the dual A∗ = X ⊗ R = h∗

R and Z = conv(∆+
im ∪ {0}) the closed convex hull in A∗ (some

notations come from [24, § 5.8]). Then,
(a) If ∆ is of indefinite type, for any α ∈ Φ = ∆re, one has α∨ ̸∈ ±T ,
(b) If ∆ is of indefinite type, for any α ∈ Φ = ∆re, one has α ̸∈ ±T ∨,
(c) Z ⊂ −T ∨,
(d) ∆re ∩ ±Z = ∅.

Proof. (a) By [24], 5.8.1 and Theorem 5.6.c, one has α∨
i ̸∈ T , ∀ i. Conjugating by the

Weyl group, we get (a). Now (b) is the result dual to (a).
(c) One may suppose ∆ indecomposable. The result is clear if ∆ is of finite type

(Z = {0}). In the affine or indefinite case, one considers K = {α ∈
∑

Nαi | α(α∨
j ) ≤

0, ∀ j and supp(α) connected} [24, 5.3]. By [24, 5.8 c) or b)] K ⊂ −T ∨. But ∆+
im =

∪w ∈ W v w(K) by [24, 5.4]; so ∆+
im ⊂ −T ∨ and Z ⊂ −T ∨.

(d) One may suppose ∆ indecomposable. The result is clear if ∆ is of finite type
(Z = {0}) or of affine type (Z = [0,+∞[δ and no real root is collinear to δ). In the
indefinite case (d) is a consequence of (b) and (c). □

3.2. Study of the action of root subgroups on I . The aim of this subsection is
to prove the following lemma. It will enable us to obtain decompositions of GR from
decompositions of G. In the reductive case, this lemma is already known, see [11, Propo-
sition 7.4.33]. The difficulty here is that the number of roots is infinite.

Lemma 3.3. Let x ∈ I . Then there exists a ∈ A such that Upm+
a fixes x. In particular,

if α ∈ Φ+, then for u ∈ K such that ω(u) ≫ 0, xα(u) fixes x.

Recall that ht : Q⊗ R → R is defined as follows: if (ni) ∈ RI , then

ht
(∑

i ∈ I

niαi

)
=
∑
i ∈ I

ni.

Lemma 3.4. Let β ∈ Φ+. Then inf{ht( τ
q ) | (q, τ) ∈ N∗ × (Q+ \ {0}), τ + qβ ∈ ∆} > 0.

Proof. Suppose this is not the case and choose (qn) ∈ (N∗)N and (τn) ∈ (Q+ \ {0})N such
that for n ∈ N, qnβ + τn ∈ ∆ and 1

qn
ht(τn)−→n → +∞ 0. Then 1

qn
τn−→n → +∞ 0. Up to

choosing a subsequence of ((qn, τn))n ∈N, we may assume that one of the following two
possibilities holds:
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• qnβ + τn ∈ ∆+
im, for all n ∈ N. In this case, β + 1

qn
τn ∈ Z = conv(∆+

im ∪ {0}). So
β ∈ Z: this is impossible since ∆re ∩ Z = ∅ (see Lemma 3.2).

• qnβ + τn ∈ ∆+
re, for all n ∈ N. Then the rays

R∗
+ (qnβ + τn) = R∗

+

(
β + 1

qn
τn

)
,

which are generated by real roots, converge to the ray R∗
+.β. By [24, Lemma 5.8]

one has β ∈ Z: this is impossible (similarly as above). □

Lemma 3.5. Let b ∈ A, β ∈ Φ+ and v ∈ K. Then there exists a ∈ b − Cv
f such that

xβ(v)Upm+
a xβ(−v) ⊂ Upm+

b .

Proof. Let a ∈ A and h ∈ Upm+
a . By definition of Upm+

a , we can write h =
∏

α ∈ ∆+

Xα(uα.cα), where cα ∈ gα,Z, uα ∈ K and α(a) + ω(uα) ≥ 0 for all α ∈ ∆+, where ∆+ is
equipped with a total order such that the height is an increasing map for ≤.

Let α ∈ ∆+. Set
Eα =

{
(p, q) ∈ N∗ × N

∣∣∣ pα+ qβ ∈ ∆+
}
.

We equip Eα with a total order ≤ such that for all (p, q), (p′, q′) ∈ Eα,

(p, q) ≤ (p′, q′) ⇒ ht(pα+ qβ) ≤ ht(p′α+ q′β).

By Proposition 3.1, we have

xβ(v)Xα(uα.cα)xβ(−v) =
∏

(p,q) ∈ Eα

Xpα+qβ

(
up

αv
qc(p,q),α

)
, (3.1)

where c(p,q),α ∈ gpα+qβ,Z, for (p, q) ∈ Eα.
Therefore

xβ(v)hxβ(−v) =
∏

α ∈ ∆+

∏
(p,q) ∈ Eα

Xpα+qβ

(
up

αv
qc(p,q),α

)
(3.2)

(the right hand side of this product is well-defined, as for any m ∈ N, there exist at most
finitely many triples (α, p, q) with α ∈ ∆+ and (p, q) ∈ Eα satisfying ht(pα+ qβ) = m).

Let α ∈ ∆+. Set

Ωα(uα) =
⋂

(p,q) ∈ Eα

{
a′ ∈ A

∣∣ (pα+ qβ)(a′) + ω(up
αv

q) ≥ 0
}
.

By (3.2), xβ(v)Xα(uα.cα)xβ(−v) belongs to Uma+
Ωα(uα). Moreover,

Ωα(uα) =
⋂

(p,q) ∈ Eα

{
a′ ∈ A

∣∣ pα(a′) + qβ(a′) + pω(uα) + qω(v) ≥ 0
}

⊃
⋂

(p,q) ∈ Eα

{
a′ ∈ A

∣∣∣∣ p

q + 1(α(a′) + ω(uα)) ≥ max
(
0,−β(a′) − ω(v)

)}

⊃ Ω′
α(a) :=

⋂
(p,q) ∈ Eα

{
a′ ∈ A

∣∣∣∣ p

q + 1(α(a′) − α(a)) ≥ max
(
0,−β(a′) − ω(v)

)}
.

We are looking for a ∈ A such that b ∈
⋂

α ∈ ∆+ Ω′
α(a). Otherwise said, we are looking

for a ∈ A such that, for all α ∈ ∆+ we have
p

q + 1 (α(b) − α(a)) ≥ max(0,−β(b) − ω(v)), ∀ (p, q) ∈ Eα. (3.3)
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Let λ ∈ A be such that αi(λ) = 1 for all i ∈ I. Then λ ∈ Cv
f . We search for a in the

form b− nλ, where n ∈ R+. Then (3.3) becomes
p

q + 1nα(λ) = n
ht(pα)
q + 1 ≥ max(0,−β(b) − ω(v)), ∀ (p, q) ∈ Eα. (3.4)

If (p, q) ∈ Eα, then ht(pα)
q+1 = ht(pα) if q = 0 and ht(pα)

q+1 = ht(pα)
q

q
q+1 ≥ 1

2 inf{ht(τ)
q | τ ∈

Q+, q ∈ N∗, τ + qβ ∈ ∆+} > 0 if q > 0 (by Lemma 3.4). Therefore (3.4) is satisfied for
n ≫ 0, which proves the Lemma 3.5. □

Lemma 3.6. Let b ∈ A and g ∈ U+. Then there exists a ∈ b−Cv
f such that gUpm+

a g−1 ⊂
Upm+

b .

Proof. Write g = xβ1(v1) . . . xβk
(vk), with k ∈ N, β1, . . . , βk ∈ Φ+ and v1, . . . , vk ∈ K.

We proceed by induction on k. If k = 1, this is Lemma 3.5. We assume that k ≥ 2 and that
there exists a′ ∈ b−Cv

f such that xβ1(v1) . . . xβk−1(vk−1)Upm+
a′ xβk−1(−vk−1) . . . xβ1(−v1) ⊂

Upm+
b . By Lemma 3.5, there exists a ∈ a′ −Cv

f such that xβk
(vk)Upm+

a xβk
(−vk) ⊂ Upm+

a′ .
Then gUpm+

a g−1 ⊂ Upm+
b , which proves the lemma. □

We can now prove Lemma 3.3: if x ∈ I , then there exists a ∈ A such that Upm+
a

fixes x. Indeed, we have x ∈ U+.ρ+∞(x), where ρ+∞ is defined in 2.3.2. Therefore there
exist g ∈ U+, b ∈ A such that x = g.b. By Lemma 3.5, there exists a ∈ A such that
g−1Upm+

a g ⊂ Upm+
b . Then Upm+

a fixes x.

3.3. Bruhat and Iwasawa decomposition.

Theorem 3.7. Let A ∈ A(G) and P be a bounded subset of A. Then there exists Ã ∈
A(GR) such that Ã contains P . If moreover A contains Qϵ∞, for some ϵ ∈ {−,+}, then
we can choose Ã = u.A, for some u ∈ U ϵϵ

R .

Proof. Write A = g.A, with g ∈ G. By [33, Proposition 1.5], g = xβ1(u1) . . . xβk
(uk)t, for

some k ∈ N, β1, . . . , βk ∈ Φ, u1, . . . , uk ∈ K and t ∈ T . As t.A = A, we may assume that
t = 1. For 1 ≤ i ≤ k, we choose a sequence (u(n)

i )n ∈N ∈ RN such that u(n)
i → ui.

Let a ∈ A. Then by Lemma 3.3, for n ≫ 0, xβ1(u(n)
1 )−1xβ1(u1) fixes xβ2(u2) . . . xβk

(uk).a
and thus we have (for n ≫ 0)

xβ1

(
u

(n)
1

)−1
xβ1(u1)xβ2(u2) . . . xβk

(uk).a = xβ2(u2) . . . xβk
(uk).a.

For n ≫ 0, we have xβ2(u(n)
2 )−1xβ2(u2)xβ3(u3) . . . xβk

(uk).a = xβ3(u3) . . . xβk
(uk).a. By

induction, we deduce that if g̃(n) = xβ1(u(n)
1 ) . . . xβk

(u(n)
k ), for n ∈ N, then we have

g̃(n)−1g.a = a for n ≫ 0.
Let a1, . . . , am ∈ A be such that conv(ai | 1 ≤ i ≤ m) ⊃ g−1.P . Let n ∈ N be

sufficiently large such that g̃(n)−1g fixes ai, for all i ∈ {1, . . . , m}. Then ai ∈ g̃(n)−1g.A∩A
for all i and as g̃(n)−1g.A ∩ A is convex, we have

g−1.P ⊂ A ∩ g̃(n)−1g.A.

Let h ∈ G be such that h.A = g̃(n)−1g.A and such that h fixes A ∩ g̃(n)−1g.A. Then
h−1g̃(n)−1g stabilizes A and induces an affine morphism on it. In particular h−1g̃(n)−1g
fixes conv(ai | 1 ≤ i ≤ m). Therefore g̃(n)−1g.x = x, for all x ∈ g−1.P and in particular,
P ⊂ g̃(n).A.
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Suppose now that A contains Qϵ∞, for some ϵ ∈ {−,+}. Then we can assume that
g fixes A ∩ A and thus that g fixes Qϵ∞. Then g ∈ GQϵ∞ and by § 2.2.4(3) we can
assume that βi ∈ Φϵ for all i ∈ {1, . . . , k}. Then g̃(n) ∈ U ϵϵ

R , which concludes the proof of
Theorem 3.7. □

Corollary 3.8.
(1) We have I = GR.A.
(2) For any local chamber C in I , there is u ∈ U εε

R such that C ⊂ u.A; in particular
C and Qε∞ are in a same GR−apartment.

Proof. Let x ∈ I (resp. C ⊂ I ). Let A ∈ A(G) containing x (resp. containing C ∪ Qε∞,
by (MA III) in § 2.3.1). Then by applying Theorem 3.7 to P = {x} (resp. P = C), we get
g ∈ GR (resp. u ∈ U εε

R ) such that x ∈ g.A (resp. C ⊂ u.A). □

We now assume that R∗ contains an element ϖ such that ω(ϖ) = 1 (this is Assump-
tion 2.1). Recall that we have ν(NR) = W v ⋉ Y . Let W+ = W v ⋉ Y + ⊂ W v ⋉ Y , where
Y + = Y ∩ T .

Proposition 3.9. Let A1, A2 ∈ A(GR). Then there exists g ∈ GR fixing A1 ∩ A2 such
that A2 = g.A1.

N.B. In this proposition, we may replace GR by any subgroup G′ of G containing GR.

Proof. We may assume A1 = A. Let g1 ∈ GR be such that A2 = g1.A. By (MA II), there
exists g2 ∈ G fixing A ∩ A2 such that A2 = g2.A. Hence g−1

1 g2 stabilizes A and thus it
belongs to N . As ν(N) = ν(NR) = W , there exists nR ∈ NR such that n−1

R g−1
1 g2 fixes A.

Then g := g1nR satisfies the condition of the proposition. □

Recall that two filters Ω1,Ω2 are said to be GR-friendly if there exists A ∈ A(GR)
containing Ω1 ∪ Ω2. Recall that C+

0 = germ0(Cv
f ). The following result is probably not

new in the reductive case, but we could not find a reference in this case.

Corollary 3.10 (Bruhat decomposition).
(1) Let x, y ∈ I and Fx, Fy be two facets based at x and y respectively. Then if x, y

are G-friendly, Fx, Fy are GR-friendly. This is in particular the case if x ≤ y.
(2) Let IR be the fixator of C+

0 in GR. Then
G+

R = IRW
+IR.

Proof. By [20, Proposition 5.17], there exists A ∈ A(G) containing Fx∪Fy. Let P ⊂ A be a
bounded element of Fx ∪Fy. Then by Theorem 3.7, there exists Ã ∈ A(GR) containing P .
Then Ã contains Fx ∪ Fy, which proves (1).

Let h ∈ G+
R. Then h.0 ≥ 0 and thus there exists A ∈ A(G) containing C+

0 and
h.C+

0 . Let g ∈ G be such that A = g.A and g fixes A ∩ A. Then by Theorem 3.7 and
Proposition 3.9, there exists g̃ ∈ GR such that g̃.A contains C+

0 and h.C+
0 and such that

g̃ fixes C+
0 . We have h.0 ≥ 0 and hence g̃−1h.0 ≥ g̃−1.0 = 0. Therefore g̃−1h.C+

0 ⊂ A is
an element of W+.C+

0 and hence there exists n ∈ NR (inducing an element of W+ on A)
such that g̃−1h.C+

0 = n.C+
0 . Then n−1g̃−1h ∈ IR and thus h ∈ g̃nIR = IRW

+IR. □

Recall the definition of “narrow” and of the fΩ from § 2.2.4.

Corollary 3.11 (Iwasawa decomposition). Let ϵ ∈ {−,+} and Ω be a narrow filter on A.
Then we have GR = U ϵϵ

R .NR.(GΩ ∩GR). In particular, we have GR = U ϵϵ
R .NR.IR.
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Proof. By definition of the fΩ, we have Ω ⊂ D(α, fΩ(α)), for all α ∈ Φ. In particular,
Ω ⊂

⋂
i ∈ I D(αi, fΩ(αi)) ∩ D(−αi, fΩ(−αi)), for all i ∈ I. As Ω is narrow, we deduce

that Ω ⊂
⋂

i ∈ I D(αi, fΩ(αi)) ∩ D(−αi,−fΩ(αi) + 1). Therefore the image of Ω in A/Ain

is bounded, where Ain =
⋂

i ∈ I ker(αi). Hence there exists a bounded filter Ω′ ⊂ A such
that Ω ⊂ Ω′ + Ain. By Lemma 2.4, we have GΩ = GΩ′ and thus we can assume that Ω is
bounded.

Let g ∈ GR. Then by the Iwasawa decomposition ([35, Proposition 4.7]), there exists
A ∈ A(G) containing Qϵ∞ and g.Ω. By Theorem 3.7, there exists u ∈ U ϵϵ

R such that u.A
contains g.Ω. Then u−1g.Ω ⊂ A.

Let h ∈ GR be such that hu−1g.A = A and h fixes A ∩ u−1g.A, see Proposition 3.9.
Then hu−1g.A = A and thus n := hu−1g ∈ NR. We have n|Ω = u−1g|Ω, so n−1u−1g ∈
GR ∩GΩ. □

Remark 3.12. Let G′ be a subgroup of G containing GR (or more generally a subgroup
of G containing U ϵϵ

R and NR, for some ϵ ∈ {−,+}). Then the proof of Corollary 3.11
actually shows that G′ admits an Iwasawa decomposition:

G′ = U ϵϵ
R .NR.

(
GΩ ∩G′) , for ϵ ∈ {−,+}.

If we write an element of G′, g = unh, with u ∈ U εε
R (or u ∈ U ε), n ∈ NR (or

n ∈ N) and h ∈ GΩ, then we have clearly that ρε∞(g.Ω) = n.Ω. So the class of n in
W = NR/H = N/T(R) is well determined by g, up to the right multiplication by the
fixator in W of Ω.

3.4. The twin building at infinity, sector germs and GR−apartments.

3.4.1. The Kac–Moody group G = G(K) acts on a twin building vI , see e.g. [31]. It is the
disjoint union of two buildings, the positive one vI + and the negative one vI −. Actually
vI ± is covered by a family vA±(G) of vectorial G−apartments permuted transitively by
G, more precisely in bijection with G/N , hence also in bijection with the set A(G) of
G−apartments in the masure I .

The canonical apartment of sign ± is vA± = ±T ⊂ A, with its vectorial facets of sign
± (as defined in § 2.1). The stabilizer (and fixator) of the canonical vectorial chamber
±Cv

f is the Borel subgroup B± = TU±. As G acts transitively on the vectorial chambers
of sign ±, the set of these chambers is G/B±.

One writes vA±(GR) = GR.
vA± the set of vectorial GR−apartments of sign ±.

3.4.2. On another hand, G permutes transitively the sector germs of sign ± in I and the
fixator of Q±∞ = germ∞(±Cv

f ) is GQ±∞ = T0U
± (see § 2.2.4(3)). Clearly B± = TU±

stabilizes Q±∞, and the stabilizer is actually reduced to B±: as (B±, N) is a BN pair in
G, a subgroup of G strictly greater than B± should contain a simple reflection in W v,
which does not stabilize Q±∞.

We get bijections

{sector germs of sign ±} ↔ G/B± ↔ {vectorial chambers of sign ±},
g.Q±∞ ↔ g ∈ G/B± ↔ g.(±Cv

f ).

These bijections are compatible with the above bijections between apartments: g.Q±∞ ⊂
h.A ⇐⇒ h−1g ∈ N.GQ±∞ = N.U± = N.B± ⇐⇒ g.(±Cv

f ) ⊂ h.vA±, for any g, h ∈ G.
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Lemma 3.13. We assume that R is principal and that K is its ring of fractions. Then any
sector germ in I (resp. any vectorial chamber in vI ±) is contained in a GR−apartment
(resp. a vectorial GR−apartment).

N.B.
(1) The hypothesis that K is the field of fractions of R is clearly necessary, as we know

that some sector germs in the masure Î of G over the completion K̂ of K are not
in a G−apartment.

(2) Actually for this result, there is no need to assume that R is dense in K.

Proof. By § 3.4.2, in particular the last equivalences, we may concentrate on the case of
vI ±. We use induction on the distance of a vectorial chamber to a vectorial GR−apart-
ment. Using galleries, we are reduced to prove that, if C1, C2 are adjacent chambers in
vI ± and C1 is in a vectorial GR−apartment, then so is C2. The set of chambers containing
the common panel of C1 and C2 is isomorphic to the projective line P1(K) and the induced
action of the fixator in G (resp. GR) of this panel on P1(K) is induced by an action of
SL2(K) ⊂ G (resp. SL2(R) ⊂ GR). But, as R is a principal ideal domain with field of
fractions K, we know that SL2(R) acts transitively on P1(K) (see e.g. [9, 1.17] or [27,
8.124 p. 265]). Our result follows. □

Proposition 3.14. We assume that R is a principal ideal domain, that K is its field of
fractions (and that R is dense in K for the valuation ω). We assume moreover that R sat-
isfies assumption (2.1). If a sector germ Q ⊂ I and a bounded set P ⊂ I are G−friendly
(i.e. contained in a same G−apartment), then they are also GR−friendly (i.e. contained
in a same GR−apartment).

Remark 3.15.
(a) A sector germ and a bounded subset of an apartment are not always contained

in a same apartment (even for the complete system of apartments of an affine
building). Think to the case of a tree.

(b) This proposition generalizes Theorem 3.7 (for some R) in a framework similar to
Iwasawa decomposition. But it is actually a simple corollary of this theorem.

(c) As a particular case of this proposition, we have that any local chamber (or facet)
and any sector germ in I are contained in a GR-apartment.

Proof. By Lemma 3.13, one may suppose (up to the action of GR) that Q ⊂ A and even
Q = Q±∞ (using the action of NR). Then the proposition is an easy consequence of
Theorem 3.7. □

4. Study of the action of Gtwin on the twin masure

Let k be any field, K = k(ϖ) and O = k[ϖ,ϖ−1], where ϖ is an indeterminate. In
this section, we study the groups G = G(K), Gtwin = GO (see § 2.2.1 for the definitions
of G and GO) and an other group Gpol lying between G and Gtwin (see § 4.1.2 for the
definition). Let ω⊕ : k(ϖ) ↠ Z∪{∞} (resp. ω⊖ : k(ϖ) ↠ Z∪{∞}) be the valuation such
that ω⊕(ϖ) = 1 (resp. ω⊖(ϖ−1) = 1). Let I⊕ (resp. I⊖) be the masure associated with
(G, k(ϖ), ω⊕) (resp.

(
G, k(ϖ−1), ω⊖

)
). We study the action of these three groups on the

twin masure I⊕ × I⊖.
In § 4.1 we introduce the framework.
In § 4.2, we prove the existence, for any two apartments A1, A2 of I⊕ × I⊖, of an

element g ∈ Gtwin (or Gpol) such that g.A1 = A2 and g fixes A1 ∩A2.
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In § 4.3, we study the existence of an apartment of I⊕ × I⊖ containing E⊕ ∪ E⊖, for
certain pairs of filters E⊕ ⊂ I⊕, E⊖ ⊂ I⊖. Equivalently, we are interested in certain
decompositions of Gtwin (or Gpol).

4.1. The groups Gtwin and Gpol.

4.1.1. The field. Let k be any field (e.g. a finite field) and ϖ be an indeterminate. The
field of rational functions over k is written K = k(ϖ). Then K is a global field when k is
finite and is a function field over k in any case. We refer to [38, 1] for more details on this
subject.

A valuation ring on K/k is a ring O′ ⊂ K such that k ⊊ O′ ⊊ K and such that for all
z ∈ K, we have either z ∈ O′ or z−1 ∈ O′. Such a ring is local (i.e it has a unique maximal
ideal vO′). A set of the form v = vO′ , for a valuation ring O′, is called a place of K (over
k). Then O′ is uniquely determined by v.

If P is a monic irreducible polynomial of k[ϖ], then there exists a unique valuation
ωP : k(ϖ) ↠ Z ∪ {∞} such that ωP (k∗P ) = {1}. Then vP := {z ∈ k(ϖ) | ωP (z) ≥ 0} is a
place of K. We write ω⊕ instead of ωϖ. Let ω⊖ : k(ϖ) ↠ Z ∪ {∞} be the valuation such
that ω⊖(k∗ϖ−1) = {1}. Then ω⊖ defines a place of K. We denote by ⊕ (resp. ⊖) the place
associated with ω⊕ (resp. ω⊖). By [38, Theorem 1.1.2], every place of K is either equal to
⊖ or to vP for some monic irreducible element P of k[ϖ]. Note that ⊖ is often called the
place at infinity of K, which explains why we sometimes index the objects related to ⊖ with
an “∞”. If v is a place of K, we denote by ωv (resp. Ov = {x ∈ K | ωv(x) ≥ 0}= Kωv≥ 0)
the associated valuation (resp. valuation ring). We have O⊕ = k[ϖ][(1 + ϖk[ϖ])−1] and
O∞ = O⊖ = k[ϖ−1][(1 +ϖ−1k[ϖ−1])−1].

We also set O = k[ϖ,ϖ−1] =
⋂

v̸=0,∞ Ov.
One may write K̂v the completion of K with respect to ωv and Ôv its ring of integers; K̂v

is a “local” field (a true local field if k is finite). In particular K̂⊕ = k((ϖ)) (resp. K̂∞ =
K̂⊖ = k((ϖ−1))) and Ô⊕ = k[[ϖ]] (resp. Ô∞ = Ô⊖ = k[[ϖ−1]]).
Remark 4.1. Our main motivation for this work is the definition of Kazhdan–Lusztig
polynomials in the Kac–Moody setting. For this, we could restrict ourselves to the case
where k is finite. This assumption is important when we count the number of lifts of a
path (to obtain finiteness results) but for many results, it would not simplify our proofs
to make this assumption. This is why for most results we make no assumption on k.
4.1.2. The Kac–Moody group, masures and the groups Gtwin and Gpol.

(1) The masures.
• Let S = (A,X, Y, (αi)i ∈ I , (α∨

i )i ∈ I) be a root generating system (as defined in
§ 2.1.1) and G = GS be the associated Kac–Moody group described in § 2.2.1.
We set G = G(K).

• Let v be a place of K. We denote by Îv the masure associated with (G, K̂v, ωv)
and by Iv the masure associated with (G,K, ωv) (see § 2.3). Let Gv = G(K̂v).
By [36, 5.8 3], the inclusion G × Av ↪→ Gv × Av induces a G-equivariant
inclusion Iv → Îv and we identify Iv with its image in Îv.

• The apartments of Îv (resp. Iv) are the subsets g.Av ⊂ Îv, for g ∈ Gv

(resp. g ∈ G). One writes Av(Gv) (resp. Av(G)) the set of these apartments.
They are associated respectively to the set of maximal split tori of G over K̂v

and K. By Corollary 3.8 Îv is the union of all apartments in Av(G) (hence
also in Av(Gv)). Otherwise said, Iv = Îv as a set.
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• The group Gv = G(K̂v) acts on Îv. The stabilizer of Av in Gv (resp. G) is
N(K̂v) (resp. N = N(K)).

• The group T(K̂v) acts by translations: to t ∈ T(K̂v) is associated the trans-
lation of vector v, where v ∈ A is determined by χ(v) = −ωv(χ(t)), for any
χ ∈ X (hence χ in the dual of A). The group of vectors of all these translations
is Y .

• The action of n ∈ N(K̂v) is affine with associated linear map the action of
the class n of n in the Weyl group W v = N(K̂v)/T(K̂v) = N(K)/T(K) =
N(k)/T(k) (this group acts Z−linearly on Y , hence R−linearly on A).

• One may choose an origin 0v of Av in such a way that N(k) fixes 0v. Then
the image Wv of N(K̂v) or N(K) in the affine group of Av is identified with
W v ⋉ Y .

• If v ∈ {⊖,⊕}, we set Cv
f,v = {x ∈ Av | αi(x) > 0, ∀ i ∈ I}. We set

C⊕ = germ0⊕(Cv
f,⊕) ⊂ A⊕ and C∞ = C⊖ = germ0⊖(−Cv

f,⊖) ⊂ A⊖. These
are the fundamental local chambers of I⊕ and I⊖.

(2) The twin group. We want to study the group of O-points of G (where O =
k[ϖ,ϖ−1]). As mentioned before, this notion is not well defined. We studied the
group GO = ⟨N(O), (Uα(O))α ∈ Φ⟩ in § 3. We now denote this group by Gtwin. As
suggested by Muthiah, it seems also natural to study the group Gpol, more “adelic”
in nature, defined below. We will use the fact that Gtwin is a subgroup of Gpol in
our study of Gtwin.

The group Gpol is the subgroup of G consisting of the elements g ∈ G such that
for every place v of K different from ⊕ and ⊖, we have g ∈ G(Ôv).

As Ôv is not a field, there are several possible definitions for G(Ôv). We define it
as the fixator of the point 0v for the action of G on the masure Iv = I (G,K, ωv).
By [22, Proposition 3.1], we actually have G(Ôv) = Gmin(Ôv), where Gmin is the
minimal group defined by Marquis. The group Gpol contains Gtwin.

Actually Ntwin = N(O), Ttwin = T(O) and Uα,twin = Uα(O) are well defined as
N,T,Uα are algebraic groups over k. We have Ntwin = NO, for the notation of
§ 2.2.2.

We denote by I⊕ (resp. I⊖) the fixator of C⊕ (resp. C⊖) in G. We denote by
Itwin (resp. I∞) the fixator of C⊕ (resp. C⊖) in Gtwin and by Ipol the fixator of
C⊕ in Gpol.

Remark 4.2. When G is a split reductive group over k, it is a well defined functor over
the k−algebras and we saw in § 2.2.1 that GO (as defined in § 1.2.1) is equal to G(O).
So Gtwin = G(O) = G(∩v̸=0,∞Ov) = ∩v̸=0,∞G(Ov). And G(Ov) is the fixator in G of
0v ∈ Iv, by [11, 6.13.b, 7.1 and 7.4.4]. So Gtwin = Gpol in this reductive case.

One may ask wether Gtwin = Gpol in general. The answer is unknown. For affine SLn

and n = 2, the answer is unknown, but for n ≥ 3 there is equality, see Remark 6.9.

4.1.3. Affine roots. Following [10, Appendix B] there is a system of affine roots:
Φa = Φ × Z = {α = α+ rξ |α ∈ Φ, r ∈ Z}, where ξ is a symbol (see also below).

Φ+
a+ =

{
α+ rξ

∣∣∣α ∈ Φ+, r ≥ 0
}

; Φ+
a− =

{
α+ rξ | α ∈ Φ+, r < 0

}
Φ−

a+ =
{
α+ rξ

∣∣α ∈ Φ−, r > 0
}

; Φ−
a− =

{
α+ rξ

∣∣α ∈ Φ−, r ≤ 0
}

Φa+ = Φ+
a+ ∪ Φ−

a+ and Φa− = −Φa+ = Φ−
a− ∪ Φ+

a−
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So Φa+ may be considered as a system of positive roots in Φa; but there is no associated
basis (as Φ− has no smallest root).

One may consider the vector space Atwin = A ⊕ R. So Φa is a set of linear forms
on Atwin: α ∈ Φ ⊂ X is a linear form on A and we set α(R) = {0}; ξ(A) = {0} and
ξ|R = Id|R. Atwin contains three interesting subspaces A⊕ = A ⊕ {1}, A⊖ = A ⊕ {−1}
(affine subspaces) and vA = A ⊕ {0}.

If v = ⊕ or v = ⊖, Av is the (canonical) apartment associated to T in the masure
Iv = I (G,K, ωv), see § 4.1.2(2) above.

vA = A is, more or less, the (twin) apartment associated to T in the twin building
vI = vI +∪vI − of G over K. Actually the (twin) apartment is the union of vA+ = T ⊂ vI +

and vA− = −T ⊂ vI −, where T is the Tits cone in A (see § 2.1.2(1)).

4.1.4. The affine Weyl group. To each α = α + sξ ∈ Φa is associated a reflection rα in
Atwin with respect to the hyperplane (=wall) Mtwin(α) with equation (α+ sξ)(x, p) = 0:
rα+sξ(x, p) = (x− (α(x) + sp)α∨, p).

On vA = A it acts as rα (reflection associated to the root α, with respect to the wall
kerα). On A⊕ = A⊕{1} ≃ A (resp. A⊖ = A⊕{−1} ≃ A) it acts as the usual reflection r⊕

α,s

(resp. r⊖
α,−s) with respect to the affine hyperplane (=wall) M⊕(α + s) (resp. M⊖(α − s))

with equation α(x) + s = 0 (resp. α(x) − s = 0); its associated linear map is rα.
Clearly the generated group is Wa = W v ⋉ Q∨ where Q∨ =

∑
α ∈ Φ Zα∨ = ⊕Zα∨

i acts
by transvections: α∨ ∗ (x, p) = (x + pα∨, p). The group Wa is not a Coxeter group in
general.

4.1.5. The root groups in Gtwin. For α = α + sξ ∈ Φa there is a group embedding xα :
(k,+) → Uα, a 7→ xα(ϖs.a). Its image is the group Uα+sξ = xα+sξ(k) ⊂ Gtwin ⊂ G. Then
Uα,twin = Uα(O) = ⟨Uα+sξ | s ∈ Z⟩ =

⊕
s ∈Z Uα+sξ.

The link with the groups vUα,r of § 2.3.1 is as follows: ⊕Uα,r = (⊕Uα,r+1) × Uα+rξ,
⊕Uα,r/(⊕Uα,r+1) ≃ Uα+rξ. But ⊖Uα,r = xα(Kω−≥ r) = (⊖Uα,r+1)×Uα−rξ, ⊖Uα,r/(⊖Uα,r+1)
≃ Uα−rξ.

We may consider the action of G on I⊕ ⊔ I⊖ ⊔ vI ⊃ A⊕ ⊔A⊖ ⊔ vA. Then, by § 2.3.1,
the fixed point set of xα+sξ(k) (for k ∈ k∗) in A⊕ ⊔A⊖ ⊔vA is the intersection D⊕(α+ s)⊔
D⊖(α− s) ⊔Dv(α) of the half-apartment Dtwin(α+ sξ) = {a ∈ A | (α+ sξ)(a) ≥ 0} with
A⊕ ⊔ A⊖ ⊔ vA. (Recall that ξ = 1 (resp. ξ = −1, ξ = 0) on A⊕ (resp. A⊖, vA).

Lemma 4.3. For any α ∈ Φ, one has Uα,twin = Uα ∩Gtwin = Uα ∩Gpol.

Proof. One has Uα,twin ⊂ Uα ∩Gtwin ⊂ Uα ∩Gpol. If xα(a) ∈ Uα ∩Gpol (with a ∈ K), then,
∀ v ̸= 0,∞, xα(a) fixes 0v in I (G,K, ωv), so ωv(a) ≥ 0 and a ∈ O, xα(a) ∈ Uα,twin. □

For ε = + or ε = −, one considers U εε
twin = U ϵϵ

O = ⟨Uα+sξ | α+ sξ ∈ Φε
a− ∪ Φε

a+⟩ ⊂ U ε.
Let us define also U ε

twin := U ε ∩Gtwin and U ε
pol := U ε ∩Gpol.

Clearly U εε
twin ⊂ U ε

twin ⊂ U ε
pol. As we saw in § 2.2.1, the first inclusion is strict in general.

For the second inclusion one does not know wether it may be an equality.

4.1.6. The group Ntwin = N(O) (= Npol). We have T(k) ⊂ T(O) = Ttwin ⊂ T = T(K).
For λ ∈ Y = Hom(Mult,T), we may define ϖλ := λ(ϖ)∈T(O) = Ttwin, as ϖ ∈ O∗.

Then one has:
Ttwin = T(O) =

{
h.ϖλ

∣∣∣h ∈ T(k), λ ∈ Y
}
,

Ntwin = N(O) =
{
n0.ϖ

λ
∣∣∣n0 ∈ N(k), λ ∈ Y

}
,
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and the Weyl group is

W := Ntwin/T(k) =
{
w.ϖλ

∣∣∣w ∈ W v, λ ∈ Y
}

= W v ⋉ Y.

Actually the image of n0.ϖ
λ ∈ Ntwin in Ntwin/T(k) is w.ϖλ if the class of n0 ∈ N(k) in

N(k)/T(k) is w.
All this may be seen e.g. from [40] page 204: N(O) is generated by T(O) and elements

mi such that mitm
−1
i = ri(t) (for t ∈ T(O)), the mi satisfy the braid relations and m2

i =
ηi ∈ Hom(Y,C∗) such that ηi(λ) = (−1)⟨λ,α∨

i ⟩, i.e. with classical notation ηi = (−1)α∨
i

(see e.g. the relation s̃(−1) = (s̃)−1 = s̃.(−1)α∨
i in [31, p. 196]).

N.B.
(1) In particular, for v = ⊕ or v = ⊖, Wv = N(K)/{t ∈ T(K) | ωv(χ(t)) = 0, ∀ χ ∈

X} = N(K)/T(Ov) is also equal to W = Ntwin/T(k): any action of an element of
N(K) on Av is induced by the action of an element of Ntwin. The same things are
true for the action on vA.

(2) We shall see below in § 4.1.7, Lemma 4.4, that N ∩Gtwin = Ntwin = N ∩Gpol =:
Npol and T ∩Gtwin = Ttwin = T ∩Gpol =: Tpol.

(3) By the Iwasawa decomposition (Remark 3.12) Gtwin = Gpol ⇐⇒ Itwin = Ipol.

4.1.7. Stabilizers or fixators in Gtwin or Gpol of canonical apartments Av or vA. Follow-
ing [31, Corollary 10.4.3], the fixator (resp. stabilizer) of vA in G = G(K) is T (resp. N).
Let now v = ⊕ or v = ⊖. We know that vA is at infinity of Av, that vI is at infinity of
Iv, and that the action of G on Iv induces at infinity its action on vI . So it follows that
the stabilizer of Av in G is N = N(K) and, then, that its fixator is T(Ov).

(a) We prove below that the fixator (resp. stabilizer) in Gtwin or Gpol of vA is T(K) ∩
Gtwin = T(K)∩Gpol = T(O) = Ttwin (resp. N(K)∩Gtwin = N(K)∩Gpol = N(O) =
Ntwin).

(b) We have the inclusions T(K) ∩Gpol ⊃ T(K) ∩Gtwin ⊃ T(O) = Ttwin. Let us prove
T(K) ∩ Gpol ⊂ T(O). We have T ≃ Multd and (p1, . . . , pd) ∈ T(K) = (K∗)d fixes
0v in I (G,K, ωv) for all v ̸= 0,∞ if, and only if, ∀ j,∀ v, ωv(pj) = 0 if, and only
if, ∀ j, pj ∈ k[ϖ,ϖ−1]∗. We get that the above inclusions are equalities.

(c) We remarked above (in § 4.1.6) that N(K)/T(K) is equal to N(O)/T(O) and N(O)
is in Gtwin ⊂ Gpol. So N(K) ∩Gtwin = N(K) ∩Gpol = N(O) = Ntwin follows from
(b). And (a) is proved.

(d) Now, for v = ⊕ or v = ⊖, the fixator (resp. stabilizer) in Gtwin or Gpol of Av is
T(Ov) ∩ T(O) = T(k) (resp. N(K) ∩Gtwin = N(K) ∩Gpol = N(O) = Ntwin).

Lemma 4.4. (U±(K).N(K)) ∩Gtwin = U±
twin.N(O) and N(K) ∩Gtwin = N(O) = Ntwin.

N.B. We write U±
twin = U±(K) ∩ Gtwin. The same things are true with Gpol instead of

Gtwin (just replacing U±
twin by U±(K) ∩Gpol = U±

pol) and with T instead of N.

Proof. The last equality is proved above in § 4.1.7(d) Let g = u.n with g ∈ Gpol, n ∈ N
and u ∈ U±. Let v be a place of K, v ̸= 0,∞. As g ∈ Gpol, it fixes 0v for the action
of G on I (G,K, ωv). Let us consider the retraction ρ onto the canonical apartment Av

of I (G,K, ωv) associated to U± i.e. to Q±∞ (see § 2.3.2). Then the maps from Av to
itself given by x 7→ n.x and x 7→ ρ(g.x) coincide. So n fixes 0v; we have proved that n ∈
N ∩Gpol = Ntwin (§ 4.1.7(d) above) and thus u ∈ U± ∩Gpol (and u ∈ U± ∩Gtwin = U±

twin
if g ∈ Gtwin). □
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4.1.8. (Linear) action of N(O) = Ntwin on Atwin. We shall define an action ν : Ntwin →
Aut(Atwin).

By § 4.1.6 Ntwin = {n0.ϖ
λ | n0 ∈ N(k), λ ∈ Y }, we ask that:

• n0 acts linearly on Atwin = A ⊕ R, trivially on R and by its linear action νv on A
(as W v = N(k)/T(k)).

• t ∈ Ttwin = T(O) acts by transvections: ν(t) = trv : Atwin → Atwin, x 7→ x+vξ(x),
with v ∈ A determined by χ(v) = −ω⊕(χ(t)), ∀ χ ∈ X.

In particular for t = ϖλ, v = −λ ∈ Y ⊂ Y ⊗ R = A (see e.g. [7, 2.9]).
This action induces the known actions of Ntwin ⊂ N on vA, A⊕ and A⊖. For A⊖, one

has to remark that ϖλ acts by a translation of vector v′ given by χ(v′) = −ω⊖(χ(ϖλ)) =
ω⊕(χ(ϖλ)) = χ(λ), ∀ χ ∈ X. This agrees with the fact that ξ = −1 on A⊖.

4.1.9. Root datum in Gtwin or Gpol ? We want to indicate some other relations between
the groups defined above. For this we consider the definition of root datum given in [33,
1.5 p. 505]. This is close to the definition of Bruhat and Tits in [11] or of Rémy (as “donnée
radicielle jumelée”) in [31]. We shall not get all the axioms and moreover, mainly as Φa is
associated to Wa which is not a Coxeter group, the known results for these more classical
root data would not be available.

One considers the triple (Gtwin, (Uα+rξ)α+rξ ∈ Φa , H = T(k)) .

(1) (DR1) H is a subgroup of Gtwin ⊂ Gpol, the Uα+rξ are non trivial subgroups
normalized by H.

This is clear.
(2) (DR2) For {α, β} ⊂ Φ a prenilpotent pair and r, s ∈ Z, the commutator subgroup

[Uα+rξ, Uβ+sξ] is contained in the group generated by the Upα+qβ+(pr+qs)ξ for p, q ∈
N \ {0} and pα+ qβ ∈ Φ.
This comes from the explicit commutation relations of Uα and Uβ (cf. [31, 9.2.2
p. 207]): [xα(u), xβ(v)] =

∏
p,q xpα+qβ(up.vq.Cα,β

p,q ) with Cα,β
p,q ∈ Z.

(3) There is no need of (DR3) as the system Φa is reduced.
(4) (DR4) For α = α + sξ ∈ Φa and u ∈ Uα+sξ, u ̸= 1, there exist u′, u′′ ∈ U−α−sξ =

U−α such that m(u) = u′uu′′ conjugates Uγ+tξ into Urα+sξ(γ+tξ), for all γ+tξ ∈ Φa.
Moreover, ∀ u, v ∈ Uα+sξ, u, v ̸= 1, one asks m(u)H = m(v)H.

We prove this in three steps:
(a) Let u = xα+sξ(a) = xα(ϖs.a) ∈ Uα+sξ \ {1} ⊂ Uα \ {1} (i.e. a ∈ k∗). To

calculate in ⟨Uα,U−α⟩, one may use the group SL2 and the classical formula:(
1 0

−d−1 1

)(
1 d
0 1

)(
1 0

−d−1 1

)
=
(

0 d
−d−1 0

)
=
(

1 d
0 1

)(
1 0

−d−1 1

)(
1 d
0 1

)
.

So one defines u′ = u′′ = x−α(−(ϖsa)−1) = x−α−sξ(−a−1). Then mα+sξ(u) =
mα(u) = u′uu′′ ∈ N(O) = Ntwin. Clearly mα+sξ(u).H = mα+sξ(v).H in the
above situation, for v ∈ Uα+sξ \ {1} (by a calculation in SL2).

(b) One has to identify the action of mα+sξ(u) ∈ Ntwin on Atwin by the action ν
of § 4.1.8.
Let v = ⊕, ε = + or v = ⊖, ε = −. On Av, ν(mα+sξ(u)) = ν(mα(u)) is the
reflection of W with respect to the following wall of Av: M(α+ ωv(ϖs.a)) =
M(α+ εs) = Av ∩Mtwin(α+ sξ), where Mtwin(α+ sξ) is ker(α+ sξ). On vA,
ν(mα+sξ(u)) = ν(mα(u)) = rα.
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So the action of mα+sξ(u) ∈ Ntwin on Atwin is the reflection rα+sξ defined in
§ 4.1.4.

(c) One has to deduce from this that mα+sξ(u) conjugates Uγ+tξ into Urα+sξ(γ+tξ).
Actually, using the known results for G acting on I⊕ = I (G,K, ω⊕), one gets that

mα+sξ(u) conjugates Uγ+tξ into a subgroup of Ûrα(β),n ∩Gtwin (if rα+sξ(γ+ tξ) = rα(β) +
nξ), where Ûrα(β),n =

∏
m ≥ n Urα(β)+mξ = xrα(β)(ϖnÔ⊕). Now, if we calculate with G

acting on I⊖ = I (G,K, ω⊖), one gets that mα+sξ(u) conjugates Uγ+tξ into a subgroup of
Gtwin and ⊖Ûrα(β),n =

∏
m ≤ n Urα(β)+mξ = xrα(β)(ϖnÔ∞). As ϖnÔ⊕ ∩O∩ϖnÔ∞ = ϖnk,

one gets the expected result using Lemma 4.1.5.

Remark 4.5.
(1) It is easy to prove that m(u′) = m(u′′) acting on Atwin is also rα+sξ = r−α−sξ.
(2) One would like to say that u (resp. u′, u′′) fixes the half-apartment Dtwin(α+sξ) =

{(x, p) ∈ Atwin | (α + sξ)(x, p) = α(x) + sp ≥ 0} (resp. Dtwin(−α − sξ)). The
boundary of these half-apartments is the wall M(α+sξ) = ker(α+sξ), fixed point
set of rα+sξ.

Actually this is satisfied if we consider the restricted actions on Av ⊂ Iv and vA ⊂ vI .

(5) (DR5?) For ε = ±, let Uε := ⟨Uα+rξ | α + rξ ∈ Φaε⟩. Is it true that H.Uε ∩ U−ε

= {1}?
It seems difficult to answer these two questions (which are actually equivalent).
If we look at G acting on I⊕, then H.U+ fixes the fundamental local chamber

C⊕ ⊂ A⊕ (i.e. H.U+ ⊂ Itwin, “positive” Iwahori subgroup of Gtwin). But, if
α+ rξ ∈ Φa− = Φ+

a− ∪ Φ−
a− and u ∈ Uα+rξ \ {1}, then u does not fix C⊕; so we get

only the following weaker axiom.
(DR5”) H.Uε ∩ Uα+rξ = {1}, for any α+ rξ ∈ Φa(−ε).

N.B.
(1) The axiom (DR5’) of [33] (weaker than (DR5”)) has no meaning here, as it involves

“simple roots”, which do not exist in Φa.
(2) To deduce (DR5) from (DR5”), one should generalize [31, Theorem 3.5.4]. This is

not at all clear (at least up to now).
(3) A good question may be: is H.U+ equal to Itwin ? (see § 4.3.2)

(6) (DRG?) Is Gtwin equal to ⟨H, (Uα+rξ)α+rξ ∈ Φa⟩?
This fails in general, even if this looks like the definition of Gtwin: Gtwin ⊃

G′
twin := ⟨H, (Uα+rξ)α+rξ ∈ Φa⟩. But in G′

twin one has, a priori, only a subgroup of
N(O) = Ntwin, due to the fact that one finds only a subgroup of T(O) = Ttwin.
It seems that G′

twin ∩ Ttwin is generated by H and the mα+rξ(u)mα+sξ(v)−1. In
particular the Weyl group associated to G′

twin is certainly Wa = W v ⋉Q∨.

4.1.10. Twin and twinnable apartments. We saw that the system of apartments A⊕(G) =
G.A⊕ = G(K).A⊕ of I⊕ is smaller than the system of apartments A⊕(G⊕) = G⊕.A⊕ =
G(K̂⊕).A⊕ of Î⊕ associated to the completion K̂⊕ = k((ϖ)). As in § 3, we also consider the
still smaller system of apartments (called twinnable apartments) A⊕(Gtwin) = A⊕twin =
Gtwin.A⊕. By § 4.1.7, A⊕(Gtwin) is in bijection with Gtwin/Ntwin or with the set Ttwin of
maximal split tori in G conjugated to T by Gtwin (that we may call “twin maximal split
tori”).
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There are analogous things on the negative side: A⊖(Gtwin) = Gtwin.A⊖. The bijec-
tions A⊕(Gtwin) ↔ Gtwin/Ntwin ↔ Ttwin ↔ A⊖(Gtwin) tell that a positive (resp. negative)
twinnable apartment has a unique twin in A⊖twin (resp. A⊕twin). Classically a twin apart-
ment is a pair (A⊕, A⊖) = g.(A⊕,A⊖) ∈ A⊕(Gtwin) × A⊖(Gtwin) (for g ∈ Gtwin). We
denote by Atwin the set of twin apartments: Atwin = Gtwin.(A⊕,A⊖). If v ∈ {⊖,⊕}, we
call the apartments of Av(Gtwin) “twinnable apartments”.

There is also a notion of twinnable apartment in the twin building vI = vI + ⊔ vI − of
G: vAtwin = Gtwin.

vA (cf. § 4.1.3) and, as vAtwin = Gtwin/Ntwin (cf. § 4.1.7), the three
sets vAtwin, A⊕(Gtwin), A⊖(Gtwin) are in one to one correspondance.

Note that the apartments of vI are often called twin in the classical litterature (see
§ 4.1.3). Of course we shall (now) avoid this terminology.

There are also analogous systems of apartments forGpol. We define similarly A⊕(Gpol) =
Gpol.A⊕ ≃ A⊖(Gpol) = Gpol.A⊖ and Apol = Gpol.(A⊖,A⊕). This is similar to the case of
Gtwin sinceGpol/Npol ≃ Tpol. As Atwin ≃ Gtwin/Ntwin, Apol ≃ Gpol/Npol andNtwin = Npol

(§ 4.1.6), one has Atwin = Apol ⇐⇒ Gtwin = Gpol.
Implicitly, we will refer to Gtwin instead of Gpol: a twin apartment is a Gtwin-twin apart-

ment. We will sometimes refer to Gpol-twin apartments (or Gpol-twinnable apartments).
We say that two sets or filters Ω1,Ω2 in I⊕ ∪ I⊖ are twin-friendly (resp. pol-friendly)

if there exists A ∈ Atwin (resp. A ∈ Apol) containing Ω1 ∪ Ω2.

Proposition 4.6. Let (x, y) ∈ I⊕ × I⊖ be a twin-friendly pair (i.e. there is a twin
apartment A⊕ × A⊖ such that x ∈ A⊕ and y ∈ A⊖). One considers local chambers
Cx ⊂ I⊕, Cy ⊂ I⊖ with respective vertices x, y. Then (Cx, Cy) is a twin-friendly pair
(i.e. there is a twin apartment A′

⊕ ×A′
⊖ such that Cx ∈ A′

⊕ and Cy ∈ A′
⊖).

N.B. We may replace the local chambers by local facets or preordered segment germs.

Proof. We are easily reduced to prove that, if (x, y) (resp. (x,Cy)) is twin friendly, then
(Cx, y) (resp. (Cx, Cy)) is twin-friendly. And we may suppose x ∈ A⊕ and y ∈ A⊖
(resp. Cy ⊂ A⊖). Let C1 be a local chamber in A⊕ at x, with the same sign as Cx

and (C1, C2, . . . , Cn = Cx) be a gallery of local chambers (in the tangent space Tx(I⊕)).
We argue by induction on n, the case n = 1 is clear and we are reduced to prove the case
n = 2: C1 and Cx are adjacent. One writes F the local panel common to C1 and Cx. If
F is in no wall, then Cx ⊂ cl(C1) is in A⊕, and we are done. Otherwise F is in a wall
M⊕(α + r) = Mtwin(α + rξ) ∩ A⊕. One of the two half-apartments Dtwin(±(α + rξ))
contains y (resp. Cy), we may suppose it is Dtwin(α + rξ) ⊃ D⊕(α+ r). Now there is
an apartment A of I⊕ containing D⊕(α+ r) ∪ Cx and u ∈ ⊕Uα,r such that A = u.A⊕
(see [7, 1.4.3] and [35, 5.7.7]). Now ⊕Uα,r+1 fixes u−1.Cx and ⊕Uα,r = Uα+rξ × ⊕Uα,r+1
(by § 4.1.5). So there is u′ ∈ Uα+rξ such that Cx ⊂ u′.(A⊕). As Uα+rξ ⊂ Gtwin fixes
Dtwin(α+ rξ) ∩ I⊖, we are done. □

4.2. Existence of an isomorphism fixing the intersection of two apartments.
In this subsection, we prove that if A and B are twin apartments, then there exists
g ∈ Gtwin such that g.A = B and g fixes A ∩B (i.e, g fixes (A⊕ ∩B⊕) ∪ (A⊖ ∩B⊖)) (see
Theorem 4.12). This result is crucial in order to define a retraction centered at C∞ for
example.

To that end, we begin by studying, for any place v on K, the properties of G0v∩U+U−N ,
where G0v is the fixator in G of 0v ∈ Iv. We then deduce a description of Gpol ∩ U±.
Using these results, we prove a weak version of Theorem 4.12: we prove it in the case
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where A⊕ ∩B⊕ and A⊖ ∩B⊖ contain a chamber based at vertices of type 0 (i.e elements
of G.0⊕ or G.0⊖). We then deduce the theorem.

4.2.1. Intersections of G0v (fixator of 0v in G) with U+U−N or U+U−. Let v be a place
on K with associated valuation ω. We work in Iv.

One defines Q∨
R,+ = ⊕ℓ

i=1 R≥ 0 α
∨
i ⊂ Av and, for µ =

∑ℓ
i=1 aiα

∨
i , ht(µ) =

∑ℓ
i=1 ai. One

also chooses an element ζ ∈ Cv
f ∩ Y ⊂ Av.

The action of T = T(K) on Av is given by translations. More precisely t ∈ T acts by the
translation ν(t) = νω(t) of vector ν(t) = νω(t) ∈ Av = Y ⊗R given by: χ(ν(t)) = −ω(χ(t))
for any χ ∈ X. In particular ν(ϖλ

v ) = −λ (if ϖv is a uniformizing parameter for ω).
We define Tω(Q∨

R,+) := ν−1
ω (Q∨

R,+).

Lemma 4.7.
(1) (U+U−N) ∩G0v ⊂ U+U−Tω(Q∨

R,+)W v and (U+U−T ) ∩G0v ⊂ U+U−Tω(Q∨
R,+).

(2) We have (U+U−) ∩G0v = (U+ ∩G0v)(U− ∩G0v) = U+
0vU

−
0v.

Proof. (1) Let u+ ∈ U+, u− ∈ U− and n ∈ N be such that u+u−n ∈ G0v . We write
n = tw̃, with t ∈ T and w̃ any representative of w ∈ W v = N/T fixing 0v (e.g. w̃ ∈ N(k)).
So u+u−t ∈ G0v . We write µ = t.0v ∈ Av (i.e. µ = ν(t) ∈ Av). We consider the retractions
ρ±∞ of I onto Av with center Q±∞ = germ∞(±Cv

f ). Now x := u−t(0v) = u−(µ) satisfies
ρ−∞(x) = µ and ρ+∞(x) = 0v (as u+(x) = 0v). By [18, 7.6.1] = [19, 6.5.1] or [17, 3.1],
one has −µ ∈ −Q∨

R,+, so ν(t) = µ ∈ Q∨
R,+ and t ∈ Tω(Q∨

R,+).
(2) Let u+ ∈ U+, u− ∈ U− be such that u+u− ∈ G0v . Let x = u−.0v. Then we

have ρ−∞(x) = 0v and ρ+∞(x) = u+u−.0v = 0v, since ρ+∞(x) is the unique element of
U+.x∩Av. Using [17, Corollary 4.4], we deduce x ∈ Av, and hence x = ρ−∞(x) = u−.0v =
0v = u+u−.0v, which proves the lemma. □

4.2.2. Application to Gpol. We consider now all the places of K and the associated valua-
tions.

We are first looking at U± ∩Gpol =: U±
pol ⊃ U±

twin.
From § 2.2.4(2) we know that, for ω = ωv, v ̸= ⊕,⊖, Uma+

0v =
∏

α ∈ ∆+ Xα(gα,Z⊗Kω ≥ 0),
where Kω ≥ 0 = {x ∈ K | ω(x) ≥ 0} = Ov and Upm+

0v = Uma+
0v ∩G is the fixator of 0v in U+

for the action on Iω (cf. § 2.2.4(3)). As the product decomposition of Uma+ is unique
(cf. § 2.2.3) and O =

⋂
v ̸= ⊕,⊖ Kω ≥ 0, one gets:

U± ∩Gpol =

 ∏
α ∈ ∆+

Xα(gα,Z ⊗ O)

 ∩G.

And clearly, if Ω ⊂ Iv (v = ⊕ or ⊖), its fixator in U± ∩Gpol is:

U±(Ω) ∩Gpol =

 ∏
α ∈ ∆+

Xα

(
gα,Z ⊗ Oω ≥ fΩ(α)

) ∩G.

where Oω ≥ fΩ(α) = {x ∈ O | ω(x) ≥ fΩ(α)}.
One may also write a formula for U±(Ω⊕ ∪ Ω⊖) ∩Gpol when Ω⊕ ⊂ I⊕, Ω⊖ ⊂ I⊖.
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4.2.3. A particular case of Theorem 4.12.
(1) We may include α∨

1 , . . . , α
∨
ℓ in a Q−basis of Y ⊗ Q. So, taking a “dual basis”

there is (χ1, . . . , χd) ∈ Xd that is an R−basis of A∗ (i.e. a Q−basis of X ⊗ Q)
and satisfies χi(α∨

j ) = miδi,j for 1 ≤ i ≤ d, 1 ≤ j ≤ ℓ with mi ∈ N> 0. Ac-
tually in the simply connected case (i.e. when ⊕ℓ

i=1Zα∨
i is a direct factor in Y ),

one may suppose that (χ1, . . . , χd) is a Z−basis of X and mi = 1. We have
Q∨

R,+ = {x ∈ A | χi(x) ≥ 0 for 1 ≤ i ≤ ℓ;χi(x) = 0 for i > ℓ}. And for
µ =

∑ℓ
i=1 aiα

∨
i , we have ai = χi(µ)/mi and ht(µ) =

∑ℓ
i=1 χi(µ)/mi (notation

of § 4.2.1).
(2) Let v be a place on K (typically v ̸= ⊕,⊖), and ω = ωv. We write νω the action

of T on Av ⊂ Iv associated to v and Tω(Q∨
R,+) = ν−1

ω (Q∨
R,+). As χi(νω(t)) =

−ω(χi(t)), we have νω(t) = −
∑d

i=1
ω(χi(t))

mi
α∨

i for any t ∈ T . So t ∈ Tω(Q∨
R,+) ⇐⇒

ω(χi(t)) ≤ 0 for 1 ≤ i ≤ ℓ and ω(χi(t)) = 0 for i > ℓ. And then ht(νω(t)) =
−
∑d

i=1
ω(χi(t))

mi
.

(3) Let us now consider u+ ∈ U+, u− ∈ U− and t ∈ T such that u+u−t ∈ Gpol (actually
by the proof of Lemma 4.7(1), the study of U+U−N ∩ Gpol may be reduced to
this case). By Lemma 4.7(1), we have then t ∈ Tω(Q∨

R,+), ∀ ω ̸= ω⊕, ω⊖. So
ω(χi(t−1)) ≥ 0 for 1 ≤ i ≤ ℓ and ω(χi(t−1)) = 0 for i > ℓ. This means that
χi(t−1) ∈ O for 1 ≤ i ≤ ℓ and χi(t−1) ∈ O∗ for i > ℓ.

Lemma 4.8. Let Cx ⊂ I⊖ and Cy ⊂ I⊕ be local chambers with respective vertices x and
y. We suppose x and y of type 0, i.e they are conjugated by G to 0⊖ and 0⊕ respectively.
We consider two twin apartments A1, A2 ∈ Atwin containing Cx ∪ Cy. Then there is
g ∈ Gtwin fixing Cx and Cy such that A2 = g.A1.

Proof. The action of Gtwin permutes transitively the twin apartments and the action of
the stabilizer Ntwin of A in Gtwin permutes transitively the local chambers in A⊕, of a
given sign and with a vertex of type 0. So one may suppose (A1, A2) = (A, A), y = 0⊕,
Cy = C⊕ ⊂ A⊕, Cx ⊂ A⊖, both contained in A∩A. Then, by Proposition 3.9 and § 4.1.10,
there exist +g ∈ Gtwin ∩ GC⊕ and −g ∈ Gtwin ∩ GCx such that A = +gA = −gA. We
would like that +g = −g or, more generally, that +g = −gt with t ∈ T fixing A. But from
+gA = −gA and +g,−g ∈ Gtwin, we get only +g = −gn, with n ∈ Ntwin = N ∩Gtwin.

One writes +g = u+
1 u

−
1 t1 and +g = −gn = u+

2 u
−
2 t

′
2n = u+

2 u
−
2 n2, with u+

1 , u
+
2 ∈ U+,

u−
1 , u

−
2 ∈ U−, t′2, t1 ∈ T , n2 = t′2n ∈ N and moreover u+

1 u
−
1 t1 ∈ Gtwin ∩GC⊕ (so u+

1 , u
−
1 ∈

GC⊕ and t1 fixes A⊕ by Proposition 2.4) and u+
2 u

−
2 t

′
2 = −g ∈ GCx ∩Gtwin (so u+

2 , u
−
2 ∈ GCx

and t′2 fixes A⊖ by Proposition 2.4). We want to prove that n2 fixes Cx and Cy.
One writes n2 = t2w̃ with t2 ∈ T and w̃ any representative of w ∈ W v = N/T in

N(k) ⊂ Gtwin. In particular w̃ fixes 0v in any masure Iv.
(a) But +g = u+

1 u
−
1 t1 = u+

2 u
−
2 t2w̃ is in Gpol and fixes 0⊕ in I⊕, so g2 := u+

2 u
−
2 t2 is in

Gpol. By § 4.2.3(1), we get χi(t−1
2 ) ∈ O, ∀ i = 1, . . . , d. Moreover g2 = +gw̃−1 fixes

0⊕ in I⊕, so ω⊕(χi(t−1
2 )) ≥ 0 (by Lemma 4.7(1) and § 4.2.3(2)), χi(t−1

2 ) ∈ k[ϖ]
and ω⊖(χi(t−1

2 )) ≤ 0.
(b) Now u+

2 and u−
2 fix Cx ⊂ I⊖, so one may write u+

2 u
−
2 = u−

3 u
+
3 t3 with u−

3 ∈
U−, u+

3 ∈ U+, t3 ∈ T , all fixing Cx (by § 2.4). In particular ω⊖(χi(t3)) = 0,
∀ i = 1, . . . , d by § 4.2.3(2) (formula for νω(t)).

(c) But g2 = u−
3 u

+
3 t3t2 ∈ Gpol, so, by § 4.2.3(3) and Lemma 4.7(2), χi(t3t2) ∈ O,

∀ i = 1, . . . , d. We also know that g2 fixes 0⊕ in I⊕. So, by Lemma 4.7(2),
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t3t2 ∈ Tω⊕(−Q∨
R,+), i.e. (by § 4.2.3(2)) ω⊕(χi(t3t2)) ≥ 0. We deduce from this that

χi(t3t2) ∈ k[ϖ], hence ω⊖(χi(t3t2)) ≤ 0. But ω⊖(χi(t3)) = 0 (by (b) above), so
ω⊖(χi(t2)) ≤ 0. Comparing with (a), we get ω⊖(χi(t±1

2 )) = 0. But χi(t−1
2 ) ∈ k[ϖ]

by (a), so χi(t2) ∈ k. Hence t2 fixes A⊖ and A⊕, n2 = t2w̃ fixes 0⊖ and 0⊕.
(d) Now T = Multd, we write θj the jth coordinate map. As χ1, . . . , χd ∈ X is

a Q−basis of X ⊗Z Q, we have nj ∈ Z>0 and bj,i ∈ Z with njθj =
∑

i bj,iχi.
So θj(t2)nj =

∏
i χi(t2)bj,i ∈ k. As θj(t2) ∈ K = k(ϖ), we get θj(t2) ∈ k, i.e. t2 ∈

T(k) ⊂ Gtwin and n2 = t2w̃ ∈ Gtwin. So u+
2 u

−
2 = +gn−1

2 ∈ Gtwin and t′2 ∈ Gtwin;
one may replace −g = u+

2 u
−
2 t

′
2 by u+

2 u
−
2 i.e. suppose t′2 = 1. Symmetrically we get

also t1 ∈ Gtwin ∩ T(K) and one may replace +g by u+
1 u

−
1 i.e. suppose t1 = 1.

(e) We argue now in the tangent twin building T0⊕(I⊕) and use that +g = u+
1 u

−
1 =

u+
2 u

−
2 t2w̃ with u±

1 fixing C⊕, t2 fixing A⊕. But u+
2 u

−
2 = +g(t2w̃)−1 fixes 0⊕ in

I⊕, and so do u+
2 , u−

2 by § 4.2.1(2). Hence u+
2 fixes C⊕ = germ0⊕(Cv

f ) and
u−

2 fixes C−
0 := germ0⊕(−Cv

f ) ⊂ A⊕. We have then clearly C−
0 = u−

2 .C
−
0 =

(u+
2 )−1u+

1 u
−
1 (t2w̃)−1.C−

0 = (u+
2 )−1u+

1 u
−
1 w̃

−1.C−
0 . We consider now the retraction

ρ+ of T0⊕(I⊕) onto T0⊕(A⊕) with center C⊕. As u+
2 , u

+
1 and u−

1 fix C⊕, we get
C−

0 = ρ+(C−
0 ) = w̃−1.C−

0 . We have proved that the class w of w̃ in W v is trivial.
We could have taken w̃ = 1 and then n2 = t2 fixes A as expected. □

4.2.4. Conclusion. We now extend the result of Lemma 4.8 to arbitrary pairs A,B of
Atwin. We begin with the case where A⊕ ∩B⊕ and A⊖ ∩B⊖ have nonempty interior and
then drop this condition.
Lemma 4.9. Let A,B ∈ Atwin be such that A⊕ ∩ B⊕ and A⊖ ∩ B⊖ have non-empty
interior. Then there exists g ∈ Gtwin such that g.A = B and g fixes A ∩ B (i.e g fixes
pointwise (A⊕ ∩B⊕) ⊔ (A⊖ ∩B⊖)).
Proof. Using isomorphism of apartments, we may assume that A = A. We fix an element
of y ∈ A⊖ ∩ B⊖. As A⊕ ∩ B⊕ (resp. A⊖ ∩ B⊖) has non-empty interior, there exists
n ∈ N∗ such that A⊕ ∩ B⊕ (resp. A⊖ ∩ B⊖) contains an element Cx of Gtwin.( 1

nY + C⊕)
(resp. Cy of Gtwin.( 1

nY +C⊖)). Let K(n) = k(ϖ1/n), where ϖ1/n is an indeterminate such
that (ϖ1/n)n = ϖ. Let G(n) = G(K(n)). We add an exponent (n) when we consider an
object corresponding to G(n) (for example we have I

(n)
⊕ ,I

(n)
⊖ , G(n)

twin, A(n)
⊕ , . . .). We have

I
(n)
⊕ ⊃ I⊕ and I

(n)
⊖ ⊃ I⊖. As an affine space, A(n)

⊕ can be identified with A⊕. However,
it contains more walls, and we have Y (n) = 1

nY . Therefore by Lemma 4.8 applied with
G

(n)
twin instead of Gtwin, there exists gy ∈ G

(n)
twin fixing Cx ∪ Cy and such that gy.A = B.

By Proposition 3.9, there exists hy ∈ Gtwin such that hy.A⊕ = B⊕ (hence hy.A = B) and
hy fixes A⊕ ∩B⊕. Then g−1

y hy stabilizes A⊕ and is an element of G(n)
twin. Therefore g−1

y hy

is an element of N (n)
twin. Moreover g−1

y hy fixes Cx and thus g−1
y hy fixes A⊕. Using § 4.1.7

we deduce that g−1
y hy fixes A⊖. Hence hy fixes (A⊕ ∩B⊕) ⊔Cy. By Proposition 3.9, there

exists hx ∈ Gtwin such that hx.A = B and hx fixes A⊖ ∩B⊖. So h−1
x hy stabilizes A⊖ and

fixes Cy: it is the identity on A⊖. This proves that hy fixes A⊖ ∩ B⊖ and completes the
proof of the lemma. □

The following proposition corresponds to [34, Proposition 2.9(1)] in the twin case.
Proposition 4.10. Let v ∈ {⊖,⊕}. Let Av be a twinnable apartment in the masure Iv.
Let M be a wall of Av and C be a (local) chamber of Iv not in Av, but dominating a
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(local) panel of M . Then there exist two twinnable apartments A1,v and A2,v of Iv such
that:

(1) A1,v and A2,v contain C,
(2) A1,v′ ∩ Av′ and A2,v′ ∩ Av′ (resp. A1,v′ ∩ Av′ and A1,v′ ∩ A2,v′, A2,v′ ∩ Av′ and

A1,v′ ∩ A2,v′) are two opposite half-apartments of Av′ (resp. A1,v′, A2,v′) for both
v′ ∈ {⊖,⊕}.

Proof. Using apartment isomorphisms, we may assume that Av = Av. Let Dv be a half-
apartment of Av delimited by M . By [34, Proposition 2.9(1)], there exists an apartment
B̃v of Iv containing Dv and C. By § 2.3.1, we can write B̃v = xα(y).Av, for some α ∈ Φ
and y ∈ K, with xα(y) fixing Dv. Let z ∈ k∗ϖZ be such that ωv(y − z) > ωv(y).

Let A1,v = xα(z).Av. Then

A1,v ∩ B̃v = xα(y).
(
xα(−y).A1,v ∩ xα(−y).B̃v

)
= xα(y).(xα(z − y).Av ∩ Av).

As C ̸⊂ Av, we have B̃v ∩ Av = Dv. Moreover Dv = {a ∈ Av | α(a) + ωv(y) ≥ 0} and
Av ∩ xα(z − y).Av = {a ∈ Av | α(a) + ωv(z − y) ≥ 0}. Therefore Av ∩ xα(z − y).Av ⊋ Dv

and thus Av ∩ xα(z − y).Av contains any local chamber of Av which dominates some
local panel of M . Therefore A1,v contains Dv and C. Moreover if v′ ∈ {⊖,⊕}, then
A1,v′ ∩ Av′ =: Dv′ is a half-apartment. Let now A2 = x−α(z−1).A. Then A2,v′ ∩ Av′ =
Av′ \Dv′ and r := x−α(−z−1)xα(z)x−α(−z−1) ∈ Ntwin induces reflections with respect to
the wall {a ∈ Av′ | α(a) + ωv′(z) = 0}. Hence we have (2) and thus we have (1), which
proves the proposition. □

Lemma 4.11. Let A,B ∈ Atwin. Then for all (x, y) ∈ (A⊕ ∩ B⊕) × (A⊖ ∩ B⊖), there
exists g ∈ Gtwin fixing x, y and such that g.A = B.

Proof. Considering local chambers Cx ⊂ B⊕, Cy ⊂ A⊖ and a third twin apartment B′

containing Cx∪Cy (by Proposition 4.6), we are reduced to consider the case where A⊕∩B⊕
or A⊖ ∩B⊖ contains a local chamber. We choose the case A⊖ ∩B⊖ ⊃ Cy; the other case
is similar. Let C (resp. C ′) be a positive local chamber of A⊕ (resp B⊕) based at x and
Γ = (C1, . . . , Cn) be a minimal gallery of local chambers at x from C = C1 to C ′ = Cn.
Let P be the panel dominated by both C1 and C2. There are two cases: either the panel P
is not contained in any wall of A⊕, or the panel P is contained in exactly one wall of A⊕.

In the first case, any half-apartment containing C1 contains C2 and thus the enclosure
of C1 contains C2. By (MA II) we deduce that A⊕ contains C2 so we can replace Γ by the
gallery (C2, . . . , Cn).

We now assume that we are in the second case. Let D1,⊕, D2,⊕ be the two half-
apartments of A⊕ delimited by P . By Proposition 4.10, there exist twin apartments A1
and A2 such that A⊕ ∩Ai,⊕ = Di,⊕ for both i ∈ {1, 2}. Then A⊖ ∩A1,⊖ and A⊖ ∩A2,⊖ are
two opposite half-apartments of A⊖. Therefore A1,⊖ or A2,⊖ contains Cy and there exists
i ∈ {1, 2} such that A ∩Ai ⊃ Di,⊕ ∪ Cy. By Lemma 4.9, there exists g ∈ Gtwin such that
g.A = Ai and g fixes x and Cy. By induction, we deduce that we can assume that A ∩B
contains Cn and Cy. Then by Lemma 4.9, there exists g ∈ Gtwin fixing x, y and such that
g.A = B, which proves the lemma. □

Theorem 4.12. Let A,B ∈ Atwin. Then there exists g ∈ Gtwin such that g.A = B and
such that g fixes A ∩B (i.e g fixes pointwise (A⊕ ∩B⊕) ⊔ (A⊖ ∩B⊖)).
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Proof. We identify A and A. We assume that A⊕ ∩B⊕ and A⊖ ∩B⊖ are non-empty, since
otherwise we can use Proposition 3.9. Fix y ∈ A⊖ ∩B. By (MA II) in § 2.3.1, A⊕ ∩B⊕ is
a finite intersection of half-apartments in A⊕. In particular it is convex and the closure of
its relative interior (A⊕ ∩B⊕)• (the interior of A⊕ ∩B⊕ considered inside the support V0
of A⊕ ∩ B⊕ in A⊕). We regard A⊕ as an R-vector space and V0 as an affine subspace of
A. Let V⃗0 be the direction of V0. If V⃗ is a vector subspace of V⃗0, we say that V⃗ satisfies
the property P if for all x ∈ (A⊕ ∩B⊕)•, there exists hx,V⃗ ∈ Gtwin such that hx,V⃗ .A = B

and hx,V⃗ fixes (x + V⃗ ) ∩ A⊕ ∩ B⊕ and y. Then {0⊕} satisfies P by Lemma 4.11. Let
V⃗ be a vector subspace of V⃗0 satisfying P. Assume V⃗ ̸= V⃗0 and take v ∈ V⃗0 \ V⃗ . Let
h ∈ Gtwin be such that h.A = B and such that h fixes A⊕ ∩ B⊕ (the existence of such
an h is provided by Proposition 3.9). For x ∈ (A⊕ ∩ B⊕)•, define nx = h−1.hx,V⃗ ; it is in
Ntwin and fixes (x + V⃗ ) ∩ A⊕ ∩ B⊕ (hence all x + V⃗ ). Let wx be the image of nx in the
Weyl group W = Ntwin/T(k), that we regard as a group of automorphisms of the affine
space A⊕. As W is countable, there exist x′, x′′ ∈ (A⊕ ∩ B⊕)• such that x′, x′′ ∈ x+ Rv,
x′ ̸= x′′ and wx′ = wx′′ . Then wx′ fixes x′′ + V⃗ and x′ + V⃗ and thus it fixes x+ (V⃗ + Rv).
So hx′,V⃗ fixes (x + V⃗ + Rv) ∩ A⊕ ∩ B⊕. Therefore V⃗ + Rv satisfies P and by induction
we deduce that V⃗0 satisfies P. In particular, there exists hy ∈ Gtwin such that hy.A = B
and such that hy fixes A⊕ ∩B⊕ and y. We conclude the proof of the theorem by a similar
reasoning. □

Remark 4.13. The theorem above is true if we replace Atwin and Gtwin by Apol and
Gpol respectively. The proof is similar since we mainly used that Gtwin ⊂ Gpol and our
preliminary study of Gpol.
4.3. Decompositions of Gtwin and Gpol.

4.3.1. Twin Iwasawa decomposition. Recall that C⊕ = germ0⊕(Cv
f ) is the fundamental

positive local chamber in A⊕ and I = I⊕ (resp. Itwin) is the fixator of C⊕ in G = G(K)
(resp. Gtwin = GO). From Corollary 3.11 and Remark 3.12, we get:
Proposition 4.14. Let ϵ ∈ {−,+}. Then we have:

Gtwin = U ϵϵ
twin.Ntwin.Itwin and Gpol = U ϵϵ

twin.Ntwin.(I⊕ ∩Gpol).
N.B. In A⊖, one considers the fundamental negative local chamber C∞ =germ0⊖(−Cv

f )
and its fixator or stabilizer the negative Iwahori subgroup I⊖ of G (acting on I⊖). One
writes I∞ = I⊖ ∩Gtwin and the (negative) Iwasawa decomposition may be written:

Gtwin = U εε
twin.Ntwin.I∞ and Gpol = U ϵϵ

twin.Ntwin.(I⊖ ∩Gpol).
Lemma 4.15. Let ε = + or ε = − and A ∈ A⊕twin such that A ⊃ Qε∞. Then there is a
u ∈ U ε

twin such that A = u.A⊕.
N.B.

(1) u is unique and Corollary 3.8(2) tells, more or less, that U εε
twin is “dense” in U ε

twin.
(2) Such results are also true for all pairs “sector germ ⊂ twinnable apartment of I⊕

or I⊖” with u ∈ G fixing the sector germ, by § 2.2.4(3) and § 2.3.1.

Proof. There are g1 ∈ Gtwin, g2 ∈ U ε such that A = g1.A⊕ = g2.A⊕. So g−1
2 g1 ∈

StabG(A⊕) = N and g1 ∈ Gtwin ∩ (U ε.N) = U ε
twin.Ntwin by Lemma 4.4. One writes

g1 = u.n with u ∈ U ε
twin and n ∈ N (stabilizing A⊕), so A = u.A⊕ and the lemma is

proved. □
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4.3.2. Decomposition of twin Iwahori subgroups? We saw in § 2.2.4 that the fixator in G
of the fundamental positive local chamber C⊕ in I⊕, may be written

I⊕ = U+
C⊕
.U−

C⊕
.T(Kω⊕=0), with U±

C⊕
= I⊕ ∩ U±.

We would like such a decomposition of Itwin = I⊕ ∩Gtwin or Ipol = I⊕ ∩Gpol. But this is
impossible in general as shown by the following counterexample for G = SL2 (semi-simple).

Then I⊕ is the group of the products ( 1 u
0 1 )( 1 0

v 1 )( z 0
0 z−1 ) with u, v, z ∈ K, ω⊕(u) ≥ 0,

ω⊕(v) > 0 and ω⊕(z) = 0. But the fixator in SL2(K) of 0v ∈ Iv is SL2(Ov) [11], so such a
product fixes 0v if, and only if, ωv(z) ≤ 0, ωv(zv) ≥ 0, ωv(z−1u) ≥ 0 and ωv(z(1+uv)) ≥ 0;
hence it is in Gpol if, and only if, z−1 ∈ O, zv ∈ O, z−1u ∈ O and z(1+uv) ∈ O. Actually
then

( 1 u
0 1 )( 1 0

v 1 )
(

z 0
0 z−1

)
=
(

z(1+uv) z−1u

zv z−1

)
∈ SL2(O),

and SL2(O) = (SL2)twin as O is a principal ideal domain and SL2 is semisimple.
One chooses P ∈ k[ϖ] an irreducible polynomial, P ̸= ϖ and writes Bezout 1 = −ϖu′ +

Pv′, with u′, v′ ∈ k[ϖ], we may choose v′ ∈ k. One chooses z−1 := P, z−1u := u′, zv := ϖ,
i.e. u = u′/P, v = Pϖ, so z(1 + uv) = P−1(1 + u′ϖ) = v′. Hence g := ( v′ u′

ϖ P ) =
( 1 u′/P

0 1 )( 1 0
P ϖ 1 )( P −1 0

0 P
) = ( 1 0

ϖ/v′ 1 )( 1 u′v′
0 1 )( v′ 0

0 v′−1 ) is in the Iwahori subgroup of SL2 and
in (SL2)twin, but its (unique) decomposition in U+U−T involves factors not in (SL2)pol.
Nevertheless the last decomposition shows that g is in U+H = ⟨H, (Uα+rξ)α+rξ ∈ Φa+⟩.
This agrees with the fact that, in reductive cases, the answer to the question in § 4.1.9
DR5, NB3 is yes.

4.3.3. Groups associated with spherical vectorial facets. We choose now to work in I⊕,
but the similar results in I⊖ are also true.

So we consider a spherical vectorial facet F v ⊂ A⊕.
(1) Following [31, 6.2.1, 6.2.2, 6.2.3, 12.5.2] we associate to the facet F v a parabolic

subgroup of G = G(K) with a Levi decomposition: P (F v) = M(F v) ⋉ U(F v).
Actually M(F v) is a K-split reductive subgroup with maximal K-split torus T and
root system Φm(F v) = {α ∈ Φ | α(F v) = 0}. It is generated by T and the Uα for
α ∈ Φm(F v). And U(F v) is the smallest normal subgroup of P (F v) containing all
Uα for α ∈ Φu(F v) = {α ∈ Φ | α(F v) > 0}.

(2) Parabolics and Gtwin. One defines Utwin(F v) := U(F v) ∩ Gtwin, Mtwin(F v) :=
⟨Ttwin;Uα(O), α ∈ Φm(F v)⟩ and Ptwin(F v) := Mtwin(F v) ⋉ Utwin(F v).

One has clearly Utwin(F v) ⊃ ⟨Uα(O) | α ∈ Φu(F v)⟩, Mtwin(F v) ⊂ M(F v) ∩
Gtwin and Ptwin(F v) ⊂ P (F v) ∩ Gtwin. These three inclusions may certainly be
strict in general.

From the definition in § 4.1.5, one gets easily that U++
twin ⊂ Ptwin(F v) when

F v ⊂ Cv
f .

One may also define Upol(F v) := U(F v) ∩Gpol, Mpol(F v) := M(F v) ∩Gpol and
Ppol(F v) := Mpol(F v) ⋉ Upol(F v).

(3) Twin Iwasawa decomposition. Let C1 be a local facet in A⊕ or A⊖. As in § 4.3.1 or
§ 4.1.2(2) one defines Itwin(C1) or Ipol(C1) as the stabilizer (or fixator) in Gtwin or
Gpol of C1. So, from Remark 3.12, one gets the following Iwasawa decompositions:

Gtwin = Ptwin(F v).Ntwin.Itwin(C1)
and

Gpol = Ptwin(F v).Ntwin.Ipol(C1) = Ppol(F v).Npol.Ipol(C1).
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4.3.4. Parabolo-parahoric subgroups. We consider now a splayed chimney r0 = cl(F, F v)
in A⊕ (with direction F v) and its germ R0.

(1) Following [34, 6.5], we define Pµ(r0) = Pµ(R0) = Mµ(r0)⋉U(F v), whereMµ(r0) =
Mµ(R0) is the parahoric subgroup of the reductive group M(F v), fixator of the
local facet F (or of r0,R0, as r0 is in the enclosure of F for the reductive group
M(F v)). From [34, 6.5, 6.6], we get that the group Pµ(r0) fixes the chimney germ
R0. It depends only on R0, but it is not clear that it is the whole fixator of R0
in G.

(2) We consider also the subgroup Pµ
twin(r0) = Pµ

twin(R0) = Mµ
twin(r0) ⋉ U(F v) of

Pµ(r0) ∩Gtwin, where Mµ
twin(r0) = ⟨T(k);Uα+rξ, α ∈ Φm(F v), (α+ rξ)(F ) ≥ 0⟩ ⊂

Mµ(r0) ∩Gtwin.
Actually Mµ

twin(r0) is the parabolic subgroup of the affine Kac–Moody group Mtwin(F v)
associated to the local facet F ⊂ A⊕. To see precisely Mtwin(F v) as an affine Kac–Moody
group, one has to write it M(F v)(k[ϖ,ϖ−1]) where M(F v) is the split reductive algebraic
group (or group-scheme) with root system Φm(F v) and split maximal torus T.

Theorem 4.16. With the above notations in § 4.3.3 and § 4.3.4, we have:
Gtwin = Pµ

twin(r0).Ntwin.Itwin(C1)

N.B.
(a) This is the mixed twin Iwasawa decomposition. It mixes an Iwasawa decomposition

in Gtwin and a Bruhat decomposition (if C1 ⊂ A⊕) or a Birkhoff decomposition (if
C1 ⊂ A⊖) in the Kac–Moody group Mtwin(F v) (which is actually reductive).

(b) One has also Gpol = Pµ
twin(r0).Ntwin.Ipol(C1).

Proof. Let g ∈ Gtwin (resp. g ∈ Gpol). From § 4.3.3, one gets p ∈ Ptwin(F v), n ∈ Ntwin,
q ∈ Itwin(C1) (resp. q ∈ Ipol(C1)) and u ∈ Utwin(F v), m ∈ Mtwin(F v) with g = pnq and
p = um.

Then one uses the Bruhat (resp. Birkhoff) decomposition in the affine Kac–Moody group
Mtwin(F v) associated to the local facets F ⊂ A⊕ and n(C1) ⊂ A⊕ (resp. n(C1) ⊂ A⊖).
So:

m = p1n1q1 with p1 ∈ Mµ
twin(r0), n1 ∈ Ntwin ∩Mtwin(F v)

and
q1 ∈

〈
T(k);Uα+rξ, α ∈ Φm(F v), (α+ rξ)(n(C1)) ≥ 0

〉
.

Now n−1q1n ∈ Itwin(C1) and g = up1n1nn
−1q1nq is in Pµ

twin(r0).Ntwin.Itwin(C1)
(resp. in Pµ

twin(r0).Ntwin.Ipol(C1)). □

Corollary 4.17. Let C be a local facet in I⊕ (resp. in I⊖) and R a splayed chimney
germ in I⊕. Then C and R are always contained in a same twin apartment A: R ⊂ A⊕
and C ⊂ A⊕ (resp. C ⊂ A⊖).

N.B. Mutatis mutandis, one may also clearly suppose R ⊂ I⊖.

Proof. There are g, h ∈ Gtwin with C1 = g−1C ⊂ A⊕ (resp. C1 = g−1C ⊂ A⊖) and R0 =
h−1R ⊂ A⊕. From Theorem 4.16, one gets p ∈ Pµ

twin(R0), n ∈ Ntwin and q ∈ Itwin(C1)
such that h−1g = pnq. Now p fixes R0 (by § 4.3.4) and q fixes C1 (by definition). So
C = gC1 = hpnC1 ⊂ hp(A⊕) (resp. ⊂ hp(A⊖)) and R = hR0 = hpR0 ⊂ hp(A⊕). We
conclude now with A = hp(A) as hp ∈ Gtwin. □
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Remark 4.18. When R is a sector germ and C ⊂ I⊕, this corollary is a consequence of
Corollary 3.8(2). When R is still a sector germ and C ⊂ I⊖, then this corollary may also
be deduced from Corollary 3.8(2): actually we have bijections between the sets of sector
germs in I⊕ or in I⊖ (and with the set of chambers in vI ).

When R is no longer a sector germ and C ⊂ I⊖, this corollary or Theorem 4.16 gives
a kind of non trivial link between I⊕ and I⊖. It may be considered as a weak twinning
of I⊕ and I⊖. The twinning that may be hoped is a Birkhoff decomposition looking like
Theorem 4.16, with C1 ⊂ A⊖ and r0 replaced by a local facet in A⊕ (well chosen with
respect to C1). See § 4.4 below.
4.4. Expected Birkhoff decompositions and retraction centered at C∞. Let H
be Gtwin (resp. Gpol), let E+ ⊂ A⊕, E− ⊂ A⊖ be either points or local facets and let
HE± be their fixators in H. Then a Birkhoff decomposition in H is a decomposition
H = HE+ .StabH(A).HE− ; one may also consider a decomposition H ′ = HE+ .(StabH(A) ∩
H ′).HE− for a subsemigroup H ′ of H. As in § 2.3.2, the existence of such a decomposition
means that any h+.E+ and h−.E− (for h+, h− ∈ H, with some conditions in the case
of H ′) are in a same twin apartment A ∈ Atwin, if H ⊂ Gtwin (or in a same Gpol−twin
apartment A ∈ Apol, if H ⊂ Gpol). In the case where G is a reductive group, then
I = (I⊕,I⊖) is a twin building with a strongly transitive action of the affine Kac–
Moody group Gtwin = Gpol (see Remark 4.2. Then the Birkhoff decomposition, for Gtwin,
is well known (see e.g. [31]).

4.4.1. Conjectures. One would perhaps have liked that any pair of chambers Cx ⊂ I⊕,
Cy ⊂ I⊖ is twin-friendly, i.e. there exists a twin apartment (A⊕, A⊖) with Cx ⊂ A⊕,
Cy ⊂ A⊖. This would correspond to a Birkhoff decomposition H = HE+ .NH(A).HE− for
H = Gtwin and E+, E− as in § 4.4.

But the experience of masures leads to think that this is not true in general. A coun-
terexample is actually given below in § 6. From this it is reasonable to think that a
condition like x ≤ y or y ≤ x has to be added.

For Muthiah’s purposes, we may restrict to the case Cy ⊂ A⊖ ⊂ I⊖, Cy = C∞ =
germ0(−Cv

f ) is the fundamental chamber in I⊖. Then we write 0⊕ the element 0 ∈ A⊕.
We give below two conjectures, the first one closely related to Muthiah’s framework.

Conjecture 4.19. For x ∈ I⊕ such that x ≤ 0⊕ or x ≥ 0⊕, then (Cx, C∞) is twin
friendly.

Actually Muthiah needs a weaker result: for x ∈ I⊕, with x ≤ 0⊕ and (x, 0⊖) twin
friendly, then, for any z ∈ [0⊕, x], the pair (z, 0⊖) is twin friendly.

But, using Proposition 4.6 and the following Proposition 4.21, we get from such a result
the general conjecture above (at least for x

◦
≤ 0⊕).

Enhanced conjecture 4.20. For x ∈ I⊕ and y ∈ I⊖, we write x ≤ y (resp. x ≥
y) if there is a twin apartment A = (A⊕, A⊖) with x ∈ A⊕, y ∈ A⊖ and opA(y) ≥ x
(resp. opA(y) ≤ x), where opA(y) is the point in A⊕ opposite y.

Then, for x′ ∈ I⊕ and y′ ∈ I⊖ with x′ ≤ x and y ≤ y′ (resp. x′ ≥ x and y ≥ y′) one
has x′ ≤ y′ (resp. x′ ≥ y′).

This second conjecture seems to be a reasonable generalization of the result known in
masures.

Note that these two conjectures are certainly more reasonable, if we replace everywhere
≤ by

◦
≤ and ≥ by

◦
≥.
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In a recent preprint [30], Manish Patnaik looks at the above conjecture in the untwisted
affine case, i.e. for loop groups. Unfortunately the Birkhoff decomposition he gets is, up
to now, proved only in a completion of the Kac–Moody group.

Proposition 4.21. For x
◦
≤ y in I⊕, there is a z ∈ I⊕ such that x ∈ [z, y] and (z, C∞)

is twin friendly.

Proof. One may suppose x ̸= y. There is an apartment A⊕ in I⊕ containing x and y.
One may consider in A⊕ the spherical vectorial facet F v of −→

A⊕ containing −→yx, the ray
δ = y + R+

−→yx and the splayed chimney r = r(F (y, F v), F v). By Corollary 4.17, there is a
twin apartment (A′

⊖, A
′
⊕) such that C∞ ⊂ A′

⊖ and A′
⊕ contains the germ R of r, i.e. A′

⊕
contains a shortening r(F (y+k−→yx, F v), F v) of r (for some k ∈ R supposed ≥ 1). Then A′

⊕
contains z = y + k−→yx (and the ray z + R+

−→yx). So (z, C∞) is twin friendly and x ∈ [z, y]
(as k ≥ 1). □

4.4.2. Retraction centered at C∞. Our main motivation to study twin masures is the study
of the Kazhdan–Lusztig polynomials introduced by Muthiah in [29] in the Kac–Moody
frameworks. His definition involves the cardinalities of sets of the form

Ktwinϖ
λKtwin ∩ I∞ϖ

µKtwin/Ktwin, (4.1)
where Ktwin is the fixator of 0⊕ in Gtwin and λ, µ ∈ Y + = Y ∩ T (and ϖλ is defined in
§ 2.2.2). The strategy he proposes to compute these cardinalities follows the steps below.

(1) Define a retraction ρC∞ : I⊕, ≤ 0⊕ = {x ∈ I⊕ | x ≤ 0⊕} → A⊕, ≤ 0⊕ = A⊕ ∩
I⊕, ≤ 0⊕ centered at C∞. Then the coset (4.1) is in bijection with{

x ∈ I⊕, ≤ 0⊕

∣∣ dv(0⊕, x) = −λ and ρC∞(x) = −µ
}
, (4.2)

(see § 5.2 for the definition of dv).
Recall that for us, following Tits, ϖλ acts on A⊕ by the translation of vector −λ:
see § 4.1.8.

(2) Study the images by ρC∞ of line-segments of I⊕, ≤ 0⊕ . He proves in [29] that such
an image is a piecewise linear path of A⊕ satisfying certain conditions. He calls
such paths I∞−Hecke paths.

(3) Prove that an I∞−Hecke path from 0⊕ to −µ in A⊕, of shape −λ, has only a finite
(computable) number of liftings as line segments of I⊕, ≤ 0⊕ from 0⊕ to x ∈ I⊕
with dv(0⊕, x) = −λ.

(4) Prove that, for λ and µ given, there is only a finite number of I∞−Hecke paths
from 0⊕ to −µ in A⊕, of shape −λ. Together with 3. this gives the cardinality of
the set (4.2).

In [29], Muthiah achieves steps 2 and 3 in general and step 4 in certain cases (when G
is untwisted affine of type A, D or E, see [29, Theorem 5.54]). Step 4 is achieved in full
generality in [23, Corollary 3.11]. However, step 1 is only conjectural.

We now explain step 1, i.e. how to define ρC∞ under the assumption that (Gtwin)+
⊕ (or

(Gtwin)−
⊕) admits a Birkhoff decomposition (which is still conjectural). Steps 2 and 3 will

be explained with great details in § 5, see particularly § 5.3, § 5.9 and Theorem 5.9. In
step 3, it seems that our formula for the number of liftings of a C∞−Hecke path is more
precise than Muthiah’s formula. We shall tell nothing about step 4.

Let E = I∞.A⊕. Then E is the set of elements x ∈ I⊕ such that x∪C∞ is Gtwin-friendly.
Indeed, take x ∈ E and write x = i∞.y, with i∞ ∈ I∞ and y ∈ A⊕. Then A := i∞.A
contains x ∪ C∞. Conversely, let x ∈ I⊕ be such that x ∪ C∞ is Gtwin-friendly. Then
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there exists g ∈ Gtwin such that A := g.A contains x ∪C∞. Then by Theorem 4.12, there
exists h ∈ Gtwin such that h.A = A and h fixes A ∩ A. Then h ∈ I∞ and there exists
y ∈ A⊕ such that h.y = x, so x ∈ E .

Lemma 4.22. Let z ∈ A⊕ and i∞ ∈ I∞ be such that i∞.z ∈ A⊕. Then i∞.z = z.

Proof. Let A = i∞.A = (i∞.A⊕, i∞.A⊖). By Theorem 4.12, there exists h ∈ Gtwin such
that h.A = A and h fixes A ∩ A. Then hi∞ stabilizes A and thus it belongs to Ntwin. As
hi∞ fixes C∞, it fixes an open subset of A⊖. Therefore hi∞ fixes A⊖. By § 4.1.7(d), hi∞
lies in T(k) and thus it also fixes A⊕. Therefore hi∞.z = z = i∞.z. □

We define ρC∞ : E → A⊕ by ρC∞(i∞.x) = x for x ∈ A⊕ and i∞ ∈ I∞. This is well-
defined by the lemma above. Moreover it is I∞-invariant and ρC∞(x) = x for all x ∈ A⊕,
so it satisfies the conditions of [29, Proposition 2.4], with Q = I∞.

It is however difficult to describe explicitly E . It is related to the existence of Birkhoff
decompositions on G by the lemma below. For our purpose, we would like that E contains
I⊕, ≥ 0⊕ (or I⊕, ≤ 0⊕ , since our sign conventions differ from the ones of Muthiah). In the
following of this § 4.4 we work with I⊕, ≥ 0⊕ , but the same results are true for I⊕, ≤ 0⊕ .

We set (Gtwin)+
⊕ = {g ∈ Gtwin | g.0⊕ ≥ 0⊕}.

Lemma 4.23.
(1) Let J =

⋂
x ∈A⊕ I∞Ntwin(Gx ∩Gtwin) and J+ =

⋂
x ∈A⊕, ≥ 0⊕

I∞Ntwin(Gx ∩Gtwin).
Then E ⊃ J.A⊕ ∪ J+.A⊕, ≥ 0⊕.

(2) If E = I⊕, then Gtwin = J .
(3) If G is reductive, then E = I⊕.
(4) We have (Gtwin)+

⊕.A⊕, ≥ 0⊕ = I⊕, ≥ 0⊕.
(5) We have J+ ⊃ (Gtwin)+

⊕ if and only if E ⊃ I⊕, ≥ 0⊕.

Proof. (2) Suppose E = I⊕. Let g ∈ Gtwin and x ∈ A⊕. Then g.x ∈ E and thus there
exists i∞ ∈ I∞, y ∈ A⊕ such that g.x = i∞.y and (i∞)−1g.x = y. Let h ∈ Gtwin be
such that h(i∞)−1g.A = A and such that h fixes A ∩ (i∞)−1g.A (Theorem 4.12). Set n =
h(i∞)−1g. Then n ∈ Ntwin and y = n.x. Then g.x = i∞n.x and hence n−1(i∞)−1g ∈ Gx.
Consequently, g ∈ I∞Ntwin(Gx ∩Gtwin) and Gtwin = J .

(1) Let x ∈ J.A⊕ and j ∈ J , y ∈ A⊕ be such that x = j.y. Write j = i∞nk, where
(i∞, n, k) ∈ I∞ × Ntwin × (Gy ∩ Gtwin). Then x = i∞.(n.y) ∈ E , so E ⊃ J.A⊕. Similarly
we have J+.A⊕, ≥ 0⊕ ⊂ E .

(3) Suppose G is reductive. Then we have Gtwin = I∞NtwinItwin, by the Birkhoff
decomposition in the affine Kac–Moody group over k, G(k[ϖ,ϖ−1]) = Gtwin. Therefore
we have Gtwin = I∞NtwinmItwinm

−1 for every m ∈ N . Take x ∈ A⊕. Then there exists
m ∈ Ntwin such that m−1.x ∈ C⊕. Then Gx ∩ Gtwin ⊃ mItwinm

−1, which proves (3)
using (1).

(4) Let g ∈ (Gtwin)+
⊕ and x ∈ A⊕, ≥ 0⊕ . Then x ≥ 0⊕ and by G-invariance of ≤ we have

g.x ≥ g.0⊕. By definition of (Gtwin)+
⊕, we have g.0⊕ ≥ 0⊕. By transitivity of ≤, g.x ≥ 0⊕,

thus (Gtwin)+
⊕.A⊕, ≥ 0⊕ ⊂ I⊕, ≥ 0⊕ . Let x ∈ I⊕, ≥ 0⊕ . Then there exists g ∈ Gtwin such

that g.x, g.0⊕ ∈ A⊕ and g.x ≥ g.0⊕. We can moreover assume that g.0⊕ = 0⊕ (see
Corollary 3.10.1 and Proposition 3.9). Then x = g−1.(g.x) and g−1 ∈ (Gtwin)+

⊕, hence
x ∈ (Gtwin)+

⊕.A⊕, ≥ 0⊕ . Therefore I⊕, ≥ 0⊕ ⊂ (Gtwin)+
⊕.A⊕, ≥ 0⊕ which proves (4).

(5) By (1) and (4), we already have the implication “⇒”. Assume E ⊃ I⊕, ≥ 0⊕ and take
g ∈ (Gtwin)+

⊕ and x ∈ A⊕, ≥ 0⊕ . Then by G-invariance of ≤, we have g.x ≥ g.0⊕ ≥ 0⊕, so
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g.x ∈ I⊕, ≥ 0⊕ ⊂ E . Therefore there exists y ∈ A⊕ and i∞ ∈ I∞ such that g.x = i∞.y. As
in the proof of (2), we have y ∈ Ntwin.x, thus g ∈ I∞Ntwin(Gx ∩ Gtwin) and the lemma
follows. □

As we shall see in § 6.5, J ̸= Gtwin in general. We conjecture that J+ ⊃ (Gtwin)+
⊕

which is equivalent to E ⊃ I⊕,≥0⊕ , by the lemma above. We also expect similar results
for I⊕,≤0⊕ , (Gtwin)−

⊕ and J− (where J− is defined similarly to J+).

Remark 4.24. It seems also natural to define E ′ = I⊖.A⊕ and then define ρ′
C∞ : E ′ → A⊕

by ρC∞(i.x) = x for i ∈ I⊖, x ∈ A⊕. However this is not defined in general because the
fixator of A⊖ in G does not fix A⊕. Indeed, let z ∈ k(ϖ) be such that ω⊕(z) ̸= 0 and
ω⊖(z) = 0 and λ ∈ Y \ {0}. Set zλ = λ(z) ∈ T (recall that Y = Hom(Mult,T)). Then zλ

acts by translation of vector −ω⊕(z)λ on A⊕ and by translation of vector ω⊖(z)λ = 0 on
A⊖. Actually, ν⊕(T(O∗

⊖)) = Y , so we can define ρ′
C∞ : E ′ → A⊕/Y . Then we can define

the image by ρ′
C∞ of a line-segment of E ′ (up to an element of Y ) by demanding its image

to be continuous. So it might be helpful to look for a Birkhoff decomposition of G instead
of a Birkhoff decomposition of Gtwin, in order to study Kazhdan–Lusztig polynomials.

5. C∞−Hecke paths

As explained above in § 4.4.1, we do not get what is expected to define the retraction
ρI∞ = ρC∞ (on a great part of I⊕). One would like that : ∀ x ∈ I⊕, x ≥ 0⊕ (or x ≤ 0⊕),
then (x,C∞) is twin friendly. Actually we get interesting results if, at least, (z, C∞) is
twin friendly for any z ∈ [0⊕, x]. Then ρI∞ = ρC∞ is defined on [0⊕, x] (by Theorem 4.12
or by § 4.4.2). In this section we shall prove, using Proposition 4.6, that ρC∞([0⊕, x])
is an I∞−Hecke path (as defined in [29]). Actually C∞ is the canonical (negative) local
chamber in I⊖ and ρC∞ = ρI∞ is the retraction of (a part of) I⊕ onto (a part of) A⊕
with center C∞; it is also defined on a part of I⊖ (using a Bruhat decomposition in I⊖).

More precisely, under the above hypothesis on [0⊕, x], we prove that ρC∞([0⊕, x]) is a
λ−path (with λ = dv(0⊕, x)) and may be endowed with a superdecoration (§ 5.2, § 5.3).
Conversely we prove that any superdecorated λ−path is the image by ρC∞ of a line segment
[0⊕, x] with λ = dv(0⊕, x) and we count the number of these possible x (Theorem 5.9).
Then, starting from § 5.7, we get that the underlying path of a superdecorated λ−path is
a C∞−Hecke path of shape λ, for the definition of D. Muthiah (§ 5.11).

5.1. Projections and retractions.

5.1.1. One considers a twin friendly pair (Cy, x) with Cy a local chamber in I⊖ and
x ∈ I⊕. So one may suppose Cy ⊂ A⊖ and x ∈ A⊕ (up to an element of Gtwin).

By § 4.4.2, the retraction +ρCy of T ±
x (I⊕) onto T ±

x (A⊕) with center Cy is well defined.
This means that +ρCy ([x, z)) or +ρCy (Cx) is well defined for z ∈ I⊕ and x ≤ z (resp. z ≤
x) or when Cx is a local chamber at x in I⊕ with positive (resp. negative) direction (recall
that [x, z) is the germ of [x, z] at x).

5.1.2. Projections: One defines: p̃rx(Cy) (resp. prx(Cy), also written C∞
x when Cy = C∞)

is the germ in x of the intersection of the half-apartments D⊕(α + k) with α ∈ Φ, k ∈ Z
(resp. of the open-half-spaces D◦

⊕(α + k) with α ∈ Φ, k ∈ R) such that Dtwin(α + kξ) ⊃
{x} ∪ Cy. By Theorem 4.12, p̃rx(Cy) (resp. prx(Cy)) is independent of the choice of
(A⊖,A⊕) containing (Cy, x).
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One may remark that Φa(Cy) := {α + kξ ∈ Φa | Dtwin(α+ kξ) ⊃ Cy} looks like a
system of positive roots in Φa (in a clear sense). But it is not clear that C∞

x is a local
chamber (its direction might be outside the Tits cone).

5.1.3. We are mostly interested in the case Cy = C∞, hence +ρCy = ρC∞ = ρI∞ . Then
Φa(Cy) = Φa− i.e. Cy ⊂ Dtwin(α+ kξ) ⇐⇒ C⊕ ⊂ Dtwin(−α− kξ). So (if x ∈ ±T ◦,
more precisely x

◦
> 0⊕ or x ≤ 0⊕), C∞

x is the local chamber opposite at x to prx(C⊕)
(defined similarly to prx(Cy) above, see [8, 2.1] for details); its sign is + if x

◦
> 0⊕ and −

if x ≤ 0⊕. Moreover p̃rx(Cy) is the closed chamber in the restricted sense (see [14, § 4.5])
containing prx(Cy) = C∞

x . If x is a special vertex, p̃rx(Cy) = prx(Cy).

N.B.
(a) Note that we chose above to suppose (up to Gtwin) that Cy ⊂ A⊖ and x ∈ A⊕.

So, in general, when we speak of C0 = C0(A⊕) (resp. 0) in this § 5, it means
the positive local chamber (resp. the vertex 0(A⊕)) opposite C∞ (resp. 0⊖) in a
twin apartment Atwin ⊃ A⊖ ∪ A⊕ (in the sense of § 4.1.10 and § 4.1.3) such that
C∞ ⊂ A⊖ and x ∈ A⊕. By Theorem 4.12 the condition x

◦
> 0(A⊕) or x ≤ 0(A⊕)

does not depend of the choice of Atwin.
(b) In this case Cy = C∞ and x

◦
> 0 or x ≤ 0, we proved that C∞

x is a local chamber.

Lemma 5.1. Let Cx be a local chamber at x in I⊕. Then there are affine roots α1 +
k1ξ, . . . , αn + knξ ∈ Φa(Cy) with (αi + kiξ)(x) = 0 and elements ui ∈ Uαi+kiξ ⊂ Gtwin ∩
Gx ∩GCy (possibly ui = 1) such that +ρCy (Cx) = un. . . . .u1.Cx.

In particular +ρCy restricted to T ±
x (I⊕) is induced by elements of the group Gmin

twin(x) =
⟨Uβ+rξ | β + rξ ∈ Φa(Cy); (β + rξ)(x) = 0⟩ ⊂ Gtwin ∩Gx, which fixes p̃rx(Cy). Hence (in
the case of 3) above) this restriction (of +ρCy = ρC∞) is the retraction ρ′ of T ±

x (I⊕) onto
T ±

x (A⊕) with center p̃rx(Cy) (or prx(Cy) = C∞
x ).

N.B. Gtwin ∩Gx ∩GCy has the same restriction to T ±
x (+I ) as Gmin

twin(x).

Proof. Let C0 ⊂ A⊕, C
1, . . . , Cn = Cx be a minimal gallery of local chambers at x in I⊕,

with origin in A⊕ and end Cx. One argues by induction on n; it is clear for n = 0. If
n ≥ 1, one considers the hyperplane M⊕(α1 +k1ξ) (with α1 ∈ Φ, k1 ∈ R) of A⊕ containing
the local panel common to C0 and C1. One may suppose (α1 + k1ξ)(Cy) ≥ 0. If k1 ̸∈ Z,
this hyperplane is not a wall and C1 ⊂ A⊕. By induction +ρCy (Cx) = un. . . . .u2.Cx (with
clear notations) and we are done (we replace k1 by any k1 ∈ Z and take u1 = 1). If
k1 ∈ Z, then α1 + k1ξ ∈ Φa(Cy), and, as in Proposition 4.6, one sees that there exists
u1 ∈ Uα1+k1ξ such that u1C

1 ⊂ A⊕. One considers the gallery u1C
1, . . . , u1C

n = u1Cx.
By induction there are α2 + k2ξ, . . . , αn + knξ ∈ Φa(Cy) with (αi + kiξ)(x) = 0 and
elements ui ∈ Uαi+kiξ ⊂ Gtwin ∩ Gx ∩ GCy such that +ρCy (u1Cx) = un. . . . .u2.u1.Cx. So
+ρCy (Cx) = +ρCy

(u1Cx) = un. . . . .u2.u1.Cx as expected. As each ui fixes p̃rx(Cy) and
prx(Cy), it is also equal to ρ′(Cx). □

5.2. C∞−friendly line segments in I⊕.

5.2.1. Let x, y ∈ I⊕ be such that x
◦
< y (resp. x

◦
> y). There is a G−apartment g.A⊕

containing {x, y}, so g−1y − g−1x is in T ◦ (resp. −T ◦). We define the vectorial distance
λ = dv(x, y) as the unique element in C

v
f ∩ T ◦ (resp. −Cv

f ∩ T ◦) conjugated by W v to
g−1y − g−1x. It does not depend on the choices made (see e.g. [8, § 1.6]).
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The line segment [x, y] in I⊕ is said C∞−friendly if, moreover, ∀ z ∈ [x, y], (C∞, z) is
twin friendly. By Proposition 4.6 we may ask that A⊕ contains [z, x) or [z, y). We actually
parametrize [x, y] by [0, 1] : φ : [0, 1] → [x, y] is an affine bijection. We define ε(φ) = +1
if x

◦
< y and ε(φ) = −1 if x

◦
> y.

In the following we suppose [x, y] C∞−friendly.

5.2.2. By the usual argument using the compactness of [x, y] and Proposition 4.6, we
get points z0 = x, z1, . . . , zn = y in this order in [x, y] and twin apartments (A⊖

i , A
⊕
i ),

1 ≤ i ≤ n, with C∞ ⊂ A⊖
i and [zi−1, zi] ⊂ A⊕

i . We set zi = φ(ti), t0 = 0 < t1 < · · · <
tn = 1. By Theorem 4.12 or § 4.4.2, we know that ρC∞ is defined on [x, y], and also on all
local chambers Cz with vertex z ∈ [x, y] by Proposition 4.6. The above result tells that
ρC∞([x, y]) (or better π = ρC∞◦φ) is a piecewise linear continuous path in A⊕. It is actually
a λ−path, as defined in [8, 1.7], [15, 1.8] or [14, 5.1], i.e. it is a piecewise linear continuous
path π : [0, 1] → A such that, ∀ t ∈ [0, 1], π′

±(t) ∈ W v.λ (which is in ±T ◦). We shall
investigate its properties more closely and then call it an I∞−Hecke path (to follow [29]) or
a C∞−Hecke path or (more precisely) a Hecke path of shape λ in A⊕ with respect to C∞
(in A⊖).

5.2.3. We suppose now moreover that C∞
x is a local chamber, more precisely that, in

the apartment A⊕
1 , one has x

◦
> 01 (resp. x ≤ 01), where 01 means the opposite in A⊕

1 of
0⊖ ∈ A⊖

1 . By Theorem 4.12 this condition does not depend on A1 or [x, y) but only on
(C∞, x). In particular the sign of C∞

x is positive (resp. negative). We may decorate [x, y]
by the use of C∞

x :
For z ∈ [x, y[ we set C+

z,φ = pr[z,y)(C∞
x ) and for z ∈]x, y] we set C−

z,φ = pr[z,x)(C∞
x ),

i.e. C+
z,φ (resp. C−

z,φ) is the local chamber containing [z, y) (resp. [z, x)) in its closure that
is the closest to C∞

x , for details see [8, § 2.1 and Definition 2.4] where C−
z,φ is written C ′′

z .
One has to be careful that, contrary to l.c. , we may have x

◦
> y (i.e. ε(φ) = −1) and then

C+
z,φ (resp. C−

z,φ) has a negative (resp. positive) direction. When z = φ(t) we write also
C±

z,φ = C±
t,φ. We write φ or [x, y] this decorated line segment.

We recall the notations for some segment germs: φ+(t) = φ+(z) = φ([t, 1)) = [z, y),
π+(t) = π+(p) = π([t, t + η)) (resp. φ−(t) = φ−(z) = φ([t, 0)) = [z, x), π−(t) = π−(p) =
π([t, t − η)) if t < 1 (resp. 0 < t) and z = φ(t), p = π(t), η > 0 small; also the right
(resp. left) derivatives π′

+(t) (resp. π′
−(t)).

We may also define C±
p,π = C±

t,π := ρC∞(C±
z,φ) when p = π(t) = ρC∞(z) = ρC∞(φ(t)).

We get thus a decoration of π:

Definition 5.2 ([8, Definition 2.6]). A decorated λ−path is a triple π = (π, (C+
t,π)t < 1,

(C−
t,π)t > 0) such that: π is a λ−path, C+

t,π (resp. C−
t,π) is a local chamber with the same

(resp. opposite) sign as λ, with vertex π(t), containing π+(t) (resp. π−(t)) in its closure.
Moreover, for some subdivision t′0 = 0 < t′1 < · · · < t′n = 1 of [0, 1] such that π|[t′

i−1,t′
i] is a

line segment and for any t′i−1 ≤ t, t′ ≤ t′i, we ask that C+
t,π = prπ+(t)(C±

t′,π) (resp. C−
t,π =

prπ−(t)(C±
t′,π)) (here we exclude C−

t′
i−1,π and C+

t′
i,π

of these equalities).

We get easily these properties in our context, as the apartment A⊕
i above contains

C+
zi−1,φ and C−

zi,φ (hence all C±
z,φ for z ∈]zi−1, zi[). So, for pi = π(ti), the restriction

π|[ti−1,ti] is a line segment from pi−1 to pi and ρC∞([x, y]) = [p0, p1]∪[p1, p2]∪· · ·∪[pn−1, pn].
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5.3. Retractions of C∞−friendly line segments.

5.3.1. We suppose [x, y] ⊂ I⊕, C∞−friendly and parametrized by φ as in § 5.2.1. We
suppose moreover [x, y) ⊂ A⊕. We may then decorate [x, y] (i.e. φ) by the use of C∞

x , if
x ≤ 0 or x

◦
> 0 (actually we assume often x = 0), cf. § 5.2.3. We get also a decoration on

the λ−path ρC∞([x, y]) (i.e. on π = ρC∞ ◦ φ); we keep the notations of § 5.2.

5.3.2. We suppose 0
◦
≤ x

◦
< y hence ε = ε(φ) = +1 (resp. 0

◦
≥ x

◦
> y hence ε = ε(φ) =

−1); for this we may eventually exchange x and y if e.g. 0
◦
≤ y

◦
< x. From this we deduce

(by induction on i) that, for any z ∈]zi−1, zi[, one has z
◦
> 0(A⊕

i ) (resp. z
◦
< 0(A⊕

i )); in
particular C∞

z is a well defined local chamber of sign ε.
We now consider t ∈]0, 1[, z = φ(t), p = π(t) = ρC∞(z). We write (A⊖, A⊕) a twin

apartment containing C∞ and C−
z,φ. By Lemma 5.1, the restriction of ρC∞ to T ±

z (I⊕)
(whose image is T ±

p (A⊕)) is the retraction ρC∞
z

(of T ±
z (I⊕) onto T ±

z (A⊕) with center
C∞

z ) followed by the isomorphism ψ of T ±
z (A⊕) onto T ±

p (A⊕) induced by ρC∞ (hence by
an element of I∞). Note that ψ(C∞

z ) = C∞
p .

We saw that C∞
z and C+

z,φ have the same sign ε. So we may consider a minimal gallery
C0 = C∞

z , C1, . . . , Cm = C+
z,φ, of length m = mz = mt; we write iz = it its type.

We suppose that C0, C1, . . . , Cm′
t is a minimal gallery from C∞

z to φ+(z). Now (Ci
p =

ρC∞(Ci))0 ≤ i ≤ m is a minimal gallery in T ±
p (A⊕) of type ip := it from C∞

p = ρC∞(C∞
z )

to C+
p,π = ρC∞(C+

z,φ). It is minimal as we retract with respect to C∞
p , which is the first

chamber of the gallery, see Lemma 5.1.

5.3.3. So the λ−path π is decorated by the datum ((C+
t,π)t < 1, (C−

t,π)t > 0), with C+
0,π =

prπ+(0)(C∞
π(0)). For any t ∈]0, 1[, one has chosen the type it of a minimal gallery of local

chambers in T ε
p (A⊕) from C∞

p to C+
p,π; its length is m = mp = mt. We supposed also that

this minimal gallery begins by a minimal gallery (of length m′
t) from C∞

p to π+(t) and
continues by a gallery of local chambers dominating π+(t).

For any t ∈]0, 1[ we may consider a gallery cp = ct of local chambers in T ε
p (A⊕) from

C∞
p = prp(C∞) to the projection C

(+)
p,π of C−

p,π on the segment germ π(+)(t) = π(t) +
π′

−(t).[0, 1) (opposite π−(t)), that is of type it and centrifugally folded with respect to
C−

p,π, see [8, § 2.2].
Such galleries may not exist in general. But we saw above that the decorated line

segment φ or [x, y] gives rise to such galleries.

5.4. Superdecorated C∞ − λ paths. Let π be a λ−path in A⊕, with λ ∈ ε(Cv
f ∩ T ◦)

and π(0)
◦
≥ 0 if ε = 1, π(0)

◦
≤ 0 if ε = −1. Clearly we have π(]0, 1]) ⊂ εT ◦.

5.4.1. We consider the numbers 0 = t′0 < t′1 < · · · < t′n = 1 of § 5.2.2 and the points
p′

i = π(t′i) where π may be folded. For t′i ≤ t < t′i+1(resp. t′i < t ≤ t′i+1) the derivative
π′

+(t) (resp. π′
−(t)) is a constant. The derivative π′

±(t) ∈ W v.λ is in εT ◦.

5.4.2.

Lemma 5.3. There is only a finite number of pairs (M, t) with a wall M containing a
point p = π(t) for 0 < t < 1, such that π+(t) is not in M and C∞

p is not in the same side
of M as π+(t).

Ann. Repr. Th. 2 (2025), 3, p. 281–353 https://doi.org/10.5802/art.25

https://doi.org/10.5802/art.25


322 Nicole Bardy-Panse et al.

Proof. We may restrict to the t ∈ [t′i, t′i+1[, more precisely to the t in a small open set Ω
in [t′i, t′i+1]. We write M = M⊕(α+ kξ) with α+ kξ ∈ Φa+ (so k ≥ 0). The conditions are
thus (α+kξ)(π(t)) = 0 (hence α(π(t)) ≤ 0), α(π′

+(t)) ̸= 0 and more precisely α(π′
+(t)) > 0

(as C∞
t ⊂ D(−α − kξ)). Suppose ε = +1, then π(Ω) (resp. π′

+(t), which is independent
of t ∈ [t′i, t′i+1[) is in the open Tits cone T ◦ (as t > 0), so α(π(t)) ≤ 0 (for some t ∈ Ω)
(resp. α(π′

+(t)) > 0) is possible only for a finite number of positive (resp. negative) roots α.
Hence there is a finite number of possible α (by [24, Proposition 3.12(c)], and, then, the
condition (α+ kξ)(π(t)) = 0 is possible for only a finite number of k ∈ Z. Moreover t ∈ Ω
is uniquely determined by α+ kξ as α(π′

+(t)) ̸= 0. We get now the expected finiteness by
using the compactness of [t′i, t′i+1].

In the case ε = −1, one argues similarly, just exchanging positive and negative roots. □

5.4.3. Suppose now that π is the underlying path of a decorated λ−path

π =
(
π,
(
C+

t,π

)
t < 1

,
(
C−

t,π

)
t > 0

)
with λ ∈ ε

(
C

v
f ∩ T ◦

)
and π(0)

◦
≥ 0

if ε = 1 (resp. π(0)
◦
≤ 0 if ε = −1). Moreover, for any t ∈]0, 1[, one supposes the existence

of a gallery ct satisfying the conditions of § 5.3.3.
The fact that π = (π, (C+

t,π)t < 1, (C−
t,π)t > 0) is a decorated λ−path tells that there are

numbers 0 = t′0 < t′1 < · · · < t′r = 1 such that, for any 1 ≤ i ≤ r, {π(t) | t′i−1 ≤ t ≤ t′i} is a
segment

[
π
(
t′i−1

)
, π (t′i)

]
and

[
π
(
t′i−1

)
, π
(
t′i
)]

=
([
π(t′i−1), π(t′i)

]
,
(
C+

t,π

)
t′
i−1 ≤ t < t′

i

,
(
C−

t,π

)
t′
i−1 < t ≤ t′

i

)
is a decorated segment (defined in [8, Def. 2.6]).

In particular the direction C+v
t,π of C+

t,π for t′i−1 ≤ t < t′i (resp. C−v
t,π of C−

t,π for t′i−1 <
t ≤ t′i) is constant of sign ε (resp. −ε), the same (resp. opposite) as the sign of the direc-
tion C∞v

π(t) of C∞
π(t) (if t ̸= 0). We write w+

i−1 = dw(C∞v
π(ti−1), C

+v
ti−1,π) if i ≥ 2 (resp. w−

i =
d∗w(C∞v

π(ti), C
−v
ti,π) = dw(C∞v

π(ti),−C
−v
ti,π) the corresponding Weyl distance (resp. codistance),

[1, 5.133]. We then clearly have π′
+(ti) = w+

i .λ (resp. π′
−(t) = w−

i .λ) if one considers C∞v
π(t)

as a new fundamental vectorial chamber (for t ̸= 0).

5.4.4.

Lemma 5.4. One writes p0 = π(t0), p1 = π(t1), . . . , pℓπ = π(tℓπ ) with 0 = t0 < t1 <
· · · < tℓπ−1 < tℓπ = 1 the points p = π(t) satisfying (for some wall M) the conditions of
Lemma 5.3 in § 5.4 above (or t = 0, t = 1). Then any point t where the path π is folded
at π(t) appears in the set {tk | 1 ≤ k ≤ ℓπ − 1}.

Proof. If π is folded at p = π(t) (for t ∈]0, 1[), one has π′
+(t) ̸= π′

−(t), i.e. π(+)(t) ̸= π+(t).

And, as π(+)(t) (resp. π+(t)) is the segment germ in C(+)
p,π (resp. C+

p,π) with the same type
as λ, one has C(+)

p,π ̸= C+
p,π. So the gallery cp from C∞

p to C(+)
p,π is folded. This is possible

only if there is at least one wall M separating C∞
p from C+

p,π; as π(+)(t) ̸= π+(t) we may
also assume π+(t) ̸⊂ M . So t ∈ {tk | 1 ≤ k ≤ ℓπ − 1}. □
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5.4.5.

Definition 5.5. A superdecorated C∞ − λ path is a quadruple π = (π, (C+
t,π)t < 1,

(C−
t,π)t > 0, (ct)0 < t < 1) where π = (π, (C+

t,π)t < 1, (C−
t,π)t > 0) is a decorated λ−path and each

ct is a gallery of type it satisfying the conditions of § 5.3.3. We ask moreover that the
local chamber C+

0,π is the projection prπ+(0)(C∞
π(0)) = prπ+(0)(C∞).

5.4.6. It is interesting to describe the properties of the underlying λ−path of a superdec-
orated C∞ −λ path. We shall do this in § 5.9 to § 5.11, after some auxiliary results about
twin buildings in § 5.7 to § 5.8. This underlying λ−path is a C∞−Hecke path, as in [29,
5.3.1] (and similar to [14, Definition 5.2]).

A λ−path π : [0, 1] → A (with λ ∈ ε(Cv
f ∩ T ◦)) has only a finite number (possibly 0, if

it is not a C∞−Hecke path) of compatible superdecorations π = (π, (C+
t,π)t < 1, (C−

t,π)t > 0,
(ct)0 < t < 1). Actually, by § 5.5 and Theorem 5.9 below, such a superdecoration is the image
by ρC∞ of a C∞−friendly line segment (as explained in § 5.3.3) and these line segments
depend only of the data (C+

pk,π)0 ≤ k ≤ ℓπ−1, (C−
pk,π)1 ≤ k ≤ ℓπ−1 and (ctk

)1 ≤ k ≤ ℓπ−1. Now, as
λ is spherical, the number of possible local chambers C±

pk,π ⊂ A containing π±(tk) in their
closure is finite. The type itk

is the type of a specific minimal gallery in T ε
p (A⊕) between

the chambers C∞
p and C+

p,π (which are well defined by the decoration and C∞); so there is
only a finite number of possible such types (moreover we shall fix one of them). Therefore
the number of galleries ctk

in A of type itk
from C∞

pk
to C(+)

pk,π is also finite.

5.5. Liftings of superdecorated C∞ − λ paths.

5.5.1. One considers a superdecorated C∞ − λ path π = (π, (C+
t,π)t < 1, (C−

t,π)t > 0,

(ct)0 < t < 1) of shape λ ∈ ε(Cv
f ), as above in Definition 5.5 in § 5.4. One considers also a

point x that is C∞−friendly (i.e. there is a twin apartment (A⊖, A⊕) with x ∈ A⊕ and
C∞ ⊂ A⊖) and such that ρC∞(x) = p0 = π(0). By Theorem 4.12, we have moreover

x
◦
≥ 0(A⊕) if ε = +1 and x

◦
≤ 0(A⊕) if ε = −1.

We aim to prove that there is a C∞−friendly line segment [x, y] with dv(x, y) = λ ∈
ε(Cv

f ) such that π is the “image” of [x, y] by ρC∞ (as constructed in § 5.3). We want also
a formula for the number of these [x, y].

The idea is to build [x, y] progressively, starting from x. So we look locally.

5.5.2. We look first for the segment germs [x, x+) of sign ε such that ρC∞([x, x+)) =
π+(0) = p0 + π′

+(0).[0, 1), more precisely to local chambers C+
x of sign ε such that

ρC∞(C+
x ) = C+

p0,π (then [x, x+) is the segment in C+
x with the same type as λ; so

ρC∞([x, x+)) = π+(0) and C+
x = pr[x,x+)(C∞

x )).

Proposition 5.6. There is a local chamber C+
x of sign ε such that ρC∞(C+

x ) = C+
p0,π. In

case ε = +1, we suppose now moreover p0
◦
> 0 (i.e. p0 ̸= 0), then the number of these

C+
x (or of the corresponding segment germ [x, x+)) is finite (if q = |k| is finite) and equal

to qm0 if p0 or x is a special vertex, where m0 is the length of w+
0 (cf. § 5.4.3) i.e. the

length of a minimal gallery d in T ε
p0(A⊕) from C∞

p0 to C+
p0,π. If p0 is not special, one has

to replace m0 by the number m′′
0 of walls separating C∞

p0 from C+
p0,π.
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Remark 5.7. When p0 = 0, then C∞
0 is negative and C+

0,π of sign ε, so there is a problem
if ε = +1. (Fortunately, for Muthiah’s purpose one has p0 = 0 but ε = −1, as ϖλ

acts by the translation of vector −λ.) In this problematic case the condition for C+
x

involves codistances: it is d∗w(C∞
x , C+

x ) = w+
0 := d∗w(C∞

0 , C+
0,π). By the retraction ρC∞ ,

it is clearly equivalent to d∗w(C∞
0 , ρC∞(C+

x )) = w+
0 , i.e. to ρC∞(C+

x ) = C+
p0,π. There are

infinitely many solutions for this condition.

Proof. We avoid the problematic case ε = +1, p0 = 0. Then the equality ρC∞(C+
x ) = C+

p0,π

is equivalent to dw(C∞
x , C+

x ) = w+
0 := dw(C∞

0 , C+
0,π). This is clear as we saw (in § 5.3.2)

that ρC∞ restricted to T ±
x (I⊕) is equal to a retraction ρC∞

x
(of T ±

x (I⊕) onto T ±
x (A⊕)

with center C∞
x ) followed by an isomorphism ψ of T ±

x (A⊕) onto T ±
p0 (A⊕) (which sends

C∞
x to C∞

p0 ).
Now dw(C∞

x , C+
x ) = w+

0 is equivalent to the existence of a minimal gallery of type i (the
type of a fixed minimal decomposition of w+

0 ), hence of length m0 = ℓ(w+
0 ), in I⊕ from

C∞
x to C+

x . There are qm0 (or more generally qm′′
0 ) such galleries. □

5.5.3. For 0 < t < 1, we suppose now given a z = φ(t), a local chamber C−
z,φ hence a

segment germ φ−(t) ⊂ C−
z,φ (of the same type as −λ) such that the pair (C∞, z) (hence

also (C∞, C
−
z,φ) or (C∞, φ−(t))) is twin friendly and ρC∞(z) = π(t) = p, ρC∞(C−

z,φ) =
C−

p,π, ρC∞(φ−(t)) = π−(t). We write (A⊖, A⊕) a twin apartment with C∞ ⊂ A⊖ and
C−

z,φ, φ−(t) ⊂ A⊕. We now look for a segment germ [z, z+) of sign ε opposite φ−(t), such
that ρC∞([z, z+)) = π+(t) = p + π′

+(t).[0, 1); more precisely we look for a local chamber
C+

z of sign ε opposite φ−(t), such that ρC∞(C+
z ) = C+

p,π and C+
z = pr[z,z+)(C−

z,φ).

Proposition 5.8.
(a) There is a local chamber C+

z of sign ε in T ε
z (I⊕) such that ρC∞(C+

z ) = C+
p,π and

that the segment germ [z, z+) in C+
z of the same type as λ is opposite φ−(t).

Actually we add the condition that the minimal gallery of type it from C∞
z to

C+
z retracts onto cp by the retraction ρC−

z,φ
(of T ±

z (I⊕) onto T ±
z (A⊕) with center

C−
z,φ) followed by the isomorphism ψ of T ±

z (A⊕) onto T ±
p (A⊕) induced by ρC∞.

This implies C+
z = pr[z,z+)(C−

z,φ).
(b) Suppose q = |k| finite. Then the number of these local chambers is finite (non

zero) and equal to the cardinality of the set C m
C−

p,π
(C∞

p , cp) of all minimal galleries
in T ε

p (I⊕) starting from C∞
p and retracting onto cp by the retraction of T ε

p (I⊕)
onto T ε

p (A⊕) with center C−
p,π. (Compare with [8, § 3.3(b)]).

(c) If π is not folded at p = π(t), then π(+)(t) = π+(t). The number of expected
local chambers C+

z (or of expected segment germs [z, z+)) is then qm′′
t , where m′′

t

is the number of walls that separate C∞
p from C+

p,π and do not contain π+(t) (or
equivalently π−(t)). If q = |k| may be infinite, we have at least that [z, z+) and C+

z

are unique when m′′
t = 0.

There is a twin apartment (A′
⊖, A

′
⊕) with A′

⊖ ⊃ C∞ and A′
⊕ ⊃ C+

z ∪ C−
z,φ ⊃

[z, z+).
(d) In particular, if t is not one of the ti in Lemma 5.4, then m′′

t = 0 and C+
z is

unique; more precisely this unique C+
z is in A⊕, which already contains C−

z,φ (and
C∞ ⊂ A⊖). In particular C+

p,π = C
(+)
p,π . All this is true for any cardinality of k.
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N.B. From (d) above, one deduces that a superdecorated C∞ − λ path π satisfies the
condition of definition of decorated λ−paths in § 5.2.3 above with the subdivision t0 = 0 <
t1 < · · · < tℓπ = 1 of Lemma 5.4. Moreover, for t different from each ti, the gallery cπ(t)
is minimal, uniquely determined by its type it.

Proof. (a) + (b) We write g ∈ I∞ an element (of Gtwin fixing C∞) sending A⊕ to A⊕
and z to p; it exists by paragraph 4.4.2. By § 5.2.3 the restriction of ρC∞ to T ±

z (I⊕) is
g restricted to T ±

z (I⊕) (sending isomorphically T ±
z (I⊕) onto T ±

p (I⊕)) followed by the
retraction ρC∞

p
(of T ±

p (I⊕) onto T ±
p (A⊕) with center C∞

p ). The expected C+
z and [z, z+)

correspond thus bijectively (by g) to pairs (C+
p , [p, p+)) where C+

p is a local chamber in
T ε

p (I⊕) such that ρC∞
p

(C+
p ) = C+

p,π and that [p, p+) is the segment germ in C+
p of the

same type as λ and is opposite π−(t).
But cp = ct is a gallery in T ε

p (A⊕) starting from C∞
p , of type it, the type of a minimal

gallery from C∞
p to C+

p,π. Hence any minimal gallery in T ε
p (I⊕) starting from C∞

p of type
it ends with a chamber C+

p such that ρC∞
p

(C+
p ) = C+

p,π. Moreover cp is centrifugally folded
with respect to C−

p,π and ends with the chamber C(+)
p,π projection of C−

p,π onto the segment
germ π(+)(t) = π(t) +π′

−(t).[0, 1) (of type λ) opposite π−(t) (of type −λ in C−
p,π). The set

C m
C−

p,π
(C∞

p , cp) is thus exactly the set of all galleries retracting by ρC∞
p

onto the minimal
gallery of type it from C∞

p to C+
p,π and retracting by ρC−

p,π
onto cp. In particular the last

chamber C+
p of such a gallery satisfies ρC∞

p
(C+

p ) = C+
p,π and the segment germ [p, p+) in

C+
p of the same type as λ retracts by ρC−

p,π
onto the segment germ π(+)(t). So a) and b) are

proved, as a consequence of [8, § 2.3] (mutatis mutandis), which tells that C m
C−

p,π
(C∞

p , cp)
is non empty and finite (if q = |k| < ∞) and gives a formula for its cardinality.

(c) If π is not folded at p = π(t), then π(+)(t) = π+(t) and ct is a gallery of type it and
length mp. By the convention for it (cf. § 5.2.3) the gallery ct shortened by removing the
chambers of numbering > m′

t is minimal from C∞
p to π+(t) and the chambers of numbering

≥ m′
t contain π+(t) in their closure. So the number of possible choices for [z, z+) is the

number of possible liftings of the gallery ct shortened (and then C+
z = pr[z,z+)(C−

z,φ) is well
determined). One considers the hyperplanes M cutting this shortened gallery ct along a
panel and their contribution to a factor of this number of liftings, see [8, § 2.3] (mutatis
mutandis). If M is not a wall, its contribution is 1. The walls cutting this shortened
gallery ct i.e. between the chambers C0 and Cm′

t are exactly the walls that separate C∞
p

from C+
p,π and do not contain π+(t); the contribution of each of them is q. If m′′

t = 0, each
contribution is 1 and [z, z+) is unique.

To get the twin apartment A′, we just have to modify A by elements of Uα+kξ where
M = M⊕(α + kξ) cuts ct between the chambers C0 and Cm′

t and D⊖(α + kξ) ⊃ C∞,
D⊕(α + kξ) ⊃ C−

p,π and then apply g−1. The modified apartment A′ contains C∞, C
−
z,φ

and [z, z+), hence also C+
z .

(d) In this case t ̸∈ {t1, . . . , tℓπ }, one has m′′
t = 0 and qm′′

t = 1. By the above procedure
we get A′ just by applying g−1 to A. So A′ = A = g−1A. As g ∈ I∞ fixes C∞, we have
C+

p,π = ρC∞(C+
z ) = ρC∞(pr[z,z+)(C−

z )) = prπ+(t)(C−
p ) = C

(+)
p,π . □

Theorem 5.9. Let π = (π, (C+
t,π)t < 1, (C−

t,π)t > 0, (ct)0 < t < 1) be a superdecorated C∞ −

λ−Hecke path in A⊕ of shape λ ∈ ε(Cv
f ∩ T ◦) with π(0)

◦
≥ 0 if ε = +1 (resp. π(0)

◦
≤ 0
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if ε = −1). We consider also a point x ∈ I⊕ that is C∞−friendly (i.e. there is a twin
apartment (A⊖, A⊕) with C∞ ⊂ A⊖ and x ∈ A⊕) and such that ρC∞(x) = π(0).

(1) There is a C∞−friendly line segment [x, y] with dv(x, y) = λ, such that π is the
“image” of [x, y] by ρC∞ (as constructed in § 5.3).

(2) Except in the case ε = +1 and π(0) = 0, the number of these line segments is finite
(provided that q = |k| < ∞) and given by the following formula (for the notations
see § 5.5.2, Lemma 5.4 and Proposition 5.8(c))

#{[x, y]} = qm′′
0 ×

ℓπ−1∏
k=1

#C m
C−

pk,π

(
C∞

pk
, cpk

)
.

This number is equal to qn.(q − 1)n′ for some n, n′ ∈ Z≥0 depending only on π
(in A), not of k, see [8, § 2.3].

(3) If π is the parametrization of such a [x, y], we write z0 = x = φ(t0 = 0), z1 =
φ(t1), . . . , zk = φ(tk), . . . , zℓπ = φ(tℓπ = 1) = y. Then there exist twin apartments
(A⊖

k , A
⊕
k ) (for 1 ≤ k ≤ ℓπ) such that A⊖

k ⊃ C∞ and A⊕
k ⊃ [zk−1, zk] (i.e. A⊕

k

contains [φ(tk−1), φ(tk] and all C+
t,φ (for tk−1 ≤ t < tk), C−

t,φ (for tk−1 < t ≤ tk)).

Proof. Suppose the line segment [x = φ(0), zk = φ(tk)] constructed with the expected
properties. This is clearly satisfied for k = 0. We now construct [x, zk+1].

If k = 0, we investigated the possibilities for φ+(0) = [z0, z1) in § 5.5.2. Their number
is ≥ 1 and equal to qm′′

0 under the conditions of (2). Now the Proposition 5.8(d) tells that
each possibility for [z0, z1) corresponds to one and only one possibility for [z0, z1] and there
is a twin apartment (A⊖

1 , A
⊕
1 ) such that C∞ ⊂ A⊖

1 and [x, z1] ⊂ A⊕
1 ; hence C∞

x ⊂ A⊕
1 ,

[x, z1] ⊂ A⊕
1 .

If k ≥ 1, we investigated the possibilities for φ+(tk) = [zk, zk+1) in Proposition 5.8(a)
& (b). Their number is ≥ 1 and equal to

#C m
C−

pk,π

(
C∞

pk
, cpk

)
.

Now the Proposition 5.8(d) tells that each possibility for [zk, zk+1) corresponds to one and
only one possibility for [zk, zk+1]. If we choose a twin apartment (A⊖

k+1, A
⊕
k+1) such that

C∞ ⊂ A⊖
k+1 and [zk, zk+1) ⊂ C+

zk,φ ⊂ A⊕
k+1, then A⊕

k+1 contains [zk, zk+1]and [zk, zk+1]. □

Note that Theorem 5.9 is obtained with a slightly different method in [23, 4.5.2].

5.6. Folding measure of superdecorated C∞ − λ paths. Let π = (π, (C+
t,π)t < 1,

(C−
t,π)t > 0, (ct)0 < t < 1) be a superdecorated C∞ − λ path in A⊕ of shape λ ∈ ε(Cv

f ), as
above in § 5.4.3. We consider the numbers 0 = t0 < t1 < · · · < tℓπ = 1 and the points
pi = π(ti) as in § 5.4.4. We recall (§ 5.3.2) that, for p = π(t) with t > 0, C(+)

p,π is the
projection of C−

p,π on the segment germ π(+)(t) = π(t) + π′
−(t).[0, 1); when ti−1 < t < ti,

C
(+)
p,π = C+

p,π (see [8, Lemma 2.5] and Proposition 5.5(d) above). In the following of this
subsection we drop π in the notations C±

p,π = C±
t,π and C

(+)
p,π = C

(+)
t,π .

The direction C+v
t of C+

t for ti−1 ≤ t < ti (resp. C−v
t of C−

t for ti−1 < t ≤ ti) is constant
of sign ε (resp. −ε), the same (resp. opposite) as the sign of the direction C∞v

π(t) of C∞
π(t) (if

t ̸= 0); here we may replace the ti by the t′j of § 5.4.3. From [8, 2.9.2] it is also clear that, for
ti−1 < t ≤ ti, the direction C(+)v

t of C(+)
t is constant of sign ε and equal to C+v

pi−1 . For i ≥ 1,
we write w+

i = dw(C∞v
pi

, C+v
pi

) (if i < ℓπ) (resp. w−
i = dw(C∞v

pi
, C

(+)v
pi ) = dw(C∞v

pi
, C+v

pi−1)).
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Figure 5.1.

Then we clearly have π′
+(ti) = w+

i .λ (for i < ℓπ) (resp. π′
−(ti) = w−

i .λ (for i > 0)) if one
considers C∞v

pi
as a new fundamental vectorial chamber.

Proposition 5.10. For the Bruhat order in W v, one has w+
i−1 ≥ w−

i for i ≥ 2 and
w−

i ≤ w+
i for 1 ≤ i < ℓπ.

Remark 5.11.
(1) Unfortunately this gives no inequality between the w+

i (or the w−
i ). Perhaps one

can get some inequalities with other definitions of w±
i .

(2) In the case of Hecke paths in a masure with respect to a sector germ one gets
w+

i−1 = w−
i and w−

i ≤ w+
i . So one gets inequalities between the w+

i (or the w−
i ).

This case of sector germs is in [15]. It should be possible to prove similarly the
case of a Hecke path with respect to a local chamber, but it is written nowhere.

Proof. The second inequality is clear: cti is a gallery fom C∞
pi

to C
(+)
pi , with the same

type as a minimal gallery from C∞
pi

to C+
pi

(type associated to a minimal decomposition
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of w+
i = dw(C∞v

pi
, C+v

pi
)). For the first inequality recall that prpi(C0)v is the vectorial

chamber containing the −→pix for x ∈ C0 sufficiently near from 0. So C∞v
pi

= opp(prpi(C0)v)
is the vectorial chamber containing the −→xpi for these x. But we have −→xpi = −−−→xpi−1 + −−−→pi−1pi

and −−−→xpi−1 ∈ C∞v
pi−1 , −−−→pi−1pi ∈ C+v

pi−1 . Hence C∞v
pi

meets the closed convex hull of C∞v
pi−1 and

C+v
pi−1 = C

(+)v
pi . So C∞v

pi
is in their enclosure, i.e. C∞v

pi
is a vectorial chamber of a minimal

gallery from C∞v
pi−1 to C+v

pi−1 = C
(+)v
pi . This proves that

w−
i = dw

(
C∞v

pi
, C(+)v

pi

)
≤ dw

(
C∞v

pi−1 , C
+v
pi−1

)
= w+

i−1. □

5.7. Opposite segment germs and retractions in masures or twin buildings.
From § 5.7 to § 5.8, we consider I a twin building and A its canonical [twin] apartment.
We use the notation [twin] to indicate the reference to a classical notation in twin buildings,
not to § 4.1.10. We think of A as a vector space V = −→

A , even if it is more precisely the
union of two opposite Tits cones in V . These Tits cones are associated to a root system Φ,
a Weyl group W v and a fundamental chamber Cv

f ; but the thick walls of I are associated
to some particular roots called thick roots.

Actually we think very strongly to the case where I is the tangent space (with its
unrestricted building structure) at a point p to a thick masure, A ∋ p is an apartment of
this masure, Φ is in the dual of V = −→

A and the thick walls in I are associated to the
walls of this masure containing p (i.e. the direction kerβ of this wall satisfies β(p) ∈ Z : β
is a thick root).

In the following lines up to the proposition (included), we indicate between parentheses
some words we may add when we think to a masure.

We consider:

• C−
p a negative (local) chamber (with vertex p) in A.

• ξ, η positive segment germs of origin 0 (or p) in A.
• −ξ,−η their negative opposites in A.
• C−ξ a negative (local) chamber in A (with vertex p) containing −ξ in its closure.
• i the type of a minimal gallery from C−

p to C−ξ.
• Q a positive (local) chamber in A (with vertex p) containing η in its closure.
• In the picture, everything not in dotted lines is in A.
• One writes ρ = ρA,C−

p
(resp. ρQ = ρA,Q) the retraction with center C−

p (resp. Q)
and image A (= Tp(A)) defined on I .

• One asks that ξ, η are generated by vectors in W v.λ for λ a dominating vector in
A (i.e. λ ∈ Cv

f ).
• W v

p is the subgroup of W v generated by the rβ for β a thick root.

Proposition 5.12 (cf. [15, 4.6]).

(1) The following conditions are equivalent:
(a) There exists an opposite ζ to η in I (with vertex p) such that ρ(ζ) = −ξ.
(b) There exists a gallery c of (local) chambers in A (with vertex p), of type i for

some choice of C−ξ, that is centrifugally folded with respect to Q (in particular
folded along thick walls) with first chamber C−

p and last chamber containing
−η in its closure.
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Figure 5.2.

(c) η ≤W v
p
ξ, i.e. there exist ξ0, ξs ∈ V \{0} such that η = [0, 1)ξs, ξ = [0, 1)ξ0 and

a W v
p −chain from ξ0 to ξs, i.e. finite sequences (ξ0, ξ1, . . . , ξs) of vectors in

V = −→
A and (β1, . . . , βs) of (real) roots satisfying the following (for 1 ≤ i ≤ s):

(i) rβi
(ξi−1) = ξi,

(ii) βi(ξi−1) < 0,
(iii) kerβi is a thick wall, i.e. βi is a thick root (i.e. βi(p) ∈ Z for a masure),
(iv) βi ∈ Φ+ = Φ+(−C−

p ), i.e. βi(C−
p ) < 0.

(2) If moreover i is minimal (i.e. C−ξ is the (local) chamber “containing” −ξ nearest
to C−

p , i.e. C−ξ = pr−ξ(C−
p ), then the possible ζ are in one to one correspondence

with the disjoint union of the Cm
Q (c) = { minimal galleries m with origin C−

p and
type i with image c by ρA,Q}, when c runs in the set Γ+

Q(i,−η) of galleries satisfying
(b) above with this type i (fixed).

Remark 5.13. With these choices of signs, Φ+ is of positive type, i.e. the associated
vectorial chamber C+

A = −C−
p is in the positive Tits cone T , but perhaps not equal to Cv

f .
Contrary to [15], we do not suppose in (1) above that i is minimal. This gives more

flexibility for applications.
We repeat below the main lines of the proofs in [15] and [14, 6.1, 6.3]. We give details

of a proof of [14, 6.1] independent of the existence of a strongly transitive group.

Proof. (1a) =⇒ (1b). Let m = (C−
p = M0,M1, . . . , Mr ∋ ζ) be a minimal gallery in I

from C−
p to ζ. Its retraction by ρ is a minimal gallery from C−

p to −ξ. Hence, under
the additional hypothesis of (2), one may suppose m of type i and then ζ determines
m. If one retracts now m into A by ρQ (with center Q), one gets a gallery c = ρA,Q(m)
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satisfying (1b) (and of type i, under the hypothesis of (2)). This is a result of [15, 4.4]
which is independent of the existence of a strongly transitive group. □

(1b) =⇒ (1a). If c = (C−
p = C0, C1, . . . , Cr) satisfies (b), there exists a minimal gallery

m = (C−
p = C ′

0, C
′
1, . . . , C

′
r) retracting by ρQ = ρA,Q onto c, with the same type i (cf. [15,

4.4]). Let ζ ⊂ C
′
r retracting by ρQ on −η ⊂ Cr; as η ⊂ Q, this implies in particular that

ζ is opposite η. As c and m are of type i, one has ρ(C ′
r) = C−ξ. Hence ρ(ζ) is in C−ξ as

−ξ. Thus ρ(ζ) = −ξ, as they are both opposite η, up to a conjugation by W v. □

(2). Under the hypothesis of (2), the ζ are in one to one correspondence with the m,
which are exactly the galleries in

∐
c Cm

Q (c) as announced. □

(1a) =⇒ (1c). This generalizes [14, Proposition 6.1], just taking π+ = η, π− = ζ, ρπ− =
−ξ.

One considers [twin] apartments A0 containing η ∪ ζ, A+ containing C−
p ∪ η and A−

containing C−
p ∪ ζ. One defines ρ− = ρA−,C−

p
(recall that ρ = ρA,C−

p
). But we shall first

modify A− by the following lemma.

Lemma 5.14. Let I = (I +,I −) be a twin building, C− a chamber in I − and A =
(A+, A−) a [twin] apartment. Then there exists a chamber C+ in A+ that is opposite C−.
We write then B = (B+, B−) the unique [twin] apartment containing C− and C+.

If moreover D is a chamber in A+ (resp. A−), one may choose C+ in such a way that
D ⊂ B+ (resp. D ⊂ B−).

N.B. This lemma seems well known when I is spherical, but we did not find a reference,
see [37, 2.2.11]. It is likely that this twin case is also already known.

Proof. One assumes first D ⊂ A+. We choose a [twin] apartment A1 = (A+
1 , A

−
1 ) contain-

ing C− (in A−
1 ) and D (in A+

1 ), and we write C ′′ = oppA1(C−) ⊂ A+
1 . As D ⊂ A+

1 , with A1
generated by C− and C ′′, one has d∗w(D,C−) = dw(D,C ′′) (see the Chasles relation (4)
in [1, 5.173], as d∗w(C−, C ′′) = 1).

Let C+ ⊂ A+ be the chamber such that dw(D,C+) = d∗w(D,C−); this means that there
exists in A+ a minimal gallery (C0 = D, . . . , Cs = C+) of type i = (i1, . . . , is), where
ri1 . . . . .ris is a minimal decomposition of d∗w(D,C−) = dw(D,C ′′). Let us prove that
C+ and C− are opposite. One calculates d∗w(Cj , C

−) by induction on j: d∗w(C0, C
−) =

dw(D,C+) = d∗w(D,C−) = ri1 . . . . .ris . One bets that d∗w(Cj , C
−) = rij+1 . . . . .ris (this

will give d∗w(C+, C−) = 1, qed). But dw(Cj+1, Cj) = rij+1 and, by induction hypothesis,
ℓ(rij+1d

∗w(Cj , C
−)) = ℓ(rij+2 . . . . .ris) = ℓ(d∗w(Cj , C

−)) − 1. So, by the axiom (Tw2) in [1,
5.133 p. 266], one gets d∗w(Cj+1, C

−) = rij+2 . . . . .ris which concludes the induction. One
has now to prove that D ⊂ B+. But d∗w(D,C−) = dw(D,C+); so this is a consequence
of [1, 5.175 p. 278].

Let us now look at the case D ⊂ A−. We choose a [twin] apartment A1 = (A+
1 , A

−
1 )

containing C− ∪ D (in A−
1 ) and write C ′′ = oppA1(C−) ⊂ A+

1 . The Chasles relation
gives dw(D,C−) = d∗w(D,C ′′). Let C+ ⊂ A+ be such that d∗w(D,C+) = dw(D,C−).
There is in A−

1 a minimal gallery (C0 = D, . . . , Cs = C−) of type i = (i1, . . . , is), where
ri1 . . . . .ris is a minimal decomposition of d∗w(D,C+) = d∗w(D,C ′′) = dw(D,C−). Let us
prove that C+ and C− are opposite. For this one calculates d∗w(Cj , C

+) by induction on
j: d∗w(C0, C

+) = d∗w(D,C+) = dw(D,C−) = d∗w(D,C ′′) = ri1 . . . . .ris . One bets that
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d∗w(Cj , C
+) = rij+1 . . . . .ris (this will give d∗w(C−, C+) = 1, qed). But dw(Cj+1, Cj) =

rij+1 and, by induction hypothesis,

ℓ
(
rij+1d

∗w(Cj , C
+)
)

= ℓ
(
rij+2 . . . . .ris

)
= ℓ

(
d∗w(Cj , C

+)
)

− 1.

So, by the axiom (Tw2), one gets d∗w(Cj+1, C
+) = rij+2 . . . . .ris and the induction is OK.

One has d∗w(D,C+) = dw(D,C−), hence D ⊂ B− by [1, 5.175]. □

5.8. End of proof of Proposition 5.12. We no longer differentiate the two parts of a
[twin] apartment by an exponent ±.

(1a) =⇒ (1c). We write A−
1 the [twin] apartment B of Lemma 5.14 (obtained by setting

C− := C−
p , A := A0 and D ⊃ ζ). We shall replace A− by A−

1 but not change A0. One has
A−

1 ⊃ C−
p ∪ ζ ∪C+ and C+

A−
1

:= C+ ⊂ A0 is opposite C−
p in A−

1 . Recall that ρ− = ρA−,C−
p

and ρ = ρA,C−
p

.

Remark 5.15. In [14, Proposition 6.1], C+ is written C0 and C−
p = germ(s). Both A−

1
and A− contain C−

p and ζ, so they are isomorphic by an isomorphism θ− : A−
1 → A−

fixing C−
p and ζ. If one supposes θ− induced by an automorphism θ− of the twin building

(e.g. if there is a strongly transitive automorphism group, as in [14]), one may define
A1 = θ−(A0). This apartment contains ζ and a segment germ η1 = θ−(η) (opposite ζ)
such that ρ(η1) = ρ(η) (as C−

p is fixed by θ−). So we are exactly in the situation of [14],
second paragraph of the proof of 6.1 (η1 is written π1

+ there).
In this proof of 6.1, one takes a minimal gallery m = (c0, c1, . . . , cn) in A1 from c0 =

θ−(C+) = C+
A− = oppA−(C−

p ) to the opposite η1 = θ−(η) of ζ. And then one takes
its retraction δ = ρ−(m). We shall replace m by m′ = (θ−)−1(m), which is a minimal
gallery in A0 from C+

A−
1

= C+ = oppA−
1

(C−
p ) = (θ−)−1(C+

A−) to (θ−)−1(η1) = η. So
δ = ρ−(m) = ρ−(m′) and this will avoid to suppose θ− induced by an automorphism
of I .

Back to the proof of (1a) =⇒ (1c) (without assuming the existence of a strongly
transitive group).

We assume A− = A−
1 . As in [14] we consider ρ− instead of ρ; they are almost the same

as ρ− = θ ◦ ρ, if θ : A → A− is the isomorphism fixing C−
p .

By hypothesis, there are w± ∈ W v, such that ξ = [0, 1)w−λ and η = [0, 1)w+λ. We
choose w± minimal for this property. Here we consider C+

A = oppA(C−
p ) as the fundamental

vectorial chamber of A, to precise the action of W v on A and the relation λ ∈ A (i.e. λ ∈
C

+
A ).
In A0 one considers a minimal gallery m′ = (c0, c1, . . . , cn) of type i = (i1, . . . , in)

between c0 = C+ = C+
A−

1
= C+

A− and cn ⊃ η. The retracted gallery

δ = ρ−(m′) =
(
c0, c

′
1 = ρ−(c1), . . . , c′

n = ρ−(cn)
)

in A− is centrifugally folded with respect to C−
p . It satisfies c0 = ρ−(C+

A−) = C+
A− and

c′
n ⊃ ρ−(η).

One has η ∈ w−C
+
A− = w−C

+ in A0, with w− minimal (to be precise, W v is considered
here as a group of automorphisms of A0 by considering C+ as its fundamental vectorial
chamber). Actually η is opposite ζ in A0 ⊃ C+; so, using the isomorphism θ0 : A0 → A−

fixing ζ and C+, it is sufficient to prove that the opposite oppA−(ζ) of ζ in A− is in
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w−C
+ = w−C

+
A− . But ρ induces the isomorphism θ−1 : A− → A (fixing C−

p ) which
sends ζ onto −ξ (by the hypothesis (1a)) hence oppA−(ζ) onto ξ and C+

A− onto C+
A . As

ξ ∈ w−C
+
A with w− minimal, by the above definition of w−, we are done.

From the definition of m′, one gets that w− = ri1 . . . . .rin is a reduced decomposition.
Using once more the isomorphism θ−1 : A− → A (which sends ρ−(η) to ρ(η) = η and C+

A−

to C+
A ), one gets ρ−(η) ∈ w+C

+
A− with w+ minimal.

In A0, the chambers cj and cj+1 are separated by a (thick or thin) wall H1
j and one

writes Hj the (thick or thin) wall in A− containing ρ−(H1
j ∩ cj) = ρ−(H1

j ∩ cj+1). We
denote by j1, . . . , js the indices such that c′

j = ρ−(cj) = ρ−(cj+1) = c′
j+1. Then, for

all k, H1
jk

and Hjk
are thick walls (it is a part of the definition of a centrifugally folded

gallery). One writes βk ∈ Φ+ the positive root such that Hjk
has direction kerβk (here

Φ+ is defined as in (1c)(iv) of but in A−: β ∈ Φ+ ⇐⇒ β(C−
p ) < 0).

Actually we get δ = ρ−(m′) from a minimal gallery δ0 = (c0
0 = c0 = C+

A− , c
0
1, . . . , c

0
n) =

θ0(m′), of type i in A− from c0 to c0
n = w−c0 ⊃ θ0(η), by applying successive foldings

along the walls Hj1 , Hj2 , . . . , Hjs . At each step one gets a gallery δk = (ck
0 = c0 =

C+
A− , c

k
1, . . . , c

k
n), of type i in A−, centrifugally folded with respect to C−

p , which ends
more and more closely to c0.

One writes ξ0 = w−λ ∈ c0
n = w−c0 ⊂ A− and ξk = rβk

. . . . .rβ1 .ξ0 ∈ ck
n ⊂ A−. In

particular ξs ∈ cs
n = c′

n and c′
n ⊃ ρ−(η). As ξs ∈ W vλ and η is generated by a vector in

W vλ, one sees that ξs generates this segment germ ρ−(η) ⊂ A−. Similarly, we see that
ξ0 = w−λ generates θ0(η) ⊂ A−.

Actually the isomorphism θ−1 ◦ θ0 : A0 → A− → A sends C+ = C+
A− onto C+

A and η

onto ξ (as we saw above that it sends ζ onto −ξ): ρ(θ0(η)) = ξ in A. The isomorphism
θ−1 : A− → A sends θ0(η) onto ξ and ρ−(η) onto η. So the condition (c) we aim to
prove is equivalent to the conditions (i, ii, iii, iv) for (ξ0, . . . , ξs) and (β1, . . . , βs) in A−.
Actually (i), (iii) (as Hjk

is a thick wall) and (iv) are clearly satisfied. Let us prove now
(ii): βk(ξk−1) < 0.
δ0 is a minimal gallery from c0 = C+

A− to w−c0 ⊃ [0, 1)w−λ. So, for any j, c0
j+1, . . . , c

0
n

and [0, 1)w−λ are on the same side of the wall separating c0
j and c0

j+1; in particular
(ck

jk+1, . . . , c
k
n) is a minimal gallery, entirely on the same side of Hjk

and [0, 1)ξk ̸⊂ Hjk
.

But ck
jk

= ρ−(cjk
) = ρ−(cjk+1) = ck

jk+1 and, as we have centrifugal foldings (with respect
to C−

p , opposite C+
A− = c0 in A−), this chamber is on the positive side of the wall Hjk

(with
direction kerβk). So ck

jk+1, . . . , c
k
n are in this positive side; this means that βk(ξk) > 0,

i.e. βk(ξk−1) < 0. This proves that (1a) =⇒ (1c).

(1c) =⇒ (1a). This generalizes a part of [14, Theorem 6.3].
We have ξ (resp. η) generated by ξ0 = w−λ (resp. ξs = w+λ) and w± ∈ W v is chosen

minimal for this property. We write w− = ri1 . . . . .rin a minimal decomposition (of type i,
the type of a minimal gallery from C−

p to −ξ, as in the hypothesis of (2)).
The segment germs ζ such that ρ(ζ) = −ξ are in bijection with the galleries of type i

m− = (c−
0 = C−

p , c
−
1 , . . . , c

−
n ) that are minimal (i.e. non stammering) starting from C−

p .
This bijection is given by the relation ζ ⊂ c−

n . We have now to prove that we may choose
m− in such a way that ζ is opposite η. This is for this that the W v

p −chain will be useful.
We write δ0 = (c0

0 = C+
A , c

0
1, . . . , c

0
n) the minimal gallery of type i in A starting from

C+
A . It is thus stretched from C+

A to ξ (generated by ξ0 = w−λ). We shall first fold this
gallery step after step, using the W v

p −chain.
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As β1(ξ0) < 0 (by (ii)) and β1(C+
A ) > 0 (by (iv)), the wall kerβ1 (thick by (iii))

separates c0
0 = C+

A from c0
n: so it is the wall between two adjacent chambers c0

j1−1 and c0
j1

(actually here j1 is well determined). One writes δ1 = (c1
0 = c0

0 = C+
A , c

1
1 = c0

1, . . . , c
1
j1−1 =

c0
j1−1, c

1
j1 = c1

j1−1 = rβ1c
0
j1 , . . . , c

1
n = rβ1c

0
n). It is a gallery of type i and c1

n ⊃ rβ1(ξ0) = ξ1
(by (i)). But β2(ξ1) < 0 and β2(C+

A ) > 0, so the wall kerβ2 separates c1
0 = C+

A from
c1

n; it is the wall between two strictly adjacent chambers c1
j2−1 and c1

j2 . One writes δ2 =
(c2

0 = c1
0 = c0

0 = C+
A , c

2
1 = c1

1, . . . , c
2
j2−1 = c1

j2−1, c
2
j2 = c2

j2−1 = rβ2c
1
j2 , . . . , c

2
n = rβ2c

1
n). It

is a gallery of type i and c2
n ⊃ rβ2(ξ1) = ξ2. But β3(ξ2) < 0, etc. At the end of the day,

one gets a gallery δs = (cs
0 = c0

0 = C+
A , c

s
1, . . . , c

s
n) of type i in A starting from C+

A and
finishing in cs

n ⊃ ξs = w+λ (generating η). This gallery is folded along thick walls (this
is condition (iii)), but perhaps not centrifugally folded (with respect to C−

p ), contrary to
what is written (too quickly) in [14, line 3, p. 2650].

To prove now that ζ and η are opposite segment germs, it is equivalent to prove that
cs

n (⊃ η) and c−
n (⊃ ζ) are opposite chambers (as ζ and η are generated by vectors in

±W vλ). For this we shall choose carefully the successive chambers c−
i and prove more

than necessary: by induction on j, c−
j and cs

j are opposite for 0 ≤ j ≤ n; this is true
for j = 0. Let us suppose c−

j−1 and cs
j−1 opposite. Then cs

j is adjacent to cs
j−1 (resp. c−

j

has to be strictly adjacent to c−
j−1) along a panel (in the unrestricted sense) of type ij .

If the wall containing this panel is thin, then cs
j and cs

j−1 (resp. c−
j and c−

j−1) are in the
same apartments and cs

j ̸= cs
j−1 (resp. c−

j ̸= c−
j−1) so c−

j and cs
j are automatically opposite.

If, on the contrary this wall is thick, then (from the theory of twin buildings, see e.g.
[1, 5.139 and 5.134]) one knows that all chambers adjacent (or equal) to c−

j−1 (along a
panel of type ij) except exactly one, are opposite cs

j . As the wall is thick, we can always
choose c−

j opposite cs
j and strictly adjacent to c−

j−1.

5.9. C∞−Hecke paths. We consider, as before § 5.7, a thick masure I and a (canonical)
apartment A considered as a vector space with origin 0 = 0A. It is endowed with a Weyl
group W v, a root system Φ (in A∗), a fundamental vectorial chamber Cv

f and a Tits cone
T = W v.Cv

f . We consider a spherical dominant or antidominant vector λ ∈ ε(Cv
f ∩ T ◦).

Recall the definition and properties of λ−paths from § 5.2.3, § 5.4.1 and Lemma 5.3.
We consider now the case where I = I⊕ is the positive part of a twin masure and

A = A⊕ is the canonical twin apartment. So A⊖ contains the fundamental negative local
chamber C∞. For any p ∈ A⊕ satisfying p

◦
> 0 or p ≤ 0, we defined in § 5.1.3 the local

chamber C∞
p = prp(C∞); its sign is + if p

◦
> 0 (i.e. p ∈ T ◦) and − if p ≤ 0 (i.e. p ∈ −T ).

We suppose the origin π(0) of π in εT . By the choice of λ, we have π(t) ∈ εT ◦, for any
t ∈]0, 1]. So C∞

π(t) is well defined and of sign ε for t > 0.

Definition 5.16. Such a λ−path π is called a C∞−Hecke path of type λ (with sign ε)
if, for any 0 < t < 1, the left and right derivatives π′

±(t) ∈ εT ◦ at p = π(t) satisfy
π′

−(t) ≤W v
p ,C∞

p
π′

+(t), which means that there is a (W v
p , C

∞
p )−chain from π′

+(t) to π′
−(t),

i.e. finite sequences (ξ0 = π′
+(t), ξ1, . . . , ξs = π′

−(t)) of vectors in A and (β1, . . . , βs) of
real roots (in A∗) such that, for all i = 1, . . . , s,

(i) rβi
(ξi−1) = ξi,

(ii) βi(ξi−1) < 0,
(iii) βi(p) ∈ Z (i.e. ∃ a wall of direction kerβi containing p),
(iv) βi ∈ Φ+(C∞

p ), i.e. βi(C∞
p ) > βi(p).

Ann. Repr. Th. 2 (2025), 3, p. 281–353 https://doi.org/10.5802/art.25

https://doi.org/10.5802/art.25


334 Nicole Bardy-Panse et al.

Remark 5.17.
(1) When p is not a folding point of π (i.e. π′

−(t) = π′
+(t)), the above conditions (i)

to (iv) are always fulfilled with s = 0.
(2) W v

p is the subgroup of W v generated by the rβ, for β ∈ Φ and β(p) ∈ Z.
(3) The condition (iv), more precisely the definition of Φ+(C∞

p ), is opposite the defini-
tions in [15, 1.8(iv) and 1.8(2)], [6, 3.3] or [8, 2.5]. Actually in these references the
analogue of C∞

p (which determines locally the investigated retraction) is naturally
of negative sign. In our case C∞

p is of positive sign for ε = 1 and negative sign for
ε = −1; this is one of the reasons for our choice of definition of Φ+(C∞

p ). Notice
that this Φ+(C∞

p ) will be also opposite the Φ+ of Proposition 5.12(c)(iv), when
we shall use this proposition.

(4) We write C∞v
p ⊂ A the vectorial chamber (of sign ε) which is the direction of

C∞
p . We consider the linear action of W v on A obtained by identifying (A, Cv

f )
and (A, C∞v

p ). As π′
±(t) is also of sign ε, there is w±(t) ∈ W v such that π′

±(t) ∈
w±(t).C∞v

p ⊂ V ; we actually choose w±(t) minimal for this property. Then the
condition π′

−(t) ≤W v
p ,C∞

p
π′

+(t) implies w−(t) ≤ w+(t):
Actually one may define σi ∈ W v minimal such that ξi ∈ σi.C

∞v
p (hence w−(t) =

σs and w+(t) = σ0) and we prove now that σi ≤ σi−1. Clearly ξi ∈ rβi
σi−1.C

∞v
p ,

so σi ≤ rβi
σi−1. But ξi−1 ∈ σi−1.C

∞v
p , βi(ξi−1) < 0 and βi(C∞v

p ) > 0. Therefore
C∞v

p and σi−1.C
∞v
p are on opposite sides of the wall kerβi. This proves that

ℓ(rβi
σi−1) < ℓ(σi−1) and rβi

σi−1 ≤ σi−1.
(5) The relation π′

−(t) ≤W v
p ,C∞

p
π′

+(t) is also opposite the relation appearing in the
above references [6, 8, 15]. This is really a new phenomenon. We saw in remark
(4) above that it implies w−(t) ≤ w+(t). This reminds us the relation w−

i ≤ w+
i

of Proposition 5.6, but it is opposite the relation in [14, 5.4].
One may note that, in this reference the definition of w±(t) compares classically

π′
±(t) with the fundamental vectorial chamber Cv

f (which is opposite the analogue
of C∞

p ), while the definition above compares it with C∞
p (which is seldom of di-

rection Cv
f ).

5.10. C∞−Hecke paths as retractions of C∞− friendly line segments. A line seg-
ment [x, y] in I⊕ is said ε−C∞−friendly if it is C∞−friendly in the sense of § 5.2.1 with
x

◦
< y if ε = +1 (resp. x

◦
> y if ε = −1) and moreover, in a twin apartment (A⊖

0 , A
⊕
0 )

containing C∞ ⊂ A⊖
0 and x ∈ A⊕

0 (or even [x, y) ⊂ A⊕
0 ) one has x ≥ 0A⊕

0
(resp. x ≤ 0A⊕

0
),

where 0A⊕
0

is the element in A⊕
0 opposite the vertex of C∞.

We write φ : [0, 1] → [x, y] an affine parametrization of [x, y], with x = φ(0), y = φ(1)
and λ = dv(x, y); actually ελ is in the interior of the Tits cone and in C

v
f .

By definition, the retraction ρC∞ (of a part of I⊕ into A⊕, with center C∞) is defined
on [x, y] and we saw in § 5.2.2 that the image π = ρC∞ ◦ φ of [x, y] by ρC∞ is a λ−path.

Proposition 5.18.
(1) Let [x, y] ⊂ I⊕ be an ε − C∞−friendly line segment and λ = dv(x, y), then its

image π by ρC∞ is a C∞−Hecke path of type λ (with sign ε).
(2) Conversely let π be a C∞−Hecke path of type λ (with sign ε) in A⊕ with origin

p0 ≥ 0A⊕ (resp. p0 ≤ 0A⊕) if ε = +1 (resp. ε = −1) and x ∈ I⊕ be such that
(C∞, x) is twin friendly and ρC∞(x) = p0, then there is an ε − C∞−friendly line
segment [x, y] such that π = ρC∞([x, y]); moreover λ = dv(x, y).
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Proof. We consider first the case ε = −1.
(1) Clearly p0 = π(0) satisfies p0 ≤ 0A⊕ , i.e. p0 ∈ −T . For any t ∈ ]0, 1[ we write

p = π(t); we have now to find a (W v
p , C

∞
p )−chain from π′

+(t) to π′
−(t). For this we use

Proposition 5.7 in the tangent space Tp(I⊕) and we change first A in order that it contains
C∞ and [φ(t), x): this does not change π, up to an isomorphism which is a restriction of
ρC∞ . We then have p = π(t) = φ(t). For the chamber C−

p we take the negative chamber
C∞

p of § 5.1.3 (we identify local chambers at p and chambers in Tp(I⊕)). For ζ we take
the negative segment germ φ+(t) = [p, y). For η we take the positive segment germ
π−(t) = φ−(t) = p − [0, 1)π′

−(t) ⊂ A⊕ (we identify segment germs of origin p in I⊕ and
segment germs of origin 0 in Tp(I⊕)). And for −ξ we take the negative segment germ
π+(t) = p+ [0, 1)π′

+(t) ⊂ A⊕ (so ξ = p− [0, 1)π′
+(t) ⊂ A⊕ is a positive segment germ).

We have ρC∞(ζ) = −ξ, i.e. ρ(ζ) = −ξ, as the restriction of ρC∞ to Tp(I⊕) is ρ = ρA,C∞
p

(see Lemma 5.1). We are exactly in the situation of Proposition 5.12(1a), except that
the λ in l.c. is our −λ ∈ −εT ◦ = T ◦: η (resp. ξ) is generated by −π′

−(t) ∈ −W vλ
(resp. −π′

+(t) ∈ −W vλ). From (a) =⇒ (c) in this proposition, we get η ≤ ξ, or more
precisely sequences (ξ′

0 = −π′
+(t), ξ′

1, . . . , ξ
′
s = −π′

−(t)) and (β′
1, . . . , β

′
s) satisfying the

conditions (i) to (iv) of Proposition 5.12(1c). Considering the sequences (ξ0 = −ξ′
0 =

π′
+(t), ξ1 = −ξ′

1, . . . , ξs = −ξ′
s = π′

−(t)) and (β1 = −β′
1, . . . , βs = −β′

s), we get the
expected (W v

p , C
∞
p )−chain, as the Φ+(C∞

p ) of § 5.9 (Definition 5.16(iv)) is opposite the
Φ+ of Proposition 5.12(1c)(iv).

(2) Now π is a C∞−Hecke path of shape λ (with sign ε = −1) in A⊕ with origin
p0 ∈ A⊕ and x ∈ I⊕ satisfies ρC∞(x) = p0. By definition there is a subdivision 0 = t0 <
t1 < · · · < tℓπ = 1 of [0, 1] such that π([0, 1]) = [p0, p1] ∪ [p1, p2] ∪ · · · ∪ [pℓπ−1, pℓπ ], if we
write pi = π(ti). We take a twin apartment A0 containing C∞ and x, then ρC∞ |A0 is an
isomorphism of A0 onto A fixing C∞ and sending x to p0; so x ≤ 0A⊕

0
as expected. We

shall prove by induction that, for i ≥ 1, there is a (−1) −C∞−friendly line segment [x, zi]
such that ρC∞([x, zi]) = π([0, ti]). We define [x, z1] = (ρC∞ |A⊕

0
)−1([p0, p1]), it is a solution

for i = 1. We assume now the result for i and prove it for i+1. Up to an isomorphism, we
may assume A ⊃ C∞ ∪ [zi, x). Let p := pi = zi, we get the situation of Proposition 5.12,
by setting C−

p := C∞
p , η := [zi, x) = [pi, pi−1), −ξ = [pi, pi+1). The condition (1c) of l.c. is

fulfilled (see above in (1) the translation between chains). So the implication (c) =⇒ (a)
provides us a segment germ ζ opposite η with origin zi satisfying ρC∞(ζ) = −ξ = [pi, pi+1).
We write Ai a twin apartment containing C∞ and ζ. Then ρC∞ |Ai is an isomorphism
from Ai onto A fixing C∞ and we define [zi, zi+1] = (ρC∞ |A⊕

i
)−1([pi, pi+1]). We have

ρC∞([x, zi] ∪ [zi, zi+1]) = π([0, ti+1]). But [zi, x) = η and [zi, zi+1) = ζ are opposite. So
[x, zi] ∪ [zi, zi+1] is a line segment by [15, 4.9] and we are done.

We deal now with the case ε = +1. (1) As above p0 = π(0) satisfies p0 ≥ 0A⊕ , i.e. p0 ∈ T .
For any t ∈]0, 1[ we write p = π(t); we have now to find a (W v

p , C
∞
p )−chain from

π′
+(t) to π′

−(t). We want to use Proposition 5.12 in Tp(I⊕), but now C∞
p is a posi-

tive local chamber in A⊕. Luckily the signs in Proposition 5.12 are not important, as
e.g. Φ+ is defined in (1c)(iv) by reference to C−

p , not to the signs in A⊕. The im-
portant fact is that ξ and η (resp. C−

p , ζ and −ξ) are of the same sign. We change
first A in order that it contains C∞ and [φ(t), x), so p = π(t) = φ(t). We take now
C−

p := C∞
p , ζ := φ+(t), η := π−(t) = φ−(t) = p − [0, 1)π′

−(t) and −ξ = π+(t) =
p + [0, 1)π′

+(t), so ξ = p − [0, 1)π′
+(t). We have ρC∞(ζ) = −ξ and we are exactly in the
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situation of Proposition 5.12(1a), except for the signs; in particular η (resp. ξ) is gener-
ated by −π′

−(t) ∈ −W vλ (resp. −π′
+(t) ∈ −W vλ), so the λ in l.c. is our −λ. From (1a)

=⇒ (1c) in Proposition 5.12, we get η ≤ ξ which seems to mean −π′
−(t) ≤ −π′

+(t).
By the same trick as above for the case ε = −1, we get the expected (W v

p , C
∞
p )−chain

from π′
+(t) to π′

−(t).

The proof of the converse result (2) is the same, mutatis mutandis, as the one given
above in the case ε = −1. □

5.11. Consequences.

5.11.1. We considered in § 5.3.2 C∞−friendly line segments [x, y] which were actually
ε − C∞−friendly. We endowed them with a decoration. Then π = ρC∞([x, y]) ⊂ A⊕ is
endowed with a superdecoration (§ 5.3.3) which makes it a superdecorated C∞ − λ path
(see § 5.4.5 and § 5.4.6). Conversely we proved in Theorem 5.9 that a superdecorated
C∞ − λ path is the image by ρC∞ of a C∞−friendly line segment.

Comparing with the above Proposition 5.10, we get that:

(a) The underlying path of a super-decorated C∞ − λ path is a C∞−Hecke path.
(b) Any C∞−Hecke path π ⊂ A may be endowed with a super-decoration (provided

that π(0)
◦
≥ 0⊕ or π(0)

◦
≤ 0⊕).

(c) The number of these possible super-decorations is finite (see § 5.4.6).

Actually the consideration of (super-)decorations is useful to count the number of line
segments with a given C∞−Hecke path as image under ρC∞ (see Theorem 5.9). But
the definition we gave of a super-decoration is perhaps too precise. Other choices of the
decorations C±

t,π may be interesting, e.g. to compare with Muthiah’s results in [29].

N.B. The reader should note that a decorated C∞ − λ path cannot always be endowed
with a super-decoration. One should, at least, assume the condition C+

t,π = prπ+(t)(C−
t,π),

when t is not among the ti of Lemma 5.4. See analogously [8, Proposition 2.7 N.B. and
Remark (3) in § 3.3].

5.11.2. We indicated in § 4.4.2 that our main motivation, according to Muthiah’s goals,
was to calculate the cardinality of sets of the form (Ktwinϖ

−λKtwin ∩ I∞ϖ
−µKtwin)/

Ktwin for λ, µ ∈ ε(Cv
f ∩T ◦ ∩Y ) ⊂ A⊕. Such a set is in one to one correspondence with the

set of points x ∈ I⊕ such that dv(0⊕, x) = λ and ρC∞(x) is defined and equal to µ. Due
to the lack of a Birkhoff decomposition, we are only able to calculate the cardinality of a
subset: the set of the x as above such that, moreover, ρC∞(z) is defined for any z ∈ [0⊕, x].
The formula we get for this cardinality is as follows: it is the sum of the numbers #{[x, y]}
in Theorem 5.9(2), where the sum runs on the set of all superdecorated C∞ − λ paths in
A⊕ of shape λ from 0⊕ to µ (with the type it fixed for any t ∈ ]0, 1[). One can notice
that this set of paths depends only on A⊕, λ and µ (not of k) and that it is finite, at
least if the root system of G is untwisted affine of type A, D or E (see (1c) above and the
result 4.4.2(4) of D. Muthiah). So (in the case of A,D,E with λ ∈ −(Cv

f ∩ T ◦ ∩ Y )) this
cardinality is a well defined polynomial in the cardinality q of k, depending only on A⊕,
λ and µ.
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6. The case of affine SL2: counter-example to the Birkhoff decomposition
and examples of Hecke paths

In this section, we begin by proving that when G is affine SL2 over k(ϖ), the Birkhoff
decomposition does not hold, that is Gtwin ̸⊂ I∞NK. Actually, many Kac–Moody groups
over k(ϖ) can be considered as affine SL2 over k(ϖ): we will work with Gloop, G and
G̃, which are respectively SL2(k(ϖ)[u, u−1]), Gloop ⋊ k(ϖ)∗ and a central extension of G.
Their maximal tori have dimensions 1, 2 and 3. In Gloop, neither the simple coroots nor
the simple roots are free, in G the simple coroots are not free but the simple roots are
free and in G̃ both simple roots and simple coroots are free so that G and G̃ fulfil the
assumptions of § 4.1.2. To prove that the Birkhoff decomposition does not hold, we work
in Gloop, in which the computations are easier, and then deduce the results for G and G̃.

We exhibit an element of Gtwin \ I∞NK. Our element lies in G \ (G+
⊕ ∪ G−

⊕), where
the index ⊕ means that G+ and G− are defined with respect to I⊕. This suggests that
we need to work in G+

⊕ or G−
⊕ to obtain a Birkhoff decomposition (see § 4.4.1). This was

expected, since this is already the case for the Cartan decomposition
We end this section with some examples of Hecke paths associated with G.

6.1. Notation and projection of G̃ on G. We begin by defining G̃, which is a central
extension of SL2

(
k(ϖ)[u, u−1]

)
⋊k(ϖ)∗, by defining a root generating system, in the sense

of Bardy-Panse [5]. Let Ỹ = Zℵ∨⊕Zc⊕Zd, where ℵ∨, c, d are some symbols, corresponding
to the positive root of SL2(k(ϖ)), to the central extension and to the semi-direct extension
by k(ϖ)∗ respectively. Let X̃ = Zℵ ⊕Zδ⊕ZΛ0, where ℵ, δ, Λ0 : Ỹ → Z are the Z-module
morphisms defined by ℵ(ℵ∨) = 2, ℵ(c) = ℵ(d) = 0, δ(ℵ∨) = 0 = δ(c), δ(d) = 1, Λ0(c) = 1
and Λ0(ℵ∨) = Λ0(d) = 0. Let α̃0 = δ − ℵ, α̃1 = ℵ, α̃∨

0 = c− ℵ∨ and α̃∨
1 = ℵ∨. Then

S̃ =
((

2 −2
−2 2

)
, X̃, Ỹ , {α̃0, α̃1} ,

{
α̃∨

0 , α̃
∨
1

})
is a root generating system. Let G̃ be the Kac–Moody group associated with S̃ over k(ϖ).
Then by [26, 13] and [27, 7.6], G̃ is a central extension of G := SL2

(
k(ϖ)[u, u−1]

)
⋊k(ϖ)∗,

where u is an indeterminate and if (M, z), (M1, z1) ∈ G, with

M =
(

a(ϖ,u) b(ϖ,u)
c(ϖ,u) d(ϖ,u)

)
,M1 =

(
a1(ϖ,u) b1(ϖ,u)
c1(ϖ,u) d1(ϖ,u)

)
,

we have
(M, z).(M1, z1) =

(
M
(

a1(ϖ,zu) b1(ϖ,zu)
c1(ϖ,zu) d1(ϖ,zu)

)
, zz1

)
. (6.1)

Let X = Zℵ ⊕ Zδ and Y = Zℵ∨ ⊕ Zd. We regard X as a set of maps from Y to Z by
restricting them to Y . Let α0 = δ − ℵ, α1 = ℵ, α∨

0 = −ℵ∨ and α∨
1 = ℵ∨. Then

S =
((

2 −2
−2 2

)
, X, Y, {α0, α1} ,

{
α∨

0 , α
∨
1
})

is a root generating system and G is the associated Kac–Moody group (over k(ϖ)).
Note that the family (α∨

0 , α
∨
1 ) is not free. We have Φ = {α+ kδ | α ∈ {±ℵ}, k ∈ Z} and

(α0, α1) is a basis of this root system. We denote by Φ+ (resp. Φ−) the set Φ∩(Nα0+Nα1)
(resp −Φ+). For k ∈ Z and y ∈ k(ϖ), we set

xℵ+kδ(y) =
((

1 uky
0 1

)
, 1
)

∈ G and x−ℵ+kδ(y) =
((

1 0
uky 1

)
, 1
)

∈ G.

The tori of G̃, G and Gloop are different (with respective dimensions 3, 2 and 1). On the
contrary the maximal unipotent subgroups Ũ±, U± and U±

loop are naturally isomorphic [35,
1.9.2].
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We set
T =

{((
y 0
0 y−1

)
, z
) ∣∣∣ y, z ∈ k(ϖ)∗

}
.

Then T is a maximal split torus of G. Let N be the normalizer of T in G. We have

N = G ∩
(((

k(ϖ)∗uZ 0
0 k(ϖ)∗uZ

)
, k(ϖ)∗

)
⊔
((

0 k(ϖ)∗uZ

k(ϖ)∗uZ 0

)
,k(ϖ)∗

))
.

Recall that O = k[ϖ,ϖ−1]. We have

N(O) = G ∩
(((

k∗ϖZuZ 0
0 k∗ϖZuZ

)
,k∗ϖZ

)
⊔
((

0 k∗ϖZuZ

k∗ϖZuZ 0

)
,k∗ϖZ

))
and U(O) := ⟨xα+kδ(O) | α ∈ {±ℵ}, k ∈ Z⟩, so that

Gtwin = ⟨N(O),U(O)⟩ ⊂ SL2
(
O
[
u, u−1

])
⋊ k∗ϖZ.

The group G (resp G̃) acts on the masures I⊕,I⊖ (resp Ĩ⊕, Ĩ⊖). We denote with a
tilde the objects related to the masures Ĩ⊕ and Ĩ⊖ (for example the vertex 0̃⊕ and the
local chamber C̃∞). Let K (resp. K̃) be the fixator of 0⊕ (resp. of 0̃⊕) in G (resp. in G̃)
and I∞ (resp. Ĩ∞) be the fixator of C∞ in Gtwin (resp. of C̃∞ in G̃twin). Let v ∈ {⊖,⊕}.
The standard apartment Ãv can be written as Av ⊕ Rc, where c ∈ Y corresponds to the
center, so that Av can be considered as the quotient of Ãv by Rc. Let π : G̃ ↠ G denote
the natural projection and denote also by π : Ãv = Av ⊕ Rc↠ Av the natural projection.
Then we have the following easy lemma.

Lemma 6.1. The map π : Ãv → Av uniquely extends to a map π : Ĩv → Iv such that
π(g.a) = π(g).π(a) for g ∈ G̃, a ∈ Ãv. In particular, we can regard Iv as a quotient of
Ĩv by Rc.

Let v ∈ {⊖,⊕} and f(ϖ), g(ϖ) ∈ k(ϖ)∗ be such that ωv(f(ϖ)) = ωv(g(ϖ)) = 0. Let
ℓ, n ∈ Z. Then ((

f(ϖ)ϖℓ 0
0 f(ϖ)−1ϖ−ℓ

)
, g(ϖ)ϖn

)
acts on Av by the translation of vector −sgn(v)(ℓℵ∨ + nd).

The kernel C of π : G̃ → G is a one-dimensional split central torus (actually the reduced
connected component of the center of G̃, which is contained in T̃ ), with cocharacter group
Z.c ⊂ Ỹ (cocharacter group of T̃ ). So there exists an isomorphism TC : k(ϖ)∗ → C such
that TC(a) acts by the translations of vectors −ω⊕(a)c on Ã⊕ and −ω⊖(a)c on Ã⊖ (see
§ 2.2.2(2)). We set tc = TC(ϖ−1) ∈ T̃(k[ϖ,ϖ−1]) ⊂ G̃twin.

Lemma 6.2. Let i ∈ G̃ be such that π(i) ∈ I∞. Then i ∈ Ĩ∞C ⊂ Ĩ∞T̃ .

Proof. We have π(i.0̃⊖) = 0⊖ and hence i.0̃⊖ = 0⊖+kc, for some k ∈ Z. Then itkc .0̃⊖ = 0̃⊖.
Then itkc .C̃∞ is a local chamber based at 0̃⊖ and we have π(itkc .C̃∞) = C∞. Therefore
itkc ∈ Ĩ∞ and i ∈ Ĩ∞C ⊂ Ĩ∞T̃ . □

Lemma 6.3. Recall that Ẽ = Ĩ∞.Ã and that E = I∞.A. Then
Ẽ = π−1(E) and ρ̃

C̃∞
= π ◦ ρC∞ .

More precisely, let g ∈ G and x ∈ A be such that g.x ∈ E. Let g̃ ∈ π−1(g) and x̃ ∈ π−1(x).
Then g̃.x̃ ∈ Ẽ and π ◦ ρ̃

C̃∞
(g̃.x̃) = ρC∞(g.x).
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Proof. Let x̃ ∈ Ẽ . Write x̃ = ĩ.ỹ, where ĩ ∈ Ĩ∞ and ỹ = ρ̃
C̃∞(x̃) ∈ A. Then

π(x̃) = π(̃i).π(ỹ) ∈ I∞.π(ỹ) ⊂ E .
Moreover, π(ρ̃

C̃∞
(x̃)) = π(ỹ) = ρC∞(π(x)). Conversely, take x ∈ E . Write x = i.y, with

i ∈ I∞ and y ∈ A. Let
x̃ ∈ π−1({x}), ỹ ∈ π−1({y}) and ĩ ∈ π−1({i}).

Then π(̃i.ỹ) = π(x̃) and hence there exists k ∈ Z such that x̃ = (tc)k ĩ.ỹ = ĩ(tc)k.ỹ.
Therefore x̃ ∈ Ẽ , which proves that Ẽ = π−1(E).

Take g ∈ G and x ∈ A such that g.x ∈ E . Let g̃ ∈ π−1({g}) and x̃ ∈ π−1({x}). Write
g.x = i.y, with i ∈ I∞ and y ∈ A. Take ĩ ∈ π−1({i}) and ỹ ∈ π−1({y}). Then π(g̃.x̃) =
π(̃i.ỹ), so there exists k ∈ Z such that g̃.x̃ = ĩ(tc)k.ỹ ∈ Ẽ . Therefore ρ̃

C̃∞
(g̃.x̃) = (tc)k.ỹ,

and the lemma follows. □

In § 2.1.1, we defined actions of W v on Ã and A. We denote by .̃ the action of W v

on Ã. We have w.̃x ∈ w.x+ Rc, for all x ∈ A ⊂ Ã.

Lemma 6.4. Let λ̃ ∈ C̃v
f and λ = π(λ̃). Let v, w ∈ W v be such that v.λ = w.λ. Then

ṽ.λ̃ = w.̃λ̃.

Proof. Let i ∈ I = {0, 1}. We have ri.λ = λ − αi(λ)α∨
i and rĩ.λ = λ − α̃i(λ)α̃i

∨ =
λ− αi(λ)α̃i

∨, with α̃i
∨ ∈ α∨

i + Rc. Moreover, (W v )̃.c = {c}, so by induction on ℓ(w′), we
have (w′)̃.λ ∈ w′.λ+ Rc, for all w′ ∈ W v.

Write λ̃ = λ+ tc, with t ∈ R. We have v−1w.λ = λ and therefore:
v−1w.̃λ̃ = v−1w.̃(λ+tc) = v−1w.̃λ+tv−1w.̃c = v−1w.̃λ+tc ∈ v−1w.λ+Rc = λ+Rc = λ̃+Rc.

Consequently v−1w.̃λ̃ ∈ C̃v
f ∩W v .̃λ̃ = {λ̃} □

Lemma 6.5. Let λ̃ ∈ C̃v
f ∩ T̃ ◦, λ = π(λ̃), and τ : [0, 1] → A be a λ-path (for the action .

of W v on A) and ã0 ∈ Ã be such that π(ã0) = τ(0). Then there exists a unique λ̃-path
τ̃ : [0, 1] → Ã (for the action .̃ of W v on Ã) such that π ◦ τ̃ = τ and τ̃(0) = ã0.

Proof. Let n ∈ N and 0 ≤ t0 < t1 < . . . < tn = 1 be such that τ is differentiable (with
constant derivative) on ]ti, ti+1[ for all i ∈ {0, . . . , n − 1}. For i ∈ {0, . . . , n − 1} and
t ∈ ]ti, ti+1[, choose wi ∈ W v such that τ ′(t) = wi.λ. Let τ̃ : [0, 1] → Ã be a λ̃-path with
π ◦ τ̃ = τ . Maybe increasing the number of ti, we may assume that τ̃ is differentiable
on ]ti, ti+1[ for all i ∈ {0, . . . , n − 1}. Let i ∈ {0, . . . , n − 1} and t ∈ ]ti, ti+1[. Then
π(τ̃ ′(t)) = wi.λ. By Lemma 6.4 we deduce that τ̃ ′(t) = wi.λ̃. So τ̃(t) − τ̃(0) is well-
determined by τ for every t ∈ [0, 1], which proves the desired uniqueness.

For the existence, it suffices to set τ̃(t) = ã0 +
∫ t

0 τ̃
′, for t ∈ [0, 1]. □

Let g ∈ G and φ : [0, 1] → A be a parametrization of a preordered segment of A. We
assume moreover that g.φ(t) ∈ E for all t ∈ [0, 1]. Let g̃ ∈ π−1({g}). Then from what we
proved, for every t ∈ [0, 1], g̃.φ(t) ∈ Ẽ and π(ρ̃

C̃∞
(g̃.φ)) = ρC∞(g.φ), and we can recover

π(ρ̃
C̃∞

(g̃.φ)) from ρ̃
C̃∞

(g̃.φ).
Let Ĩ∞ be the fixator of C̃∞ in G̃twin, Ñ = π−1(N). Let g̃ ∈ Ĩ∞ÑK̃ and g = π(g̃).

Then by Lemma 6.1, g ∈ I∞NK. Therefore, in order to prove that Ĩ∞ÑK̃ ⊉ G̃twin, it
suffices to prove that I∞NK ⊉ Gtwin and we now work with G instead of G̃.
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6.2. Reduction to a problem in Gloop. We have Gloop = SL2
(
k(ϖ)[u, u−1]

)
⋊{1} ⊂ G.

We set I loop
∞ = I∞ ∩ Gloop and K loop = K ∩ Gloop. We denote by projsd : G → k(ϖ)∗

the projection on the second coordinate. We begin by proving that we can get rid of the
semi-direct product and work in Gloop. We regard δ as a linear form Atwin → R. For
v ∈ {⊖,⊕}, we denote by δv : Av → R the restriction of δ to Av. As δv(ℵ∨) = 0, δv is
W v-invariant. Let ρ+∞,v : Iv → Av be the retraction with respect to the sector germ
Cv

f . We extend δv to Iv by setting δv(x) = δv(ρ+∞,v(x)), for x ∈ Iv. Actually by [19,
Proposition 8.3.2(2)], we have δv = δv ◦ ρ, for any retraction ρ : Iv → Av centred at a
sector germ.

Recall from § 2.2.4 that
UC∞ = ⟨xα(y) |α ∈ Φ, y ∈ k(ϖ), xα(y) ∈ GC∞⟩

and
T0,⊖ = T

({
y ∈ k(ϖ) | ω⊖(y) = 0

})
=
{((

y 0
0 y−1

)
, z
)∣∣∣ y, z ∈ k(ϖ)∗, ω⊖(y) = ω⊖(z) = 0

}
.

Lemma 6.6. Let g ∈ G, v ∈ {⊖,⊕} and x ∈ Iv. Write g = (gloop, gsd) with gsd ∈ K∗.
Then δv(g.x) = δv(x) + ωv(gsd).

Proof. Suppose that v = ⊕. By the Iwasawa decomposition ([35, Proposition 4.7]) we can
write g = v1t1k, with v1 ∈ U+, t1 ∈ T and k ∈ K. By [35, Proposition 4.14] applied
with the point 0⊕ we can write k = v+v−n, where v+ ∈ U+, v− ∈ U− and n ∈ N ∩ K.
Write x = v2.y, with v2 ∈ U+. Then δ⊕(g.x) = δ(v1t1v+v−nv2.y). As T normalizes
U+ and U−, we have δ⊕(g.x) = δ⊕(v1v

′
+v

′
−t1nv2.y), for some v′

+ ∈ U+ and v′
− ∈ U−.

By [19, Proposition 8.3.2(2)], we deduce that δ⊕(g.x) = δ⊕(t1nv2.y). As t1nv2(t1n)−1

fixes the sector germ t1n.(+∞), [19, Proposition 8.3.2(2)] implies that
δ⊕(g.x) = δ⊕(t1n.y).

We have g = v1t1v+v−n and thus projsd(g) = gsd = projsd(t1)projsd(n). As n ∈ N ∩K,
we have ω⊕(projsd(n)) = 0. Therefore ℓ := ω⊕(projsd(g)) = ω⊕(projsd(t1n)). Therefore
δ⊕(t1n.y) = δ⊕(y) + ℓ = δ⊕(x) + ℓ, which proves the lemma when v = ⊕. The case where
v = ⊖ is similar. □

Remark 6.7.
(1) From the Lemma 6.6 we deduce that if v ∈ {⊖,⊕}, then the masure I loop

v of Gloop

is actually {x ∈ Iv | δv(x) = 0}.
(2) Suppose v is any place of K and write g = (gloop, gsd) ∈ SL2(K[u, u−1]) ⋊ K∗ = G.

Let δv be the map Iv → R whose restriction on the canonical apartment Av is
δ : Y ⊗Z R → R as in § 6.2. Then the above lemma may be generalized easily to
get δv(g.x) = δv(x) + ωv(gsd).

Lemma 6.8. The Laurent polynomial versions of Gloop and G are Gloop
pol = SL2(O[u, u−1])

and Gpol = SL2(O[u, u−1]) ⋊ O∗, where O = k[ϖ,ϖ−1], hence O∗ = ⊔j ∈Zkϖj.

Proof. For any place v, we know from [35, 4.12.3.b], that {g ∈ SL2(K[u, u−1]) | g.0v = 0v} is
equal to SL2(Ov[u, u−1]). Taking now the intersection in SL2(K[u, u−1]) of all these groups
for v ̸= 0,∞, we get Gloop

pol = SL2(O[u, u−1]) (see § 4.1.2.3.a). Now from Remark 6.7(2),
we see that the component in K∗ of an element in Gpol has to be in O∗. So we get clearly
Gpol = SL2(O[u, u−1]) ⋊ O∗. □
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Remark 6.9. Comparison of Gtwin and Gpol:
(1) Inside Gloop

pol (resp. Gpol) the twin group Gloop
twin (resp. Gtwin) is generated by the

diagonal and upper or lower triangular matrices in SL2(O[u, u−1]) (resp. and by
O∗). So the problem of the equality of Gloop

pol with Gloop
twin (resp. Gpol with Gtwin) is

exactly equivalent to the problem of the generation of SL2(k[ϖ,ϖ−1, u, u−1]) by
its elementary matrices. Unfortunately, in [13, § 2 p. 228], the author tells that he
knows no answer for this problem (while many closely related cases are known).

(2) We may also look more generally to affine SLn over K = k(ϖ), i.e. replace above
SL2 by SLn for n ≥ 3. One gets easily that, as above for SL2, Gtwin = Gloop

twin ⋊
O∗ and Gpol = Gloop

pol ⋊ O∗ Moreover Gloop
twin is the subgroup of SLn(k(ϖ)[u, u−1])

generated by its unipotent elementary matrices with coefficients in O[u, u−1]; it is
a subgroup of SLn(k[ϖ,ϖ−1, u, u−1]).

Now, for any place v, Ov is a discrete valuation ring (in particular a local
ring); so, following [12, p. 14], Ov is a GE−ring: SLn(Ov) is generated by its
unipotent elementary matrices. Following [39, p. 223], SK1(Ov) = {0}. And
from [l.c. Corollary 7.10], SLn(Ov[u, u−1]) is generated by its unipotent elementary
matrices, for n ≥ 3 (as Ov is of dimension 1). We have got what is needed
to generalize [35, 4.12.3.b] from SL2 to SLn. So SLn(Ov[u, u−1]) is the group of
elements g ∈ SLn(K[u, u−1]) fixing the origin 0v of the masure Iv of SLn(K[u, u−1])
associated to the valuation ωv.

Taking now the intersection in SLn(K[u, u−1]) of all these groups for v ̸= 0,∞,
we get Gloop

pol = SLn(O[u, u−1]) (as above in Lemma 6.8). But Corollary 7.11 of [39]
tells that SLn(k[ϖ,ϖ−1, u, u−1]) is generated by its elementary unipotent matrices
for n ≥ 3. So Gloop

pol = Gloop
twin and Gpol = Gtwin.

Lemma 6.10. Let g ∈ I∞NK ∩ Gloop. Then g ∈ I loop
∞ N loopK loop, where N loop = N ∩

Gloop.

Proof. Let GC∞ be the fixator of C∞ in G. We have I∞ = GC∞ ∩Gtwin and by Proposi-
tion 2.4, GC∞ = UC∞ .T0,⊖,

Write g = vt0nk, where v ∈ UC∞ , t0 ∈ T0,⊖, n ∈ N and k ∈ K. Write k = (k1, k2), with
k2 ∈ k(ϖ)∗. Then by Lemma 6.6, we have ω⊕(k2) = 0 and hence (1, k2) ∈ K. By (6.1) we
deduce that (1, k−1

2 ).k ∈ K loop. We have

g = v.t0n(1, k2).
(
1, k−1

2

)
k ∈ I loop

∞ NK loop ∩Gloop.

As projsd is a group morphism, we deduce t0n(1, k2) ∈ N loop, which proves the lemma. □

6.3. Towards a counter-example in Gloop. We now prove that I loop
∞ N loopK loop ̸=

Gloop ∩Gtwin. We now identify Gloop with SL2(k(ϖ)[u, u−1]).
We begin by describing I loop

∞ (or more precisely a group containing it). After that, we
regard Gloop as a subgroup of Gloop = SL2

(
k(ϖ)((u−1))

)
, and define “completions” K loop

and I∞ of K loop and I∞ in Gloop. We then define an element g ∈ Gloop ∩ Gtwin, that
admits a decomposition g = ik, with (i, k) ∈ I∞ \ I∞ ×K loop \K loop, and by a uniqueness
property for these decompositions, we deduce that g /∈ I∞N

loopK loop.
Recall that O⊕ = {y ∈ k(ϖ) | ω⊕(y) ≥ 0}.

Lemma 6.11. We have K = SL2(O⊕[u, u−1]) ⋊ O∗
⊕.

Ann. Repr. Th. 2 (2025), 3, p. 281–353 https://doi.org/10.5802/art.25

https://doi.org/10.5802/art.25


342 Nicole Bardy-Panse et al.

Proof. By [35, Proposition 4.14], we have K = Unm−
0⊕ U+

0⊕N̂0⊕ , where

U+
0⊕ = U+ ∩

〈 ⋃
α ∈ Φ

{u ∈ Uα | u.0⊕ = 0⊕}
〉
,

N̂0⊕ is the fixator of 0⊕ in N and Unm−
0⊕ is defined in § 2.2.4. By [35, Example 4.12(3b)],

Unm−
0⊕ ⊂ SL2(O⊕[u, u−1]) ⋊ {1}. As N̂0⊕ and U+

0⊕ are contained in SL2(O⊕[u, u−1]) ⋊
O∗

⊕, we deduce that K ⊂ SL2(O⊕[u, u−1]) ⋊ O∗
⊕. By [35][Example 4.12(3b)], we have

K loop = SL2(O⊕[u, u−1]) and as {1} ⋊ O∗
⊕ fixes 0⊕ (it fixes A⊕), we deduce that K =

SL2(O⊕[u, u−1]) ⋊ O∗
⊕. □

Lemma 6.12. We have

I loop
∞ ⊂

(
ϖ−1k[ϖ−1][u,u−1]+k[u−1] ϖ−1k[ϖ−1][u,u−1]+u−1k[u−1]
ϖ−1k[ϖ−1][u,u−1]+k[u−1] ϖ−1k[ϖ−1][u,u−1]+k[u−1]

)
.

Proof. Recall that GC∞ is the fixator of C∞ in G. Let y ∈ k(ϖ)∗ and k ∈ Z. If k ≥ 0,
then xℵ+kδ(y) ∈ GC∞ if and only if ω⊖(y) > 0 and if k < 0, then xℵ+kδ(y) ∈ GC∞

if and only if ω⊖(y) ≥ 0. Indeed, the fixed point set of xℵ+kδ(y) is D := {a ∈ A⊖ |
ℵ(a) + kδ(a) + ω⊖(y) ≥ 0}.

• If ω⊖(y) > 0, then D contains a neighborhood of 0⊖ in A⊖ and thus D contains
C∞.

• If C∞ ⊂ D, then 0⊖ ∈ D and thus ω⊖(y) ≥ 0.
• Assume that k ≥ 0 and that C∞ ⊂ D. Let Ω be a neighborhood of 0⊖ in A⊖

such that Ω ∩ −Cv
f,⊖ is contained in D. Then for all a ∈ Ω ∩ −Cv

f,⊖, we have
ω⊖(y) ≥ (−ℵ(a) − kδ(a)) > 0 and thus ω⊖(y) > 0.

• Assume that k < 0. As {ℵ, δ− ℵ} is a basis of Φ+, we have that (ℵ − δ)(C∞) > 0,
and thus (ℵ + kδ)(C∞) > 0. Therefore if ω⊖(y) = 0, then xℵ+kδ(y) ∈ GC∞ .

Similarly, if k > 0, then x−ℵ+kδ(y) ∈ GC∞ if and only if ω⊖(y) > 0 and if k ≤ 0, then
x−ℵ+kδ(y) ∈ GC∞ if and only if ω⊖(y) ≥ 0.

By Proposition 2.4, we have GC∞ = UC∞ .T0,⊖.
Take v ∈ UC∞ and write it v = (( a1,1 a1,2

a2,1 a2,2 ), 1), with a1,1, a1,2, a2,1, a2,2 ∈ k(ϖ)[u, u−1].
Take t ∈ T0,⊖ and write it ((

y 0
0 y−1

)
, z
)
,

with y, z ∈ k(ϖ)∗ such that ω⊖(y) = ω⊖(z) = 0. Then

vt =
((

a1,1y a1,2y−1

a2,1y a2,2y−1

)
, z
)
.

Let i, j ∈ {1, 2}. By the first part of the proof, we can write

ai,j =
∑

k ≤ −1, ℓ ∈Z
ϖ−kfk,ℓ(ϖ)uℓ +

∑
ℓ ∈N

f0,ℓ(ϖ)u−ℓ,

where fk,l(ϖ) ∈ k(ϖ) satisfies ω⊖(fk,ℓ(ϖ)) = 0 for all k, ℓ, with f0,0(ϖ) = 0 if (i, j) = (1, 2).
Lemma follows by intersecting GC∞ , Gtwin and Gloop. □
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6.4. Calculations in a completion. Let Gloop = SL2(k(ϖ)((u−1))) ⊃ Gloop. By [35,
4.12.3.b] this group is the negative Mathieu completion (Gloop)nma of Gloop (cf. § 2.2.3,
§ 2.2.4(2)).

Let

K loop =
(

O⊕((u−1)) O⊕((u−1))
O⊕((u−1)) O⊕((u−1))

)
∩Gloop

and

I loop
∞ =

(
ϖ−1k[ϖ−1]((u−1))+k[[u−1]] ϖ−1k[ϖ−1]((u−1))+u−1k[[u−1]]
ϖ−1k[ϖ−1]((u−1))+k[[u−1]] ϖ−1k[ϖ−1]((u−1))+k[[u−1]]

)
∩Gloop.

By Lemmas 6.11 and 6.12,

K loop ⊂ K loop, I loop
∞ ⊂ I loop

∞ and I loop
∞ ∩K loop =

(
k[[u−1]] u−1k[[u−1]]
k[[u−1]] k[[u−1]]

)
∩ SL2(k[[u−1]]).

Lemma 6.13. The subgroup Uma−
C∞

of Gloop introduced in § 2.2.4(2) is the intersection
H of SL2(O⊖[[u−1]]) with (

1+u−1O⊖[[u−1[] u−1O⊖[[u−1[]
O⊖[[u−1[] 1+u−1O⊖[[u−1[]

)
.

Its intersection with Gloop (resp. Gloop
twin = Gloop ∩ Gtwin) is Upm−

C∞
(resp. is in I loop

∞ ). Its
intersection with Gloop

pol is the intersection of

SL2
(
k
[
ϖ−1, u−1

])
with

(
1+u−1k[ϖ−1,u−1] u−1k[ϖ−1,u−1]

k[ϖ−1,u−1] 1+u−1k[ϖ−1,u−1]

)
.

N.B. Uma−
C∞

is not in I loop
∞ . One should replace ϖ−1k[ϖ−1] by {x ∈ k(ϖ) | ω⊖(x) > 0} in

the definition of this last group to get such an inclusion.

Proof. An easy calculation in SL2 proves that a matrix is in H if, and only if, it may be
written

( 1 0
c 1 )

(
1+d 0

0 (1+d)−1

)( 1 b
0 1
)
,with c ∈ O⊖[[u−1[] and b, d ∈ u−1O⊖[[u−1[].

On the other side we saw in § 2.2.4(2) that (taking gZ = sl2(Z[u, u−1])) the elements in
Uma−

C∞
are written

∏
α ∈ ∆− Xα(gα,Z ⊗Z O⊖) (as fC∞(α) = 0 for α ∈ ∆−). And we may

choose any order on the set ∆− of negative roots. We consider first (on the left) the roots
−ℵ − nδ for n ≥ 0, then (in the middle) the imaginary roots −nδ for n > 0 and last (on
the right) the roots ℵ − nδ for n > 0. For

α = −ℵ − nδ, gα,Z =
(

0 0
Zu−n 0

)
,

so

Xα(gα,Z ⊗Z O⊖) = xα(O⊖) =
(

1 0
O⊖u−n 1

)
;

hence the (commutative) product of these terms for n ≥ 0 is written ( 1 0
c 1 ) with c ∈

O⊖[[u−1[]. Similarly the (commutative) product of the Xα(gα,Z ⊗Z O⊖) for α = ℵ − nδ
with n > 0 is written

( 1 b
0 1
)

with b ∈ u−1O⊖[[u−1[].
To get the first assertion of the lemma, the last thing to do now is to identify the

commutative products of the Xα(gα,Z ⊗Z O⊖) for α = −nδ, n > 0 with matrices(
1+d 0

0 (1+d)−1

)
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as above. But a basis of g−nδ,Z is

hn =
(

u−n 0
0 −u−n

)
.

The expression X−nδ(hn ⊗ λ) of § 2.2.3, § 2.2.4 is actually written [exp](λhn) in [35, 2.12]
and is equal to ( v1 0

0 v2
) with v1 = 1 + λu−n + λ2u−2n + . . . and v2 = v−1

1 = 1 − λu−n.
Moreover such an element is in Uma−

C∞
if, and only if, λ ∈ O⊖ (as fC∞(−nδ) = 0). Now an

easy induction proves that any element in 1 + u−1O⊖[[u−1[] may be written as an infinite
product of terms of the shape 1 − λu−n with λ ∈ O⊖ and n > 0. So we get the equality
Uma−

C∞
= H.

Now the last assertions of the lemma are easy consequences of the definitions and
Lemma 6.8. □

6.5. An element in Gloop
twin \ I∞NK. Let g = x−ℵ(ϖu−1)xℵ(ϖ−1u−1) ∈ Gloop. We have

g = xℵ

(
ϖ−1u−1

1 + u−2

)(
1

1+u−2 0
0 1+u−2

)
x−ℵ

(
ϖu−1

1 + u−2

)
= ik, (6.2)

where

i =
(

1
1+u−2 ϖ−1u−1

0 1+u−2

)
∈ I loop

∞ and k = x−ℵ

(
ϖu−1

1 + u−2

)
∈ K loop.

Therefore g ∈ I loop
∞ K loop.

Actually g.0⊕ ̸= 0⊕ (as the first factor in g fixes 0⊕ and the second one does not
fix it). But δ⊕(g.0⊕) = δ⊕(0⊕) by Lemma 6.6. So neither g.0⊕ ≥ 0⊕ nor g.0⊕ ≤ 0⊕,
i.e. g ̸∈ G+

⊕ ∪G−
⊕.

Lemma 6.14. The element g does not belong to I loop
∞ K loop.

Proof. Suppose g = ik, with i ∈ I loop
∞ ⊂ I loop

∞ and k ∈ K loop ⊂ K loop. Set h = i−1i =
kk

−1 ∈ K loop ∩ I loop
∞ . Therefore ih−1 = i. Write i =

(
A B
C D

)
and h−1 =

(
a b
c d

)
, with

a, b, c, d ∈ k[[u−1]] and A,B,C,D ∈ ϖ−1k[ϖ−1][u, u−1] + k[u−1]. We have
a

1 + u−2 +ϖ−1u−1c = A,
b

1 + u−2 +ϖ−1u−1d = B,
(
1 + u−2

)
c = C,

(
1 + u−2

)
d = D.

Therefore ã := a
1+u−2 ∈ k[u−1] and b̃ := b

1+u−2 ∈ k[u−1]. We have ϖ−1u−1c ∈
k[ϖ−1][u, u−1] and thus c ∈ k[u, u−1]. Moreover (1 + u−2)c ∈ k[u−1] and thus c ∈ k[u−1].
Similarly, d ∈ k[u−1]. As det(i) = 1, we have ad − bc = (1 + u−2)(ãd − b̃c) = 1 and thus
1+u−2 is invertible in k[u−1]: we reach a contradiction. Consequently g /∈ I loop

∞ K loop. □

It is easy to check that N loopK loop = T loopK loop and N loopK loop = T loopK loop, where

T loop =
{(

y 0
0 y−1

) ∣∣∣ y ∈ k(ϖ)∗
}

= Gloop ∩ T.

Lemma 6.15. Let t, t′ ∈ T loop be such that I loop
∞ tK loop ∩ I loop

∞ t′K loop ̸= ∅. Then tK loop =
t′K loop.

Proof. There exists (i, k) ∈ I∞ × K loop such that itk = t′, or equivalently, t′−1it = k−1.
Write

t =
(

γ 0
0 γ−1

)
and t′ =

(
γ′ 0
0 γ′−1

)
,
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with γ, γ′ ∈ k(ϖ). Write i = (am,n)m,n ∈ {1,2}, with am,n ∈ k((u−1))[ϖ−1] and k =
(bm,n)m,n ∈ {1,2}, with bm,n ∈ O⊕((u−1)), for m,n ∈ {1, 2}.

Suppose a1,1a2,2 = 0. Then a1,2a2,1 = −1. Let ã1,2 ∈ u−1k[[u−1]] and ã2,1 ∈ k[[u−1]] be
the evaluations of a1,2 and a2,1 at ϖ−1 = 0. Then ã1,2ã2,1 = −1: we reach a contradiction.
Therefore a1,1a2,2 ̸= 0.

We have a1,1γ
′−1γ = b1,1 and a2,2(γ′−1γ)−1 = b2,2. For m,n ∈ {1, 2}, write am,n =∑

p ≤ 0 am,n,p(u)ϖp, where am,n,p(u) ∈ k((u−1)), for all m,n, p. Let ℓ = ω⊕(γ′−1γ) and set
f(ϖ) = ϖ−ℓγ′−1γ. Then

a1,1γ
′−1γ =

∑
p ≤ 0

a1,1,p(u)f(ϖ)ϖℓ+p ∈ O⊕
((
u−1

))
and thus ℓ ≥ 0. As a2,2γ

′γ−1 ∈ O⊕((u−1)), we also have ℓ ≤ 0. Therefore ℓ = 0. This
proves that t′−1t ∈ K loop. □

We deduce that g /∈ I∞NK. Indeed, otherwise, by Lemma 6.10 we could write g = itk,
with i ∈ I loop

∞ , t ∈ T loop and k ∈ K loop. Then t ∈ T ∩ K loop ⊂ K loop and thus g ∈
I loop

∞ K loop, which would contradict Lemma 6.14. In particular, Gtwin ⊋ I∞NK.

6.6. Examples of Hecke paths. The C∞−Hecke paths, which are the image by the
retraction ρC∞ of C∞− friendly line segments have very different behaviors than the
Hecke paths considered in the references [6, 15] or [8]. We study here some examples of
such C∞−Hecke paths in the case of affine SL2.

In the context of Lemma 6.1, we consider the action of the subgroup Gloop of G on
I⊕. We choose the parametrization of the line segment [0 − d] (with δ(−d) = −1 and
ℵ(−d) = 0) in A given by φ : [0, 1] → A⊕ ⊂ Ã⊕ such that φ(t) = −td and will study
C∞−Hecke paths ρC∞(g.φ([0, 1])) for some g ∈ Gloop. They are the images, by the map
π of Lemma 6.1, of the C∞−Hecke paths ρ̃C∞(g̃.φ([0, 1])), for some g̃ ∈ G̃ with image
g in G. We have to prove, along the way, that these retractions ρ̃C∞(g̃.φ([0, 1])) and
ρC∞(g.φ([0, 1])) are well defined; for this we shall prove some Birkhoff type decompositions
of some elements in G.

These elements g are products of terms(
1 ϖk−1uk

0 1

)
= xℵ+kδ+(k−1)ξ(1) for k ∈ Z>0.

So they are in U+ = Ũ+ ⊂ G̃ and act on Ĩ⊕. One recall that xℵ+kδ+(k−1)ξ(1) fixes
D+

1−k := {a ∈ A⊕ | ℵ(a) + kδ(a) + (k − 1) ≥ 0} and its analog D̃+
1−k in Ã⊕. This half-

apartment contains C⊕ and is limited by M1−k (line of equation x = −ky + 1 − k) in A⊕
with cartesian system such that x corresponds to ℵ and y to δ. The matrix(

1 0
ϖ−k+1u−k 1

)
fixes D−

1−k := {a ∈ A⊕ | ℵ(a) + kδ(a) + (k − 1) ≤ 0}.

Moreover (by § 4.1.9) the element

xℵ+kδ+(k−1)ξ(1)x−ℵ−kδ−(k−1)ξ(−1)xℵ+kδ+(k−1)ξ(1) =
(

0 ϖk−1uk

−ϖ1−ku−k 0

)
stabilizes A⊕ and its class in W is the reflexion Rk−1 fixing M1−k. We denote tk := k−1

k ∈
[0, 1], so that φ(tk) = (0,−tk) ∈ M1−k.
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In order to write decompositions of the elements g (written as a product) with a left
term in I loop

∞ , we use the two following formulas in SL2,(
1 a
0 1

)
=
(

1 0
a−1 1

)(
0 a

−a−1 0

)(
1 0
a−1 1

)
and (

1 a
0 1

)(
1 0
b 1

)
=
(

1 0
b(1 + ab)−1 1

)(
1 + ab 0

0 (1 + ab)−1

)(
1 a(1 + ab)−1

0 1

)
.

Example 6.16. For N ≥ 1, we consider g̃N = gN =
∏N

k=1( 1 ϖ−1(ϖu)3k

0 1 ) and want to
study the C∞−Hecke paths ρC∞(gN .φ([0, 1])).

In Figure 6.1, we represent ρC∞(g2.φ([0, 1])) in blue and ρC∞(g3.φ([0, 1])) (blue and
red).

Figure 6.1. C∞-Hecke path.

For N = 2, we give details of the study.
The element g2 = ( 1 ϖ2u3

0 1 )( 1 ϖ5u6
0 1 ) fixes φ(t) for t ∈ [0, t3], so, for such a t, ρC∞(g2.φ(t))

is well defined and equal to φ(t). For t ∈ [t3, t6], we use(
1 ϖ2u3
0 1

)
=
(

1 0
ϖ−2u−3 1

)(
0 ϖ2u3

−ϖ−2u−3 0

)(
1 0

ϖ−2u−3 1

)
,

then as ( 1 0
ϖ−2u−3 1 ) and ( 1 ϖ5u6

0 1 ) fix φ(t),

ρC∞(g2.φ(t)) = ρC∞

((
1 0

ϖ−2u−3 1

)(
0 ϖ2u3

−ϖ−2u−3 0

)
φ(t)

)
= ρC∞

((
0 ϖ2u3

−ϖ−2u−3 0

)
φ(t)

)
(if it exists), because ( 1 0

ϖ−2u−3 1 ) ∈ I loop
∞ (§ 6.4). So ρC∞(g2.φ(t)) is well defined and equal

to R2φ(t) for t ∈ [t3, t6].
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For t ≥ t6, we can write, successively using the two formulas above,

g2 =
(

1 ϖ2u3
0 1

)(
1 ϖ5u6
0 1

)
=
(

1 ϖ2u3
0 1

)(
1 0

ϖ−5u−6 1

)(
0 ϖ5u6

−ϖ−5u−6 0

)(
1 0

ϖ−5u−6 1

)
=
(

1 0
ϖ−5u−6

1+ϖ−3u−3 1

)(
1+ϖ−3u−3 0

0 1
1+ϖ−3u−3

)(
1 ϖ2u3

1+ϖ−3u−3
0 1

)(
0 ϖ5u6

−ϖ−5u−6 0

)(
1 0

ϖ−5u−6 1

)
.

Using 1
1+ϖ−3u−3 = 1 +

∑
k ≥ 1(−1)kϖ−3ku−3k, we find the existence of a matrix

A ∈ SL2(O⊖[[u−1]]) ∩
(

1+u−1O⊖[[u−1[] u−1O⊖[[u−1[]
O⊖[[u−1[] 1+u−1O⊖[[u−1[]

)
such that

g2 = A
(

1 −ϖ−1

0 1

)(
1 ϖ2u3
0 1

)(
0 ϖ5u6

−ϖ−5u−6 0

)(
1 0

ϖ−5u−6 1

)
.

By the Lemma 6.13 (§ 6.4), A ∈ Uma−
C∞

⊂ Gloop and more precisely, as g2 and the other
matrices are in Gloop ∩Gtwin so is A, and we have A ∈ I loop

∞ . Moreover ( 1 ϖ−1
0 1 ) = xℵ−ξ(1)

fixes C∞ ⊂ {a ∈ A⊖ | ℵ(a) + 1 ≥ 0}, so A( 1 −ϖ−1

0 1 ) ∈ I loop
∞ .

For t ≥ t6, we obtain

ρC∞(g2.φ(t)) = ρC∞

((
1 ϖ2u3
0 1

) (
0 ϖ5u6

−ϖ−5u−6 0

) (
1 0

ϖ−5u−6 1

)
φ(t)

)
(if it exists). But, we know that ( 1 0

ϖ−5u−6 1 ) fixes φ(t) and ( 0 ϖ5u6

−ϖ−5u−6 0 ) acts by R5 on
it.

As ( 1 ϖ2u3
0 1 ) fixes D+

−2, for t ≥ t6, this matrix acts on R5(φ(t)) if and only if t < t9 (as
R5(φ(t)) ∈ D+

−2 ⇐⇒ φ(t) ∈ D−
−8).

So, for t ∈ [t6, t9] by the same argument as in [t3, t6], ρC∞(g2.φ(t)) is well defined and
equal to R2R5(φ(t)). Moreover for t ∈ [t9, 1], ρC∞(g2.φ(t)) = R5(φ(t)). We see that the
Hecke path has exactly 3 folding points p3 = ρC∞(g2.φ(t3)) = φ(t3), p6 = ρC∞(g2.φ(t6)) =
R2φ(t6), p9 = ρC∞(g2.φ(t9)) = R2R5φ(t9), with the line segment [p6 p9] ⊂ R2R5(φ([0, 1])
= [(6, 0)(−d)] and his last direction is that of R5φ([t9, 1].

For all N ≥ 2, ρC∞(gN .φ([0, 1])) is well defined and has 3 folding points
p3 = ρC∞(g2.φ(t3)), p6 = ρC∞(g2.φ(t6)), p3(N+1) = ρC∞(gN .φ(t3(N+1))),

moreover [p6 p3(N+1)] is equal to R2R5(φ([t6, t3(N+1))])) and is included in the line seg-
ment [(6, 0) (−d)] and the last direction of the Hecke path is that of the segment germ
R3N−1φ((0, 1]).

This result is easily obtained by induction. As gN+1 = gN ( 1 ϖ−1(ϖu)3(N+1)

0 1 ), for
t ≤ t3(N+1) we have ρC∞(gN+1.φ(t)) = ρC∞(gN .φ(t)) and so the Hecke path has the two
folding points p3 = ρC∞(g2.φ(t3)), p6 = ρC∞(g2.φ(t6)). We will see that we have no folding
at p3(N+1). For the calculus, we remark that if uk = ϖ−1qk and SN =

∑k=N
k=1 uk, then

SN

1+u−1
N+1SN

−ϖ−1qN ∈ −ϖ−1 + q−1k[[q−1]] and we will use the same method as before.
We write

gN+1 = gN

(
1 0

ϖ(ϖu)−3(N+1) 1

)(
0 ϖ−1(ϖu)3(N+1)

−ϖ(ϖu)−3(N+1) 0

)(
1 0

ϖ(ϖu)−3(N+1) 1

)
.

For t ≥ t3(N+1), we know that(
1 0

ϖ(ϖu)−3(N+1) 1

)
fixes φ(t) and

(
0 ϖ−1(ϖu)3(N+1)

−ϖ(ϖu)−3(N+1) 0

)
acts as R3N+2.
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We consider q = (ϖu)3 and uk = ϖ−1(ϖu)3k = ϖ−1qk and see that :

gN

(
1 0

ϖ(ϖu)−3(N+1) 1

)
=
( 1 0

(uN+1)−1

1+u−1
N+1SN

1

)(
1+u−1

N+1SN 0

0 (1+u−1
N+1SN)−1

)(
1 SN

1+u−1
N+1SN

0 1

)
so it can be written

A′
(

1 −ϖ−1

0 1

)(
1 ϖ−1qN

0 1

)
with A′ ∈ SL2(O⊖[[u−1]]) ∩

(
1+u−1O⊖[[u−1[] u−1O⊖[[u−1[]

O⊖[[u−1[] 1+u−1O⊖[[u−1[]

)
.

As before, we can see that A′( 1 −ϖ−1

0 1 ) ∈ I loop
∞ .

By § 6.4, for t ≥ t3(N+1),

ρC∞(gN+1.φ(t)) = ρC∞

((
1 ϖ−1(ϖu)3N

0 1

)
R3N+2(φ(t))

)
(if they exist).

For t large enough, the last direction of the Hecke path is R3N+2φ((0, 1]).
More precisely (

1 ϖ−1(ϖu)3N

0 1

)
acts on R3N+2(φ(t)) iff t ≤ t3(N+2) (because one has R2+3N (D−

−(3N−1)) = D+
−(3(N+2)−1)).

But, as in the first calculus for t ∈ [t6, t9], we can see that, modulo I loop
∞ , this matrix acts

by R3N−1 and we have R3N−1R3N+2 = R2R5. So ρC∞(gN+1.φ([t3(N+1), t3(N+2)])) is well
defined, is equal to R2R5([φ(t3(N+1)), φ(t3(N+2))]) and is included in [(6, 0) (−d)] so there
is no more folding at p3(N+1) and we have the expected result. The third folding point is
p3(N+2) = ρC∞(gN .φ(t3(N+2))).

Example 6.17. In the second example, we want to consider a new family (g′
N ), with a

growing number of folding points. In the analog of previous calculus, we want that the
action of the “new term” doesn’t affect the previous folding points.

We consider for N ≥ 0,

g̃′
N = g′

N =
N∏

k=0

(
1 ϖ−1(ϖu)3.2k

0 1

)
∈ Gloop

twin.

Let us prove that for N ≥ 1, ρC∞(g′
N .φ([0, 1])) is well defined, has at least N folding

points and there exists t3.2N ≤ TN < t3.2N+1 such that ρC∞(g′
N .φ([TN , 1])) is equal to

R3.2N −1(φ([TN , 1])).
As g′

1 = g2, we know the corresponding Hecke path and the result is true in this case
(with t9 = T1 < t12).

We consider for N ≥ 1,

g′
N+1 = g′

N

(
1 ϖ−1(ϖu)3.2N+1

0 1

)
.

As before, if it is well defined, we have

ρC∞ (gN+1.φ([0 , t3.2N+1 ])) = ρC∞ (gN .φ([0 , t3.2N+1 ])) .

We know by induction that ρC∞(gN+1.φ([TN , t3.2N+1 ])) = R3.2N −1(φ([TN , t3.2N+1 ])) is well
defined and that this Hecke path has at least N folding points there. As previously, we
write

g′
N+1 = g′

N

( 1 0
ϖ(ϖu)−3.2N+1 1

)(
0 ϖ−1(ϖu)3.2N+1

−ϖ(ϖu)−3.2N+1 0

)( 1 0
ϖ(ϖu)−3.2N+1 1

)
,
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in order to study the case t > t3.2N+1 . With D = 1 +
∑N

k=0(ϖu)3.(2k−2N+1) and a =
ϖ−1∑N

k=0(ϖu)3.2k , we obtain

g′
N+1 =

( 1 0
ϖ(ϖu)−3.2N+1

D
1

)(
D 0
0 1/D

)(
1 a

D
0 1

)(
0 ϖ−1(ϖu)3.2N+1

−ϖ(ϖu)−3.2N+1 0

)( 1 0
ϖ(ϖu)−3.2N+1 1

)
In fact a

D −a+ϖ−1 ∈ O⊖[[u−1]], and so (as before) modulo I loop
∞ , g′

N+1 acts on φ([t3.2N+1 , 1])
as

( 1 a
0 1 )

(
0 ϖ−1(ϖu)3.2N+1

−ϖ(ϖu)−3.2N+1 0

)
so as g′

N ◦R3.2N+1−1.
But for k ≤ N , R3.2N+1−1(φ(t)) ∈ M1−3.2k if, and only if, φ(t) ∈ M1−3.(2N+2−2k) (i.e. t =

t3.(2N+2−2k)). So g′
N really acts onR3.2N+1−1(φ(t)) only for some t in [t3.(2N+1) , t3.(2N+2−2N )]

and there exists TN+1 with t3.2N+1 ≤ TN+1 < t3.2N+2 such that ρC∞(g′
N+1.φ([TN+1 , 1])) =

R3.2N+1−1(φ([TN+1 , 1])) and, as the direction of this line segment is different from that
of R3.2N −1(φ([TN , t3.2N+1 ])), there is a new folding point for this Hecke path, so at least
N + 1 folding points.

Remark 6.18. It is interesting to look at what happens in these two examples when
N goes to infinity. Actually ∪∞

N=1 g̃Nφ([0, t3N ]) (resp. ∪∞
N=1 g̃

′
Nφ([0, t3.2N ])) is an increas-

ing union of C∞−friendly line segments in Ĩ ; and the same is true for their images
in I . So we get a half-open C∞−friendly line segment written (abstractly) g̃∞φ([0, 1[)
(resp. g̃′

∞φ([0, 1[)) in Ĩ and g∞φ([0, 1[) (resp. g′
∞φ([0, 1[)) in I . A question is whether

they can reasonably be completed in a “closed” C∞−friendly line segment. The answer is
clearly no for example 2: this would lead to a C∞−Hecke path ρC∞(g′

∞φ([0, 1[)) with an
infinite number of folding points, contrary to Definition 5.9 and Proposition 5.18.

On the contrary we can make further calculations for example 1, as g̃N = gN is associ-
ated to a geometric sequence in k[ϖ,ϖ−1, u, u−1]. We consider the matrix

g1
N =

 N∑
k=0

(ϖu)3k ϖ−1(ϖu)3N+3

−ϖ 1 − (ϖu)3

 ∈ Gloop
pol .

So
g1

∞ := gNg
1
N =

(
1 ϖ2u3

−ϖ 1−(ϖu)3

)
=
( 1 0

−ϖ 1
)(

1 ϖ2u3
0 1

)
is a fixed element in Gloop

twin (so g1
N ∈ Gloop

twin). By the following Lemma g1
N fixes φ([0, t3N+3]).

So g∞φ([0, 1[) is actually equal to g1
∞φ([0, 1[). We shall prove now that g1

∞φ([0, 1]) is a
C∞−friendly line segment. The associated C∞−Hecke path is then clearly [0 p3]∪[p3 p6]∪
[p6 − d].

We have to find a good Birkhoff decomposition for g1
∞. The details of the calculations

are similar to those above and left to the reader.
g1

∞ =
(

1 0
ϖ−2u−3 1

)( 1 0
−ϖ 1

)( 0 ϖ2u3

−ϖ−2u−3 0

)(
1 0

ϖ−2u−3 1

)
=
(

1 0
ϖ−2u−3 1

)(
1 −ϖ−1

0 1

)(
0 ϖ2u3

−ϖ−2u−3 0

)(
0 ϖ5u6

−ϖ−5u−6 0

)(
1 0

ϖ−5u−6 1

)(
1 0

ϖ−2u−3 1

)
.

Now (
1 0

ϖ−2u−3 1

) (
resp.

(
1 0

ϖ−5u−6 1

))
fixes φ([t3, 1])( resp. φ([t6, 1])),(

0 ϖ5u6

−ϖ−5u−6 0

) (
resp.

(
0 ϖ2u3

−ϖ−2u−3 0

))
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stabilizes A⊕ and induces on it R5 (resp. R2); moreover(
1 0

ϖ−2u−3 1

)
and

(
1 −ϖ−1

0 1

)
are in I loop

∞ . So the last expression for g1
∞ is a Birkhoff decomposition, telling that the

pair {C∞, g
1
∞φ([t6, 1])} is friendly. One can also deduce from these expressions the shape

of ρC∞(g1
∞φ([0, 1])).

Lemma 6.19. g1
N ∈ (Uma+

φ([0,t3N+3])U−ℵ,φ([0,1])) ∩Gloop
twin fixes φ([0, t3N+3]).

Proof. In SL2(k[ϖ][[u]]) ⊂ Gpma(K), one may write g1
N = ( 1 a

0 1 )
(

c−1 0
0 c

)( 1 0
b 1
)( 1 0

−ϖ 1
)
, with

c = 1 − (ϖu)3, a = ϖ−1(ϖu)3N+3

1 − (ϖu)3 =
∞∑

k=0
ϖ3N+2+3ku3N+3+3k

and

b = −ϖ
1 − (ϖu)3 +ϖ =

∞∑
k=1

−ϖ(ϖu)3k.

Now
( 1 0

−ϖ 1
)

= x−ℵ(−ϖ) ∈ U−ℵ,φ([0,1]) fixes φ([0, 1]). And( 1 0
b 1
)

=
∞∏

k=1
x−ℵ+3kδ

(
−ϖ3k+1

)
∈ Uma+

φ([0,1])

fixes also φ([0, 1]), as fφ([0,1])(−ℵ + 3kδ) = 3k (see § 2.2.4). Moreover

( 1 a
0 1 ) =

∞∏
k=0

xℵ+(3N+3+3k)δ
(
ϖ3N+2+3k

)
∈ Uma+

φ([0,t3N+3])

fixes φ([0, t3N+3]), as fφ([0,t])(ℵ + (3N + 3 + 3k)δ) = (3N + 3 + 3k)t.
The last thing is now to prove that ( c−1 0

0 c ) is in Uma+
φ([0,1]). We argue as in § 6.4 or [35,

2.12]. The matrix h+
n = ( un 0

0 −un ) is a basis of gnδ,Z, hence

Xnδ(h+
n ⊗ λ) = [exp]

(
λh+

n

)
=
(

v1 0
0 v2

)
,

with v1 = 1 + λun + λ2u2n + · · · and v2 = 1 − λun. We take n = 3, λ = ϖ3, so(
c−1 0

0 c

)
= [exp]

(
ϖ3h+

3

)
.

But fφ([0,1])(3δ) = inf{r ∈ Z | (3δ)(φ([0, 1])) + r ≥ 0} = 3, so
(

c−1 0
0 c

)
∈ Uma+

φ([0,1]). □
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