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ABSTRACT. Let & be a split reductive group, k be a field and w be an indeterminate. In order to
study &(k[ow,w']) and &(k(w)), one can make them act on their twin building ¥ = S5 x Yo,
where Zg and Y5 are related via a “codistance”.

Masures are generalizations of Bruhat—Tits buildings adapted to the study of Kac—-Moody groups
over valued fields. Motivated by the work of Dinakar Muthiah on Kazhdan-Lusztig polynomials
associated with Kac-Moody groups, we study the action of &(k[w,w*]) and &(k(w)) on their
“twin masure”, when & is a split Kac—-Moody group instead of a reductive group.
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1. INTRODUCTION
1.1. Context.

Split reductive groups over valued fields and Bruhat—Tits buildings. Let & be a split re-
ductive group with maximal split torus €. Let K be a field, G = &(K) and T' = T(K).
If w: X - RU{oo} is a nontrivial valuation of K, one can construct a Bruhat-Tits
building .7, = (&, K,w) on which G acts, and study G via its action on .%,. This build-
ing is a union of apartments, which are all translates by an element of G of a standard
apartment A,.

The action of G on %, takes into account the valuation w. More precisely, let &
be the root system of (G,T'), which can be regarded as a subset of the dual A} of the
real vector space A,. Then G = (T,z,(u),a € ®,u € K), where for each o € P,
Zq : (K, 4) <= (G,.) is an algebraic group morphism. Let N be the normalizer of T in G.
Then N is the stabilizer of A, in G and T acts by translation on A,. If ¢ € T, then ¢ acts
by translation on A, by a vector depending on the values of w(x(¢)), where x runs over
the characters of T. If & € ® and u € K, z,(u) fixes the half-apartment (or half-space)
Ay Ny (u)A, ={a€ A, | ala)+w(u) >0}

Twin building of &(k[w,w™1]). Suppose now that K = k(w), where k is a field and @
is an indeterminate. Let wg,wg be the valuations on K, trivial over k and such that
we(w) =1 = wo(w™!). Let O = klow,w !]. In order to study G = &(K) and Gp =
&(0), it is natural to make them act on &/ = Fg x S, where g = 7 (6, K, wg) and
I = I (6,K,wg). The buildings .Z5 and I are related by a Ge-invariant codistance
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d* : C(Ig) x C(Fs) — W, where C(Iy),C(I5) are the sets of local chambers of .Zg and
I and W is the affine Weyl group of Ag := A, (which is isomorphic to the affine Weyl
group of Ag := A, ). Equipped with this codistance, .#5 x .75 is called a twin building
(see [32] for the case of & = SLg and [1] for a general study of twin buildings).

This codistance is also called a twinning and it is deduced from some Birkhoff de-
composition in G. We may describe it slightly differently. Let Cs, be the “fundamental
local chamber of Ag”, Cf be the “fundamental local chamber” Cy of Ag, I be the
fixator of Cy in Gp and I be the fixator of Cgr in G. Then using the Birkhoff decom-
position G = I NI, one can prove that there exists a unique I, -invariant retraction
pc., - Jo — Ag (see § 4.4.2). We can then recover d* from pc__ .

Kazhdan—Lusztig polynomials. Let (W', S") be a Coxeter group. In their fundamental
paper [25], Kazhdan and Lusztig associated to this data a family (Pyw)v,.wew’ of poly-
nomials of Z[q|, where q is an indeterminate. These polynomials are now known as the
Kazhdan—Lusztig polynomials. In order to define them, they began by defining auxiliary
polynomials - called “R-polynomials” - Ry w € Z[q], for v,w € W'. When W' = W, these
polynomials are defined by the following equation (see [29, (1.2)])

Ry w(q) = |(IWI N 1vI)/I|, for v,w € W, for all prime power g, (1.1)

with I = I(q) and I = Ix(q) defined as above in G = G, = &(F,(w)), with [, the field

of cardinality ¢, where v, w are liftings of v, w in N C G. This formula, is implicitly used
by D. Kazhdan and G. Lusztig in [25], and was proven by Z. Haddad ([16]).

Split Kac—Moody groups over valued field and masures. Split Kac-Moody groups are infi-
nite dimensional generalizations of split reductive groups. There are many possible defini-
tions of such groups but in this paper, we are mainly interested in the minimal one defined
in [41] (although we also use Mathieu’s completion). Let & be such a group, K be a field
equipped with a nontrivial valuation w : £ — R U {oo} and G = &(K). In [35], gener-
alizing results of [14], Rousseau defined a “masure” ., = .#(&,,w) on which G acts.
This masure is a kind of Bruhat—Tits building adapted to the Kac—-Moody framework.
We still have 4, = Uge g 9-Aw, where A = A, is the “fundamental apartment”. This
apartment is an affine space of the same dimension as ¥ equipped with an arrangement
of hyperplanes. Using .%,, one can define the Iwahori subgroup I = I, of G, which is
the fixator of the fundamental local chamber C;~ of A. The Borel subgroup B* = T.U*
is well known (cf. § 2.2.1). In the following, a Bruhat or Birkhoff decomposition will be
called more precisely a Bruhat—Borel or Birkhoff-Borel (resp. Bruhat—Iwahori or Birkhoff-
Iwahori) decomposition, when it involves BT (resp. I). As the Iwahori case is frequently
used, we often omit this name Iwahori.

Let Y be the cocharacter lattice and WY be the vectorial Weyl group of (&,T). Then,
W = N/T = WY x Y and the Bruhat decomposition does not hold in G: IWI C G
(where we regard W as a subset of N by choosing for each element of W a lifting in N).
Because of this, one often restricts attention to a subsemi-group G* = G of G defined
as follows. Let C¥ be the fundamental vectorial chamber of A, T := U, c e w.CTj be the
Tits cone, YT =Y NT and W+ = WY x Y. Then Gt := IW™I is a set of elements
of G admitting a Bruhat decomposition. An equivalent definition of G is as follows. If
x,y € A, we write z < y if y —x € T. Then < extends to a G-invariant preorder < on .%
and we have G* = {g € G| g.0 > 0} (where 0 is the vertex of C;").
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Kazhdan—Lusztig polynomials in the Kac-Moody setting. In general, neither W nor W,
which is not even a group (except if & is reductive), is a Coxeter group. In [29], Muthiah
suggests to take (1.1), for v,w € W™, as a definition of the R-polynomials associated
with & and then to define the Kazhdan—Lusztig polynomials. With this approach, two
questions naturally arise: are the cardinalities in (1.1) finite and how to compute them if
they are?

In [29], Muthiah partially solves these questions, when & is untwisted affine of type A,
D or E, under the assumption that the retraction po_ : F5 — Ag is well-defined (for
every prime power ¢, where g = & (&,F, (w),wg)), or at least that it is well-defined
on a sufficiently large subset of 5. These works are generalized to general Kac—Moody
groups in [23], under the same assumption on the retraction pc._, with similar techniques.
Muthiah’s method is as follows. Let v,w € WT. Then the set involved in (1.1) is in
bijection with a set E\ v of local chambers of .7z, which are in some “sphere”, and whose
image by pc., is in v.C’ar . He proves that the image by pc. of a line segment of .Zg
(satisfying certain conditions) is an I, —Hecke path of Ag;, i.e. it is a piecewise linear path
satisfying certain precise conditions. He proves finiteness results for the number of these
I—Hecke paths in Ag (in the untwisted affine case of type A, D or E) and proves that
for a given I,,—path, the number of line segments of .#g retracting on it is finite and
polynomial in ¢ (in the general case, not necessarily affine). However, he does not study
the existence of pc_ .

1.2. Content of this paper. Let k be a field (not necessarily finite) and & be a split
Kac-Moody group. In this paper, we study the action of G = &(k(w)) and Giyin, := Go =
&(0) on Fg x Fo. As O is not a field, the meaning of &(QO) is not clear, but we give a
definition of it as a subgroup of G in § 2.2.1. We begin by studying the action of Gp on a
single masure Zg or J5. We actually study the slightly more general situation where O is
replaced by R, a dense subring of a field K equipped with a discrete valuation (satisfying
the additional assumption (2.1), i.e, such that w(R*) = w(K*) = Z). We prove that Gr
admits Bruhat and Iwasawa decompositions, using the corresponding decompositions of
S(K). For € € {—,+}, set Us = (2o(R) | @ € ®°) C Gr (where &+ and &~ are the
sets of positive and negative real roots respectively). Note that greater groups Uj will be
defined in § 2.2.1. Set Ix = INGr and Ng = N N Gr. Then we prove the following
theorem (see Corollary 3.10 and Corollary 3.11):

Theorem. We have
(1) Gr = UgNgrIR, for both e € {—,+},
(2) GR NGt = IgxWTIg.

We then go back to the situation where R = O = k[w, @ '] and study the action of
Gop on I x Fo. We do not prove the existence of po__, but we prove that if (G@)ag =
{9 € Go | 9.0¢ > 0g} admits a Birkhoff decomposition (see § 4.4 for the precise meaning),
then pc_, is well-defined on J@ZO@ ={z € Iy | x>0} (see § 4.4.2). Following the ideas
of Muthiah, we conjecture that this decomposition holds (see § 4.4.1) and that the same
decompositions with (Go)d; replaced by (Go)g = {9 € Go | 9.0s < 0g} hold, which
would be sufficient for applying Muthiah’s method. With such Birkhoff decompositions,
we might really say that Z3 and 5 are twin masures. Unfortunately the decompositions
proved by M. Patnaik in [30] concern a completion of &(O), see § 4.4.1.

We then study the image by pc. of a line segment [z, y], with x <y or y < x and such
that po. (z) is well-defined for every z € [z,y] (the second condition is always satisfied
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if our conjecture is true). We prove that they are Coo—Hecke paths. We then obtain a
formula counting the number of liftings of a given C'o, —Hecke path, and proving that it is
polynomial in the cardinality of k (see Theorem 5.9).

To get this number of liftings of a Cc—Hecke path as a line segment, we first prove
that, after choosing some superdecorations, it is the product of the numbers of local liftings
around a finite number of points (the points where the path crosses a wall in some specific
way). Then we compute each of these numbers of local liftings. We get a precise formula,
which seems more explicit than Muthiah’s formula in [29] (where our paths are called
I—Hecke paths).

Eventually, we study the case where & is affine SLs. We prove that G 2 I NI:
the Birkhoff decomposition does not hold on the entire G. This was expected since this
is already the case for the Bruhat decomposition. We give an example of an element
g€ G\I,NI. As g ¢ G$ U G, this does not contradict our conjecture. We also study
explicit examples of C'.c—Hecke paths.

Remark 1.1.

(1) Our conventions differ from the one of [29]. Our Tits cone is the opposite of the
Tits cone for Muthiah, and thus what Muthiah denotes G* corresponds to G~ for
us. For this reason, our definition of C,c—Hecke path and our formulas slightly
differ from the one of [29].

(2) The fixators of objects in the masure (like I or I) are subgroups of G or Gop
defined by sets of generators. Even in the affine case, it is a delicate issue to
describe them explicitly. For example, if &(K) = SLa(k(w)[u,u™!]), where u is an
indeterminate, then the fixator of Og in G is SLa(Og[u,u™!]), where Og = {a €
k(w) | we(a) > 0} (see Lemma 6.11). However, for I, we prove that

I. (w‘lk[w_l][u,u_l]Jr]k[u_l] w_lk[w_l][u,u_l]Jru_lk[u_l])
o0 w_lk[w_l][u,u_l]Jr]k[u_l] w_lk[w_l][u,u_l]Jrk[u_l] ’

(see Lemma 6.12), but we do not know if it is an equality.

The paper is organized as follows.

In § 2, we introduce the general framework, in particular Kac-Moody groups and ma-
sures.

In § 3, we study Gg for R a dense subring of a valued field K (satisfying Assump-
tion (2.1)). We prove the Bruhat and Iwasawa decompositions of Gr.

In § 4, we study the action of Gypin = Go, where O = k[w,w ! on F5 x F5. We
define pc, under some conjecture.

In § 5, we study Co,—Hecke paths and their liftings in 7.

In § 6, we study the case where & is affine SLo.

2. SPLIT KAC-MOODY GROUPS OVER VALUED FIELDS AND MASURES
2.1. Standard apartment of a masure.

2.1.1. Root generating system. A Kac—Moody matriz (or generalized Cartan matrix) is a

square matrix A = (a; ;)i j e 1 indexed by a finite set I, with integral coeflicients, and such
that:

(i) V i

(i) ¥V (

(ifi) V (

el, Q;; = 2;
i,j) € I, (i # j) = (a;,; < 0);
Z,j) € I2, (aiyj = 0) = (ajﬂ- = 0).
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A root generating system is a 5-tuple S = (A, X, Y, ()ier, (o)

J)ier) made of a Kac—
Moody matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite
rank, and of a free family (o;);er (resp. a free family (o);c) of elements in X (resp.
Y) called simple roots (vesp. simple coroots) that satisfy a;; = a;()) for all 4,5 in I.
Elements of X (respectively of Y') are called characters (resp. cocharacters).

Fix such a root generating system S = (4, X, Y, (ai)ie1, () )iecr) and set A :=Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A*. In particular, the o;’s (with ¢ € I) will be seen as linear forms on A. This allows us to
define, for any i € I, an involution 7; of A by setting r;(v) := v — a;(v)e for any v € A.
One defines the Weyl group of S as the subgroup WV of GL(A) generated by {r; | i € I}.
The pair (WY, {r; | i € I}) is a Coxeter system.

The following formula defines an action of the Weyl group WV on A*:

VzeAweW aehA' (wa)(z):=a« (wil.a:> .

Let ® := {w.c; | (w,i) € WY x I} (resp. ®" = {w.a) | (w,i) € WY x I}) be the set of real
roots (resp. real coroots): then ® (resp. @) is a subset of the root lattice Q := @, ¢ ; Za;
(resp. coroot lattice Q¥ = @, Zay). If a € @, there exist i € I, w € WY such that
a = w.a;. One sets oV = w.al\/ and rq = rov = wryw—t € WY. This does not depend on
the choice of i and w. By [26, 1.2.2(2)], one has Ra¥V N®" = {+a"} and RaN® = {+a}
for all @V € @ and a € ®. We set QT = P, Ny, Q¥ = P, Noy, 2T = 2N Q"
and @~ =®N—-Q" = —d+. We define ht : Q @ R — R by ht(>; ¢ ynia;) = X ¢y n for
(n;) € R and we call ht the height.

2.1.2. Local chambers, sectors, chimneys.

(1) Vectorial facets: Let (ay)1<i<¢ be the above basis of the system ® of roots. Then
Cy = {v € A | a;(v) > 0,V i} is the canonical vectorial chamber. Its facets
are the cones FV(J) = {v € A | ay(v) = 0,V i € J a;(v) > 0,V i & J} for
J CA{1,..., ¢} =1. The facet F¥(J) and J are said spherical if the group WY(.J)
generated by the reflections r; = r, for ¢ € J is finite.

A positive (resp. negative) vectorial facet of type J is a conjugate by WV of
FY(J) (resp. —FV(J)). It is a chamber if J = () and a panel if |J| = 1.

The Tits cone 7T (resp. its interior 7°) is the union of all positive (resp. and
spherical) vectorial facets. It is a convex cone.

(2) Local facets and segment germs: A local facet in A is the germ F(z,FV) =
germg(z + FV) where x € A and FV is a vectorial facet (i.e. F'(z, F") is the filter
of all neighbourhoods of  in z+ FV). It is a local chamber, a local panel, positive,
or negative if FV has this property, it is of type 0 if z € Y C A. We denote by Car
the fundamental local chamber, i.e. Cf = germo(C5).

Let 2,y in A be such that x # y. The germ of [z,y] at z is the filter [z,y) =
germg([z,y]) consisting of the subsets of the form QN [z, y], where € is a neigh-
bourhood of x in A. It is said to be preordered if y —xz € 7.

(3) Sectors and sector germs: A sector in A is a subset ¢ = x + CV, for z a point in A
and CV a vectorial chamber. Its sector germ is the filter Q = germq.(q) of subsets
of A containing another sector x + y + CV, with y € CV. It is entirely determined
by its direction CV. This sector or sector germ is said positive (resp. negative) if
C" has this property.

For example, we consider Q4. = germoo(:tC’}’).
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(4) A half-apartment: (resp. an open-half-apartment, a wall) of A is a set of form
D(a—k) = a~([k, +oo]) (resp. D°(a—k) = a~1(Jk, +o0[), M(a—k) = a1 ({k})),
where k € Z and a € ®.

A subset E of A is said to be enclosed if it is the intersection of a finite number
of half-apartments. The enclosure cl(E) of a subset (or filter) E of A is the filter
consisting of the subsets containing an enclosed set containing F.

(5) Chimneys: Let F = F(x,FY) be a local facet and F" be a vectorial facet. The
chimney v(F, FV) = cl(F + F") is the filter consisting of the sets containing an
enclosed set containing F' + FV. A shortening of a chimney tv(F, F"), with F' =
F(z, FY) is a chimney of the form v(F(z + &, FY), FV) for some & € FV. The germ
R = germoo(t) of a chimney v is the filter of subsets of A containing a shortening
of t. The chimney v(F, F"Y) or its germ fR is said splayed of sign ¢ if its direction F
is a spherical facet of sign €. A sector is a splayed chimney.

2.2. Split Kac—Moody groups over valued fields.

2.2.1. Minimal split Kac—Moody groups. Let & = &g be the group functor associated
in [41] with the root generating system S, see also [31, 8]. Let (K,w) be a valued field
where w : K — Z U {+o0} is a normalized, discrete valuation. Let G = &(K) be the split
Kac—Moody group over K associated with §. The group G is generated by the following
subgroups:

e the fundamental torus 7' = T(K), where ¥ = Spec(Z[X]),

e the root subgroups U, = i, (K), each isomorphic to (I, +) by an isomorphism z,,.

The groups X and Y correspond to the character lattice and cocharacter lattice of ¥
respectively. One writes Y* the subgroup of & generated by the i, for a € ®* and
U* = 4*(K).

Let R be a subring of I (with 1 € R). In this paper, we are interested in the group of
R-points of &. It seems that there is currently no consensus on what this should mean.
We mainly study the case where R = O = k[w,w ™ !] C K = k(w), for k a field and w an
indeterminate. When & is a split reductive group over k, one knows that &(0O) is given
by some well known generators. This is a consequence of O being a principal ideal domain
by [40, top of p. 205]. So in this paper, we take the same kind of generators and set

Gr = (za(R),T(R) |a € ®) C &(K) = G.

For e € {—,+}, weset Uy = Gr NU = Gr N (24(K) | a € ). Let U = (za(u) |
u € R,a € ®). We have Uy C Uf. However, this inclusion is strict in general, see [41,
3.10.d p. 555] for a counter-example.

Timothée Marquis [27, Definition 8.126] defines a minimal Kac-Moody group functor
7" and proves [l.c. proof of Proposition 8.128] that the morphism &% (k1) — &7 (k)
is injective when ki < ko is an injective morphism of rings. Moreover when R is a
Euclidean ring (e.g. R = O = k[w, @ !]), we know that SLy(R) is generated by its torus
and root subgroups [27, Exercice 7.2(3)]. So our Gg is equal to the group (R ) defined
by Timothée Marquis. It is perhaps not equal to &(R) as the morphisms ((R) : B(R) —
&PMA(R) (see below in § 2.2.3) and &(R) — &(K) might be non injective.

Note that general Kac-Moody groups over rings are defined and studied in [2, 3] and [4].
It seems more difficult to relate them with the group we study.

Remark 2.1. We chose to work with any discretely valued field (KC,w). For our main
purpose, which is to develop a Kazhdan—Lusztig theory in the Kac—-Moody setting, we only
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need the case where the residual cardinality of K is finite, and even where K = k(w),
where k is a finite field. However, as it would not really simplify our proofs to impose
these restrictions on I, we work in this more general frameworks.

2.2.2. Subgroups N and N . Let 91 be the group functor on rings such that if R’ is a ring,
M(R') is the subgroup of &(R') generated by T(R’) and the $,,, for i € I, where 5,, is
defined in [35, 1.6]. Then if R’ is a field with at least 4 elements, 91(R’) is the normalizer
of T(R) in B(R').

Let N = 9(K) and Aut(A) be the group of affine automorphisms of A. Then by [35,
4.2], there exists a group morphism v : N — Aut(A) such that:

(1) for i € I, v(8,,) is the simple reflection r; € WV, it fixes 0,

(2) for t € T(K), v(t) is the translation on A by the vector v(t) defined by x(v(t)) =
—w(x(t)), for all x € X. This action is compatible with the action of WV on A,

(3) we have v(N) =WV x Y :=W.

Let R be a dense subring of . We often assume:
dJweR" | w(w)=1. (2.1)

This assumption is in particular satisfied by R = k[w, @ 1], K = k(w) or k((w)), for k
a field and w an indeterminate or by R = Z[%], K = Q or Qp, for p a prime number.

Let Ng =9(R) C N. Then Ng normalizes Tk := T(R). For A € Y = Hom(Mult, T),
we set @ := A\(w)€T(R). Then v(w?) is the translation on A by the vector —\. Moreover,

Sa; € Ng. In particular, we have:

V(NR) = W' x Y = W. (2.2)

2.2.3. The completion &P of the Kac—Moody group &. In order to study the group
G = 6(K) (for K a field), we consider the group-functor homomorphism ¢ : & — &P™? from
& to the (positive) completion BP"* of & (we shall also use the negative completion &%),
We know that ¢(K) : &(K) — &P™4(K) is injective for any field K [35, Proposition 3.13], so
we consider G as a subgroup of &P™¢(K). Actually &P™ is the Kac-Moody group defined
by Olivier Mathieu in [28] as a functor on the category of rings; we refer here to [35, § 3].
This group is hard to define. However the following important subgroups have simpler
definitions.

One starts with the split Kac-Moody algebra gz over Z (see [27, Definition 7.5] for the
definition of gz), with system of (real or imaginary) roots A = AT LUA™ C Q (see [26,
1.2.2] for the definition of A). We have ® C A. The elements of & = A, are called real
roots and the elements of A;,, = A\ ® are called imaginary roots. To each @ € A is
associated a subgroup .

Let ¥ C AT. We say that ¥ is closed if for all o, 3 € U, for all p,q € N*, pa+¢B € AT
implies pa+qB € ¥. Let ¥ be a closed subset of AT and R a ring (commutative with unit),

then a pro-unipotent group scheme U is described as follows in [35, Propositions 3.2
& 3.4):
Ug*(R) = T[] Xal8az @ R). (2.3)
aeVvw

One chooses an order on V¥, e.g. such that the height of « is increasing.
g,z is the eigenspace associated to o in gz and X, : goz@R — UF*(R), Yo cp, Aa-T >
1. c5, [exp]Az.z is one to one (where B, is a Z-basis of g,,z).
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When « is real (i.e. « € & = A,¢), then 4 (R) = X (ga,z ® R). One chooses e, (one
of the two bases of g, 7) and one writes z,(a) = Xo(a.eq) for a € R. One gets thus an
isomorphism z, : (R, +) = Ua(R),a — 24(a) and rq : A00 — U,

When « is imaginary (i.e. @ € Ayy,), then Uy (R) =[5> 1 Xna(Gnaz ® R).

" may be seen as “topologically generated” by the i, for o € .

One writes U™t = UTE. It contains T, The positive Borel subgroup of &

T x ymat = ggmat,

pma jg

2.2.4. Parahoric subgroups. In [14] and [35], the masure .# of G is constructed as follows.
To each x € A is associated a group ]32; = G,. Then . is defined in such a way that G,
is the fixator of x in G for the action on .# (see § 2.3). We actually associate to each filter
Q on A a subgroup Gq C G (with G,y = G, for z € A). Even though the masure is not
yet defined, we use the terminology “fixator” to speak of Gq, as this will be the fixator of
Q) in G. The definition of Gg involves the completed groups GP™* and G™™“.

(1) Let 2 C A be a non empty set or filter. One defines a function fq : A — ZU{+o0},
faola) =inf{r e Z | Q C D(a+7r)} =inf{r € Z | «(Q) +r C [0, +00[} and, for
r€Z, Koy>r ={x € K| w(x)>r}, Kper = {z € £ | w(z) = r}. The filter 2
is said almost open (resp. narrow) if for all & € @, fo(a) + fo(—a) > 1 (resp.
fala) + fa(—a) < 1). For example, segment germs and local facets are narrow
and local chambers and sectors are almost open.

(2) If Q is a set, we define the subgroup U3 = [[hcat+ Xal(8az @ Ko> fo(a)), see
§ 2.2.3. Actually, for a € ot = A;FB, (gaz & K:waQ(oz)) = Qfa(lcwzfg(a)) =
Usq. We then define UY"" = UST NG = UTT NU*, see [35, 4.5.2, 4.5.3
and 4.5.7]. When Q is a filter, we set U3" := Uge o U and US"" := Ug‘“+ﬂG

We may also consider the negatlve completion G”m“ = Gnm“(lC) of G, and
define the subgroup UG = [[,ca- Xa(80,2 ® Ky > fo(a))- For a € @7 = A-,
Xa(00,2 @ K> fo(0) = Ta(Ky > fo(a)) =t Uan. We then define Uy™™ = Uy N
G=U5""NnU".

(3) Let Q be a filter on A. We denote by Ng the fixator of 2 in N (for the action of
N on A). If © is not a set, we have Ng = [Jgcq Ns. Note that we drop the hats
used in [35] to avoid confusions with the hats related to the completion K., of K,
that we shall consider in § 4. When (2 is almost open one has Ng = Ny =T :=
T(Kw>0) = T(Ky=0) (written H in l.c. , but we avoid this here), see [l.c. 4.3.1].

If z € A, we set G, = UP™T.U"~.N,. This is a subgroup of G. If Q C A is a set,
we set Go = [, cqGs and if Q is a filter, we set Go = Ugecq Gs. Note that in [35],
the definition of G is much more complicated (see [35, Définition 4.13]). However it is
equivalent to this one by [35, Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [35, Définition 5.3]. There are many
examples of filters with good fixators [l.c. 5.7]: points, preordered segment germs, local
facets, sectors, sector germs, A, walls, half apartments, ... For such a filter €2, we have:

G = U . U™ Ng = US™.UE™ . No.
We then have: US™" = Go N Ut = UT(Q) and UZ™™ = GoNU~ =: U~ (Q), as
U NUT.N=U*tNN = {1}, by [L.c. Remarque 3.17] and [31, 1.2.1(RT3)].

Note that for the sector germ Q = Q1 o, U™ = {1}, Nog = Ny = Tj and Uper U+.
So Gqa,. = ToU™. Similarly, Gg__ = TOU’
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When 2 is a local facet, Gg is called a parahoric subgroup (this is a little more general
than in [11]).

When Q = Cf = germo(C7) is the (fundamental) positive local chamber in A, I = Gq
is called the (fundamental) Iwahori subgroup.

(4) For Q a set or a filter, one defines:
Ug=Usqla€®), Us=UgNU* and UZ* = (U,q|acd*).

Then one has U = U§.U5.N5 = Ug.U&.Nﬁ, where Nj = Uqg NN C Ngq, see [l.c.
4.6.1]. And also U3 C US™", Uy C U5™, see [Lc. 4.3.2 and 4.5.3].

The inclusion Ué[i - US is clear, but it is not always an equality, see [l.c. 4.3.2 and
4.12.3.a).

When Q is narrow and has a good fixator, then G = U£m+.U§.NQ = U3™ .Ug .Ng,
see [l.c. 4.13.4 and 5.3].

2.3. Masure associated with G.

2.3.1. Masure. We now define the masure ¥ = 9 (6, K, w). As aset, & = G x A/ ~,
where ~ is defined as follows:

Y (g,z),(h,y) €Gx A, (g,2) ~ (h,y) ©IneN |y=v(n)e and g 'hn € G,.

We regard A as a subset of .# by identifying x and (1, ), for z € A. The group G acts on
4 by g.(h,x) = (gh,z), for g,h € G and = € A. An apartment is a set of the form g¢.A,
for g € G. The stabilizer of A in G is N and if x € A, then the fixator of x in G is G,.
More generally, when © C A has a good fixator, then Ggq is the fixator of 2 in G and Gq
permutes transitively the apartments containing 2. If A is an apartment, we transport
all the notions that are preserved by W (e.g segments, walls, facets, chimneys, etc.) to A.
Then by [21, Corollary 3.7], .# satisfies the following properties:

(MA II) Let A, A’ be two apartments. Then ANA’ is a finite intersection of half-apartments
and there exists g € G such that g.A = A’ and ¢ fixes AN A’

(MA III) If R is the germ of a splayed chimney and if F' is a facet or a germ of a chimney,
then there exists an apartment containing R and F.

We also have:

e The stabilizer of A in G is N and N acts on A C .# via v.

e If Q has a good fixator, N.Gqg = {g € G | . C A}.

e The group Uy, = {za(u) | v € K,w(u) > r}, for a € ®,r € Z, fixes the half-
apartment D(a+ 1) = {z € A | a(x) +r > 0}. It is actually the fixator in U,
of any point in the wall M(a +7r) = {z € A | a(x) +r = 0}. It acts simply
transitively on the set of apartments in .# containing D(a + 7).

For z,y € .#, we write z < y (resp. <y, <y) if there exists g € G such that ¢.y, g.z €
Aand gy —ga €T (vesp. gy —gx €T, gy — g.x € T U{0}). Note that by (MA II), if
x < y, then for all ¢’ € G such that ¢’.z,¢’.y € A, we have ¢’.y — ¢’.x € T. The relation
x < y (resp. x % y) is G-invariant and is a preorder relation by [34, Théoréme 5.9]; in
particular it is transitive.

Let H be a subgroup of G. An H-apartment is a set of the form h.A, where h € H.
We denote by A(H) the set of H-apartments. Note that implicitly, an apartment is a
G-apartment. As we shall see (Corollary 3.8), every point of .# lies in a Gr-apartment.
However, A(Gr) can be strictly smaller than A(G).
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Let ©1,Q9 be two filters on .#. We say that €y and s are H-friendly if there exists
A € A(H) containing €5 U Qs.

Let H be a subgroup of G. Then one may consider the semigroups H' := {g € H |
9.0>0}and H™ :={g € H | g.0 <0}. We will often apply this definition with H = G or
H = G and consider the semigroups G* and G;E.

Remark 2.2. In § 2.1.1, we made the assumption that the family («));c s is free. This
is more convenient and it enables us to use the results of [21] for example. However this
assumption is not necessary to define Kac-Moody groups (see [27] for example). For
example, G := SL,,(K[u,u™!]) x K* is naturally equipped with the structure of a Kac—
Moody group associated with a root generating system S having nonfree coroots. This
group is particularly interesting for examples, since it is one of the only Kac—Moody groups
in which we can make explicit computations. To handle this kind of group, a solution is
to consider a central extension G of G having free coroots. Then if .# is the masure
associated with G, we have a natural surjection 7 : .# — .#, that is compatible with the
actions of G and G. Then we can deduce properties of .# and G from properties of &
and G. We detail this reasoning in § 6 for the case n = 2. It should be possible to study
groups with non necessarily free coroots in general with the same reasoning, using the
results of [27, 7.4.5].

2.3.2. Decompositions of subgroups of G, retractions. Let H be a subgroup of G and E1, F»
be two subsets or filters in A. We write Ny (A) the stabilizer of A in H and Hp, the
(pointwise) fixator of F; in H. We are interested in decompositions H = Hg, .Ny(A).Hg,
or H = Hp, .(Ny(A)NH™").Hp,, where H™ is a subsemigroup of H. We say that it is a
Bruhat (resp. Iwasawa; mixed Iwasawa) decomposition if the pair (F1, E2) is made of two
local chambers (resp. a local chamber and a sector germ; a local chamber and a chimney
germ).

There is a geometric translation of such a decomposition, when each Hp, is transitive
on the set of apartments in A(H) containing F; (here A(H) = {h.A | h € H}). Then such
a decomposition (involving H and not H™) means that, for any h, ho € H, the subsets or
filters hi E1 and hoF are in a same apartment of A(H) (they are “H —friendly”). Actually,
the axiom (MA III) is a geometric translation of decompositions of G.

Let A be an apartment of .# and Q be a sector germ of A. Let x € .#. Then by
(MA III), there exists an apartment B containing z and Q. By (MA II), there exists
h € G such that h.B = A and h fixes AN B. Then h.z does not depend on the choices
of B and h and we set pg q(x) = h.z. The map paq : & — A is the retraction onto A
centred at . When Q = Q4, i.e when £ is the germ at infinity of +C7% and A=A, we
write ptoo instead of pay g, .

2.4. A precise decomposition of G, for () a local chamber.

Proposition 2.3. Let Q) C A C .7 be a non empty set or filter. Suppose that Q) is narrow,
almost open and has a good fizator (for example Q is a local chamber). Then:

Go =Ug .Uy Ty = U To.Uy = Uq.Ty = (Tp, (Ua,0)ac o),
actually U™ = U3 = Ut NGg = UH(Q) and U™ =Ug = U~ NGg =: U~ (Q).
Proof. By § 2.2.4 and the fact that Ty normalizes Ué[, U5m+, UL™™, one has clearly that

Go = U UL Ty = US" . Th.Uy = U™ To.US = US.To.UR™". But G is a Kac-
Moody group, so one has the Birkhoff-Borel decomposition G = U, ¢ y UT.n.U~ and the
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uniqueness result U~ N N.UT =UT NN = {1}, see [35, Remark 3.17] and [31, 1.2.4(i) +
(RT3)]. In particular in the subset UT.T.U~ of G, the decomposition is unique. So the
third and fifth formula for Gq above give U™ = Ug and US™™ = U, . O

N.B. The proposition above is a simple improvement of [35, Property 4.13.4] when Q is
moreover almost open. But the trick below in Consequence 2.4.1(2), enables us to get the
decomposition of G guessed in [35, Property 4.13.5].

2.4.1. Consequences.
(1) In particular the Iwahori group I = GCO+ (fixator in G of the fundamental local
chamber Cf = germo(C7)) is (To, (U, ,C(T)OZE‘I’>' This is the same definition as

o
in [10] (given there in the untwisted affine case). This result was also proved in [6,
7.2.2], using the results of [10]. We get here a direct proof and a more general
result.

(2) Let € A and CF = germ,(x £ C’}’) be the two opposite chambers at z with
respective directions £C¥. Then ng_pfJr = UMet hence Ug;f+ = UP™*t. So
upmt = Ug?Jr = U;:D+ C Uf c U™ and UP™ = Uf = G, NU*. Similarly
urm-—=U;, =G, NU".

So (as x has a good fixator) we get G,, = UP™+.U»~ N, =U}.U;.N, =U, .U} .N, =
Uz N, = <NCE7 (Ua,x)a€<1>>-

When z is a special point N, /Ty = WY and N, = N} Ty, so Gy = (T, Uaz)acs)-
Moreover G, = P = PP™ = P"™ yith the notations of [35, 4.6.a].

Lemma 2.4. Let Ay, = (,coker(a) = N;crker(a;) and Q be a filter on A. Then we
have Gq = Gaya,, -

Proof. We begin by the case where 2 = {x}, for some x € A. Let y € z + A;,. Then
we have U,y = Uy, for all a € @, since a(x) = a(y). Let n € N, and w € W be the
automorphism of A induced by n. Write w = a + w, where a € Y and w € WVY. Then we
have a = x —w.z. As WV fixes A;,, we deduce y —w.y = a and hence w fixes y. Otherwise
said, n fixes y and we have N, C N,. By symmetry, N, = N, and thus G, = G,. Let
now €2 be a nonempty set. Then Go =N, cq Gz =Nyealyeota,, Gy = Gata,-

Assume now that €2 is a filter. Let S be a subset of A. Then S € Q + A;, if and only if
there exists S’ €  such that S = S" + A;,,. Therefore

Gotan = U Gs= |J Gsa, =Goa. O
SeQ+A;, S'eQ

(3) In particular the fixator K = Gy of the origin point in A is K = Gy = (T,
(Ua0)aca). This is the same definition as in [10] (given there in the untwisted
affine case). This result was also proved in [15, Remark 3.4], using the results
of [10]. We get here a direct proof and a more general result.

(4) Let z € A and F, C C{ be a segment germ or a local facet. Then Ug;ﬁ”r = UE“JF

hence UgTJr = UI@TJr. So
Uptt =UZT =U}, cUR CcUR™ and UR'" =Uj =Gp U™

If F, C CT;_, then we get Uy~ = Up = Gr, NU~. But we do not get the two
series of equalities in general.
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2.4.2. Generalization of Proposition 2.4 to the almost-split case. In § 2.4.1, we obtained
a decomposition of the fixator Gq of certain filters 2 C A and deduced a decomposition
of G, for x € A. The advantage of these decompositions is that they involve only the
minimal Kac—Moody group G and not its completions. As this result could be interesting
on its own, we extend it to almost-split Kac—-Moody groups below. This result will not be
used in the sequel.

We consider an almost split Kac-Moody group & over a field K endowed with a real
valuation w. We suppose that & is quasi-split over a tamely ramified extension and, if
® is not split, that the valuation w may be extended functorially and uniquely to any
separable extension of K (e.g. w is complete). Then, by [36, 6.9], there exists a masure
& with a strongly transitive action of G = &(K) and the fixators G5 of the points in
the canonical apartment A are a very good family of parahorics. For  C A, we write
Ug = (Upg | @ € ®) C G, U = Ug NU* C Gg and Ng = N N Ggq, where Gq is the
fixator of 2 in G.

Proposition 2.5. For any point x € A, one has G, = US.U;.N, = U, .Uf.N, =
U,.N,, U;t =G, NU*. And for any local chamber 2 in A, one has G = UJ.US;.NQ =
Ug .Ud.Ng = Uq.Ng, Uy = GoNU*.

N.B. This result is also true if Q@ C A is narrow, non empty, almost open, with good
fixator.

Proof. When & is actually split, the proof is exactly the same as above in § 2.2.4, § 2.4
and § 2.4.1(1), (2), (3). In the general almost split case, we have mainly to replace T' by
the centralizer Z of a maximal split subtorus of & [l.c. 2.7]. For any vectorial chamber
C¥ = +wCy C A, we write U(C") = wU*w™! and Ug(CY) = Ug NU(CY). When Q C A
has a good fixator, we have

Ga = U .U Ng = U5 USH N,
()

where U, = Go NU* D UZ [lc. 4.4.b, 4.5]. We shall use this for Q a point or a local
chamber.

When 2 is a local chamber, N = Zy := Z N Gq, Gg = U((;F).ZO.U((Z_) and the Iwasawa
decomposition [l.c. 4.3.3] gives G = UT.N.Uq, so Go = (UT.N N Ggq).Ug. Now, by the
uniqueness in the Birkhoff-Borel decomposition [l.c. 1.6.2],

Ut NNGo=US" 2008 nut . N{1} = USP Z;
so G = US(;—).Z(].UQ. But, for CY,C3 C A adjacent chambers along the wall ker o (with
a(CY) > 0), we get from [l.c. 4.4.a] Ug((CY)) := GoNU(CY) = Uy x (GaNU(CY)N
U(CY)). From this we deduce, as in [14, Proposition 3.4], that Uq(CY).Uq(—CY).Zy is
independent of the choice of the (positive) chamber C} and
Uq C Uq(CY).Ua(—CY).Zo = Ug .Zy.Ug, .

So G = Ug(;r)-Zo-Uﬁ and, symmetrically, Go = U;{.ZO.U(_). The uniqueness in the
Birkhoff-Borel decomposition gives Ug(]i) = Ué, hence G = Ug.U&.Ng = Ua.Ug.NQ =
Uq.Ng.
For z € A and CF = germ,(x + C7¥), we have Ul = éji) [36, beginning of 4.5.3]. So
U = éi) =UZ U cU® and UH =UE
Now G, = U}f.U;.N, = U;.Uf.N, is equal to U,.N,, as UF C U, C G,. O
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3. STUDY OF G, FOR R A DENSE SUBRING OF A VALUED FIELD K

Let R be a dense subring of K (for the main applications, we make the additional
assumption (2.1)). In this section, we study decompositions of Gg. Our main results are
the Bruhat decomposition and the Iwasawa decompositions of Gg (see Corollaries 3.10
and 3.11). To do that, we study the action of Gg on the masure .# of G. Given a
subset P of a K-apartment, we study the existence of an R-apartment containing P
(see Theorem 3.7). We then deduce the desired decompositions from the corresponding
decompositions of G.

3.1. Commutators in 4", Let 8 € ®. We want to understand the actions of z(u)
on .#, for u € K satisfying w(u) > 0. To do so, we begin by studying commutators in
uma-l—‘

For o, f € AT, one would like a formula for the commutators in [{, g].

Assume « and 8 are not collinear. Let ¥/ = {pa + ¢B € AT | p > 1,q > 0} and
U =U"U((NsoB)NA). They are closed subsets of AT. Moreover ¥ is an ideal of ¥; so

W (R) «4g®(R) by [35, Lemma 3.3].

In particular:

r>1,q>0
Xp(up)-Xa(ua) Xp(ug) ™" = H Xpa+qs(Vpatqs)-
pa+qgB €A
One chooses an order such that e.g. the height of pa + ¢f is increasing and uq € go,z @ R,
ug € gg,z @ R. Then vpaye8 € gpatqsz @ 1.
We now restrict to the case where 5 is real.

Proposition 3.1. Let « € AT, 3 € ®t, ¢ € goz and u,v € R. Then

p>1,q>0

zg(u). Xo(v.ca).xg(—u) = H Xpa+tgs (VPud.cpatqp)
pa+qBeA

for some cpatq8 € Opatqp,z independent of u and v.

N.B.

(1) For p = 1,9 = 0, cpayqp is certainly equal to c,, i.e. the factor on the left of the
right hand side is X,(v.co). This is suggested by the notation, but not proven
here.

(2) When « is imaginary and p > 2,¢ = 0, one should have ¢,, = 0. But we do not
prove this here.

Proof. If a and B are collinear, then o = 3, {(p,q) € N* x N | pa + ¢B8 € AT} = {(1,0)}
and zg(u) and x4 (v) commute so the formula is clear in this case. We now assume that o
and (§ are not collinear. From the above formula,

zg(u). Xo(v.co).zg(—u)

p>1,420
= H Xpatqp(Vpatqes(u,v)),  With vpates(u,v) € Gpatesz @ R
patqB €A

and the map R? — gpaiq52 @ R, (u,v) = Uparqes(u,v) is polynomial (defined over Z), as
we have unipotent groups defined over Z by [35, § 3.4]. One will determine this polynomial
map by using R = C and u,v € C* (we can assume u, v algebraically independent over Q).
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There exists t € T(C) such that «(t) = v and B(¢) = wu,
Following the first paragraph of [35, § 3.5], one has t.X (vy).t
and vy € g,. Hence:

xg(u). Xo(v.co).zg(—u) = t.ag(l).
p>1,q2
= H t-Xpatqs (Upatqs(1,1)) !
pat+gBeA
p=>1,420

= H Xpa+qs (VPu.Cpatqs) ,
pat+qB €A

hen (pa +qf)(t) = vPul.
=X, (v(t).vy) for y € AT

Xo(ca)xp(—1).t71
0

if one writes cpatq = Vpa+qs(1;1) € Bpates,z- =

Lemma 3.2. One writes T the closed Tits cone in A =Y ® R = bg, T its analogue in
the dual A* = X @ R = b} and Z = W(A;n U {0}) the closed convexr hull in A* (some
notations come from [24, § 5.8]). Then,

(a) If A is of indefinite type, for any o € ® = Ay, one has oV ¢ j:?

(b) If A is of indefinite type, for any a € ® = A, one has a & :I:T

(c) Zc-T',

(d) Aven iZ 0.

Proof. (a) By [24], 5.8.1 and Theorem 5.6.c, one has o) € T, V i. Conjugating by the
Weyl group, we get (a). Now (b) is the result dual to (a).

(¢) One may suppose A indecomposable. The result is clear if A is of finite type
(Z = {0}). In the affine or indefinite case, one considers K = {a € Y Na; | a(af) <

0,V j and supp(a) connected} [24, 5.3]. By [24, 5.8 ¢) or b)] K C -7, But Af =
Uwewv w(K) by [24, 5.4]; so A} C T and Z c -T".

(d) One may suppose A indecomposable. The result is clear if A is of finite type
(Z = {0}) or of affine type (Z = [0,+o0[§ and no real root is collinear to §). In the

indefinite case (d) is a consequence of (b) and (c). O

3.2. Study of the action of root subgroups on .#. The aim of this subsection is
to prove the following lemma. It will enable us to obtain decompositions of G from
decompositions of G. In the reductive case, this lemma is already known, see [11, Propo-
sition 7.4.33]. The difficulty here is that the number of roots is infinite.

Lemma 3.3. Let x € .. Then there exists a € A such that UP™ fizes x. In particular,
if a« € @, then for u € K such that w(u) > 0, z4(u) fizes .

Recall that ht : Q ® R — R is defined as follows: if (n;) € R, then
ht (Z niozi) = Z n;.

i€l iel
Lemma 3.4. Let f € ®*. Then inf{ht(7) | (¢,7) € N* x (Q+ \{0}),7 + ¢B € A} > 0.

Proof. Suppose this is not the case and choose (¢,) € (N*)N and (7,) € (Q+ \ {0})Y such
that for n € N, ¢,8 + 7, € A and qinht(Tn)—mﬁJroo 0. Then anTn—>n*)+oo 0. Up to
choosing a subsequence of ((¢n,7n))nenN, We may assume that one of the following two
possibilities holds:
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e ¢+ T, € Af, for all n € N. In this case, 8 + qinTn € Z = conv(A} U{0}). So
(3 € Z: this is impossible since A, N Z = () (see Lemma 3.2).
e ¢.3+ 7, € Al for all n € N. Then the rays

re’
* * 1
R (gnB + 1) = RYL <,3+an) ,
n

which are generated by real roots, converge to the ray R* .3. By [24, Lemma 5.8]

one has 3 € Z: this is impossible (similarly as above). O
Lemma 3.5. Let b € A, B € ®F and v € K. Then there exists a € b — C}’ such that
2g(v)UP™ag(—v) C UP™Y.
Proof. Let a € A and h € UP™". By definition of UP™", we can write h = [[,ear
Xo(tuq-cq), where co € 8oz, ua € K and a(a) + w(ug) > 0 for all @ € AT, where AT is
equipped with a total order such that the height is an increasing map for <.

Let o € AT, Set
E, = {(p,q) e N* xN’pa+qﬂ€A+}.

We equip E, with a total order < such that for all (p,q), (p/,¢') € Ea,
(p,q) < (¢',d) = ht(pa+gB) < ht(p'a +¢'B).
By Proposition 3.1, we have
28(v) Xo(uq.ca)rs(—v) = H Xpa+tqp (uquC(p’q),a) , (3.1)
(p,a) € Ea

where C(p,q),a € Bpa+qB,Z; for (P, Q) € Eq.

Therefore
zg(v)hwg(— H H Xpa+qB (u vicy, q)@) (3.2)
ae At (p,g) € Eq

(the right hand side of this product is well-defined, as for any m € N, there exist at most
finitely many triples («a, p,q) with « € AT and (p, q) € E, satisfying ht(pa + ¢3) = m).
Let o € AT, Set

Qo (ua) = ﬂ {d' € A| (pa+¢B)(d') + w(uBo?) > 0}.
By (3.2), 23(v) Xo(ta-ca)zs(—v) belongs to U&“(Za). Moreover,

Qa(ua) = [ {d € Alpa(d) + ¢B(d’) + pw(ua) + quw(v) > 0}
(p.q) € Ea

> N {oen) Pia@) + wlua) = max (0,-5) - w(0)

(p,9) € Ea

! = a P (I/ —oala max — a/ — w(v .
20w () {d €| 00) - ale) 2 max (0,906 ~ o)}

We are looking for a € A such that b € N, ca+ 2, (a). Otherwise said, we are looking
for a € A such that, for all & € AT we have

7 (@) — al@) > max(0,=5() ~ w(v)), ¥ (p4) € Fe. (33
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Let A € A be such that a;(A) =1 for all i € I. Then A € C}. We search for a in the
form b — nA, where n € Ry. Then (3.3) becomes

p ht (pe)
——na(A) =n
qg+1 () g+1

h . h h el
If (p,q) € E,, then % = ht(pa) if ¢ = 0 and ;(f:;") = t(ga)q% > %mf{% | T €
Qt,qe N*7+qB8 € AT} > 0if ¢ > 0 (by Lemma 3.4). Therefore (3.4) is satisfied for
n > 0, which proves the Lemma 3.5. ]

> max(0, ~B(b) — w(v)), ¥ (p,q) € Ea. (3.4)

Lemma 3.6. Letb € A and g € UT. Then there ewists a € b—C} such that gUPmtg=1 C
upmt,

Proof. Write g = g, (v1)...2g, (vg), with k € N, By, ..., B € @ and vy, ..., vx € K.
We proceed by induction on k. If £ = 1, this is Lemma 3.5. We assume that & > 2 and that
there exists a’ € b—C} such that xg, (v1) ... 2g, (V1)UL 2, (—vk—1) ... 25, (—v1) C
UP™". By Lemma 3.5, there exists a € a’ — C% such that wg, (vi)UF™ g, (—vi) C ULt
Then gUP™g~1  UP™, which proves the lemma. O

We can now prove Lemma 3.3: if € .#, then there exists a € A such that UP™*
fixes z. Indeed, we have x € UT.p1 (), where po is defined in 2.3.2. Therefore there
exist g € U', b € A such that x = ¢g.b. By Lemma 3.5, there exists a € A such that
g 'UP™tg C UP™F. Then UP™ fixes z.

3.3. Bruhat and Iwasawa decomposition.

Theorem 3.7. Let A € A(G) and P be a bounded subset of A. Then there exists A €
A(GRr) such that A contains P. If moreover A contains Qeso, for some € € {—,+}, then
we can choose A = u.A, for some u € Ug.

Proof. Write A = g.A, with g € G. By [33, Proposition 1.5], g = xg, (u1) ... xg, (ug)t, for
somek €N, B, ..., €P,uy, ..., up € Land t € T. As t.A = A, we may assume that
t=1. For 1 <1 <k, we choose a sequence (ul(-n))neN € RN such that ugn) — u;.

Let a € A. Then by Lemma 3.3, for n > 0, 23, (ugn))_lxﬁl (u1) fixes g, (u2) ... 2, (ur).a
and thus we have (for n > 0)

)\ —1
Lp1 (ug )> Lp1 (u1)$@2 (ug) ... LBy, (ug).a = L6y (uz) ... LBy, (ug).a.

For n > 0, we have xg, (u(Qn))*lacﬁQ(uQ)a:/g3 (ug)...xp, (ug).a = xg,(us) ...z, (ug).a. By

induction, we deduce that if g(n) = zg, (ugn))...m/gk(u,(cn)), for n € N, then we have
g(n)~tg.a = a for n > 0.

Let ai, ..., a,m € A be such that conv(a; | 1 < i < m) D g '.P. Let n € N be
sufficiently large such that g(n)~1g fixes a;, for alli € {1, ..., m}. Then a; € g(n) tg.ANA
for all i and as §(n)~'g.A N A is convex, we have

g LPcANg(n)tg.A.

Let h € G be such that h.A = g(n)"'g.A and such that h fixes AN g(n)"'g.A. Then
h~=1g(n)~!g stabilizes A and induces an affine morphism on it. In particular h='g(n)~ g
fixes conv(a; | 1 < i < m). Therefore g(n) 'g.x = x, for all x € g~.P and in particular,

P C g(n).A.
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Suppose now that A contains Q., for some € € {—,+}. Then we can assume that
g fixes AN A and thus that g fixes Qcoo. Then g € Gg.. and by § 2.2.4(3) we can
assume that 3; € @ for all i € {1, ..., k}. Then g(n) € U%, which concludes the proof of
Theorem 3.7. O

Corollary 3.8.

(1) We have .9 = Gr.A.
(2) For any local chamber C' in 7, there is u € Uz such that C C w.A; in particular
C and Qo0 are in a same Gr—apartment.

Proof. Let x € & (resp. C C .#). Let A € A(G) containing z (resp. containing C'U Q.no,
by (MA III) in § 2.3.1). Then by applying Theorem 3.7 to P = {z} (resp. P = C'), we get
g € G (resp. u € U) such that x € g.A (resp. C C u.A). O

We now assume that R* contains an element w such that w(w) = 1 (this is Assump-
tion 2.1). Recall that we have v(Ng) =WV x Y. Let WT =WV x YT C WY x Y, where
Yt=YnNT.

Proposition 3.9. Let A1, A2 € A(GRr). Then there exists g € Gr fizing A1 N Ag such
that A2 = g.Al.

N.B. In this proposition, we may replace Gg by any subgroup G’ of G containing Gx.

Proof. We may assume A; = A. Let g1 € Gr be such that As = g;.A. By (MA II), there
exists go € G fixing A N A such that Ay = g2.A. Hence g; gy stabilizes A and thus it
belongs to N. As v(N) = v(Ng) = W, there exists ng € Ng such that ny'g; ' gs fixes A.
Then g := g1ng satisfies the condition of the proposition. O

Recall that two filters Q1,9 are said to be Gr-friendly if there exists A € A(Gr)
containing Q; U Q2. Recall that Cf = germo(C’}’). The following result is probably not
new in the reductive case, but we could not find a reference in this case.

Corollary 3.10 (Bruhat decomposition).
(1) Let x,y €  and Fy, F, be two facets based at x and y respectively. Then if x,y
are G-friendly, F,, F, are Gr-friendly. This is in particular the case if x < y.
(2) Let I be the fizator of Cy in Gr. Then

GL =IrWTIR.

Proof. By [20, Proposition 5.17], there exists A € A(G) containing F,UF,. Let P C Abe a
bounded element of F, U F,. Then by Theorem 3.7, there exists A € A(Gr) containing P.
Then A contains Fj, U F,, which proves (1).

Let h € Gf. Then h.0 > 0 and thus there exists A € A(G) containing Cj and
h.Cy. Let g € G be such that A = g.A and g fixes AN A. Then by Theorem 3.7 and
Proposition 3.9, there exists § € Gr such that g.A contains Cj” and h.C; and such that
g fixes CO+. We have h.0 > 0 and hence g~ h.0 > §~1.0 = 0. Therefore §_1h.CaL C A is
an element of W*.C; and hence there exists n € Ng (inducing an element of W on A)
such that §_1h.00+ = n.CaL. Then n~'g 'h € Ig and thus h € gnlg = IxWTIx. ]

Recall the definition of “narrow” and of the fq from § 2.2.4.

Corollary 3.11 (Iwasawa decomposition). Let € € {—,+} and Q be a narrow filter on A.
Then we have Gr = Ufs.Nr.(Go N GRr). In particular, we have Gr = Ufs .Ngr.IR.
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Proof. By definition of the fq, we have Q C D(a, fo(a)), for all « € ®. In particular,
Q C Nier D(ay, faas)) N D(—a, fa(—a;)), for all ¢ € I. As € is narrow, we deduce
that Q C ;¢ 7 D(, fa(ai)) N D(—ay, — fa(a;) + 1). Therefore the image of 2 in A/A;),
is bounded, where A;;, = ;s ker(a;). Hence there exists a bounded filter ' C A such
that Q C ' + A;,. By Lemma 2.4, we have G = G and thus we can assume that  is
bounded.

Let g € Gr. Then by the Iwasawa decomposition ([35, Proposition 4.7]), there exists
A € A(G) containing Q. and g.Q2. By Theorem 3.7, there exists u € U such that u.A
contains ¢.€2. Then u~1g.Q C A.

Let h € G be such that hu='g.A = A and h fixes AN u~1g.A, see Proposition 3.9.
Then hu~'g.A = A and thus n := hu~'g € Ng. We have n|q = u !glg, so n lu"lg €
Gr NGq. O

Remark 3.12. Let G’ be a subgroup of G containing Gz (or more generally a subgroup
of G containing Ug and Ng, for some € € {—,+}). Then the proof of Corollary 3.11
actually shows that G’ admits an Iwasawa decomposition:

G = Uz .Ng. (GQ N G/) , for e € {—,+}.

If we write an element of G', g = wunh, with v € Uy (or u € U®), n € Ny (or
n € N) and h € Gq, then we have clearly that p.o(g.Q) = n.Q2. So the class of n in
W = Ngr/H = N/ZT(R) is well determined by g, up to the right multiplication by the
fixator in W of €.

3.4. The twin building at infinity, sector germs and Gr—apartments.

3.4.1. The Kac-Moody group G = &(K) acts on a twin building ¥, see e.g. [31]. It is the
disjoint union of two buildings, the positive one Yt and the negative one ¥ ~. Actually
v+ is covered by a family YA*(G) of vectorial G—apartments permuted transitively by
G, more precisely in bijection with G/N, hence also in bijection with the set A(G) of
G—apartments in the masure .#.

The canonical apartment of sign & is YA* = £7 C A, with its vectorial facets of sign
+ (as defined in § 2.1). The stabilizer (and fixator) of the canonical vectorial chamber
:l:C}’ is the Borel subgroup B* = TU®*. As G acts transitively on the vectorial chambers
of sign &, the set of these chambers is G/B*.

One writes YA*(Gr) = Gr.YA™T the set of vectorial G —apartments of sign .

3.4.2.  On another hand, G permutes transitively the sector germs of sign + in .# and the
fixator of Qico = germoo(£CY) is Ga,., = ToU?* (see § 2.2.4(3)). Clearly B* = TU®
stabilizes Q+0, and the stabilizer is actually reduced to B¥: as (B*, N) is a BN pair in
G, a subgroup of G strictly greater than BT should contain a simple reflection in WV,
which does not stabilize Q4.

We get bijections

{sector germs of sign +} «» G/B™* +» {vectorial chambers of sign +},
9-Qico ¢+ G € G/BF  g.(£CF).

These bijections are compatible with the above bijections between apartments: ¢.Q4.0 C
hA <= h7lg€ N.Gq, = NU* = N.B* < g.(:I:C}’) C h.YA*, for any g,h € G.
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Lemma 3.13. We assume that R is principal and that K is its ring of fractions. Then any
sector germ in & (resp. any vectorial chamber in Y+ ) is contained in a Gr—apartment
(resp. a vectorial Gr—apartment).

N.B.
(1) The hypothesis that K is the field of fractions of R is clearly necessary, as we know
that some sector germs in the masure .# of & over the completion K of K are not

in a G—apartment.
(2) Actually for this result, there is no need to assume that R is dense in .

Proof. By § 3.4.2, in particular the last equivalences, we may concentrate on the case of
v#*. We use induction on the distance of a vectorial chamber to a vectorial Gr—apart-
ment. Using galleries, we are reduced to prove that, if C,Cy are adjacent chambers in
v#+ and C) is in a vectorial G —apartment, then so is Cy. The set of chambers containing
the common panel of Cy and C is isomorphic to the projective line P; (K) and the induced
action of the fixator in G (resp. Ggr) of this panel on P;(K) is induced by an action of
SL2(K) € G (resp. SLa(R) C Gr). But, as R is a principal ideal domain with field of
fractions K, we know that SLa(R) acts transitively on P;(K) (see e.g. [9, 1.17] or [27,
8.124 p. 265]). Our result follows. O

Proposition 3.14. We assume that R is a principal ideal domain, that IC is its field of
fractions (and that R is dense in KC for the valuation w). We assume moreover that R sat-
isfies assumption (2.1). If a sector germ Q C . and a bounded set P C & are G—friendly
(i.e. contained in a same G—apartment), then they are also Gr—friendly (i.e. contained
in a same Gr—apartment).

Remark 3.15.

(a) A sector germ and a bounded subset of an apartment are not always contained
in a same apartment (even for the complete system of apartments of an affine
building). Think to the case of a tree.

(b) This proposition generalizes Theorem 3.7 (for some R) in a framework similar to
Iwasawa decomposition. But it is actually a simple corollary of this theorem.

(c) As a particular case of this proposition, we have that any local chamber (or facet)
and any sector germ in .# are contained in a Gr-apartment.

Proof. By Lemma 3.13, one may suppose (up to the action of Gg) that Q C A and even
Q = N1 (using the action of Nz). Then the proposition is an easy consequence of
Theorem 3.7. U

4. STUDY OF THE ACTION OF Glyin ON THE TWIN MASURE

Let k be any field, K = k(ww) and O = k[w, w 1], where w is an indeterminate. In
this section, we study the groups G = &(K), Giwin = Go (see § 2.2.1 for the definitions
of G and Gop) and an other group Gp, lying between G and Giyin (see § 4.1.2 for the
definition). Let wg : k(w) — ZU{oo} (resp. we : k(w) = ZU{o0}) be the valuation such
that wg (@) =1 (resp. wo(wt) =1). Let Fg (resp. #5) be the masure associated with
(8,k(w),wg) (resp. (8,k(w™!),ws)). We study the action of these three groups on the
twin masure g X Jg.

In § 4.1 we introduce the framework.

In § 4.2, we prove the existence, for any two apartments A;, As of Fg X g, of an
element g € Gryin (or Gpor) such that g.A; = Ay and g fixes 41 N As.
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In § 4.3, we study the existence of an apartment of .Zg x Z5 containing Fg U Eg, for
certain pairs of filters Fq C S5, Fo C J5. Equivalently, we are interested in certain
decompositions of Giyin (01 Gpor).

4.1. The groups Giyin and G-

4.1.1. The field. Let k be any field (e.g. a finite field) and @ be an indeterminate. The
field of rational functions over k is written I = k(w). Then K is a global field when k is
finite and is a function field over k in any case. We refer to [38, 1] for more details on this
subject.

A valuation ring on K/k is a ring @' C K such that k C O’ C K and such that for all
z € K, we have either z € 0’ or 2=! € (’. Such a ring is local (i.e it has a unique maximal
ideal vy). A set of the form v = vey, for a valuation ring ', is called a place of K (over
k). Then @’ is uniquely determined by v

If P is a monic irreducible polynomial of k[w], then there exists a unique valuation
wp : k(w) = Z U {oo} such that wp(k*P) = {1}. Then vp := {z € k(w) | wp(z) > 0} is a
place of IC. We write wg instead of wg. Let wg : k(w) — Z U {oo} be the valuation such
that we (k*ew™!) = {1}. Then ws defines a place of K. We denote by @ (resp. ©) the place
associated with wg (resp. wg). By [38, Theorem 1.1.2], every place of K is either equal to
© or to vp for some monic irreducible element P of k[w]. Note that & is often called the
place at infinity of /C, which explains why we sometimes index the objects related to © with
an “oo”. If v is a place of K, we denote by wy (resp. Oy = {x € K | wp(z) > 0}= Ky,>0)
the associated valuation (resp. valuation ring). We have Og = k[w][(1 + wk[w])!] and
O = Oc = k[@w™][(1 + w_lk[w_l])_l]-

We also set O = k[w, @] = Ny40,00 Ov-

One may write Ky the completion of I with respect to w, and OU its ring of integers; Ko
is a “local” field (a true local field if k is finite). In particular Kg = k((w)) (resp. Koo =
Ke = k((w™))) and Og = k[[w]] (resp. Occ = Os = k[[@])).

Remark 4.1. Our main motivation for this work is the definition of Kazhdan—Lusztig
polynomials in the Kac-Moody setting. For this, we could restrict ourselves to the case
where k is finite. This assumption is important when we count the number of lifts of a
path (to obtain finiteness results) but for many results, it would not simplify our proofs
to make this assumption. This is why for most results we make no assumption on k.

4.1.2. The Kac-Moody group, masures and the groups Giuwin and Gpey.
(1) The masures.

o Let S = (A, X,Y, (avi)ier, (o) )ier) be aroot generating system (as defined in
§2.1.1) and & = B be the associated Kac-Moody group described in § 2.2.1.
We set G = 6(K).

e Let v be a place of . We denote by :f\u the masure associated with (&, /€u7 Wy)
and by .7, the masure associated with (&, K, w,) (see § 2.3). Let Gy = &(K,).
By [36, 5.8 3], the inclusion G x A, — G, x A, induces a G-equivariant
inclusion .#, — ﬁ; and we identify ., with its image in ﬁ; .

e The apartments of jn\ (resp. %) are the subsets g.A, C jn\, for g € G,
(resp. g € G). One writes A, (Gyp) (resp. Ay (G)) the set of these apartments.
They are associated respectively to the set of maximal split tori of & over Ko
and K. By Corollary 3.8 .7, is the union of all apartments in A,(G) (hence
also in Ay(Gy)). Otherwise said, .#, = fﬂ\u as a set.
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e The group G, = @(/&,) acts on j;. The stabilizer of A, in Gy (resp. G) is
M(Ko) (resp. N = 9N(K)).

e The group T(K,) acts by translations: to ¢t € T(K,) is associated the trans-
lation of vector v, where v € A is determined by x(v) = —wy(x(t)), for any
X € X (hence y in the dual of A). The group of vectors of all these translations
isY.

e The action of n € m(/&,) is affine with associated linear map the action of
the class 7 of n in the Weyl group WY = M(K,)/T(Ko) = N(K)/T(K) =
N(k)/T(k) (this group acts Z—linearly on Y, hence R—linearly on A).

e One may choose an origin 0, of A, in such a way that (k) fixes 0,. Then
the image W, of M(K,) or M(K) in the affine group of A, is identified with
WY xY.

e lf v € {68}, weset Cf, = {z € Ay | a5(x) > 0, Vi € I}. We set
Co = germog (C}g5) C Ag and Cx = Cg = germo, (—C}5) C Ag. These
are the fundamental local chambers of .75 and 7.

(2) The twin group. We want to study the group of O-points of & (where O =
k[, w™1]). As mentioned before, this notion is not well defined. We studied the
group Go = (N(O), (4a(O0))acs) in § 3. We now denote this group by Gryin. As
suggested by Muthiah, it seems also natural to study the group G\, more “adelic”
in nature, defined below. We will use the fact that Gy, is a subgroup of Gy in
our study of Gyyin.

The group Gy is the subgroup of G consisting of the elements g € G such that
for every place v of K different from & and ©, we have g € @(On)

As Oy is not a field, there are several possible definitions for Q5((9U) We define it
as the fixator of the point 0, for the action of G on the masure %, = 7 (8, K, wy).
By [22, Proposition 3.1], we actually have &(0,) = &""(0,), where &™" is the
minimal group defined by Marquis. The group G, contains Giyin-

Actually Niwin = N(O), Trwin = T(O) and Uy twin = Yo (O) are well defined as
M, T, U, are algebraic groups over k. We have Nyyin = No, for the notation of
§2.2.2.

We denote by Ig (resp. Ig) the fixator of Cg (resp. Cg) in G. We denote by
Liwin (resp. Io) the fixator of Cg (resp. Cg) in Giyin and by I, the fixator of
C@ in Gpol-

Remark 4.2. When & is a split reductive group over k, it is a well defined functor over
the k—algebras and we saw in § 2.2.1 that Gp (as defined in § 1.2.1) is equal to &(O).
So Grwin = (0) = B(My£0,0600) = Mo£0,00®(Op). And &(O,) is the fixator in G of
0p € S, by [11, 6.13.b, 7.1 and 7.4.4]. So Giwin = Gpol in this reductive case.

One may ask wether Gyyin = Gpo in general. The answer is unknown. For affine SL,,
and n = 2, the answer is unknown, but for n > 3 there is equality, see Remark 6.9.

4.1.3. Affine roots. Following [10, Appendix B] there is a system of affine roots:
O, =0xZ={a=a+r{|ac P recZ}, where ¢ is a symbol (see also below).

@§+={Q+T§’O¢€<I>+,TZO} ; @jﬁz{a+r§|a€@+,r<0}
o, ={a+rélacd,r>0} ; O, ={a+r{|lacd ,r<0}
Do =5, UP,, and Py =Py =P,  UD,_
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So @, may be considered as a system of positive roots in ®,; but there is no associated
basis (as ®~ has no smallest root).

One may consider the vector space Ay = A @ R. So &, is a set of linear forms
on Apyin: a € & C X is a linear form on A and we set a(R) = {0}; £(A) = {0} and
&|lr = Id|r. Apwin contains three interesting subspaces Ag = A & {1}, Ag = A {-1}
(affine subspaces) and YA = A & {0}.

If o =@ or v =06, A, is the (canonical) apartment associated to T in the masure
Fo = I (B, K, wy), see § 4.1.2(2) above.

VA = A is, more or less, the (twin) apartment associated to T in the twin building
Vg =VFTUY ™ of & over K. Actually the (twin) apartment is the union of VAT = 7 C Yo+
and YA~ = =T C ¥~ where T is the Tits cone in A (see § 2.1.2(1)).

4.1.4. The affine Weyl group. To each @ = a + s§ € ®, is associated a reflection r, in
Ayyin, with respect to the hyperplane (=wall) My () with equation (a + s€)(z,p) = 0:
Ta-l-sg(xvp) = (I‘ - (a(l‘) + sp)av,p).

On YA = A it acts as r, (reflection associated to the root «, with respect to the wall
kera). On Ag = A®{1} ~ A (resp. Ag = A®{—1} ~ A) it acts as the usual reflection r{
(resp. rf, _,) with respect to the affine hyperplane (=wall) Mg (a + s) (resp. Mg(a — s))
with equation a(z) + s =0 (resp. a(z) — s = 0); its associated linear map is r,.

Clearly the generated group is W, = WY x Q¥ where Q¥ = Y, c ¢ ZaW = ®Za acts
by transvections: oV * (z,p) = (z + pa",p). The group W, is not a Coxeter group in
general.

4.1.5. The root groups in Giwin. For a = o+ s§ € @, there is a group embedding z, :
(k,4+) = Ua, a — zo(w®.a). Its image is the group Upqs¢ = Tatse(k) C Grwin C G. Then
Ua twin = 4a(O) = <Ua+85 | s €Z) =Dscz Un+se-

The link with the groups °U,, of § 2.3.1 is as follows: ®Us, = (|Uayrt1) X Ungre,
®Ua,r/(@Ua,r+1) = Ua+r§- But eUa,r = $a(’Cw_2 r) = (eUa,rJrl)XUa—rfa eUa,r/(@Ua,r+l)
~ Uyre.

We rrglay consider the action of G on Sg L I UY.F D Ag UAg LUVA. Then, by § 2.3.1,
the fixed point set of x4 s¢(k) (for k& € k*) in Ag LIAg VA is the intersection Dg (o + s) U
Dg(a— s) U DY(«) of the half-apartment Dyyin (o + s&) = {a € A | (a+ s&)(a) > 0} with
Ag UAs UVYA. (Recall that € =1 (resp. £ = —1, £ =0) on Ag (resp. Ag, YA).

Lemma 4.3. For any o € ®, one has Uy twin = Ua N Gwin = Ua N Gpor.

Proof. One has Uy twin C Ua NGrwin C UaNGpor. If 24(a) € UaNGpo (with a € K), then,
Vo #0,00, 24(a) fixes 0p in I (&, K, wy), s0 wy(a) >0 and a € O, zq(a) € Uy twin- O
For ¢ = 4 or € = —, one considers U;};, = U5 = (Unyse | @+ € ®5_U D) C U°.

Let us define also Uy, := U® N Gwin and U;Dl =UNGpo-

Clearly Ugyn, C Ufyin, C Upy- As we saw in § 2.2.1, the first inclusion is strict in general.

For the second inclusion one does not know wether it may be an equality.

4.1.6. The group Nywin = MN(O) (= Npor). We have T(k) C T(O) = Tywin C T = T(K).
For A € Y = Hom(9Mult, T), we may define @’ := \(@)€T(O) = Tiwin, as w € OF.
Then one has:

Tywin = T(O) = {h." \ hesk),Aev},
Niwin = WO) = {no.w* |ng € N(k), A € Y},
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and the Weyl group is
W i= Nowin /T (k) = {w.=* ‘ weW,AeY}=W"xY.

Actually the image of ng.@® € Nywin in Niwin/T(k) is w.ow if the class of ng € (k) in
N(k)/T(k) is w.

All this may be seen e.g. from [40] page 204: 91(O) is generated by T(O) and elements
m; such that mitm; * = r;(t) (for t € T(O)), the m; satisty the braid relations and m? =
n; € Hom(Y,C*) such that n;(\) = (—=1)*) i.e. with classical notation n; = (—1)*
(see e.g. the relation 3(—1) = (5)~' = 5.(—1)* in [31, p. 196]).

N.B.

(1) In particular, for v = @ or v = ©, W, = N(K)/{t € T(K) | wo(x(t)) =0,V x €
X} =NK)/Z(Oy) is also equal to W = Nyyin/T(k): any action of an element of
M(K) on A, is induced by the action of an element of Nyy;,. The same things are
true for the action on VA.

(2) We shall see below in § 4.1.7, Lemma 4.4, that N N Giwin = Nywin = N N Gpop =:
Npol and T'N Grwin = Twin =T N G(pol = Tpol-

(3) By the Iwasawa decomposition (Remark 3.12) Gryin = Gpot <= ITtwin = Ipol-

4.1.7. Stabilizers or fizators in Giwin or Gpe of canonical apartments A, or VA. Follow-
ing [31, Corollary 10.4.3], the fixator (resp. stabilizer) of YA in G = &(K) is T' (resp. N).
Let now v = @ or v = ©. We know that VA is at infinity of A,, that Y¥ is at infinity of
#,, and that the action of G on .#, induces at infinity its action on Y¥. So it follows that
the stabilizer of A, in G is N = 0M(K) and, then, that its fixator is T(O,).

(a) We prove below that the fixator (resp. stabilizer) in Guwin or Gpe of VA is T(KX) N
Grwin = T(K)NGpor = T(O) = Tiwin (resp. NK)NGwin = NK)NGpor = N(O) =
Ntwin)-

(b) We have the inclusions T(KC) N Gpor O TK) N Grwin O T(O) = Thwin- Let us prove
T(K) N Gpot € T(O). We have T ~ Mult? and (py, ..., pa) € T(K) = (K*)? fixes
0p in (&, K, wy) for all v # 0,00 if, and only if, V 4,V v,wy(p;) = 0 if, and only
if, V j,pj € k[o,w™1]*. We get that the above inclusions are equalities.

(c) We remarked above (in § 4.1.6) that 91(K)/T(K) is equal to M(O)/T(O) and N(O)
is in Giwin C Gpor- S0 N(K) N Grwin = N(K) N Gpor = N(O) = Niwin follows from
(b). And (a) is proved.

(d) Now, for v = @ or v = ©, the fixator (resp. stabilizer) in Giyin or Gpe of Ay is
T(O0p) NZF(0) = F(k) (resp. N(K) N Grain = N(C) N Gpor = N(O) = Niwin)-

Lemma 4.4. (4F(K).N(K)) N Gruin = U, N(O) and NK) N Gruwin = N(O) = Niywin.-
= ili(IC) N Giwin- The same things are true with Gy, instead of
by UF(K) N Gpor = UZ,) and with T instead of N.

pol

N.B. We write U~

twin

Gwin (just replacing Uz

twin

Proof. The last equality is proved above in § 4.1.7(d) Let g = u.n with g € Gpo,n € N
and u € U*. Let v be a place of K, v # 0,00. As g € Gpol, it fixes 0, for the action
of G on #(&,K,wy). Let us consider the retraction p onto the canonical apartment A,
of S (®,K,w,) associated to U* i.e. to Qic (see § 2.3.2). Then the maps from A, to
itself given by = +— n.x and x — p(g.x) coincide. So n fixes 0,; we have proved that n €
NN Gpot = Newin (§ 4.1.7(d) above) and thus u € Utn Gpol (and u € UE N Grpin = UL

twin

if gE Gtwin)' U
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4.1.8. (Linear) action of M(O) = Nyyin on Apyin. We shall define an action v : Nyyin —
Aut(Atwm).
By § 4.1.6 Nywin = {no.@” | no € N(k), A € Y}, we ask that:

e ng acts linearly on Ay = A @ R, trivially on R and by its linear action vV on A
(as WY =MN(k)/T(k)).

o t € Tiyin = T(O) acts by transvections: v(t) = try, : Appin — Atwin,  — x+0€(x),
with v € A determined by x(v) = —wg(x(t)), V x € X.

In particular for t = @w*, v=-A€Y CY @R = A (see e.g. [7,2.9]).

This action induces the known actions of Ny, C N on YA, Ag and Ag. For Ag, one
has to remark that @” acts by a translation of vector v’ given by x(v') = —we(x(@?)) =
wa (x(@*)) = x()), ¥ x € X. This agrees with the fact that £ = —1 on A.

4.1.9. Root datum in Giyin or Gpo ¢ We want to indicate some other relations between
the groups defined above. For this we consider the definition of root datum given in [33,
1.5 p. 505]. This is close to the definition of Bruhat and Tits in [11] or of Rémy (as “donnée
radicielle jumelée”) in [31]. We shall not get all the axioms and moreover, mainly as ®, is
associated to W, which is not a Coxeter group, the known results for these more classical
root data would not be available.

One considers the triple (Grwin, Uatre)atrec ., H = T(k)) .

(1) (DR1) H is a subgroup of Guwin C Gpol, the Uyire are non trivial subgroups

normalized by H.
This is clear.

(2) (DR2) For {«, 5} C ® a prenilpotent pair and 7, s € Z, the commutator subgroup
[Uasre; Uy se] is contained in the group generated by the Up, g+ (prqs)e for p,q €
N\ {0} and pa+ ¢B € ®.

This comes from the explicit commutation relations of 4, and Hg (cf. [31, 9.2.2
p. 207)): [za(u),z5(v)] = [1,, xpa+q5(up.vq.0gf) with C’Iﬁf’qﬁ eZ.

(3) There is no need of (DR3) as the system @, is reduced.

(4) (DR4) For o = a + s§ € , and u € Upyqse,u # 1, there exist v/, u” € U_(_g¢ =
U-q such that m(u) = w'uu” conjugates U, ¢ into U, (v11e), for all y+1€ € @,
Moreover, V u,v € Uaqse,u, v # 1, one asks m(u)H = m(v)H.

We prove this in three steps:
(a) Let u = zaqse(a) = zo(w®.a) € Ungse \ {1} C Uas \ {1} (ie.a € k*). To
calculate in (84,4, ), one may use the group SLy and the classical formula:

(o D0 D D= 8)=0 9 DY)

So one defines v’ = u" = x_o(—(w®a) ') = z_q_se(—a™'). Then mgyse(u) =
ma(u) = vuu” € N(O) = Nywin. Clearly mayse(u).H = maqse(v).H in the
above situation, for v € Uyqs¢ \ {1} (by a calculation in SLy).

(b) One has to identify the action of masc(w) € Niwin on Agyin by the action v
of § 4.1.8.
Let o =®,e =+ orv=0,e=—. On Ay, v(Mmatse(u)) = v(ma(u)) is the
reflection of W with respect to the following wall of Ay: M (a0 + wy(w®.a)) =
M(a+es) = Ay N Mpyin (a4 s£), where Myyin(a+ s€) is ker(a+ s£). On VA,
Y Mas (1)) = V(o (1)) = Ta.
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So the action of ma4se(u) € Niwin 00 Agyin is the reflection 7444 defined in
§ 4.1.4.
(c) One has to deduce from this that mq.s¢(u) conjugates Uyt into U, | (y+46)-

Actually, using the known results for G acting on Iy = I(6,K,wg), one gets that
Maqtse (1) Conjugates U, into a subgroup of UT B)m Grwin (if Taqse(y+1t&) =71a(B) +
n&), where Ura(ﬁ),n = [Ln>n Ura(@)+me = &ro(8)(@"Og). Now, if we calculate with G
acting on o = (6, K, ws), one gets that ma+s§( w) conjugates U7+t5 into a subgroup of
Gwin and eUra(ﬁ),n = ngn UM( B)+me = Xra(ﬁ)( OOO) As w”O@ﬂOﬂw OOO = w"k,
one gets the expected result using Lemma 4.1.5.

Remark 4.5.

(1) Tt is easy to prove that m(u') = m(u”) acting on Ay is also Ta4ee = r—q—se-

(2) One would like to say that u (resp. v/, u”) fixes the half-apartment Dyyin(a+s€) =
{(z,p) € Appin | (a+ s&)(xz,p) = a(x) + sp > 0} (resp. Dywin(—a — s£)). The
boundary of these half-apartments is the wall M (a+ s§) = ker(a+ s§), fixed point
set of rqqge.

Actually this is satisfied if we consider the restricted actions on A, C %, and YA C V.7.

(5) (DR5?) For e = =+, let U, := (Upqre | o + 7€ € $ye). Is it true that HU. NU_.
={1}?
It seems difficult to answer these two questions (which are actually equivalent).
If we look at G acting on %y, then H.U, fixes the fundamental local chamber
Cy C Ag (ie. HU; C Iyin, “positive” Iwahori subgroup of Giuin). But, if
a+ré €@, =0 UD, and u € Uyire \ {1}, then u does not fix Cs; so we get
only the followmg Weaker axiom.

(DR5”) H.U: NUpyre = {1}, for any o+ 17§ € @, _).

N.B.

(1) The axiom (DR5’) of [33] (weaker than (DR5”)) has no meaning here, as it involves
“simple roots”, which do not exist in ®,.

(2) To deduce (DR5) from (DR5”), one should generalize [31, Theorem 3.5.4]. This is
not at all clear (at least up to now).

(3) A good question may be: is H.U, equal to Iy, 7 (see § 4.3.2)

(6) (DRG?) Is Gruwin equal to (H, (Uatre)atre e a,)?

This fails in general, even if this looks like the definition of Giyin: Giwin D
Grwin = (H, (Uasre)atre € ®,)- But in Gj,;,, one has, a priori, only a subgroup of
MN(O) = Niwin, due to the fact that one finds only a subgroup of T(O) = Tyyin.
It seems that G}, N Tywin is generated by H and the ma+r§(u)ma+5£(v)_1. In

particular the Weyl group associated to G}, . is certainly W, = WV x QV.

twin

4.1.10. Twin and twinnable apartments. We saw that the system of apartments Ag(G) =
G.Ag = &(K). Ag of g is smaller than the system of apartments Ag(Gg) = Gg.Ag =
&(Ka).Ag of J associated to the completion Kg = k((zw)). Asin § 3, we also consider the
still smaller system of apartments (called twinnable apartments) Ag(Gwin) = Agtwin =
Gwin-Ag. By § 4.1.7, Ag(Giyin) is in bijection with Gyin/Nywin or with the set Fyip of
maximal split tori in G conjugated to T by Giyin (that we may call “twin maximal split
tori”).
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There are analogous things on the negative side: Ag(Grwin) = Grwin-Ae. The bijec-
tions Ag (Grwin) < Grwin/Ntwin < Tiwin <> Ao (Grwin) tell that a positive (resp. negative)
twinnable apartment has a unique twin in Agwin (resp. Agupin). Classically a twin apart-
ment is a pair (Ag, Ag) = 9.(Ag,As) € Aa(Grwin) X As(Gwin) (for g € Giyin). We
denote by Ay the set of twin apartments: Apwin = Giwin-(Ag, Ag). If v € {6,8}, we
call the apartments of A, (Gypin) “twinnable apartments”.

There is also a notion of twinnable apartment in the twin building ¥ = Y+ LU~ of
G: Y Appin = GrwinYA (cf. § 4.1.3) and, as Y Awwin = Grwin/Niwin (cf. § 4.1.7), the three
sets YV Awin, Agp(Grwin), As(Grwin) are in one to one correspondance.

Note that the apartments of ¥ are often called twin in the classical litterature (see
§ 4.1.3). Of course we shall (now) avoid this terminology.

There are also analogous systems of apartments for G,,;. We define similarly Ag (Gpor) =
Gpol-Ag ~ As(Gpot) = Gpor-As and Apy = Gpoi-(As, Ag). This is similar to the case of
Gwin since Gpol/Npol = <7pol- As Apin ~ Gtwin/Ntwina Apol = Gpol/NpOl and Nywin = Npol
(§ 4.1.6), one has Awin = Apot = Grwin = Gpol-

Implicitly, we will refer to Guin instead of Gz a twin apartment is a Gqyin-twin apart-
ment. We will sometimes refer to Gpo-twin apartments (or Gpy-twinnable apartments).

We say that two sets or filters Q1,9 in Fg U 5 are twin-friendly (resp. pol-friendly)
if there exists A € Agpin (resp. A € Apy) containing Q1 U Q.

Proposition 4.6. Let (z,y) € g X I5 be a twin-friendly pair (i.e. there is a twin
apartment Ag X Ag such that © € Ag and y € Ag). One considers local chambers
C, C Iy, Cy C I5 with respective vertices x,y. Then (Cyp,Cy) is a twin-friendly pair
(i.e. there is a twin apartment Al x AL such that Cy € A and Cy € AL).

N.B. We may replace the local chambers by local facets or preordered segment germs.

Proof. We are easily reduced to prove that, if (z,y) (resp. (z,Cy)) is twin friendly, then
(Cy,y) (resp. (Cy,Cy)) is twin-friendly. And we may suppose z € Ag and y € Ag
(resp. Cy C Ag). Let Cy be a local chamber in Ag at x, with the same sign as C,
and (C1,Cy, ..., Cp, = Cy) be a gallery of local chambers (in the tangent space T(#g)).
We argue by induction on n, the case n = 1 is clear and we are reduced to prove the case
n = 2: C1 and C} are adjacent. One writes F' the local panel common to C7 and C. If
F' is in no wall, then C, C cl(C}) is in Ag, and we are done. Otherwise F' is in a wall
Mg(a + 1) = Myyin(a + 7€) N Ag. One of the two half-apartments Dyyin(£(a + 7€))
contains y (resp. Cy), we may suppose it is Dyyin(a + 7€) O Dg(a+r). Now there is
an apartment A of g containing Dg(a+r) U C, and u € ®U,, such that A = u.Ag
(see [7, 1.4.3] and [35, 5.7.7]). Now PU, 41 fixes u=1.C, and ®Us, = Upire X U i1
(by § 4.1.5). So there is u' € Uyyre such that Cp C v/.(Ag). As Uptre C Grpin fixes
Dyyin(a 4+ 7€) N I, we are done. O

4.2. Existence of an isomorphism fixing the intersection of two apartments.
In this subsection, we prove that if A and B are twin apartments, then there exists
g € Gyin such that g.A = B and g fixes AN B (i.e, g fixes (Ag N Bg) U (Ag N Bg)) (see
Theorem 4.12). This result is crucial in order to define a retraction centered at C for
example.

To that end, we begin by studying, for any place v on K, the properties of Go, \UTU N,
where Gy, is the fixator in G of 0, € #,. We then deduce a description of G, N U e
Using these results, we prove a weak version of Theorem 4.12: we prove it in the case
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where Ag N Bg and Ag N Bg contain a chamber based at vertices of type 0 (i.e elements
of G.0g or G.0g). We then deduce the theorem.

4.2.1. Intersections of Go, (fizator of 0y in G) with UTU™N or UTU . Let v be a place
on K with associated valuation w. We work in .#.

One defines Qp , = @ Rsoa)f C A, and, for p = S5, ae), ht(p) = Y0, a;. One
also chooses an element ¢ € CY NY C A,.

The action of T'= ¥(K) on A, is given by translations. More precisely t € T acts by the
translation v(t) = v, (t) of vector v(t) = v, (t) € Ay = Y @R given by: x(v(t)) = —w(x(t))
for any x € X. In particular v(w)) = —\ (if @, is a uniformizing parameter for w).

We define T, (QR +) = V_l(QR +)

Lemma 4.7.

(1) (UYU=N) N Gy, C UYU-T(QY )W and (UTU~T) N Go, C UTU-TL(QY.).
(2) We have (UTU™) N Go, = (UT N Go,) (U™ NGo,) = Uy U, .

Proof. (1) Let wt € Ut,u™ € U~ and n € N be such that uTu™n € Go,. We write
n = tw, with ¢t € T and @ any representative of w € WY = N/T fixing 0, (e.g. w € MN(k)).
Soutu~t € Go,. We write pu =t.0, € A, (i.e. p =v(t) € Ay). We consider the retractions
ptoo Of F onto A, with center Q1o = germeo(£CY). Now z 1= u"t(0y) = u™ (1) satisfies
P—oo(x) = p and pioo(z) = 0p (as u™(z) = 0,). By [18, 7.6.1] = [19, 6.5.1] or [17, 3.1],
one has —p € —Q ,, so v(t) = p € Qg , and t € T,(Qy ).

(2) Let ut € Ut,u~ € U~ be such that utu~ € Go,. Let z = u.0,. Then we
have p_oo(z) = 0y and pioo(z) = utu™.0, = 0y, since pioo(z) is the unique element of
Ut.xNA,. Using [17, Corollary 4.4], we deduce x € Ay, and hence 2 = p_(z) = u™.0, =
0p = uTu .0y, which proves the lemma. ]

4.2.2. Application to G, . We consider now all the places of K and the associated valua-
tions.

We are first looking at U* N Gpol = Upol D Utjfum

From § 2.2.4(2) we know that, for w = wy, v # &,6, U"" = [[ac a+ Xa(8a,z®0Kw>0),
where K,>0 = {z € £ |w(z) >0} = O, and Upm+ Uoma+ NG is the fixator of 0, in U™
for the action on ., (cf. § 2.2.4(3)). As the product decomposition of U™*" is unique

(cf. §2.2.3) and O =y +4 e Ku>0, One gets:
U N Gpo = ( I Xalgaz® O)) NnG.
ac At
And clearly, if Q@ C %, (b =@ or ©), its fixator in U+n Gpol is:

Ui(Q) NGpot = ( H Xa (ga,Z®Ow2fn(a))) nG.

ac At

where O, > f,(a) = {7 € O |w(z) > fola)}.
One may also write a formula for U*(Qg U Qg) N Gpor when Qg C Fg, Qs C S,
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4.2.3. A particular case of Theorem 4.12.

(1) We may include oy, ..., o in a Q—basis of Y ® Q. So, taking a “dual basis”
there is (x1, ..., xq4) € X? that is an R—basis of A* (i.e. a Q—basis of X ® Q)
and satisfies Xi(a}/) = m;;; for 1 < i < d,1 < j < ¢ with m; € Nyg. Ac-
tually in the simply connected case (i.e. when @leZoQ/ is a direct factor in Y'),
one may suppose that (xi, ..., Xq) is a Z—basis of X and m; = 1. We have
Qi+ = {z € A | xi(z) > 0for1 < i < fxi(x) = Oford > £}. And for
= Y% a;a), we have a; = x;(p)/m; and ht(p) = ¢, xi(p)/ms (notation
of § 4.2.1).

(2) Let v be a place on K (typically v # @,0), and w = w,. We write v, the action
of T on A, C .%, associated to v and T,(Qy ) = v, (QE ) As xi(v(t) =

—w(xi(t)), we have v, (t) = — YL W(XZ wla ) o) foranyt € T. Sot € T,(Qy ) <=

w(xi(t)) < 0for 1 <4 < /¢ and ( ( )) = 0 for i > ¢. And then ht(v,(t)) =
_yd - wla)

=1 m;

(3) Let us now consider ut € U™, u™ € U~ and t € T such that uTu™t € Gpy (actually
by the proof of Lemma 4.7(1), the study of UTU~N N Gp, may be reduced to
this case). By Lemma 4.7(1), we have then t € T,(Qg ), V w # wg,ws. So
wixi(t™1)) > 0for 1 < i < £ and w(x;(t™!)) = 0 for i > ¢. This means that
it € O for1 <i</land y;(t!) € O fori > ¢

Lemma 4.8. Let C, C I and Cy C g be local chambers with respective vertices x and
y. We suppose x and y of type 0, i.e they are conjugated by G to Og and Og respectively.
We consider two twin apartments A1, Az € Apwin containing Cp U Cy. Then there is
9 € Giwin fizing Cy and Cy such that Ay = g.A;.

Proof. The action of Gyyin permutes transitively the twin apartments and the action of
the stabilizer Nyyin of A in Gy permutes transitively the local chambers in Ag, of a
given sign and with a vertex of type 0. So one may suppose (A1, A2) = (A, A), y = Og,
Cy=Cg C Ag,C; C Ag, both contained in ANA. Then, by Proposition 3.9 and § 4.1.10,
there exist Tg € Giyin N Gey, and ~g € Giyin N G, such that A = TgA = ~gA. We
would like that g = ~g or, more generally, that g = ~gt with ¢ € T fixing A. But from
TgA = ~gA and *g, g € Giwin, we get only Tg = “gn, with n € Nyyin = N ﬁ Gtwm

One writes Tg = ufuyt; and tg = “gn = uguythn = uiuyng, with uj,ug € U™,
ui,uy €U, tht1 €T, ng = thn € N and moreover uj ujt1 € Giyin N Ge,, (so ul,uy €
Gc,, and t; fixes Ag by Proposition 2.4) and uuy th = ~g € G, NGwin (S0ug ,uy € Ge,
and t5 fixes Ag by Proposition 2.4). We want to prove that ny fixes C; and C,,.

One writes ny = tow with t2 € T and w any representative of w € WY = N/T in
N(k) C Gupin. In particular w fixes 0, in any masure .%,.

(a) But g = ufuit; = ugustow is in Gpe, and fixes Og in S, s0 g2 1= uj uy to is in
Gpol- By §4.2.3(1), we get Xi(t;1) € O,Vi=1, ..., d. Moreover go = g fixes
0g in Zg, so w@(xi(tgl)) > 0 (by Lemma 4.7(1) and § 4.2.3(2)), xi(t; ") € k[w]
and wo (xi(t3 ")) < 0.

(b) Now uj and u, fix C; C F, so one may write ujuy, = uzujts with uy €
U ,ui € Ut t3 € T, all fixing C, (by § 2.4). In particular we(xi(t3)) = 0,
Vi=1,...,d by § 4.2.3(2) (formula for v, (t)).

(c) But g9 = ugu3 tsta € Gpor, 50, by § 4.2.3(3) and Lemma 4.7(2), xi(tst2) € O,
Vi=1,...,d. We also know that g fixes Og in .#3. So, by Lemma 4.7(2),
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taty € Tiug (—Qp 1), 1-e. (by § 4.2.3(2)) wa(xi(tst2)) > 0. We deduce from this that
Xi(tste) € klw], hence we(xi(tstz)) < 0. But we(xi(t3)) = 0 (by (b) above), so
we (xi(t2)) < 0. Comparing with (a), we get we (xi(t3')) = 0. But x;(t5 ') € k[w]
by (a), so xi(t2) € k. Hence t3 fixes Ag and Ag, ny = tow fixes Og and Og.

(d) Now T = DMult?, we write 0; the j" coordinate map. As xi, ..., xa € X is
a Q—basis of X ®z Q, we have n; € Zso and b;; € Z with n;0; = >, bjix;.
So Hj(tQ)nj = Hz Xi(tg)bj’i c k. As 9j(t2) ek = k(w), we get (9j<t2) ek, ie. ty €
T(k) C Gruwin and ng = taw € Gypin. SO ujuy; = +gn2_1 € Giwin and th € Gryin;
one may replace ~g = u; uy th by u;uQ_ i.e. suppose t, = 1. Symmetrically we get

also t1 € Gryin N T(K) and one may replace g by uful_ i.e. suppose t; = 1.

(e) We argue now in the tangent twin building 7o, (%) and use that Tg = ufu; =
ug uy tow with ui fixing Cg, to fixing Ag. But ugu; = Tg(taw)™! fixes Og in
I, and so do uj, u; by § 4.2.1(2). Hence uj fixes Cg = germo,, (C}) and
uy fixes Cy = germog,(—C¥) C Ag. We have then clearly Cy = uy.Cy =
(ug) " tufuy (b2w)~1.Cy = (ug) tufuyw 1.Cy. We consider now the retraction
pT of To, (Fa) onto To, (Ag) with center Cgy. As uj,uj and uj fix Cg, we get
Cy = pT(Cy) = w t.C5. We have proved that the class w of @ in WV is trivial.
We could have taken w = 1 and then no = t5 fixes A as expected. ]

4.2.4. Conclusion. We now extend the result of Lemma 4.8 to arbitrary pairs A, B of
Atwin- We begin with the case where Ag N Bg and Ag N Bg have nonempty interior and
then drop this condition.

Lemma 4.9. Let A, B € Ayyin be such that Ag N Bg and Ag N Bg have non-empty
interior. Then there exists g € Guyin Such that g.A = B and g firtes AN B (i.e g fizes
pointwise (Ag N Bg) U (Ae N Bg)).

Proof. Using isomorphism of apartments, we may assume that A = A. We fix an element
of y € Ag N Bg. As Ag N Bg (resp. Ag N Bg) has non-empty interior, there exists
n € N* such that Ag N Bg (resp. Ag N Bg) contains an element C, of Gtwm.(%Y + Cq)
(resp. Cy of Guuin-(2Y +Cg)). Let K™ = k(w!/™), where @w!/" is an indeterminate such
that (w!'/™)" = w. Let GM™ = &(K™). We add an exponent (n) when we consider an
object corresponding to G (for example we have .7, ("), Je(n), ng)m’ Agl ), ...). We have
ﬂE(Bn) D Sy and fe(n) D 5. As an affine space, Aég ) can be identified with Ag. However,
it contains more walls, and we have Y (™ = %Y. Therefore by Lemma 4.8 applied with

G(n) instead of Giyin, there exists g, € G(n) fixing C, U C, and such that g,.A = B.

twin twin

By Proposition 3.9, there exists hy € Gyuwin such that hy.Ag = Bg (hence hy.A = B) and
hy fixes Ag N Bg. Then g,/ Lh, stabilizes Ag and is an element of G\")  Therefore 9y h,

twin*
is an element of Nt(gl)-n. Moreover g, 1hy fixes Cy and thus g, 1hy fixes Ag. Using § 4.1.7
we deduce that g, Lh, fixes Ag. Hence hy fixes (Ag N Bg) U Cy. By Proposition 3.9, there
exists hy € Grwin such that h;.A = B and h, fixes Ao N Bg. So h 1hy stabilizes Ag and
fixes Cy: it is the identity on Ag. This proves that h, fixes Ag N Bg and completes the

proof of the lemma. O
The following proposition corresponds to [34, Proposition 2.9 (1)] in the twin case.

Proposition 4.10. Let v € {©,®}. Let A, be a twinnable apartment in the masure .%,.
Let M be a wall of Ay and C be a (local) chamber of %, not in Ay, but dominating a
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(local) panel of M. Then there exist two twinnable apartments Ay, and Asy of S such
that:

(1) A1y and Az, contain C,

(2) Ay N Ay and Ay N Ay (resp. Al N Ay and Ay y N Ay, Agw N Ay and
Ay N Agy) are two opposite half-apartments of Ay (resp. Ay, Agy) for both
v € {6, d}.

Proof. Using apartment isomorphisms, we may assume that A, = A,. Let D, be a half-
apartment of A, delimited by M. By [34, Proposition 2.9(1)], there exists an apartment
B, of .%, containing Dy, and C. By § 2.3.1, we can write By, = Zao(y).Ay, for some a € ¢
and y € K, with z4(y) fixing Dy. Let 2 € k*w? be such that wy(y — 2) > wy(y).

Let A1y = 24(2).Ay. Then

Arp N ED = Za(y). (xa(_y)-Al,n N xa(_y)'én)
= Za(y)-(Talz = y)- Ay NAy).

As C ¢ Ay, we have By N A, = Dy,. Moreover D, = {a € A, | a(a) 4+ wo(y) > 0} and
AyNza(z—y) Ay ={a € Ay | ala) +wy(z —y) > 0}. Therefore Ay Nzo(z —y). Ay 2 Dy
and thus A, N x4(z — y).A, contains any local chamber of A, which dominates some
local panel of M. Therefore A;, contains D, and C. Moreover if v’ € {&,®}, then
Ay N Ay =: Dy is a half-apartment. Let now Ay = z_4(271).A. Then Ayy N Ay =
Ay \ Dy and 7 := 2_o (=27 )20(2)2_0(—271) € Nywin induces reflections with respect to
the wall {a € Ay | a(a) + wy(z) = 0}. Hence we have (2) and thus we have (1), which
proves the proposition. O

Lemma 4.11. Let A, B € Atwin. Then for all (z,y) € (Ag N Bg) X (As N Bg), there
exists g € Guyin fixing x,y and such that g.A = B.

Proof. Considering local chambers C, C Bg, Cy C Ag and a third twin apartment B’
containing C;;UC,, (by Proposition 4.6), we are reduced to consider the case where AgNBg
or Ag N Bg contains a local chamber. We choose the case Ag N Bg D Cy; the other case
is similar. Let C (resp. C’) be a positive local chamber of Ag (resp Bg) based at x and
I'=(C, ..., Cy) be a minimal gallery of local chambers at = from C = Cy to C' = C,,.
Let P be the panel dominated by both C; and Cs. There are two cases: either the panel P
is not contained in any wall of Ag, or the panel P is contained in exactly one wall of Ag.

In the first case, any half-apartment containing C contains Cy and thus the enclosure
of C; contains Cy. By (MA II) we deduce that Ag contains Cy so we can replace I' by the
gallery (Cy, ..., Cy).

We now assume that we are in the second case. Let Djgq, D2 be the two half-
apartments of Ag delimited by P. By Proposition 4.10, there exist twin apartments A
and A such that Ag N A; g = D; g for both i € {1,2}. Then AgNA; g and AN Ay are
two opposite half-apartments of Ag. Therefore A; o or As o contains C, and there exists
i € {1,2} such that AN A; D D; g UC,. By Lemma 4.9, there exists g € Gyin such that
g.A = A; and g fixes  and C,. By induction, we deduce that we can assume that AN B
contains C,, and Cy. Then by Lemma 4.9, there exists g € Gyyin fixing z,y and such that
g.A = B, which proves the lemma. O

Theorem 4.12. Let A, B € Apyin. Then there exists g € Giyin such that g A = B and
such that g fizes AN B (i.e g fizes pointwise (Ag N Bg) U (As N Bg)).
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Proof. We identify A and A. We assume that Ag N Bg and Ag N Bg are non-empty, since
otherwise we can use Proposition 3.9. Fix y € Ao N B. By (MA II) in § 2.3.1, Ag N By is
a finite intersection of half-apartments in Ag. In particular it is convex and the closure of
its relative interior (Ag N Bg)® (the interior of Ag N Bg considered inside the support Vj
of Ag N Bg in Ag). We regard Ag as an R-vector space and V| as an affine subspace of
A. Let % be the direction of V. If V is a vector subspace of VE), we say that V satisfies
the property & if for all x € (Ag N Bg)®, there exists hx,{? € Giwin such that hx,\?A =B

and h, p fixes (z 4+ V)N Ag N Bg and y. Then {0g} satisfies & by Lemma 4.11. Let

V be a vector subspace of V} satisfying &2. Assume 1% #* Vo and take v € Vj \ V. Let
h € Giwin be such that h.A = B and such that h fixes Ag N Bg (the existence of such
an h is provided by Proposition 3.9). For z € (Ag N Bg)®, define n, = hil.hm;; it is in
Niwin and fixes (x + 17) N Ag N Bg (hence all x + ‘7) Let w, be the image of n, in the
Weyl group W = Nyyin/T(k), that we regard as a group of automorphisms of the affine
space Ag. As W is countable, there exist 2/, 2" € (Ag N Bg)® such that 2/, 2" € = + Ro,
2’ # 2" and wy = wyr. Then wy fixes 2/ +V and 2’ + V and thus it fixes  + (V + Ro).

So h, y fixes (z 4+ V + Rv) N Ag N Bg. Therefore V + Ro satisfies & and by induction

we deduce that V, satisfies 2. In particular, there exists hy € Gpin such that hy.A = B
and such that h, fixes Ag N Bg and y. We conclude the proof of the theorem by a similar
reasoning. ([l

Remark 4.13. The theorem above is true if we replace Agpin and Giwin by Ape and
Gpol respectively. The proof is similar since we mainly used that Giyin C Gpe and our
preliminary study of G-

4.3. Decompositions of Gy, and G-

4.3.1. Twin Iwasawa decomposition. Recall that Cq = germo, (C}) is the fundamental
positive local chamber in Ag and I = Ig (resp. Iywin) is the fixator of Cg in G = &(K)
(resp. Gwin = Go). From Corollary 3.11 and Remark 3.12; we get:

Proposition 4.14. Let ¢ € {—,+}. Then we have:
Gtwin = ;E;in-Ntwin-Itwm and Gpol = Uteqf;mNthn(IEB N Gpol)-
N.B. In Ag, one considers the fundamental negative local chamber Co :germoe(—C}’)

and its fizator or stabilizer the negative Iwahori subgroup Is of G (acting on I5). One
writes Ino = Ig N Gyin and the (negative) Iwasawa decomposition may be written:

Giwin = UtiianthnIoo and Gpol = Uteqj;@'n‘Ntwin-(Ie N Gpol)~

Lemma 4.15. Let e =+ ore = — and A € Agrwin such that A D Q.oo. Then there is a
u € Ug,,;, such that A = u.Ag.
N.B.

1) u is unique and Corollary 3.8 (2) tells, more or less, that UZ%.  is “dense” in U;, . .
( q y twin twin
(2) Such results are also true for all pairs “sector germ C twinnable apartment of %

or J5” with u € G fixing the sector germ, by § 2.2.4(3) and § 2.3.1.

Proof. There are g1 € Guyin,g92 € U® such that A = g1.Ag = g2.A¢. So 92_191 €
Stabg(Ag) = N and g1 € Gupin N (US.N) = Uy in-Nitwin by Lemma 4.4. One writes
g1 = u.n with u € U, and n € N (stabilizing Ag), so A = u.Ag and the lemma is

proved. ]
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4.3.2. Decomposition of twin Twahori subgroups? We saw in § 2.2.4 that the fixator in G
of the fundamental positive local chamber Cg in .5, may be written

I = UG, U, T(Kug=0), with Uz, =Is NU*.

We would like such a decomposition of Iyin = Ig N Giwin OF Ipg = Ig N Gper. But this is
impossible in general as shown by the following counterexample for & = SLy (semi-simple).

Then Ig is the group of the products (§%)(19)(5.%) with u,v,z € K, wg(u) > 0,
wg (v) > 0 and wg(z) = 0. But the fixator in SLy(K) of 0, € &, is SL2(O,) [11], so such a
product fixes 0y, if, and only if, wy(2) < 0, wy(2v) > 0, wy(z~ u) > 0 and wy(2(14+uv)) > 0;
hence it is in Gy if, and only if, 21 e0, 2we0, 27 ueOand 2(1+uv) € O. Actually

then )
BHED(3.0) = (0w =) e 8Ly(0),

zv z
and SLy(O) = (SL2)win as O is a principal ideal domain and SLj is semisimple.

One chooses P € k[w]| an irreducible polynomial, P # w and writes Bezout 1 = —wu’+
Pv', with v/, v € k[w], we may choose v/ € k. One chooses 27! := P, z7lu 1=/, 2v := w,
ie.u = W//P, v = Pw, so (1 + ww) = P7}(1 +v'w) = v/. Hence g := (V%) =
(PN D 8) = () D(EY)(Y 21) s in the Twahori subgroup of SLy and
in (SL2)twin, but its (unique) decomposition in UTU T involves factors not in (SLg)per-
Nevertheless the last decomposition shows that g is in Uy H = (H, (Uagre)atre € ®ar)-
This agrees with the fact that, in reductive cases, the answer to the question in § 4.1.9

DR5, NB3 is yes.

4.3.3. Groups associated with spherical vectorial facets. We choose now to work in Zg,
but the similar results in %5 are also true.
So we consider a spherical vectorial facet FV C Ag.

(1) Following [31, 6.2.1, 6.2.2, 6.2.3, 12.5.2] we associate to the facet F'V a parabolic
subgroup of G = &(K) with a Levi decomposition: P(FY) = M(F") x U(F").
Actually M (FV) is a K-split reductive subgroup with maximal /C-split torus ¥ and
root system @™ (FV) = {a € & | a(FY) = 0}. It is generated by T and the U, for
a € ®™(FV). And U(F") is the smallest normal subgroup of P(F") containing all
Uy for a € PV (FY) ={a € ® | a(FY) > 0}.

(2) Parabolics and Giyin. One defines Upyin(FY) := U(FY) N Gwin, Miwin(FY) =
(Thwin; U (0),a € @™(FV)) and Pryin(FY) := Mpwin(FY) X Utwin (FY).

One has clearly Upyin(FY) D (Ua(O) | o € OV (FY)), Mpwin(FY) C M(F¥) N
Grwin and Puyin(FY) C P(FY) N Gypin. These three inclusions may certainly be
strict in general.

From the definition in § 4.1.5, one gets easily that Uttjn C Piyin(FY) when
FY C Cy.

One may also define Uy (FY) := U(FY) N Gpot, Mpoi(FY) := M(FY) N Gpe and
Ppor(FY) 1= Mpo(F) X Upor(FY).

(3) Twin Iwasawa decomposition. Let C} be a local facet in Ag or Ag. Asin §4.3.1 or
§ 4.1.2(2) one defines 1, (C1) or Ipo(C1) as the stabilizer (or fixator) in Gyyin or
Gpor of C1. So, from Remark 3.12, one gets the following Iwasawa decompositions:

Gtwin — thin(FV)-Ntwin-ltwin(cl)
and

Gpol - thin(Fv)-Ntwin-Ipol(Cl) - Ppol(Fv)-Npol-Ipol(Ol)-
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4.3.4. Parabolo-parahoric subgroups. We consider now a splayed chimney tvg = cl(F, F")
in Ag (with direction F'V) and its germ PRo.

(1) Following [34, 6.5], we define P#(vg) = P*(Rg) = M (vo)xU(F"V), where M*(vy) =
M#(Ry) is the parahoric subgroup of the reductive group M (FV), fixator of the
local facet F' (or of tp, Mo, as tg is in the enclosure of F' for the reductive group
M(FY)). From [34, 6.5, 6.6], we get that the group P*(tp) fixes the chimney germ
MRo. It depends only on fRg, but it is not clear that it is the whole fixator of Rg
in G.

(2) We consider also the subgroup Pl . (vo) = Pl . (Ro) = M}, (vo) x U(FY) of
P (o) N Grapin, where M. (o) = (T(K); Uptre, o € D™(FY), (a4 7€) (F) > 0) C
Mu(t()) N Gtw’in-

Actually M}, . (vo) is the parabolic subgroup of the affine Kac-Moody group Myyin (F")
associated to the local facet F' C Ag. To see precisely My,in(FY) as an affine Kac—-Moody
group, one has to write it 9(F")(k[w, w~!]) where M(F") is the split reductive algebraic
group (or group-scheme) with root system ®™(F") and split maximal torus ¥.

Theorem 4.16. With the above notations in § 4.3.8 and § 4.53.4, we have:
Gthn - thm (tO)-Ntwin~Itwm<Cl)
N.B.

(a) This is the mixed twin Iwasawa decomposition. It mixes an Iwasawa decomposition
in Gywin and a Bruhat decomposition (if C; C Ag) or a Birkhoff decomposition (if
Cy C Ag) in the Kac-Moody group Myyin(FY) (which is actually reductive).

(b) One has also Gpoi = P, ;.. (v0)-Niwin-Ipot (C1)-

Proof. Let g € Guyin (resp. g € Gpo). From § 4.3.3, one gets p € Pryin(FY), n € Niwin,
q € Ltwin(Ch) (resp. q € Iyo(Ch)) and u € Upyin(FY), m € Myyin(FY) with g = png and
D = um.

Then one uses the Bruhat (resp. Birkhoff) decomposition in the affine Kac-Moody group
Mywin(FY) associated to the local facets F' C Ag and n(Ci) C Ag (resp. n(C1) C Ag).
So:

m = piniqi with p1 € Mthn( ) ny € Ntwin N Mtwin(FV)
and
@1 € (T(k); Untre, 0 € @ (FY), (a +7&)(n(C1)) > 0).

Now n™tg1n € Iwin(C1) and g = upininn~tqing is in P . (v0)-Niwin-Ttwin(C1)
(vesp. in Py ;. (€0)-Niwin-Ipoi(C1)). -

Corollary 4.17. Let C be a local facet in Fg (resp. in Is) and R a splayed chimney
germ in Zg. Then C and R are always contained in a same twin apartment A: R C Ag

and C C Ag (resp. C C Ag).
N.B. Mutatis mutandis, one may also clearly suppose R C Fg.

Proof. There are g,h € Giyin with C1 = g71C C Ag (resp. C1 = g7'C C Ag) and Ry =
h™1R C Ag. From Theorem 4.16, one gets p € PL. (Ro), n € Niwin and ¢ € Iiin(Ch)
such that h=tg = png. Now p fixes Ry (by § 4.3.4) and ¢ fixes C; (by definition). So
C = gCy = hpnCy C hp(Ag) (resp. C hp(Ag)) and R = hRy = hpRo C hp(Ag). We
conclude now with A = hp(A) as hp € Gryin. O
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Remark 4.18. When fR is a sector germ and C' C g, this corollary is a consequence of
Corollary 3.8(2). When fR is still a sector germ and C' C .Zg, then this corollary may also
be deduced from Corollary 3.8(2): actually we have bijections between the sets of sector
germs in % or in 5 (and with the set of chambers in Y¥).

When fR is no longer a sector germ and C' C .#o, this corollary or Theorem 4.16 gives
a kind of non trivial link between .Z5 and 5. It may be considered as a weak twinning
of Zg and .£5. The twinning that may be hoped is a Birkhoff decomposition looking like
Theorem 4.16, with C C Ag and vy replaced by a local facet in Ag (well chosen with
respect to C). See § 4.4 below.

4.4. Expected Birkhoff decompositions and retraction centered at C,. Let H
be Gpin (resp. Gpor), let EL C Ag, E_ C Ag be either points or local facets and let
Hpg, be their fixators in H. Then a Birkhoff decomposition in H is a decomposition
H = Hg, .Staby (A).Hg_; one may also consider a decomposition H' = Hg_ .(Stabg(A)N
H').Hg_ for a subsemigroup H' of H. As in § 2.3.2, the existence of such a decomposition
means that any hy.F, and h_.E_ (for hy,h_ € H, with some conditions in the case
of H') are in a same twin apartment A € Agypin, if H C Gpin (or in a same Gpo—twin
apartment A € Ay, if H C Gpy). In the case where & is a reductive group, then
I = (S5, Y5) is a twin building with a strongly transitive action of the affine Kac—
Moody group Giwin = Gpor (see Remark 4.2. Then the Birkhoff decomposition, for Giuwin,
is well known (see e.g. [31]).

4.4.1. Conjectures. One would perhaps have liked that any pair of chambers C, C g,
C, C 5 is twin-friendly, i.e. there exists a twin apartment (Ag, Ag) with Cp C Ag,
Cy C Ag. This would correspond to a Birkhoff decomposition H = Hg, .Ny(A).Hg_ for
H = Gyin and F, E_ asin § 4.4.

But the experience of masures leads to think that this is not true in general. A coun-
terexample is actually given below in § 6. From this it is reasonable to think that a
condition like z < y or y < z has to be added.

For Muthiah’s purposes, we may restrict to the case Cy C Ag C S, Cy = Cx =
germo(—C’}’) is the fundamental chamber in .#5. Then we write Og the element 0 € Ag.

We give below two conjectures, the first one closely related to Muthiah’s framework.

Conjecture 4.19. For x € 73 such that x < 0g or > Og, then (Cy,Cx) is twin
friendly.

Actually Muthiah needs a weaker result: for z € %, with z < 0g and (z,0g) twin
friendly, then, for any z € [0g, z], the pair (z,0g) is twin friendly.
But, using Proposition 4.6 and the following Proposition 4.21, we get from such a result

the general conjecture above (at least for z < 0Og).

Enhanced conjecture 4.20. For x € S and y € I5, we write x < y (resp. x
y) if there is a twin apartment A = (Ag,Ac) with x € Ag,y € As and opa(y) >
(resp. opa(y) < x), where opa(y) is the point in Ag opposite y.

Then, for @’ € Jg and y' € I5 with ' < x and y <y (resp. ' > x and y > y') one
has ' <y (resp. 2’ >v').

>
x

This second conjecture seems to be a reasonable generalization of the result known in
masures.
Note that these two conjectures are certainly more reasonable, if we replace everywhere

[} (o]
< by < and > by >.
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In a recent preprint [30], Manish Patnaik looks at the above conjecture in the untwisted
affine case, i.e. for loop groups. Unfortunately the Birkhoff decomposition he gets is, up
to now, proved only in a completion of the Kac—-Moody group.

Proposition 4.21. For x <y in Y, there is a z € Ig such that x € [z,y] and (z,Cx)
s twin friendly.

Proof. One may suppose x # y. There is an apartment Ag in g containing x and y.
One may consider in Ag, the spherical vectorial facet FV of Ag containing yZ, the ray
d=y+ R+y7 and the splayed chimney v = v(F(y, FY), FV). By Corollary 4.17, there is a
twin apartment (Af,, A7) such that Co C A}, and Af; contains the germ R of t, i.e. A
contains a shortening v(F(y + ky, F¥), FV) of ¢ (for some k € R supposed > 1). Then Al
contains z = y + kyZ (and the ray z + Ry y#). So (z,Cs) is twin friendly and = € [z, ]
(as k> 1). O

4.4.2. Retraction centered at Cy. Our main motivation to study twin masures is the study
of the Kazhdan—Lusztig polynomials introduced by Muthiah in [29] in the Kac—-Moody
frameworks. His definition involves the cardinalities of sets of the form

Ktwinw)\Ktwin N Ioow'uKtwin/Ktwina (41)

where Ky, is the fixator of Og in Gpin and \,up € YT =Y NT (and w” is defined in

§ 2.2.2). The strategy he proposes to compute these cardinalities follows the steps below.

(1) Define a retraction pc. : Fo,<0p = {2 € o | 2 < 0g} = Ag <0, = Ag N
Fa,<0g centered at Coo. Then the coset (4.1) is in bijection with

{z € I <0y | d" (0, 2) = =X and pc, (z) = —p}, (4.2)

(see § 5.2 for the definition of dV).
Recall that for us, following Tits, @ acts on Ag by the translation of vector —A:
see § 4.1.8.

(2) Study the images by pc.. of line-segments of Y <. He proves in [29] that such
an image is a piecewise linear path of Ag satisfying certain conditions. He calls
such paths I,—Hecke paths.

(3) Prove that an I—Hecke path from Og to —p in Ag), of shape —\, has only a finite
(computable) number of liftings as line segments of Zg <o, from 0g to z € Iy
with d¥(0g,x) = — .

(4) Prove that, for A\ and p given, there is only a finite number of I, —Hecke paths
from Og to —p in Ag, of shape —A. Together with 3. this gives the cardinality of
the set (4.2).

In [29], Muthiah achieves steps 2 and 3 in general and step 4 in certain cases (when G
is untwisted affine of type A, D or E, see [29, Theorem 5.54]). Step 4 is achieved in full
generality in [23, Corollary 3.11]. However, step 1 is only conjectural.

We now explain step 1, i.e. how to define pc_ under the assumption that (Gth‘n)$ (or
(G'twin)g) admits a Birkhoff decomposition (which is still conjectural). Steps 2 and 3 will
be explained with great details in § 5, see particularly § 5.3, § 5.9 and Theorem 5.9. In
step 3, it seems that our formula for the number of liftings of a Cy—Hecke path is more
precise than Muthiah’s formula. We shall tell nothing about step 4.

Let £ = Io.Ag. Then & is the set of elements x € .Zg such that xUCy is Gyyin-friendly.
Indeed, take x € £ and write & = ic.y, With is € I and y € Ag. Then A := iy .A
contains x U Cy. Conversely, let z € .Zg be such that x U Cy is Gpyin-friendly. Then
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there exists g € Gyyin such that A := g.A contains x U Cw. Then by Theorem 4.12, there
exists h € Gyyin such that h.A = A and h fixes ANA. Then h € I and there exists
y € Ag such that h.y =z, s0 x € £.

Lemma 4.22. Let z € Ag and i € I be such that is.z € Ag. Then ioo.z2 = 2.

Proof. Let A = i00.A = (ico-Ag, i00-Ag). By Theorem 4.12, there exists h € Gyyin such
that h.A = A and h fixes AN A. Then hiy stabilizes A and thus it belongs to Nyyin. As
his fixes Co, it fixes an open subset of Ag. Therefore hiy fixes Ag. By § 4.1.7(d), hix
lies in T(k) and thus it also fixes Ag. Therefore hio.2 = 2 = io.2. O

We define po : € = Ag by po. (icc.z) = x for © € Ag and i € I». This is well-
defined by the lemma above. Moreover it is I-invariant and po_ (z) = x for all z € Ag,
so it satisfies the conditions of [29, Proposition 2.4], with @ = I.

It is however difficult to describe explicitly £. It is related to the existence of Birkhoff
decompositions on G by the lemma below. For our purpose, we would like that £ contains
I, > 04 (Or Jg <04, since our sign conventions differ from the ones of Muthiah). In the
following of this § 4.4 we work with %5 >, but the same results are true for g <o, .

We set (Gtwm)$ = {9 € Gwin | 9.0¢ > 0g}.

Lemma 4.23.
(1) Let J = ﬂx€A® IooNtwin(Gx N Gtwin) and J+ = ﬂmeA@ZO@ IooNthn(Gar N Gtwin)‘
Then € D JA@ U J+.A@720®.
(2) If € = F, then Guyin = J.
(3) If & is reductive, then &€ = Ig.
(4) We have (Gtwm)g-A@,zo@ =I5, >04-
(5) We have J* D (Gtwm)ag if and only if € D Fg >0,-

Proof. (2) Suppose € = Fg. Let g € Gyin and & € Ag. Then g.x € £ and thus there
exists G0 € Ioo, Y € Ag such that g.ox = is.y and (in) 'g.x = y. Let h € Giyuin be
such that h(is) 1g.A = A and such that h fixes A N (i) 'g.A (Theorem 4.12). Set n =
h(iso) tg. Then n € Nyyin and y = n.z. Then g.z = ison.z and hence n~ ' (is) g € G..
Consequently, g € Ioo Npwin(Gz N Grpin) and Giyin = J.

(1) Let # € JAg and j € J, y € Ag be such that x = j.y. Write j = ixnk, where
(toos My k) € Ing X Npwin X (Gy N Grwin). Then x = is.(n.y) € £, s0 € O J.Ag. Similarly
we have JT.Ag >o, CE.

(3) Suppose & is reductive. Then we have Guyin = IooNiwinltwin, by the Birkhoff
decomposition in the affine Kac-Moody group over k, & (k[w, @ !]) = Giyin. Therefore
we have Giwin = oo NiwinmIpwinm ™' for every m € N. Take z € Ag. Then there exists
m € Nywin such that m™t.z € Cg. Then G, N Guyin D MmIpwinm ™!, which proves (3)
using (1).

(4) Let g € (Gth‘n)$ and x € Ag, >0,. Then z > 0g and by G-invariance of < we have
g.x > g.0g. By definition of (Gwin)d, we have g.0g > 0g. By transitivity of <, g.z > 0g,
thus (Gtwm)gA@,zo@ C Fp,>05- Let ¥ € Fg >0,. Then there exists g € Gypin such
that g.x,9.05 € Ag and g.x > ¢.0. We can moreover assume that g.0g = Og (see
Corollary 3.10.1 and Proposition 3.9). Then z = g~'.(g.z) and g7 € (Gpyin)s, hence
T € (Gtwin)agA@,zo@- Therefore Zg >0, C (Gtwin)é-A@,zo@ which proves (4).

(5) By (1) and (4), we already have the implication “=". Assume £ D .5 >0, and take
g€ (Gtwm% and z € Ag, >0,. Then by G-invariance of <, we have g.x > g.0g > Og), so
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g.x € Ig >0, C E. Therefore there exists y € Ag and i € I such that g.o = i.y. As
in the proof of (2), we have y € Nyyin.x, thus g € Ino Nyyin (G N Guyin) and the lemma
follows. O

As we shall see in § 6.5, J # Giyuin in general. We conjecture that J+ DO (Gtwm)$
which is equivalent to £ D Fg >0, by the lemma above. We also expect similar results
for Zg <04, (Grwin)g and J— (where J~ is defined similarly to J7).

Remark 4.24. It seems also natural to define £ = I.Ag and then define p;, : &' — Ag
by pc. (i.x) =z for i € Io, © € Ag. However this is not defined in general because the
fixator of Ag in G does not fix Ag. Indeed, let z € k(w) be such that wg(z) # 0 and
we(z) =0and A € Y\ {0}. Set 2* = A\(z) € T (recall that Y = Hom(9Mult, T)). Then 2*
acts by translation of vector —wg(2)A on Ag and by translation of vector we(2)A = 0 on
Ag. Actually, vg(T(0E)) =Y, so we can define pi, _ : £ — Ag/Y. Then we can define
the image by pi_ of a line-segment of £ (up to an element of Y) by demanding its image
to be continuous. So it might be helpful to look for a Birkhoff decomposition of GG instead
of a Birkhoff decomposition of Gy, in order to study Kazhdan—Lusztig polynomials.

5. Cso—HECKE PATHS

As explained above in § 4.4.1, we do not get what is expected to define the retraction
pL. = pc., (on a great part of .#z). One would like that : Vz € S,z > 0g (or z < 0g),
then (z,C) is twin friendly. Actually we get interesting results if, at least, (z,Cs) is
twin friendly for any z € [0g,x]. Then pr = pc., is defined on [Og, x| (by Theorem 4.12
or by § 4.4.2). In this section we shall prove, using Proposition 4.6, that pc._([0g, z])
is an Io—Hecke path (as defined in [29]). Actually Cy is the canonical (negative) local
chamber in Z5 and pc,, = pr., is the retraction of (a part of) g onto (a part of) Ag
with center Cw; it is also defined on a part of .5 (using a Bruhat decomposition in Z5).

More precisely, under the above hypothesis on [0g, x], we prove that po_ ([0s,z]) is a
A—path (with A = d¥(0g,x)) and may be endowed with a superdecoration (§ 5.2, § 5.3).
Conversely we prove that any superdecorated A—path is the image by pc_ of a line segment
[0g, x] with A = d¥(0g,z) and we count the number of these possible x (Theorem 5.9).
Then, starting from § 5.7, we get that the underlying path of a superdecorated A—path is
a Cs—Hecke path of shape A, for the definition of D. Muthiah (§ 5.11).

5.1. Projections and retractions.

5.1.1.  One considers a twin friendly pair (Cy,x) with C, a local chamber in .5 and
x € Jg. So one may suppose Cy C Ag and = € Ag (up to an element of Gyin ).

By § 4.4.2, the retraction Tp¢, of 7,5 (75) onto T;F(Ag) with center C, is well defined.
This means that *pc, ([z,2)) or Tpc, (Cy) is well defined for z € .#g and < z (resp. z <
x) or when Cy, is a local chamber at x in . with positive (resp. negative) direction (recall
that [z, z) is the germ of [z, z] at z).

5.1.2. Projections: One defines: pr,(Cy) (resp. pry(Cy), also written C2° when Cy = Cy)
is the germ in x of the intersection of the half-apartments Dg (v + k) with o € @, k € Z
(resp. of the open-half-spaces Dg (a + k) with a € ®, k € R) such that Dyyin(a + k&) D
{z} U Cy. By Theorem 4.12, pr, (C,) (resp. pr(Cy)) is independent of the choice of
(Ag,Ag) containing (Cy, x).
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One may remark that ®,(Cy) = {a + k§ € 4 | Dypin(a + k&) D Cy} looks like a
system of positive roots in ®, (in a clear sense). But it is not clear that C2° is a local
chamber (its direction might be outside the Tits cone).

5.1.3.  We are mostly interested in the case Cy = C, hence +pcy = pc., = PI.,- Then
D,(Cy) = @4 ie. Cy C Dyyin(a+kE) <= Cg C Dyyin(—a —kE). So (if z € £7°,
more precisely S Og or z < 0g), C° is the local chamber opposite at x to pry(Cg)
(defined similarly to pr;(Cy) above, see [8, 2.1] for details); its sign is + if = > Og and —
if # < 0g. Moreover pr,(Cy) is the closed chamber in the restricted sense (see [14, § 4.5])
containing pr,(Cy) = C°. If z is a special vertex, pr, (Cy) = prz(Cy).

N.B.

(a) Note that we chose above to suppose (up to Giyin) that Cy C Ag and z € Ag.
So, in general, when we speak of Cy = Cy(Ag) (resp. 0) in this § 5, it means
the positive local chamber (resp. the vertex 0(Ag)) opposite Cs (resp. Og) in a
twin apartment Ay, O Ag U Ag (in the sense of § 4.1.10 and § 4.1.3) such that
Coo C Ag and x € Ag. By Theorem 4.12 the condition x > 0(Ag) or x < 0(Ag)
does not depend of the choice of Asyin.

(b) In this case Cy = Cx and x S 0orz <0, we proved that C2° is a local chamber.

Lemma 5.1. Let C, be a local chamber at x in Fg. Then there are affine roots oy +
ki€, ... an + Ekn§ € ©4(Cy) with (o + ki&)(x) = 0 and elements u; € Un, k¢ C Grain N
G, NGg, (possibly u; = 1) such that *pc,(Cy) = Un. .. .. u1.Cy.

In particular *pc, restricted to T;5(Fg) is induced by elements of the group Gy (z) =
(Ugqre | BH1E € Po(Cy); (B4 1E)(x) = 0) C Grwin N Gy, which fizes pr, (Cy). Hence (in
the case of 3) above) this restriction (of Tpc, = pc..) is the retraction p' of T;5(Ig) onto
TE(Ag) with center pr (Cy) (or pry(Cy) = C).

N.B. Guwin NGz N Ge, has the same restriction to 7.5(T.%) as GIin (z).

twin

Proof. Let C° C Ag,C', ..., C" = C, be a minimal gallery of local chambers at z in %,
with origin in Ag and end C,. One argues by induction on n; it is clear for n = 0. If
n > 1, one considers the hyperplane Mg (aq + k1€) (with oy € ®, k1 € R) of Ag containing
the local panel common to C? and C'. One may suppose (a1 + k1€)(Cy) > 0. If k1 € Z,
this hyperplane is not a wall and C' C Ag. By induction po, (Cr) = tn. ... uz.Cy (with
clear notations) and we are done (we replace k1 by any k; € Z and take uy = 1). If
ki € Z, then a1 + k1§ € ®,(Cy), and, as in Proposition 4.6, one sees that there exists
u1 € Uqy k¢ such that uCl ¢ Ag. One considers the gallery wCh, ..., w1 C" = u 1 Cy.
By induction there are ag + ko2&, ..., an + kné € ®,(Cy) with (a; + ki€)(x) = 0 and
elements u; € Uy, k¢ C Grwin N Gz N Gg, such that +pcy (u1Cy) = up.. ... ug.u1.Cy. So
Tpc,(C) = Tpo, (w1Cy) = up. ... ug.u1.Cy as expected. As each wu; fixes pr,(Cy) and
prz(Cy), it is also equal to p/'(Cy). O
5.2. Coo—friendly line segments in ..

5.2.1. Let z,y € #5 be such that x < y (resp. x S y). There is a G—apartment g.Ag
containing {z,y}, so g~ly — g 'z is in T° (resp. —T°). We define the vectorial distance
A = d¥(z,y) as the unique element in 6} NT° (resp. —6‘} N T°) conjugated by WV to
g 'y — g 'z. Tt does not depend on the choices made (see e.g. [8, § 1.6]).
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The line segment [z, y] in .#g is said Co—friendly if, moreover, V z € [z,y], (Cx, 2) is
twin friendly. By Proposition 4.6 we may ask that Ag contains [z, z) or [z,y). We actually
parametrize [z,y| by [0,1] : ¢ : [0,1] — [z,y] is an affine bijection. We define e(p) = +1
ifmzyande(go):—l ifx;y.

In the following we suppose [z, y] Co—friendly.

5.2.2. By the usual argument using the compactness of [z, y] and Proposition 4.6, we
get points 2o = x,21, ..., 2, = y in this order in [z,y] and twin apartments (A7, AY),
1 <i<n, with Cyp C Aie and [z;_1, 2] C Al@. We set z; = p(ti),to =0<t; < -+ <
t, = 1. By Theorem 4.12 or § 4.4.2, we know that pc__ is defined on [z, y], and also on all
local chambers C, with vertex z € [z,y] by Proposition 4.6. The above result tells that
po., ([z,y]) (or better m1 = po_oy) is a piecewise linear continuous path in Ag. It is actually
a A—path, as defined in [8, 1.7], [15, 1.8] or [14, 5.1], i.e. it is a piecewise linear continuous
path 7 : [0,1] — A such that, V ¢ € [0,1], #/.(t) € WY.\ (which is in £7°). We shall
investigate its properties more closely and then call it an I, —Hecke path (to follow [29]) or
a Coo—Hecke path or (more precisely) a Hecke path of shape A in Ag with respect to C
(iIl A@)

5.2.3.  We suppose now moreover that C2° is a local chamber, more precisely that, in

the apartment A?, one has = > 01 (resp. z < 01), where 0; means the opposite in A? of
0o € AT. By Theorem 4.12 this condition does not depend on A; or [z,y) but only on
(Cso, ). In particular the sign of C2° is positive (resp. negative). We may decorate [z, y]
by the use of C2°:

For z € [z,y[ we set C, = prp.,y(C5°) and for z €]z, y] we set O, = pri. ) (C),
i.e. Cf, (resp. C; ) is the local chamber containing [z, y) (resp. [2,2)) in its closure that
is the closest to C2°, for details see [8, § 2.1 and Definition 2.4] where C7, is written C7.

One has to be careful that, contrary to l.c. , we may have x = y (i.e. e(p) = —1) and then
CF, (vesp. C; ) has a negative (resp. positive) direction. When z = ¢(t) we write also
C’Z%SD = C’tﬁo. We write ¢ or [z,y] this decorated line segment.

We recall the notations for some segment germs: ¢4 (t) = pi(z) = ¢([t,1)) = [z,9),
7 (t) = 7 (p) = ([t t + 1)) (resp. () = p(2) = p([£,0)) = [2.2), 7 () = 7_(p) =
m([t,t —m)) if t < 1 (resp. 0 < t) and z = ¢(t),p = 7(t), n > 0 small; also the right
(resp. left) derivatives 7/, (t) (resp. 7’_(t)).

We may also define C'pi’7r = C’tir = pcoo(Cgfw) when p = 7(t) = pc.(2) = pc. (o(t)).
We get thus a decoration of 7:

Definition 5.2 ([8, Definition 2.6]). A decorated A—path is a triple = = (m, (C; )¢ <1,
(Cix)t>0) such that: 7 is a A—path, C’;r (resp. Cy; ) is a local chamber with the same
(resp. opposite) sign as A, with vertex m(t), containing 7 (t) (resp. 7_(t)) in its closure.
Moreover, for some subdivision ¢ =0 <t} <--- <t; =1 of [0,1] such that 7|y . isa
line segment and for any t;_, < t,¢' <, we ask that C;\ = prﬂ(t)(Cth’ﬂ) (resp. Cy . =
prm(t)(Cti,’W)) (here we exclude C,,

_and Cjf _ of these equalities).
i—17 i

We get easily these properties in our context, as the apartment A? above contains

CF |, and O , (hence all C’Zi#, for z €]zi_1,zi[). So, for p; = 7(t;), the restriction

7T|[ti717ti] is a line segment from p;_; to p; and pc. ([z,y]) = [po, p1]U[p1, p2]U- - -Upn—1, Pn]-
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5.3. Retractions of C,—friendly line segments.

5.3.1. We suppose [z,y] C Fg, Co—friendly and parametrized by ¢ as in § 5.2.1. We
suppose moreover [z,y) C Ag. We may then decorate [z,y] (i.e. ¢) by the use of C2°, if

x<0orux 20 (actually we assume often 2z = 0), cf. § 5.2.3. We get also a decoration on
the A—path pco_ ([z,y]) (i.e. on m = pc o ); we keep the notations of § 5.2.

5.3.2.  We suppose 0 % z < y hence € = g(¢) = +1 (resp. 0 % x> y hence € = g(p) =
—1); for this we may eventually exchange = and y if e.g. 0 % Y < z. From this we deduce
(by induction on 4) that, for any z €]z;_1, z;[, one has z S 0(AP) (resp. z < 0(AP)); in
particular C2° is a well defined local chamber of sign e.

We now consider ¢ €]0,1[, z = ¢(t), p = 7(t) = pc, (z). We write (Ag, Ag) a twin
apartment containing C and C7 . By Lemma 5.1, the restriction of pc,, to T (I)
(whose image is Ei(A@)) is the retraction pcee (of T5(Sp) onto TX(Ag) with center
C2°) followed by the isomorphism v of 7.5 (Ag) onto 7;i (Ag) induced by pc., (hence by
an element of /). Note that (C7°) = Cp°.

We saw that C'3° and CZ , have the same sign €. So we may consider a minimal gallery
CY = Ccx,Cl ..., 0™ = CZW of length m = m, = my; we write i, = i; its type.
We suppose that C°,C, ..., C™ is a minimal gallery from C2 to p4(z). Now (C]@ =
pc.. (C))o<i<m is a minimal gallery in ﬁi(A@) of type i) := i; from Cp° = pc_ (CL°)
to Cpr = pcs, (CF,). Tt is minimal as we retract with respect to Cp°, which is the first
chamber of the gallery, see Lemma 5.1.

5.3.3. So the A—path 7 is decorated by the datum ((C;7)¢<1, (Cix)t>0), with Cafﬂ =
Pro. (0)(6'0?0)). For any t €]0, 1], one has chosen the type i; of a minimal gallery of local

s

chambers in 77 (Ag) from Cp° to C,f ; its length is m = m;, = m;. We supposed also that
this minimal gallery begins by a minimal gallery (of length mj) from CP° to 7 (t) and
continues by a gallery of local chambers dominating 7 (¢).

For any t €]0, 1] we may consider a gallery ¢, = ¢; of local chambers in 7;8(A@) from

Cp° = prp(Cx) to the projection Ci(,f;) of C, . on the segment germ 74 )(t) = 7(t) +
7' (t).[0,1) (opposite 7_(t)), that is of type i; and centrifugally folded with respect to
Cprs see [8, § 2.2].

Such galleries may not exist in general. But we saw above that the decorated line

segment ¢ or [z, y] gives rise to such galleries.

5.4. Superdecorated C,, — A paths. Let m be a A—path in Ag, with \ € 5(6} NT°)
and 7(0) > 0if e = 1, 7(0) < 0 if e = —1. Clearly we have x(]0,1]) C £T°.

5.4.1. We consider the numbers 0 = ¢, < tj < --- <t =1 of § 5.2.2 and the points
p; = 7(t;) where 7 may be folded. For t; <t < tj  (resp. t; <t < tj ) the derivative
7' (t) (resp. w’_(t)) is a constant. The derivative ! (t) € WV.X is in eT°.

5.4.2.

Lemma 5.3. There is only a finite number of pairs (M,t) with a wall M containing a
point p = 7(t) for 0 <t <1, such that 74(t) is not in M and C;° is not in the same side
of M as w4 (t).
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Proof. We may restrict to the t € [t;,t;, [, more precisely to the ¢ in a small open set Q
in [t;,t;1]. We write M = Mg (a+ k€) with a + k€ € ®qq (so k > 0). The conditions are
thus (a+k&)(m(t)) = 0 (hence a(m(t)) < 0), a(n, (t)) # 0 and more precisely a (7', (t)) > 0
(as Cf° C D(—a — k§)). Suppose € = +1, then 7(Q) (resp. 7/, (t), which is independent
of t € [tj,t;,,[) is in the open Tits cone 7° (as t > 0), so a(m(t)) < 0 (for some t € Q)
(resp. a(n’ (t)) > 0) is possible only for a finite number of positive (resp. negative) roots c.
Hence there is a finite number of possible a (by [24, Proposition 3.12(c)], and, then, the
condition (a4 k&)(m(t)) = 0 is possible for only a finite number of k € Z. Moreover t € Q
is uniquely determined by a + k¢ as a(n’, (t)) # 0. We get now the expected finiteness by
using the compactness of [t}, ¢, ].

In the case ¢ = —1, one argues similarly, just exchanging positive and negative roots. [

5.4.3. Suppose now that 7 is the underlying path of a decorated A—path
_ + — : Y AT N
= (77, <Ct’”)t<1 , (Ct’”>t>o> with A € € (Cf NnT ) and 7(0) >0

if e =1 (resp. m(0) < 0 if e = —1). Moreover, for any ¢ €]0, 1], one supposes the existence
of a gallery c; satisfying the conditions of § 5.3.3.

The fact that © = (, (C{i})m 1,(Cy x)t>0) is a decorated A—path tells that there are
numbers 0 = ¢ < t] < --- <. =1 such that, forany 1 <i <r, {n(t) |t/|_; <t <t} isa
segment [ (t;_,),m (¢;)] and

r (t0). 7 0] = (et w] (C), Loy (G, oc)

is a decorated segment (defined in [8, Def. 2.6]).

In particular the direction C;1Y of Cif for t;_; <t <t} (vesp. C; Y of C; for tj_; <
t < t}) is constant of sign ¢ (resp. —¢), the same (resp. opposite) as the sign of the direc-
tion C203 of C27 (if t # 0). We write w;” | = dW(Cﬁéil),Cfihﬂ) if i > 2 (resp. w; =
d*W(Ci‘();;), Cpy) = dW(C;‘(’Q’i), —C4. %) the corresponding Weyl distance (resp. codistance),
[1, 5.133]. We then clearly have 7/, (¢;) = w;".A (resp. 7’_(¢) = w; .A) if one considers 2

as a new fundamental vectorial chamber (for ¢ # 0).

5.4.4.

Lemma 5.4. One writes po = m(to),p1 = 7(t1), ..., pe, = w(te,) with 0 =ty < t; <
s < tg, 1 < tg, =1 the points p = 7 (t) satisfying (for some wall M) the conditions of
Lemma 5.8 in § 5.4 above (ort =0,t=1). Then any point t where the path m is folded
at w(t) appears in the set {ty | 1 <k <l —1}.

Proof. If 7 is folded at p = 7(t) (for ¢ €]0, 1[), one has 7/, (t) # 7 (t), i.e. w1y (t) # T4 (t).

And, as m(4)(t) (vesp. 71 (t)) is the segment germ in C,(jj;) (resp. Cyx) with the same type

as A, one has Ci(,f;) # C’; = S0 the gallery ¢, from C}° to C’I(,,fr) is folded. This is possible

only if there is at least one wall M separating Cp° from Cyf ; as m(1(t) # 74 (t) we may

also assume 7wy (t) ¢ M. Sot € {ty | 1 <k </l —1}. O
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5.4.5.

Definition 5.5. A superdecorated C — A path is a quadruple 7 = (m, (C;,rw)t<1,
(Cix)t>0,(Ct)o<t<1) where m = (7, (C;r,,)t< 1, (Ci+)t>0) is a decorated A—path and each
c; is a gallery of type i; satisfying the conditions of § 5.3.3. We ask moreover that the
local chamber C(;fw is the projection me(o)(C?()o)) = P, (0)(Coo)-

5.4.6. It is interesting to describe the properties of the underlying A—path of a superdec-
orated Coo — A path. We shall do this in § 5.9 to § 5.11, after some auxiliary results about
twin buildings in § 5.7 to § 5.8. This underlying A—path is a C,c—Hecke path, as in [29,
5.3.1] (and similar to [14, Definition 5.2]).

A A—path 7:[0,1] - A (with X € 6(6‘} N 7°)) has only a finite number (possibly 0, if
it is not a Cos—Hecke path) of compatible superdecorations m = (, (C; )t <1, (Cp 1 )e> o0,
(ct)o<t<1). Actually, by § 5.5 and Theorem 5.9 below, such a superdecoration is the image
by pc.. of a Co—friendly line segment (as explained in § 5.3.3) and these line segments
depend only of the data (C;wﬂ)og k<tr—1, (Cp 2)1<k<t,—1 and (¢ )1<k<r,—1- Now, as
A is spherical, the number of possible local chambers C’;Ekﬂr C A containing 74 (%) in their
closure is finite. The type i, is the type of a specific minimal gallery in 7,7 (Ag) between
the chambers C;° and C,f . (which are well defined by the decoration and Ci); so there is
only a finite number of possible such types (moreover we shall fix one of them). Therefore

C(JF)

the number of galleries ¢, in A of type i, from Cp° to Cp, x is also finite.

5.5. Liftings of superdecorated C., — A\ paths.

5.5.1. One considers a superdecorated Co — A path 7 = (m, (C;fﬂ)t<1, (Cix)t>o0,
(ct)o<t<1) of shape A € 5(5‘}), as above in Definition 5.5 in § 5.4. One considers also a
point x that is C—friendly (i.e. there is a twin apartment (Ag, Ag) with x € Ag and
Coso C Ag) and such that pc,_(x) = po = 7(0). By Theorem 4.12, we have moreover

x § 0(Ag) ife=+1and z % 0(Ag) ife = —1.

We aim to prove that there is a Coo—friendly line segment [z, y] with d¥(z,y) = X €
6(6}) such that 7 is the “image” of [x,y] by pc., (as constructed in § 5.3). We want also
a formula for the number of these [z, y].

The idea is to build [z, y] progressively, starting from z. So we look locally.

5.5.2.  We look first for the segment germs [z, x) of sign e such that pc([z,z4)) =
71+(0) = po + 7/.(0).[0,1), more precisely to local chambers C, of sign ¢ such that
P (CF) = Cp,

oo (then [z,z4) is the segment in C with the same type as A; so

pn(2.24)) = 74(0) and CF = pry ;. (C)).
Proposition 5.6. There is a local chamber C;f of sign e such that pc. (Cif) = Cf .. In
case € = +1, we suppose now moreover pg S0 (i.e. po # 0), then the number of these
C (or of the corresponding segment germ [z, x.)) is finite (if ¢ = |K| is finite) and equal
to ¢ if po or x is a special vertex, where mqg is the length of war (cf. § 5.4.3) i.e. the
length of a minimal gallery d in T (Ag) from Cpo to CJM. If pg is not special, one has

to replace mo by the number m{ of walls separating Cpo from Cp+o,7r'
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Remark 5.7. When pg = 0, then C§° is negative and C’0+’ - of sign €, so there is a problem

if ¢ = +1. (Fortunately, for Muthiah’s purpose one has pg = 0 but ¢ = —1, as w”*

acts by the translation of vector —\.) In this problematic case the condition for C;
involves codistances: it is d*V(C°,C) = wg = d*V(C§°, Cgfﬂ). By the retraction pc_,
it is clearly equivalent to d*™(C§°, pc., (Cf)) = wy, i.e. to po,, (Cff) = Cjf . There are
infinitely many solutions for this condition.
Proof. We avoid the problematic case € = 41, pg = 0. Then the equality pc., (C;f) = Cp &
is equivalent to d¥(C°, CF) = wi = d“(C5°, COJZT). This is clear as we saw (in § 5.3.2)
that pc.. restricted to 7,5(.%) is equal to a retraction pcee (of TF(Hp) onto T 5(Ag)
with center C2°) followed by an isomorphism 1 of T,5(Ag) onto 7;?0[ (Ag) (which sends
C to CFF).

Now d%(C2°, C;F) = wq is equivalent to the existence of a minimal gallery of type i (the
type of a fixed minimal decomposition of wg ), hence of length mo = E(wg ), in Fg from

C2 to C;. There are ¢ (or more generally qmg) such galleries. O

5.5.3. For 0 < t < 1, we suppose now given a z = ¢(t), a local chamber C, hence a

segment germ ¢_(t) C Cz, (of the same type as —\) such that the pair (Cwo, 2z) (hence
also (Coo, C7,) or (Coo, (1)) is twin friendly and pc, (2) = 7(t) = p, pc..(C,) =
Cprr POk (p—(t)) = m_(t). We write (Ag, Ag) a twin apartment with C, C Ag and

v P—(t) € Ag. We now look for a segment germ [z, z) of sign € opposite ¢_(t), such
that po. ([2,24)) = 74(t) = p + 7/ ().[0,1); more precisely we look for a local chamber

CF of sign € opposite ¢_(t), such that pc, (CF) = C,f and CF = pr, . y(C; ).

Proposition 5.8.

(a) There is a local chamber C of sign € in TS (Ss) such that pc,, (CF) = Cp . and

that the segment germ [z, zy) in CF of the same type as \ is opposite ©_(t).
Actually we add the condition that the minimal gallery of type iz from CZ° to
CT retracts onto ¢, by the retraction Pes, (of T () onto T (Ag) with center
C7.,) followed by the isomorphism v of T (Ag) onto 7;}(,&@) induced by pc., .
This implies C} = pri, . y(C; ).
(b) Suppose q = |k| finite. Then the number of these local chambers is finite (non
zero) and equal to the cardinality of the set %g;,w (Cpes¢p) of all minimal galleries

in T, (Is) starting from Cp° and retracting onto c, by the retraction of T (Ia)
onto Ty (Ag) with center C, .. (Compare with [8, § 3.3 (b)]).

(¢c) If m is not folded at p = 7(t), then my)(t) = 74(t). The number of expected
local chambers C (or of expected segment germs [z,z1)) is then ¢ , where m}
is the number of walls that separate Cy° from C,f. and do not contain m(t) (or
equivalently w_(t) ). If ¢ = |k| may be infinite, we have at least that [z, 24) and CF
are unique when m; = 0.

There is a twin apartment (AL, AL) with AL, D Co and Al D CTUC,, D
[Z7 Z-‘r) :

(d) In particular, if t is not one of the t; in Lemma 5.4, then m} = 0 and C} is

unique; more precisely this unique C is in Ag, which already contains C;. © (and

Co C Ag). In particular Cf, = CZ(;?;). All this is true for any cardinality of k.
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N.B. From (d) above, one deduces that a superdecorated Co, — X path m satisfies the
condition of definition of decorated A—paths in § 5.2.8 above with the subdivision to = 0 <
ty < -+ <ty =1 of Lemma 5.4. Moreover, fort different from each t;, the gallery cq)
is minimal, uniquely determined by its type i;.

Proof. (a) + (b) We write g € I an element (of Gyyin fixing Co) sending Ag to Ag
and z to p; it exists by paragraph 4.4.2. By § 5.2.3 the restriction of pc_ to 7.5 (5g) is
g restricted to T,5(.%g) (sending isomorphically 7.*(.%) onto %i(ﬂ@)) followed by the
retraction pcee (of T;5(F) onto T;5(Ag) with center C3°). The expected C; and [z, 2.
correspond thus bijectively (by g) to pairs (C,f,[p,p+)) where C; is a local chamber in

Ty (J) such that poe(Cy) = C;f - and that [p,p;) is the segment germ in Cyf of the
same type as A and is opposite m_(t).

But ¢, = ¢; is a gallery in 7;5(1&@) starting from Cp°, of type i, the type of a minimal
gallery from C}° to C’; - Hence any minimal gallery in 77 (%) starting from C;° of type
i; ends with a chamber G such that pc (C;) = C, . Moreover c,, is centrifugally folded

(+)

with respect to €, and ends with the chamber Cp 7’ projection of C, ;- onto the segment

germ 74y (t) = 7m(t) + 7 (t).[0,1) (of type A) opposite 7_(t) (of type —A in Cyp ). The set

‘Kgl (Cpe,cp) is thus exactly the set of all galleries retracting by pcse onto the minimal
p,T™

gallery of type i; from CJ° to C; - and retracting by Pes onto c¢,. In particular the last
chamber G of such a gallery satisfies pos(C,) = C; and the segment germ [p,p4) in

Cy of the same type as A retracts by p,— onto the segment germ T(4)(t). Soa)and b) are
p,T™
proved, as a consequence of [8, § 2.3] (mutatis mutandis), which tells that €7 (Cp°, cp)
p,T™

is non empty and finite (if ¢ = |k| < 0o) and gives a formula for its cardinality.

(c) If 7 is not folded at p = m(t), then 7(1)(t) = 7+ () and c; is a gallery of type i; and
length m,,. By the convention for i; (cf. § 5.2.3) the gallery c; shortened by removing the
chambers of numbering > mj is minimal from Cp° to 74 (¢) and the chambers of numbering
> mj contain 74 (t) in their closure. So the number of possible choices for [z,z4) is the
number of possible liftings of the gallery c; shortened (and then C} = Pz (CF t,p) is well
determined). One considers the hyperplanes M cutting this shortened gallery c; along a
panel and their contribution to a factor of this number of liftings, see [8, § 2.3] (mutatis
mutandis). If M is not a wall, its contribution is 1. The walls cutting this shortened
gallery c; i.e. between the chambers C° and C"™t are exactly the walls that separate Gy
from Cf and do not contain 7 (t); the contribution of each of them is ¢. If m; = 0, each
contribution is 1 and [z, z) is unique.

To get the twin apartment A’, we just have to modify A by elements of Uy ke where
M = Mg(a + k€) cuts ¢; between the chambers C° and C™ and Dg(a + k€) D Ca,

Dg(a + k€) O C, . and then apply g~ '. The modified apartment A’ contains Coos C2

and [z, z+ ), hence also C5 .

(d) In this case t ¢ {t1, ..., ty, }, one has m = 0 and ¢" = 1. By the above procedure

we get A’ just by applying g7 to A. So A’ = A = g 'A. As g € I, fixes Cs,, we have
- - +

G = 10 (CF) = PO (0712(C5)) = Py ((Cy ) = G- a

Theorem 5.9. Let = = (7, (Ci1)i<1, (Cir)i>0,(€)o<t<1) be a superdecorated Coo —
A—Hecke path in Ag of shape A\ € 5(6‘} N T°) with w(0) 2 0 if e = +1 (resp. w(0) % 0
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if e = —1). We consider also a point x € g that is Coo—friendly (i.e. there is a twin
apartment (Ag, Ag) with Coo C Ag and x € Ag) and such that pc (z) = 7(0).
(1) There is a Coo—friendly line segment [x,y] with d(x,y) = A, such that & is the
“tmage” of [x,y] by pc., (as constructed in § 5.3).
(2) Ezxcept in the case e = +1 and w(0) = 0, the number of these line segments is finite
(provided that q = |k| < oo) and given by the following formula (for the notations
see § 5.5.2, Lemma 5.4 and Proposition 5.8(c))

lr—1
#leyly =" x [T #65 (Crien).
k=1
This number is equal to q".(q — 1)”' for some n,n' € Z>qy depending only on
(in A), not of k, see [8, § 2.3].

(3) If w is the parametrization of such a [z,y], we write zo = © = p(tp = 0),21 =
o(t1), ...y 2z = @(tk), ..., 20, = p(te, = 1) =y. Then there exist twin apartments
(A7 AD) (for 1 < k < U;) such that A7 D Co and AY O [zk—1,2] (i.e. AT
contains [p(tx—1), p(tx] and all C’;;O (for tp—1 <t < ty), Cro (for ti—1 <t <tg)).

Proof. Suppose the line segment [x = ¢(0),2r = @(tx)] constructed with the expected
properties. This is clearly satisfied for K = 0. We now construct [z, zx11].

If kK = 0, we investigated the possibilities for ¢ (0) = [20,21) in § 5.5.2. Their number
is > 1 and equal to ¢™0 under the conditions of (2). Now the Proposition 5.8 (d) tells that
each possibility for [zg, z1) corresponds to one and only one possibility for [zg, z1] and there
is a twin apartment (A7, A?) such that Coy C AT and [z, 2] C AF; hence C C AP,
[z,21] C AY.

If k£ > 1, we investigated the possibilities for ¢ (tx) = [z, 2k+1) in Proposition 5.8 (a)
& (b). Their number is > 1 and equal to

#er  (Ciey).

Pl T

Now the Proposition 5.8 (d) tells that each possibility for [zk, zx11) corresponds to one and
only one possibility for [z;, zx41]. If we choose a twin apartment (A}, A, ) such that

Co C Ak@+1 and [2p, 2p41) C Ch o C A?_H, then A?_H contains [zx, zx+1]and [zg, zg4+1]. O
Note that Theorem 5.9 is obtained with a slightly different method in [23, 4.5.2].

5.6. Folding measure of superdecorated C, — A paths. Let = = (, (C{fﬂ)t<1,
(Cix)t>0, (€t)o<t<1) be a superdecorated Cx, — A path in Ag of shape A € 6(6}), as
above in § 5.4.3. We consider the numbers 0 =ty < t; < --- < ty, = 1 and the points
pi = mw(t;) as in § 5.4.4. We recall (§ 5.3.2) that, for p = 7 (t) with ¢t > 0, CI(:;) is the

projection of C, . on the segment germ w1 (t) = 7(t) + _(t).[0,1); when t; 1 <t < t;,

C’,(M) = C,f; (see [8, Lemma 2.5] and Proposition 5.5(d) above). In the following of this
() _ o)

subsection we drop 7 in the notations C’;Eﬂr = Ctj;r and Cpr = Cy .
The direction ;™Y of C;" for t;_1 <t < t; (resp. C; ¥ of C; for t;_; <t < t;) is constant
of sign ¢ (resp. —¢), the same (resp. opposite) as the sign of the direction COC(’;’) of C7°r<(>t) (if

™

t # 0); here we may replace the ¢; by the t; of § 5.4.3. From [8, 2.9.2] it is also clear that, for
ti_1 <t < t;, the direction Ct(+)v of Ct(+) is constant of sign € and equal to C;;‘jl. Fori>1,
we write wj = d%(C5, CY) (if i < £r) (vesp. w; = d¥(CSY, C5TY) = d¥(C2Y, G ).
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FiGURE 5.1.

Then we clearly have 7/, (t;) = w;".\ (for i < £;) (vesp. ©’_(t;) = w; .A (for i > 0)) if one
considers Cgfv as a new fundamental vectorial chamber.

Proposition 5.10. For the Bruhat order in WV, one has w;r_l > w; fori > 2 and

w; Swjf0r1§i<£7r.
Remark 5.11.
(1) Unfortunately this gives no inequality between the w;™ (or the w; ). Perhaps one
can get some inequalities with other definitions of wfc.
(2) In the case of Hecke paths in a masure with respect to a sector germ one gets
wi | =w; and w; < w;". So one gets inequalities between the w;" (or the w;").
This case of sector germs is in [15]. It should be possible to prove similarly the
case of a Hecke path with respect to a local chamber, but it is written nowhere.

Proof. The second inequality is clear: ¢, is a gallery fom C}° to CI(:), with the same
type as a minimal gallery from C}° to C’;; (type associated to a minimal decomposition
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of w;" = dV(CpV,CyY)). For the first inequality recall that pry, (Co)Y is the vectorial
chamber containing the p;# for z € C sufﬁmently near from 0. So Cp? = opp(pry, (Co)")
is the vectorial chamber contalmng the zp] xp; for these x. But we have m = IP;—1 + Pi—1D;

and Tp; Tp;_1 € C Vs pi 1p; € Cpl .- Hence COOV meets the closed convex hull of COOV and

Cry = Cl(h v So CprY is in their enclosure, i.e. C°V is a vectorial chamber of a minimal

gallery from Cp™ to CfY = (H . This proves that
wy =d" (Cpv,C5PY) < v (G52, G ) = wiy, 0

Pi—1

5.7. Opposite segment germs and retractions in masures or twin buildings.
From § 5.7 to § 5.8, we consider .# a twin building and A its canonical [twin] apartment.
We use the notation [twin] to indicate the reference to a classical notation in twin buildings,

not to § 4.1.10. We think of A as a vector space V = K, even if it is more precisely the
union of two opposite Tits cones in V. These Tits cones are associated to a root system @,
a Weyl group WYV and a fundamental chamber C}’; but the thick walls of . are associated
to some particular roots called thick roots.

Actually we think very strongly to the case where .# is the tangent space (with its
unrestricted building structure) at a point p to a thick masure, A 5 p is an apartment of
this masure, ® is in the dual of V = A and the thick walls in . are associated to the
walls of this masure containing p (i.e. the direction ker § of this wall satisfies 5(p) € Z : 8
is a thick root).

In the following lines up to the proposition (included), we indicate between parentheses
some words we may add when we think to a masure.

We consider:

C, a negative (local) chamber (with vertex p) in A.

&, n positive segment germs of origin 0 (or p) in A.

—&, —n their negative opposites in A.

C_¢ a negative (local) chamber in A (with vertex p) containing —¢ in its closure.

i the type of a minimal gallery from C, to C_¢.

9 a positive (local) chamber in A (with vertex p) containing 7 in its closure.

In the picture, everything not in dotted lines is in A.

One writes p = Pacy (resp. po = pa,n) the retraction with center C, (resp. Q)

and image A (= 7,(A)) defined on .#.

e One asks that &, n are generated by vectors in WY.A for A\ a dominating vector in
A (e N€ C’i}’)

e W) is the subgroup of WV generated by the rg for 8 a thick root.

Proposition 5.12 (cf. [15, 4.6]).

(1) The following conditions are equivalent:
(a) There exists an opposite ¢ ton in & (with vertex p) such that p(¢) = —€.
(b) There exists a gallery c of (local) chambers in A (with vertex p), of type i for
some choice of C_¢, that is centrifugally folded with respect to Q (in particular
folded along thick walls) with first chamber C, and last chamber containing
—n n its closure.
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FiGURE 5.2.

(¢) m <wy &, i.e. there exist {, s € V\{0} such that n = [0,1)&,, € = [0,1)&o and
a Wy —chain from & to &s, i.e. finite sequences (&o,&1, - -+, &) of vectors in
V= K and (B, ..., Bs) of (real) roots satisfying the following (for 1 <i < s):

(1) r5,(i-1) = &>

(i) Bi(&i-1) <0,
(iit) ker B; is a thick wall, i.e. B; is a thick root (i.e. Bi(p) € Z for a masure),
(iv) Bi € @+ = ®T(-C,), i.e. fi(C,) <O0.

(2) If moreover i is minimal (i.e. C_¢ is the (local) chamber “containing” —§ nearest
to Cp, i.e. Cg = pr_g(Cp_), then the possible ( are in one to one correspondence
with the disjoint union of the C&(c) = { minimal galleries m with origin C, and
type i with image ¢ by pa a}, when c runs in the set Fg (i,—n) of galleries satisfying
(b) above with this type i (fixed).

Remark 5.13. With these choices of signs, ®* is of positive type, i.e. the associated
vectorial chamber C’;{ = —C,, is in the positive Tits cone T, but perhaps not equal to C}’.
Contrary to [15], we do not suppose in (1) above that i is minimal. This gives more
flexibility for applications.
We repeat below the main lines of the proofs in [15] and [14, 6.1, 6.3]. We give details

of a proof of [14, 6.1] independent of the existence of a strongly transitive group.

Proof. (la) = (1b). Let m = (C, = Mo, My, ..., M, > () be a minimal gallery in .%
from C, to (. Its retraction by p is a minimal gallery from C, to —¢. Hence, under
the additional hypothesis of (2), one may suppose m of type i and then ( determines
m. If one retracts now m into A by pg (with center ), one gets a gallery ¢ = py q(m)
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satisfying (1b) (and of type i, under the hypothesis of (2)). This is a result of [15, 4.4]
which is independent of the existence of a strongly transitive group. O

(Ib) = (la). If c = (C, = Co,Ch, ..., C;) satisfies (b), there exists a minimal gallery
m = (C, = Cy, Cl, ..., C]) retracting by pq = pa q onto ¢, with the same type i (cf. [15,
4.4]). Let ¢ C C retracting by pg on —n C C,; as n C Q, this implies in particular that
¢ is opposite 7. As c and m are of type i, one has p(Cl.) = C_¢. Hence p(¢) is in C_¢ as

—&. Thus p(¢) = —¢, as they are both opposite 7, up to a conjugation by WV. O

(2). Under the hypothesis of (2), the ¢ are in one to one correspondence with the m,
which are exactly the galleries in [], C§(c) as announced. O

(la) = (1c). This generalizes [14, Proposition 6.1], just taking 7 =n,7_ = (, pr_ =
—¢.

One considers [twin] apartments A° containing n U ¢, AT containing C, Unand A”
containing C,; U (. One defines p_ = p Ay (recall that p = pA,Cp‘)‘ But we shall first

modify A~ by the following lemma.

Lemma 5.14. Let . = (S, .7) be a twin building, C~ a chamber in .~ and A =
(AT, A7) a [twin] apartment. Then there exists a chamber CT in A that is opposite C~.
We write then B = (BT, B™) the unique [twin] apartment containing C~ and Ct.

If moreover D is a chamber in AT (resp. A=), one may choose CT in such a way that
D C BT (resp. DC B™).

N.B. This lemma seems well known when .# is spherical, but we did not find a reference,
see [37, 2.2.11]. Tt is likely that this twin case is also already known.

Proof. One assumes first D C A*. We choose a [twin] apartment A; = (A}, A7) contain-
ing C~ (in A7) and D (in A7), and we write C” = oppa, (C~) C AT. As D C Af, with A,
generated by C~ and C”, one has d*V(D,C~) = d¥(D,C") (see the Chasles relation (4)

n [1, 5.173], as "V (C~,C") = 1).

Let C*t C AT be the chamber such that d¥(D,CT) = d*¥(D, C'~); this means that there
exists in AT a minimal gallery (Cy = D, .. C = C7T) of type i = (i1, ..., is), where
Tigeovnn i, is a minimal decomposition of d*W(D C7) = d¥(D,C"). Let us prove that
C™* and C~ are opposite. One calculates d*¥(C},C~) by induction on j: d*V(Cp,C~) =
d¥(D,CT) = d*™V(D,C7) = rj..... ri,. One bets that d*¥(Cj,C7) = 7y ,..... r;, (this
will give d*V(C*,C~) =1, ged). But d¥(Cj1,Cj) = ri,;,, and, by induction hypothesis,
Uiy d™(C5,C7)) = L(Tij g v e ri,) = £(d*V(C;,C7)) — 1. So, by the axiom (Tw2) in [1,
5.133 p. 266], one gets d*V(Cjy1,C7) =1 .- - - r;, which concludes the induction. One
has now to prove that D C Bt. But d*V(D,C~) = d¥(D,C7); so this is a consequence
of [1, 5.175 p. 278].

Let us now look at the case D C A~. We choose a [twin] apartment A; = (A], A7)
containing C~ U D (in Ay ) and write C” = oppa,(C~) C Af. The Chasles relation
gives dV(D,C~) = d*V(D,C"). Let C* C A% be such that d*V(D,C") = dV(D,C™).
There is in A] a minimal gallery (Co = D, ..., Cs = C™) of type i = (i1, ..., is), where
Tigeoon- ri, is a minimal decomposition of d*¥(D,C") = d*V(D,C") = d¥(D,C~). Let us
prove that C™ and C'~ are opposite. For this one calculates d*V(C;, CT) by induction on
j: d*V(Cy,CT) = d*V(D,C*T) = d¥(D,C~) = d*™V(D,C") = 14y..... ri,- One bets that
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d*W(Cj,C+) = Tij+1 ..... Tis (thiS will give d*W(C’_,C+) = 1, qed). But dW(Cj+1,Cj) =
and, by induction hypothesis,
¢ (rmld*W(cj, c+)) = (rim ..... r) y, (d*W(cj, C+)) ~ 1.

So, by the axiom (Tw2), one gets d*™(Cj41,Ct) =17i .. ... ri, and the induction is OK.
One has d*V(D,C") = d¥(D,C), hence D C B~ by [1, 5.175]. O

Tija

5.8. End of proof of Proposition 5.12. We no longer differentiate the two parts of a
[twin] apartment by an exponent =+.

(la) = (1c). We write A the [twin] apartment B of Lemma 5.14 (obtained by setting
C™:=C,, A= A% and D D (). We shall replace A~ by A but not change A”. One has
A7 DC,UCU C* and le, := C* c AY is opposite C, in A7. Recall that p_ = Pa- 5

and p = Pacy -

Remark 5.15. In [14, Proposition 6.1], C* is written Cy and C, = germ(s). Both A
and A~ contain C, and (, so they are isomorphic by an isomorphism 6~ : A} — A~
fixing C,; and ¢. If one supposes 6~ induced by an automorphism 6~ of the twin building
(e.g. if there is a strongly transitive automorphism group, as in [14]), one may define
Al = = (A). This apartment contains ¢ and a segment germ n' = 6~ (n) (opposite ()
such that p(n') = p(n) (as C, is fixed by 07). So we are exactly in the situation of [14],
second paragraph of the proof of 6.1 (n' is written w}r there).

In this proof of 6.1, one takes a minimal gallery m = (cg,c1, ..., ¢,) in A! from ¢y =
o= (CT) = CI. = oppa-(C,’) to the opposite ' = 67(n) of ¢. And then one takes
its retraction § = p_(m). We shall replace m by m’ = (§~)~!(m), which is a minimal

gallery in A° from C’Z, = Ct = opp,-(Cy) = (07)"HCH) to (67) ') =n. So

1
d = p—(m) = p—(m') and this will avoid to suppose #~ induced by an automorphism
of .

Back to the proof of (la) == (lc) (without assuming the existence of a strongly
transitive group).

We assume A~ = A]. As in [14] we consider p_ instead of p; they are almost the same
as p— =0op,if : A — A” is the isomorphism fixing C} .

By hypothesis, there are wy € WV, such that £ = [0,1)w_\ and n = [0,1)wiA. We

choose w+ minimal for this property. Here we consider CX = oppa(C, ) as the fundamental

vectorial chamber of A, to precise the action of WV on A and the relation A € A (i.e. A €
~+
Cy).

In A° one considers a minimal gallery m’ = (cg,c1, ..., ¢,) of type i = (i1, ..., in)

between ¢y = C* = C;‘rf = C’X, and ¢, D 7. The retracted gallery

o= p—(ml) = (0076,1 =p-(c1), .-+, c;1 = p_(cn))
in A™ is centrifugally folded with respect to C) . It satisfies co = p— (C’:{,) = C:X, and
/
¢ D p—(n).

One has n € w_ C’:{, = w_C% in A%, with w_ minimal (to be precise, W" is considered
here as a group of automorphisms of A? by considering C* as its fundamental vectorial
chamber). Actually 7 is opposite ¢ in A’ D CF; so, using the isomorphism §° : A — A~
fixing ¢ and C, it is sufficient to prove that the opposite opps-(¢) of ¢ in A~ is in
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w_C*T = w_C}_. But p induces the isomorphism 6! : A~ — A (fixing C,) which
sends ¢ onto —¢ (by the hypothesis (1a)) hence opp4-(¢) onto & and C;_ onto Cf. As
¢ € w,C:{ with w_ minimal, by the above definition of w_, we are done.

From the definition of m’, one gets that w_ = r;,..... r;, is a reduced decomposition.
Using once more the isomorphism §~' : A~ — A (which sends p_ () to p(n) = n and C}_
to C}), one gets p_(n) € wyCt with w; minimal.

In A the chambers ¢; and cj41 are separated by a (thick or thin) wall H ]1 and one
writes H; the (thick or thin) wall in A~ containing p_ (H]1 ne) = p- (HJ1 N¢1). We
denote by ji, ..., js the indices such that ¢; = p_(¢;) = p—(cj+1) = ¢jq. Then, for
all k, H jlk and Hj, are thick walls (it is a part of the definition of a centrifugally folded
gallery). One writes 3, € ®* the positive root such that Hj, has direction ker 8 (here
@+ is defined as in (1c) (iv) of but in A™: g € &+ = B(C, ) <0).

Actually we get § = p_(m’) from a minimal gallery 6° = (c§ =co = C}_, ¢}, ..., &) =
6°(m'), of type i in A~ from cq to ) = w_co D 6°(n), by applying successive foldings
along the walls Hj ,Hj,, ..., Hj,. At each step one gets a gallery ok = (clg = ¢y =
C’X,,c’f, ceey cf;), of type i in A, centrifugally folded with respect to C,, which ends
more and more closely to cg.

One writes § = w_\ € ¢ = w_cy C A~ and & = 75,..... rg.éo € £ C A= In
particular £ € ¢§ = ¢}, and ¢}, D p_(n). As & € WV and 7 is generated by a vector in
WV, one sees that & generates this segment germ p_(n) C A~. Similarly, we see that
& = w_\ generates 0°(n) C A™.

Actually the isomorphism 710 6% : A - A~ — A sends C* = CX, onto C’;{ and 7
onto ¢ (as we saw above that it sends ¢ onto —¢): p(#°(n)) = £ in A. The isomorphism
=1 : A= — A sends 6°(n) onto £ and p_(n) onto n. So the condition (c) we aim to
prove is equivalent to the conditions (i, ii, iii, iv) for (&, ..., &) and (81, ..., Bs) in A™.
Actually (i), (iii) (as Hj, is a thick wall) and (iv) are clearly satisfied. Let us prove now
(il): Br(&k—1) <O,

6% is a minimal gallery from ¢ = C'}_ to w_co D [0,1)w_A. So, for any j, cgﬂ, ey
and [0,1)w_\ are on the same side of the wall separating c? and c? 41; in particular
(cfﬁ_l, ..., c") is a minimal gallery, entirely on the same side of Hj, and [0,1)&, ¢ Hj,.
But cé?k = p_(¢j.) = p—(cj+1) = §k+1 and, as we have centrifugal foldings (with respect
to C,, opposite CT_ = cyin A7), this chamber is on the positive side of the wall Hj, (with
direction ker ). So cg?kﬂ, ..., c® are in this positive side; this means that S (&) > 0,
i.e. Br(&k—1) < 0. This proves that (la) = (lc).

(1c) = (1a). This generalizes a part of [14, Theorem 6.3].

We have & (resp. n) generated by & = w_A (resp. s = wyA) and wE € WV is chosen
minimal for this property. We write w_ =r;,..... r;, @ minimal decomposition (of type i,
the type of a minimal gallery from C to —¢, as in the hypothesis of (2)).

The segment germs ¢ such that p({) = —¢ are in bijection with the galleries of type i
m~ = (cg = C,,cy, ..., ¢,) that are minimal (i.e. non stammering) starting from C,, .
This bijection is given by the relation ¢ C ¢;,. We have now to prove that we may choose
m~ in such a way that ¢ is opposite . This is for this that the W —chain will be useful.

We write 6% = () = Cf,cY, ..., &) the minimal gallery of type i in A starting from
C’g. It is thus stretched from C’g to £ (generated by £ = w_\). We shall first fold this
gallery step after step, using the W —chain.
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As B1(&%) < 0 (by (ii)) and Bi(C{) > 0 (by (iv)), the wall ker 81 (thick by (iii))
separates c¢J = C from ¢0: so it is the wall between two adjacent chambers co _, and cO

(actually here j; is well determlned) One writes 6! = (¢} =) =Cf,cl = c?, c}l 1=
le 15 Jll = ]1-1_1 =1g,C j1’ A ). Tt is a gallery of type i and c. D 7“51(50) &

( (i)). But B2(&) < 0 and B2(Cy) > 0, so the wall ker 3 separates cg = Cf from
ck; it is the wall between two strictly adjacent chambers 612 1 and c . One writes 6% =
(¢

O_CO_CO_C Cl —C%, ...76‘32_1 20}2—17 ?2 - ?2_1 T52 }2, ...762 —7’52 TL) It
is a gallery of type i and ¢2 D 7“32 (&1) = &. But B3(&2) < 0, ete. At the end of the day,
one gets a gallery 6° = (co =c)=Cfl,cf, ..., c) of type i in A starting from C} and

finishing in ¢, D & = w4\ (generating 7). This gallery is folded along thick walls (this
is condition (iii)), but perhaps not centrifugally folded (with respect to C, ), contrary to
what is written (too quickly) in [14, line 3, p. 2650].

To prove now that ¢ and 7 are opposite segment germs, it is equivalent to prove that
¢ (D mn) and ¢, (D () are opposite chambers (as ¢ and 7 are generated by vectors in
+WVA). For this we shall choose carefully the successive chambers ¢; and prove more
than necessary: by induction on j, ¢ and cj are opposite for 0 < j < n; this is true

for j = 0. Let us suppose ¢j_1 and ¢;_; opposite. Then cj is adjacent to ¢j_, (resp. ¢j

has to be strictly adjacent to c¢;. _1) along a panel (in the unrestricted sense) of type 1;.

If the wall containing this panel is thin, then ¢; and ¢j_; (resp. ¢; and ¢;_;) are in the

same apartments and ¢j # ¢j_; (resp. ¢ # cj_l) S0 ¢ and ¢; are automatically opposite.
If, on the contrary this wall is thick, then (from the theory of twin buildings, see e.g.
[1, 5.139 and 5.134]) one knows that all chambers adjacent (or equal) to c;_; (along a

panel of type i;) except exactly one, are opposite cj. As the wall is thick, we can always

choose ¢; opposite ¢} and strictly adjacent to ¢y

5.9. Cx—Hecke paths. We consider, as before § 5.7, a thick masure .# and a (canonical)
apartment A considered as a vector space with origin 0 = 04. It is endowed with a Weyl
group WV, a root system ® (in A*), a fundamental vectorial chamber C} and a Tits cone
T = W".C}. We consider a spherical dominant or antidominant vector A € 5(6\} nNT°).

Recall the definition and properties of A—paths from § 5.2.3, § 5.4.1 and Lemma 5.3.

We consider now the case where . = g is the positive part of a twin masure and
A = Ag is the canonical twin apartment. So Ag contains the fundamental negative local
chamber C'». For any p € Ag satisfying p <0 or p < 0, we defined in § 5.1.3 the local
chamber Cp° = pry(Cx); its sign is + if p =0 (ie.peT®)and —if p<0 (i.e.pe —T).

We suppose the origin 7(0) of 7 in €7. By the choice of A, we have n(t) € £T°, for any
t €]0,1]. So C2;, is well defined and of sign € for ¢ > 0.

Definition 5.16. Such a A—path 7 is called a C\n—Hecke path of type A (with sign ¢)
if, for any 0 < t < 1, the left and right derivatives 7/, (t) € eT° at p = =(t) satisfy
T (t) <wy,cge 7 (t), which means that there is a (W}, Cp°)—chain from 7', (t) to 7’ (%),
i.e. finite sequences (& = 7', (t),&1, ..., & = 7' (t)) of vectors in A and (fy, ..., ;) of
real roots (in A*) such that, foralli =1, ..., s,

(1> Tﬁz(fl 1) €’La

(i) Bi(&i-1) <0,

(iii) l( ) € Z (i.e. 3 a wall of direction ker 3; containing p),
) B

(iv) B € @T(CpR), ie. Bi(Cy°) > Bi(p).
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Remark 5.17.

(1) When p is not a folding point of m (i.e. 7’_(t) = #/_(t)), the above conditions (i)
to (iv) are always fulfilled with s = 0.

(2) W) is the subgroup of WY generated by the rg, for 8 € ® and 3(p) € Z.

(3) The condition (iv), more precisely the definition of ®*(Cp°), is opposite the defini-
tions in [15, 1.8 (iv) and 1.8(2)], [6, 3.3] or [8, 2.5]. Actually in these references the
analogue of Cp° (which determines locally the investigated retraction) is naturally
of negative sign. In our case C)° is of positive sign for € = 1 and negative sign for
e = —1; this is one of the reasons for our choice of definition of ®*(Cp°). Notice
that this ®*(Cp°) will be also opposite the ®* of Proposition 5.12(c)(iv), when
we shall use this proposition.

(4) We write Cp;°V C A the vectorial chamber (of sign ¢) which is the direction of
Cp°. We consider the linear action of W" on A obtained by identifying (A, C}’)
and (A, Cp®V). As 7l (t) is also of sign ¢, there is w(t) € WV such that 7/ (t) €
w+(t).C° C V; we actually choose w4 (t) minimal for this property. Then the
condition 7’_(¢) <wy cee 7, (t) implies w_(t) < w(f):

Actually one may define o; € WV minimal such that &; € ¢;.C;°" (hence w_(t) =
os and w4 (t) = 0p) and we prove now that o; < o;_;. Clearly & € r5;0i-1.Cp°Y,
so 0; < 1,0i-1. But -1 € 0y-1.C;%Y, Bi(§i-1) < 0 and §;(Cp°) > 0. Therefore
Cy?V and 0;-1.C°" are on opposite sides of the wall ker 5;. This proves that
E(rﬁigi—l) < K(Ui_l) and r3,0i—1 <0o;_1.

(5) The relation 7’ () <wy cs 7 (t) is also opposite the relation appearing in the
above references [6, 8, 15]. This is really a new phenomenon. We saw in remark
(4) above that it implies w_(t) < w4 (t). This reminds us the relation w; < w;
of Proposition 5.6, but it is opposite the relation in [14, 5.4].

One may note that, in this reference the definition of w4 (t) compares classically
7! (t) with the fundamental vectorial chamber C} (which is opposite the analogue
of Cp°), while the definition above compares it with Cp° (which is seldom of di-
rection C7}).

5.10. Cx,—Hecke paths as retractions of C,— friendly line segments. A line seg-
ment [z,y] in S is said € — Coo—friendly if it is Coo—friendly in the sense of § 5.2.1 with
x < y if e = 41 (resp. x > y if ¢ = —1) and moreover, in a twin apartment (A§, AS)
containing Co, C A§ and @ € A (or even [r,y) C AF) one has z > OA? (resp. © < OAS;),
where 0 A2 is the element in A§ opposite the vertex of Cu.

We write ¢ : [0,1] — [z,y] an affine parametrization of [z,y], with z = ¢(0),y = ¢(1)
and A = dV(z,y); actually € is in the interior of the Tits cone and in 6}.

By definition, the retraction pc, (of a part of Zg into Ag, with center C) is defined
on [z,y] and we saw in § 5.2.2 that the image m = pc__ o ¢ of [z,y] by pc.. is a A—path.

Proposition 5.18.
(1) Let [x,y] C Fg be an € — Coo—friendly line segment and A = d¥(x,y), then its
image ™ by pc., is a Coo— Hecke path of type A (with sign ¢ ).
(2) Conversely let m be a Coo—Hecke path of type A (with sign €) in Ag with origin
po > Opg (resp. po < Opg) if € = +1 (resp. e = —1) and x € I be such that
(Coo, ) is twin friendly and po (x) = po, then there is an € — Co—friendly line
segment [x,y] such that m = pc_ ([x,y]); moreover A = d¥(x,y).
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Proof. We consider first the case ¢ = —1.

(1) Clearly po = m(0) satisfies pg < Op,, i.e. po € —=T. For any t € ]0,1[ we write
p = m(t); we have now to find a (W, Cp°)—chain from , (t) to 7’ (t). For this we use
Proposition 5.7 in the tangent space 7,(-%g) and we change first A in order that it contains
Co and [p(t),x): this does not change 7, up to an isomorphism which is a restriction of
PCo- We then have p = m(t) = ¢(t). For the chamber C, we take the negative chamber
Cy° of § 5.1.3 (we identify local chambers at p and chambers in 7,(%g)). For ¢ we take
the negative segment germ ¢, (t) = [p,y). For n we take the positive segment germ
7_(t) = p_(t) = p—[0,1)7"_(t) C Ag (we identify segment germs of origin p in .#g and
segment germs of origin 0 in 7,(.#g)). And for —§ we take the negative segment germ
74 (t) =p+[0,1)7' (t) C Ag (so { =p —[0,1)7, (t) C Ag is a positive segment germ).

We have pc () = =&, i.e. p(¢) = —¢, as the restriction of pc,, to Tp(Fa) is p = pa,cpe
(see Lemma 5.1). We are exactly in the situation of Proposition 5.12(1a), except that
the A in lLec. is our —\ € —e7° = T°: n (resp. §) is generated by —n’ (t) € —WVA
(resp. —7',(t) € —=WVYA). From (a) = (c) in this proposition, we get 7 < &, or more
precisely sequences (£ = —7/, (t),&], ..., & = —n_(t)) and (], ..., ) satisfying the
conditions (i) to (iv) of Proposition 5.12(1c). Considering the sequences (§y = —¢ =
P06 = —€y . & = —€ = 7 (1)) and (By = —B, ..., By = —f), we get the
expected (W), C5°)—chain, as the ®*(Cp°) of § 5.9 (Definition 5.16 (iv)) is opposite the
®* of Proposition 5.12(1¢)(iv).

(2) Now 7 is a Coo—Hecke path of shape A (with sign ¢ = —1) in Ag with origin
Po € A@ and x € Z satisfies po__(x) = po. By definition there is a subdivision 0 = ¢y <
t;1 < -+- <ty =1of [0,1] such that 7([0,1]) = [po,p1] U [p1,p2] U U [pe,.—1,pe.], if we

write p; = 7(t;). We take a twin apartment Ay containing C, and x, then pc,_ |4, is an
isomorphism of Ay onto A fixing Co, and sending = to pg; so z < 0 AS 8S expected. We
shall prove by induction that, for ¢ > 1, there is a (—1) — Coo—friendly line segment [z, z;]
such that po_ ([, zi]) = 7([0,¢]). We define [z, z1] = (pCOO|A83)_1([p0,p1]), it is a solution
for i = 1. We assume now the result for ¢ and prove it for ¢+ 1. Up to an isomorphism, we
may assume A D Coo U [z, ). Let p := p; = z;, we get the situation of Proposition 5.12,
by setting C,; := C;°, n := [2;,7) = [pi, pi-1), —§ = [pi, pi+1)- The condition (1c) of L.c. is
fulfilled (see above in (1) the translation between chains). So the implication (¢c) = (a)

provides us a segment germ ¢ opposite 1 with origin z; satisfying pc__ ({) = —& = [ps, Di+1)-
We write A; a twin apartment containing Co, and (. Then pc_ |4, is an isomorphism
from A; onto A fixing Coy and we define [z, zi11] = (pc.| @) ' ([pis pit1]). We have

poo ([z, i) U [z, zit1]) = 7([0,ti41]). But [z, ) = n and [z, z;+1) = ( are opposite. So
[z, 2;) U [2i, zit1] is a line segment by [15, 4.9] and we are done.

We deal now with the case e = +1. (1) As above pg = 7(0) satisfies pg > Op,,, i.e. po € T.
For any ¢ €]0,1] we write p = 7(t); we have now to find a (W}, Cp°)—chain from
7' (t) to w_(t). We want to use Proposition 5.12 in 7,(#g), but now Cp° is a posi-
tive local chamber in Ag. Luckily the signs in Proposition 5.12 are not important, as
e.g. ®T is defined in (1c)(iv) by reference to C,, not to the signs in Ag. The im-
portant fact is that § and 7 (resp. C,,( and —¢§) are of the same sign. We change
first A in order that it contains Cy and [p(t),z), so p = 7(t) = ¢(t). We take now
Cy = O, ¢ = pult), 1 = m(t) = o (1) = p— [0, )’ (t) and —€ = (1) =
p+[0,1)7 (t), so & = p—[0,1)7 (t). We have pc(¢) = —¢ and we are exactly in the

Ann. Repr. Th. 2 (2025), 3, p.281-353 https://doi.org/10.5802/art.25


https://doi.org/10.5802/art.25

336 Nicole Bardy-Panse et al.

situation of Proposition 5.12(1a), except for the signs; in particular n (resp. &) is gener-
ated by —7’_(t) € —WVA (resp. —n/,(t) € —=WVYA), so the A in l.c. is our —A. From (la)
= (Ic) in Proposition 5.12, we get n < & which seems to mean —7’ (t) < —n/ (¢).
By the same trick as above for the case ¢ = —1, we get the expected (W), C;°)—chain
from 7/, (t) to 7’_(t).

The proof of the converse result (2) is the same, mutatis mutandis, as the one given
above in the case ¢ = —1. O

5.11. Consequences.

5.11.1. We considered in § 5.3.2 C—friendly line segments [x,y] which were actually
e — Coo—1riendly. We endowed them with a decoration. Then m = po_ ([z,y]) C Ag is
endowed with a superdecoration (§ 5.3.3) which makes it a superdecorated Cs, — A path
(see § 5.4.5 and § 5.4.6). Conversely we proved in Theorem 5.9 that a superdecorated
Cs — A path is the image by pc_ of a C—friendly line segment.

Comparing with the above Proposition 5.10, we get that:

(a) The underlying path of a super-decorated Co, — A path is a Coo—Hecke path.
(b) Any Cs—Hecke path 7 C A may be endowed with a super-decoration (provided

that 7(0) = Og or 7(0) < 0a).
(¢) The number of these possible super-decorations is finite (see § 5.4.6).

Actually the consideration of (super-)decorations is useful to count the number of line
segments with a given Co—Hecke path as image under pc_ (see Theorem 5.9). But
the definition we gave of a super-decoration is perhaps too precise. Other choices of the
decorations Ctj;r may be interesting, e.g. to compare with Muthiah’s results in [29].

N.B. The reader should note that a decorated C,, — A path cannot always be endowed
with a super-decoration. One should, at least, assume the condition C’{fﬂ = pr, +(t)(C’tT )5
when ¢ is not among the ¢; of Lemma 5.4. See analogously [8, Proposition 2.7 N.B. and
Remark (3) in § 3.3].

5.11.2. We indicated in § 4.4.2 that our main motivation, according to Muthiah’s goals,
was to calculate the cardinality of sets of the form (Kpuwin@ *Kiwin N Ioo@ *Kiwin) /
Kiin for A, € E(C’i}’ﬂ T°NY) C Ag. Such a set is in one to one correspondence with the
set of points x € Zg such that d"(0g,z) = A and pc_ () is defined and equal to u. Due
to the lack of a Birkhoff decomposition, we are only able to calculate the cardinality of a
subset: the set of the x as above such that, moreover, po__(2) is defined for any z € [0g, z].
The formula we get for this cardinality is as follows: it is the sum of the numbers #{ [z, y|}
in Theorem 5.9(2), where the sum runs on the set of all superdecorated Cos — A paths in
Ag of shape A from Og to p (with the type i; fixed for any ¢ € ]0,1[). One can notice
that this set of paths depends only on Ag, A and p (not of k) and that it is finite, at
least if the root system of & is untwisted affine of type A, D or E (see (1c) above and the
result 4.4.2(4) of D. Muthiah). So (in the case of A, D, E with X € —(Ci}’ﬁ T°NY)) this
cardinality is a well defined polynomial in the cardinality ¢ of k, depending only on Ag;,
A and p.
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6. THE CASE OF AFFINE SLy: COUNTER-EXAMPLE TO THE BIRKHOFF DECOMPOSITION
AND EXAMPLES OF HECKE PATHS

In this section, we begin by proving that when G is affine SLg over k(w), the Birkhoff
decomposition does not hold, that is Gyyin € IooN K. Actually, many Kac—Moody groups
over k(w) can be considered as affine SLy over k(w): we will work with G°°P G and
G, which are respectively SLy(k(w)[u, u™1]), G1°°P x k(w)* and a central extension of G.
Their maximal tori have dimensions 1, 2 and 3. In G°°P, neither the simple coroots nor
the simple roots are free, in G the simple coroots are not free but the simple roots are
free and in G both simple roots and simple coroots are free so that G and G fulfil the
assumptions of § 4.1.2. To prove that the Birkhoff decomposition does not hold, we work
in G1°°P in which the computations are easier, and then deduce the results for G and G.

We exhibit an element of Giyin \ IooNK. Our element lies in G\ (Gg U Gy), where
the index @ means that GT and G~ are defined with respect to .#g. This suggests that
we need to work in G& or Gg to obtain a Birkhoff decomposition (see § 4.4.1). This was
expected, since this is already the case for the Cartan decomposition

We end this section with some examples of Hecke paths associated with G.

6.1. Notation and projection of G on G. We begin by defining é, which is a central
extension of SLy (k(w)[u, u™!]) xk(w)*, by defining a root generating system, in the sense
of Bardy-Panse [5]. Let Y = ZRY @ ZcdZd, where RV ¢, d are some symbols, corresponding
to the positive root of SLa(k(w)), to the central extension and to the semi-direct extension
by k(w)* respectively. Let X = ZR@®Z5 & ZAg, where R, 8, Ag : Y — Z are the Z-module
morphisms defined by R(RY) = 2, R(c) = X(d) =0, §(RY) =0 = §(c), 6(d) = 1, Ag(c) =1

)

and Ag(RY) = Ag(d) =0. Let ap =0 — R, a1 =R, of = ¢ —RY and o = NY. Then
S=((%73).X.Y {apa},.{ag, a1 })
is a root generating system. Let G be the Kac—Moody group associated with S over k(o).

Then by [26, 13] and [27, 7.6], G is a central extension of G := SLs (k(w@)[u, u~']) x k(w)*,
where v is an indeterminate and if (M, z), (My,z1) € G, with

M= (2 M) gy — (e ),

c(w,u) d(w,u) c1(w,u) di(w,u)
we have

(M, 2).(M;, 1) = (M(‘“(w’zu) bu(e,zu) ) , zzl> . (6.1)

c1(w,zu) di(w,zu)
Let X = ZX P ZJ§ and Y = ZXY @ Zd. We regard X as a set of maps from Y to Z by
restricting them to Y. Let ag =60 — X, a1 = R, af = —XY and ay = RY. Then

S = ((_22 _22) >X>Y> {050,061} ’ {a(\)/7a\1/}>

is a root generating system and G is the associated Kac-Moody group (over k(w)).

Note that the family (o, ) is not free. We have ® = {a+kd | a € {£X}, k € Z} and
(ap, ) is a basis of this root system. We denote by ®* (resp. ®~) the set N (Nap+Nay)
(resp —®). For k € Z and y € k(w), we set

Traks(y) = (((1) ”];y>,1) €G and z_pips(y) = ((u%y?),l) eG.

The tori of G, G and G'°°P are different (with respective dimensions 3, 2 and 1). On the
contrary the maximal unipotent subgroups U*, U+ and Ufgop are naturally isomorphic [35,
1.9.2).
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We set

r={((3,).5) | ¥},

Then T is a maximal split torus of G. Let N be the normalizer of T' in G. We have

V=G (7 ) 7)1 (e )t )

Recall that O = k[w, w!]. We have

N(O) =GN < (= %) ™) U (2 5 ) ") )

and U(O) 1= (xa11s(0) | @ € {£XR}, k € Z), so that
Grain = ((0),4(0)) € SLs (O [u,u]) 3 k'”

The group G (resp G) acts on the masures f@, I (resp ,ﬂ@, j@) We denote with a
tilde the objects related to the masures f@ and f@ (for example the vertex Og and the
local chamber Co). Let K (resp. K) be the fixator of Og (resp. of 0g) in G (resp. in G)
and I, (resp. foo) be the fixator of Co in Gyyin (resp. of Cwo in Gtwm) Let v € {©,®}.
The standard apartment Avn can be written as A, ® Rc, where ¢ € Y corresponds to the
center, so that A, can be considered as the quotient of Ay by Re. Let 7 : G — G denote
the natural projection and denote also by 7 : Ay = A, @ Re — A, the natural projection.
Then we have the following easy lemma.

Lemma 6.1. The map 7 : A, — Ay uniquely extends to a map T : j; — Sy such that

m(g.a) = w(g).7(a) for g € G, a € Ay. In particular, we can regard Fy as a quotient of
S by Re.

Let v € {&,8} and f(w), g(w) € k(w)* be such that w,(f(w)) = wu(g(w)) = 0. Let

{,n € Z. Then
(( f(w('))w‘f f(w)glw—f > ) g(w)w”)

acts on A, by the translation of vector —sgn(v)(¢RY + nd).

The kernel C of 7 : G — G is a one-dimensional split central torus (actually the reduced
connected component of the center of G which is contained in T ), with cocharacter group
Z.c C'Y (cocharacter group of T). So there exists an isomorphism T¢ : k(w)* — C such
that T (a) acts by the translations of vectors —w@( a)c on Ag and —ws(a)c on Ag (see
§2.2.2(2)). We set t, = To(w ') € T(klw, @ !]) C Gruin.

Lemma 6.2. Let i € G be such that 7(i) € Ino. Then i € IoC C I T.

Proof. We have 7(i.05) = 0g and hence i. 0@ = 0 + ke, for some k € Z. Then itk.05 = 05.
Then itF.Co, is a local chamber based at Og and we have 7(it?.Co) = Ca. Therefore
ztkEI and i € I.,C C I.T. O

Lemma 6.3. Recall that €& = Ioo.& and that £ = Io.A. Then
E=7"Y&) and PG~ = TO PCe-

More precisely, let g € G and x € A be such that g.x € €. Let g € 7 (g9) and T € 77 1(x).
Then g.x € £ and wo Pe (9.7) = pc.. (g.x).
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Proof. Let 7 € €. ertea:—zy,wherezef andy—pc ()EA Then

(%) = 7(1).7(¥) € Ioo.7(F) C E.
Moreover, ﬂ(ﬁ@ (2)) = 7(y) = pc.. (w(x)). Conversely, take z € £. Write x = 4.y, with
1€ I and y € A. Let
Fer'({a}),7en ' ({y}) and iex'({i}).
Then 7(:.§) = n(#) and hence there exists k € Z such that = (t.)Fi.5 = i(t.)".7.
Therefore Z € £, which proves that £ = 71(&).

Take g € G and = € A such that g.v € £. Let g € 77 1({g}) and 7 € 71 ({z}). Write
g.x =iy, withi € I, and y € A. Take 1 € 7' ({i}) and § € 7~'({y}). Then n(3.7) =
7(i.7), so there exists k € Z such that §.7 = i(t.)*.§ € €. Therefore p e (3.7) = (to)k.7,
and the lemma follows. 0

In § 2.1.1, we defined actions of W" on A and A. We denote by ~ the action of W?
on A. We have wz € w.x + Re, for all z € A C A.

Lemma 6.4. Let \ € 67}’ and A = 7(X). Let v,w € W be such that v.\ = w.\. Then
VA = WA
Proof. Let i € I = {0,1}. We have ;A = A — a;(A\)a) and 77N = A — (N’ =
A —a;(N)a;”, with @;” € o) + Re. Moreover, (W?).e = {c}, so by induction on £(w'), we
have (w')2A € w'.A + Re, for all w’ € W,

Write A = A + te, with ¢t € R. We have v™'w.\ = X and therefore:

v WA = v T (A te) = v At e = v WA Ee € v M w A+ Re = A+Re = A+ Re.
Consequently v~ 2w € C’T; N = {\} O

Lemma 6.5. Let \ € C’T;ﬂ T A =7(N\), and 7 : [0,1] = A be a A-path (for the action .

of W? on A) and ag € A be such that m(ag) = 7(0). Then there exists a unique X-path
7:[0,1] — A (for the action™ of WV on A) such that moT =7 and 7(0) = ag.

Proof. Let n € Nand 0 <ty < t; < ... < t, = 1 be such that 7 is differentiable (with
constant derivative) on |t;,¢;41[ for all ¢ € {0, ..., n —1}. Fori € {0,..., n — 1} and
t € Jti, tit1[, choose w; € W? such that 7/(£) = wi.A. Let 7 : [0,1] — A be a A-path with
moT = 7. Maybe increasing the number of ¢;, we may assume that 7 is differentiable
on |tj,tiy1| for all 4 € {0, ..., n—1}. Let ¢ € {0,...,n— 1} and ¢ € |t;,t;41[. Then
7(7(t)) = wi.A. By Lemma 6.4 we deduce that 7(t) = wi . So 7(t) — 7(0) is well-
determined by 7 for every ¢ € [0, 1], which proves the desired uniqueness.

For the existence, it suffices to set 7(t) = ap + J3 7/, for t € [0, 1]. O

Let g € G and ¢ : [0,1] — A be a parametrization of a preordered segment of A. We
assume moreover that g.p(t) € € for all t € [0,1]. Let g € 7~ *({g}). Then from what we
proved, for every t € [0,1], §.o(t) € € and 77(/75; (9.¢)) = pc..(9-¢), and we can recover
m(pe= (9-)) from p—(g.0).

Let Io be the fixator of Cop in Grwin, N = 7 I(N). Let g € I.NK and g = m(9).
Then by Lemma 6.1, g € I.oNK. Therefore, in order to prove that I NK 2 Gtwm, it
suffices to prove that Ioo NK 2 Gpin and we now work with G instead of G.
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6.2. Reduction to a problem in G'°°P. We have G'°°P = SL; (k(w)[u,u!]) x {1} C G.
We set 1'9P = [, N G and K'°P = K N G°°P. We denote by proj*? : G — k(w)*
the projection on the second coordinate. We begin by proving that we can get rid of the
semi-direct product and work in Gloor . We regard 0 as a linear form Ay,;, — R. For
v € {6,3}, we denote by d, : A, — R the restriction of § to A,. As §,(RY) = 0, Jy is
W¥-invariant. Let pyoop @ F — Ay be the retraction with respect to the sector germ
C%. We extend &y to F, by setting du(2) = do(p+oo,(2)), for z € H. Actually by [19,
Proposition 8.3.2(2)], we have §, = &, o p, for any retraction p : %, — A, centred at a
sector germ.
Recall from § 2.2.4 that

Uc.,, = (Ta(y) | € ®,y € k(w), za(y) € Go,)

oo

and
Toe =T({y € k(@) |wely) = 0}) = {((},%1):2)|v:2 € k(@) wo(y) = we(z) = 0} .

Lemma 6.6. Let g € G, v € {O,®} and z € .F,. Write g = (¢'°°P, g°%) with ¢°¢ € K*.
Then 0y(g.7) = So(x) + wy(g°?).

Proof. Suppose that v = @. By the Iwasawa decomposition ([35, Proposition 4.7]) we can
write g = vit1k, with v1 € U, ¢t € T and k € K. By [35, Proposition 4.14] applied
with the point Og we can write k = vyv_n, where v, € UT, v_ € U” andn € NN K.
Write z = vo.y, with v € UT. Then dg(g.x) = 6(vit1vsv_nva.y). As T normalizes
Ut and U™, we have dg(g.2) = dg(v1v/ v _tinve.y), for some v/, € Ut and v € U~.
By [19, Proposition 8.3.2(2)], we deduce that dg(g.7) = g (t1nva.y). As tinuve(tin)~?
fixes the sector germ t1n.(+00), [19, Proposition 8.3.2(2)] implies that

de(g.x) = 0g(tin.y).

We have g = v1t;v1v_n and thus proj*(g) = ¢°? = proj**(t;)proj*¢(n). Asn € NNK,
we have we (proj*?(n)) = 0. Therefore £ := wq (proj*¥(g)) = we(proj*¢(tyn)). Therefore
de (tin.y) = da(y) + ¢ = dg(z) + £, which proves the lemma when v = @. The case where
v = © is similar. O

Remark 6.7.

(1) From the Lemma 6.6 we deduce that if v € {©, ©}, then the masure fnlOOp of Gloop
is actually {z € .%, | dy(x) = 0}.

(2) Suppose b is any place of K and write g = (g'°°P, g°?) € SLa(K[u,u™!]) x K* = G.
Let 0, be the map %, — R whose restriction on the canonical apartment A, is
0:Y ®zR — R as in § 6.2. Then the above lemma may be generalized easily to

get 0y (g.2) = Go () + wo(g™?).

Lemma 6.8. The Laurent polynomial versions of G°P and G are G;‘Z’p = SLy(Ofu,u™1])

and Gpoy = SLa(Ofu,u™1]) x O*, where O = k[w,w ], hence O* = L; ¢ gk’

Proof. For any place b, we know from [35, 4.12.3.b], that {g € SLa(K[u,u™]) | .0, = 0y} is
equal to SLa(Oy[u, u1]). Taking now the intersection in SLa(K[u, u™!]) of all these groups
for v # 0, 00, we get G;‘)O?p = SL2(O[u,u™?]) (see § 4.1.2.3.a). Now from Remark 6.7 (2),
we see that the component in £* of an element in G, has to be in O*. So we get clearly
Gpol = SLQ(O[U,Uil]) x O, O
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Remark 6.9. Comparison of Giyin and Gy

(1) Inside G’;}?p (resp. Gpo) the twin group G};fi% (resp. Gryin) is generated by the
diagonal and upper or lower triangular matrices in SLao(O[u,u™!]) (resp. and by
0*). So the problem of the equality of Gjljc;?p with Giﬁ% (resp. Gpor With Giupin) is
exactly equivalent to the problem of the generation of SLo(k[ww, ™!, u,u"!]) by
its elementary matrices. Unfortunately, in [13, § 2 p. 228], the author tells that he
knows no answer for this problem (while many closely related cases are known).

(2) We may also look more generally to affine SL,, over K = k(w), i.e. replace above
SLs by SL,, for n > 3. One gets easily that, as above for SLa, Giwin = G%)i’; X
O* and Gpo = Gg;p x O* Moreover GI°% s the subgroup of SL, (k(w)[u, u~!)
generated by its unipotent elementary matrices with coefficients in O[u, u=!]; it is
a subgroup of SL, (k[w, ™!, u,u™1]).

Now, for any place v, O, is a discrete valuation ring (in particular a local
ring); so, following [12, p. 14], O, is a GE—ring: SL,(Oy) is generated by its
unipotent elementary matrices. Following [39, p. 223], SK;(O,) = {0}. And
from [l.c. Corollary 7.10], SL,,(Oy[u, u™1]) is generated by its unipotent elementary
matrices, for n > 3 (as O, is of dimension 1). We have got what is needed
to generalize [35, 4.12.3.b] from SLs to SL,. So SL,(Oy[u,u~!]) is the group of
elements g € SL,, (K[u, u™1]) fixing the origin 0, of the masure %, of SL,, (K[u,u ™)
associated to the valuation wy.

Taking now the intersection in SL, (K[u,u™1]) of all these groups for v # 0, oo,
we get Ggﬁp = SL,,(O[u,u™1]) (as above in Lemma 6.8). But Corollary 7.11 of [39)
tells that SL,, (k[ew, @ ™!, u, u~!]) is generated by its elementary unipotent matrices

for n > 3. So Glot? = Gy and Gor = Gupin-

twin

Lemma 6.10. Let g € I, NK N G°P. Then g € 2P NP [(l00P - qphere NP = N
Gloop'

Proof. Let G¢_, be the fixator of C in G. We have I = G, N Grypin and by Proposi-
tion 2.4, G¢,, = Uc, . Tb.6,

Write g = vtonk, where v € Uc_, to € To,e, n € N and k € K. Write k = (k1, k2), with
ks € k(w)*. Then by Lemma 6.6, we have wg(k2) = 0 and hence (1, k2) € K. By (6.1) we
deduce that (1,k; ).k € K'°°P. We have

g = v.ton(1, k2). (1, k:;l) k € I'9°P N K1°°P n Gloop,
As proj*? is a group morphism, we deduce ton(1, k2) € N'°°P, which proves the lemma. [

6.3. Towards a counter-example in G°°P. We now prove that I }QOPN loop fgloop £
G'°°P N Gyin. We now identify G'°°P with SLg(k(ww)[u, u™]).

We begin by describing I'9°P (or more precisely a group containing it). After that, we
regard G'°°P as a subgroup of G1°°P = SLy (k(w)((u~1)), and define “completions” K10op
and I, of K'°P and I in G°P. We then define an element g € G'°°P N Gyyin, that
admits a decomposition g = ik, with (7, k) € Too \ Ise X K1°0P\ K19°P and by a uniqueness
property for these decompositions, we deduce that g ¢ I, NP Ko0p,

Recall that Og, = {y € k(w) | wg(y) > 0}.

Lemma 6.11. We have K = SLa(Oglu,u™']) x OF.
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Proof. By [35, Proposition 4.14], we have K = Ué’g‘_Udg ]\Afo@, where

U(%:U+ﬂ< U{ueUa|u.0@:O@}>7
aed

No@ is the fixator of Og, in N and U{)g”_ is defined in § 2.2.4. By [35, Example 4.12(3b)],
U™ C SLa(Oglu,ut]) x {1}. As ]%@ and USZB are contained in SLa(Oglu,u1]) x

0
0%, we deduce that K C SLy(Oglu,u™']) x Of. By [35][Example 4.12(3b)], we have
K1°°P = SLy(Oglu,u™1]) and as {1} x O} fixes Og (it fixes Ag), we deduce that K =

SL2(Og[u, u™1]) x OF,. O

Lemma 6.12. We have

oop w’lk[w’l][u,u’1]+k[u’1} wilk[wfl][u,u’l]—i—u*lk[u’l]
I3 C<w1k[w1][u,ul]+k[u1} e )

Proof. Recall that G¢_, is the fixator of Cs in G. Let y € k(w)* and k € Z. If k > 0,
then zwix5(y) € Ge., if and only if we(y) > 0 and if & < 0, then xxixs(y) € Geo,
if and only if wg(y) > 0. Indeed, the fixed point set of zwiks(y) is D := {a € Ag |
N(a) + kd(a) + ws(y) > 0}.

e If ws(y) > 0, then D contains a neighborhood of 05 in Ag and thus D contains
Coo.

e If C, C D, then Og € D and thus wg(y) > 0.

e Assume that £ > 0 and that Csx C D. Let Q be a neighborhood of Og in Ag
such that QN —C}’@ is contained in D. Then for all a € QN _C}},@’ we have
we(y) > (—R(a) — kd(a)) > 0 and thus wes(y) > 0.

e Assume that k < 0. As {R, 6 — R} is a basis of @, we have that (X — §)(Cx) > 0,
and thus (R 4+ £9)(Cs) > 0. Therefore if wg(y) = 0, then zxii5(y) € Ge, -

Similarly, if £ > 0, then x_x4x5(y) € Ge, if and only if we(y) > 0 and if k£ < 0, then
r_wiks(y) € Ge, if and only if ws(y) > 0.
By Proposition 2.4, we have G¢, = Uc_ . Tp,e.

Take v € Uc, and write it v = ((a] as3 ), 1), With a1,1,a12,a21, a2 € k(w)[u,u™].

Take t € Ty o and write it
((5,%)-2).

with y, z € k(w)* such that we(y) = we(z) = 0. Then

ot — ((al,ly al,zy_l) Z)
a1y a2,2y_1 ’ ’
Let i,j € {1,2}. By the first part of the proof, we can write

aj= Y. @ "fre@u+ > forl@wut,

k<—-1,0€Z (eN

where f},;(w) € k(w) satisfies ws (fi¢(w)) = 0 for all k, £, with foo(w) = 0if (4,7) = (1,2).
Lemma follows by intersecting G¢c__, Grwin and Gloop, O
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6.4. Calculations in a completion. Let GlooP = SLy(k(w)((u™1) D G'°P. By [35,
4.12.3.b] this group is the negative Mathieu completion (G°°P)"ma of GIooP (cf. § 2.2.3,

§ 2.2.4(2)).
Let

loop — Og(u™1) Og(u1) loo
Koo = (o) ofu) ) NG

and

Toop _ (@ ke (um ) +klu! ] @ kw (u)+u ke T 4 Gloop
2 = (] e e e | ) NG

By Lemmas 6.11 and 6.12,

K0P ¢ KIoop, 1900 [P and 18P 0 Koo = (R0 M) 0 Sy (ke 1),

Lemma 6.13. The subgroup Ug" of Gloop introduced in § 2.2.4(2) is the intersection
H of SLay(Os[u™1]) with

(1+u*109[[u’1|] u 1Ogu™1| )
Ogu™] Hu tOgu™'] /)"

Its intersection with G1°°P (resp. Gﬁ%‘; = G1°°P N Gyin) is UEE™ (resp. is in IlooP)  Its

intersection with G;OO(ZP is the intersection of
1 -1 . 1+u_1k[w_1,u_1] u_lk[w_l,u_l]
SLy (k [w U D with < K[ u1] w1 )

N.B. UgZ™ is not in WP One should replace w k[ by {z € k(w) | we(x) > 0} in
the definition of this last group to get such an inclusion.

Proof. An easy calculation in SLy proves that a matrix is in H if, and only if, it may be
written

(i?)(lgd (1+2)71)(é b), with ¢ € Ogu™'] and b,d € u 'Og[u™!].

On the other side we saw in § 2.2.4(2) that (taking gz = sl2(Z[u,u"'])) the elements in
Ug™ are written [[, e a- Xa(8a,z ®z Og) (as fo (o) = 0 for a € A7). And we may
choose any order on the set A~ of negative roots. We consider first (on the left) the roots

—N —nd for n > 0, then (in the middle) the imaginary roots —nd for n > 0 and last (on
the right) the roots ® — nd for n > 0. For

a=-R—-nd,goz = (Zuof”8>’

SO
Xa(8a,z ®2 Og) = 2a(0s) = (o@t*n (1))?

hence the (commutative) product of these terms for n > 0 is written (19) with ¢ €
Os[u™!]. Similarly the (commutative) product of the X,(gaz ®z Os) for a = X — nd
with n > 0 is written (}%) with b € u='Og[u™!].

To get the first assertion of the lemma, the last thing to do now is to identify the
commutative products of the X, (g 7z ®z Og) for @« = —nd,n > 0 with matrices

(lgd (1+2)—1 )
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as above. But a basis of g_,s7 is

—(u 0
hn = (uO fu’”)'
The expression X_,,5(h, ® \) of § 2.2.3, § 2.2.4 is actually written [exp](Ahy,) in [35, 2.12]
and is equal to ('} 1?2) with v = 1+ ™ + X202 + .. and vy = v;t = 1 — A"
Moreover such an element is in UZ?" if, and only if, A € Og (as fc (—nd) = 0). Now an

easy induction proves that any element in 1 + u~'Og[u~!] may be written as an infinite
product of terms of the shape 1 — Au™" with A € Og and n > 0. So we get the equality

Up'™ =H.
Now the last assertions of the lemma are easy consequences of the definitions and
Lemma 6.8. U

6.5. An element in G \ I, NK. Let g = z_y(wu Vax(w ut) € G°P. We have

twin
~1, —1 -1
WU 1 0 wou —
— 14+u—2 _ _ = 6.2
g xN(l—l—u—?)( 0 1+u2>xN<1+u—2> o (6.2)

-1
- 1 -1, —1 — wou -
z:(1+162wl u2 ) € 1P and k:::U_N< ) € Kloop,
+u”

where

Therefore g € T2 Kloop_

Actually ¢.0g # Og (as the first factor in g fixes Og and the second one does not
fix it). But d5(9.05) = dg(0g) by Lemma 6.6. So neither g.0g > 0Og nor g.0g < Og,
ie.g ¢ GLUGH.

Lemma 6.14. The element g does not belong to I'2°P (1°°P,

Proof. Suppose g = ik, with i € I\9°P ¢ 1P and k € Ko ¢ Kloop Set h = i~1j =
k' € Koop 0 [P, Therefore th™! = i. Write i = (AZ) and h=! = (28), with

a,b,c,d € k[u='] and A, B,C,D € w 'k[w ][u,u"!] + k[u~1]. We have

+ o uTle= A, 1—|—bu—2 +w utd = B, (1 + ufz) c=C, (1 + qu) d=D.

e € kju~!] and b := # € klu™!]. We have wlu~lc €
k[ 1][u,u!] and thus ¢ € k[u,u~!]. Moreover (1 +u~?)c € k[u™!] and thus ¢ € k[u~1].
Similarly, d € k[u™!]. As det(i) = 1, we have ad — bc = (1 +u~2)(ad — bc) = 1 and thus

1+u~2 is invertible in k[u~!]: we reach a contradiction. Consequently g ¢ I'0°P K(looP, ]

14+ u2

Therefore a =

It is easy to check that N1oP [gloop — Tloop fgloop g Nloop [¢loop — Tloop [(loop where

roor = {(5.2) |y e kiw)} =G .

Lemma 6.15. Let t,t' € T'°°P be such that I2CPtK100p M [0°P¢/ [{loop £ (). Then tK100p =
t/Kloop'

Proof. There exists (i, k) € I, x K°°P such that itk = ¢/, or equivalently, '~ 1it = kL.

Write
_ (v O r_ (v O
t_(ofl) and _(07’*1)’
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with 7,7 € k(w). Write i = (amm)mneq1,2}, With amn € k(u ™)@ !] and k =
(bm,n)m,ne{l,z}a with by, , € Og((u™1)), for m,n € {1,2}.

Suppose aj ja22 = 0. Then aj2a21 = —1. Let a1 € v 'k[u~!] and a1 € k[u='] be
the evaluations of a1 2 and ag 1 at w1 =0. Then a1,2a2,1 = —1: we reach a contradiction.
Therefore aj1a22 # 0.

We have a1 171y = b1 and aga(y1y) ™! = boo. For m,n € {1,2}, write am, =
>0 <0 @mnp(u)@wP, where amnp(u) € k((u™1), for all m,n,p. Let £ = we(y'~'y) and set
f(w) = w%4~1y. Then

a7y = 3 anap () (@) € 0 ()

p<0

1

and thus £ > 0. As az27 7! € Og((u™')), we also have £ < 0. Therefore £ = 0. This
proves that #'~1t € Kloop, O

We deduce that g ¢ IooNK. Indeed, otherwise, by Lemma 6.10 we could write g = itk,

with i € I!%P, ¢ € T1°°P and k € K°°P. Then t € T N K C K19 and thus g €
I})%OPK 100p which would contradict Lemma 6.14. In particular, Gyyin 2 Ioo NK.
6.6. Examples of Hecke paths. The C,,—Hecke paths, which are the image by the
retraction pc, of Coo— friendly line segments have very different behaviors than the
Hecke paths considered in the references [6, 15] or [8]. We study here some examples of
such C,—Hecke paths in the case of affine SLs.

In the context of Lemma 6.1, we consider the action of the subgroup G°°P of G on
Jg. We choose the parametrization of the line segment [0 — d] (with 6(—d) = —1 and
N(—d) = 0) in A given by ¢ : [0,1] = Ag C Ag such that p(t) = —td and will study
Coo—Hecke paths pc_(9.¢([0,1])) for some g € G'°°P. They are the images, by the map
7 of Lemma 6.1, of the Cso—Hecke paths po (3.¢(]0,1])), for some § € G with image
g in G. We have to prove, along the way, that these retractions pc.(9.¢([0,1])) and
pc.. (9.¢(]0,1])) are well defined; for this we shall prove some Birkhoff type decompositions
of some elements in G.

These elements g are products of terms

((1) Wk?“) = Tnpkot(k-1)e(1)  for k € Zso.

So they are in Ut = Ut C G and act on #. One recall that Txy kot (k—1)e(1) fixes
D} :={a € Ag | N(a) + kd(a) + (k — 1) > 0} and its analog Ef_k in Ag. This half-
apartment contains Cg and is limited by Mj_j (line of equation z = —ky + 1 — k) in Ag
with cartesian system such that x corresponds to X and y to §. The matrix

(oshiy V) fixes Dy = {a € Ag | R(a) + kd(a) + (k — 1) < 0}.
Moreover (by § 4.1.9) the element
wk—luk )

T3 ko (k—1)e (DT k- (h—1)e (= D) rgrss (k—1)e (1) = (_wlf)kufk 0

stabilizes Ag and its class in W is the reflexion Ry_1 fixing M7_;. We denote t := % S
[07 1]7 so that W(tk) - (07 _tk) € lelw
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In order to write decompositions of the elements g (written as a product) with a left
term in I, ;gop, we use the two following formulas in SLo,

o 1) = ) 8) ()

(0 96 D=Gara D" aram) 6 5.

Example 6.16. For N > 1, we consider gy = gy = Hévzl((l) w_l(i”“)gk) and want to
study the Co—Hecke paths pc. (gn-¢([0,1])).

In Figure 6.1, we represent pc(g2.¢([0,1])) in blue and pc (g3.¢([0,1])) (blue and
red).

and

5=-1 ‘ ;

FIGURE 6.1. Co-Hecke path.

For N = 2, we give details of the study.

2,3

The element go = (} =1 )(} @ u) fixes o(t) for t € [0, 3], so, for such a t, pc. (g2.¢(t))
is well defined and equal to ¢(t). For t € [ts, tg], we use

1 w23 ) — 1 0 0 w3u3 1 0
(0 1 >_ (w’2u’3 1 —w2u3 0 w231 )

then as (w,glu,3 9) and (3 wslu(s) fix ¢(t),

PO (9200) = pom (o205 0) (L %us 6™ )o®) = pome (Lo %ys =5 )ol®))
(if it exists), because (__4 5 Y) € I1%°P (§ 6.4). So pc..(g2.¢(t)) is well defined and equal

w2u3 1

to Rgtp(t) for t € [t3,t6].
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For t > tg, we can write, successively using the two formulas above,
— (1 w?ud 1 wdub
o= (3=0)(§1)
— (1 =%l 1 0 0 woub 1 0
- (O 1 )(w’5u*6 1 —w 5y 6 0 w Py 061
e O\ 1rE e 0 1 —=2® ( 0 wiub )( 1 0)
— — 1 - - [ 3 — — .
lfw_gu_3 1 0 1+ 3u—3 0 1w 1 v —o— 5y 6 0 w o6 1

Using W =14 Yp>1(=1)*@ 3 u3% we find the existence of a matrix

[e=]

w1l w1 w1 w1l
A€ SLaOalu DN (o R LG

92 = A((l) 77{_1 ) ((1) w21u3 ) (7w_05u_6 WZU6 ) (w’51u76 ?)

By the Lemma 6.13 (§ 6.4), A € UZ?™ C Gloop and more precisely, as g» and the other
matrices are in GI°°P N Gyyin 50 is A, and we have A € I'2°P. Moreover (3 @ ) = an_e(1)
fixes Coo C {a € Ag [ R(a) +1 >0}, 50 A(} —wl_l) € Iloop,

For t > tg, we obtain

P (92:0(1) = poe (575 ) (Lo %ue =0 ) (ods O) (@)

(if it exists). But, we know that (__3 s () fixes ¢(t) and (—w*05u*6 WZUS) acts by Rs on
it.

As (§ @u’) fixes DT,, for t > tg, this matrix acts on Rs(p(t)) if and only if ¢ < tg (as
Rs(p(t)) € DYy <= o(t) € D).

So, for t € [tg, t9] by the same argument as in [t3, tg], pc., (g2.¢(t)) is well defined and
equal to RoR5(p(t)). Moreover for t € [to, 1], pc..(g2.¢(t)) = Rs(¢(t)). We see that the
Hecke path has exactly 3 folding points ps = pc. (g2.0(t3)) = ©(t3), ps = pc., (92-¢(ts)) =
Rop(ts), po = pc., (g2.0(te)) = RaRsp(tg), with the line segment [ps pg] C RaR5(([0,1])
= [(6,0)(—d)] and his last direction is that of Rsp([to, 1].

For all N > 2, po__ (gn-¢([0,1])) is well defined and has 3 folding points

such that

P3 = PCo (92-0(3)), P6 = PCo (92-0(t6)), P3(N+1) = PCo0 (IN-©(t3(N+1)))s

moreover [pg p3(n+1)] is equal to RaRs(¢([te, t3(v+1))])) and is included in the line seg-
ment [(6,0) (—d)] and the last direction of the Hecke path is that of the segment germ
Ryn-1((0,1]).

This result is easily obtained by induction. As gyi1 = gN((l) , for

w—l(wu)B(NJ,-l) )
t < tyv41) we have po (gn+1-0(t)) = po.. (gn-¢(t)) and so the Hecke path has the two
folding points p3 = pc_ (92-¢(t3)), P6 = pc.. (g2.¢0(ts)). We will see that we have no folding
at p3(n41). For the calculus, we remark that if u, = wl¢F and Sy = Zﬁi{v ug, then
SN
1+uyl Sy
We write

—w ¢V € —w™! + ¢ 'k[[¢g7']] and we will use the same method as before.

. 1 0 0 ™ (wu)3(N+1) 1 0
gN+1 = gN(w(wu)%(NH) 1) — () ~3(N+1) 0 (w(wu)%(NH) 1 )

For ¢ > t3(n41), we know that

1 0 0 —1 3(N+1)
(w(wu)—S(NJrl) 1) fixes ¢(t) and (w(wu)_3(1\,+1) “ (mé) ) acts as Rgno.
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We consider ¢ = (wu)? and uj, = w {wu)?* = w~!¢¥ and see that :

1 0 -1 S
( 13 N4+1 0) = (uN+1)_1 1+uN+lSN 0 1 1+u_{v SN
N\ w20 1) = | i sy 0 (rdse) )\,

N+1

so it can be written

_ o—1gN . -1 1+u=1Ogu=1| u lOgu!]
A/<1 . )(é K )mthAfeSLQ(O@[[u ]])m( ool 1+u_189[u_1”)_

As before, we can see that A’(] 7121*1) € Iloop,
By § 64, for ¢ Z t3(N+1)7

pom(gn10(0) = pon (4779 ) Ranpa(p(1)) )

(if they exist).

For ¢ large enough, the last direction of the Hecke path is Rsn2¢((0,1]).

More precisely

1 ’W_l Povt 3N
(=)

acts on Rgnia(p(t)) iff t < t3(N+2) (because one has R2+3N(D:(3N71)) = Df(3(N+2)71)).
But, as in the first calculus for ¢ € [tg, tg], we can see that, modulo I'9°P, this matrix acts
by R3N,1 and we have R3N71R3N+2 = R2R5. So PCoo (9N+1‘(P([t3(N+1)7t3(N+2)])) is well
defined, is equal to RoRs([p(t3(n+1)), ¢(t3(n+2))]) and is included in [(6,0) (—d)] so there
is no more folding at p3ny41) and we have the expected result. The third folding point is

P3(N+2) = PO (N -P(t3(n12)))-

Example 6.17. In the second example, we want to consider a new family (g} ), with a
growing number of folding points. In the analog of previous calculus, we want that the
action of the “new term” doesn’t affect the previous folding points.

We consider for N > 0,
N

v =oh=II(§ =750 ) € G,
(
<

Let us prove that for N > 1, pc_
points and there exists t3 o~ < TN
Ryon ([T, 11).

As g} = g2, we know the corresponding Hecke path and the result is true in this case
(With to =11 < t12)-

We consider for N > 1,

d-¢([0,1])) is well defined, has at least N folding
ts on+1 such that po (gN o([Twn,1])) is equal to

N+1
9N+1 —QN(lw 1(“’%)32 )

As before, if it is well defined, we have

PCo (gN+1-0([0, 3 9811])) = poo, (gn-0([0, t32v41]))

We know by induction that po (9n+1.0([Tn,t3on+1])) = Ry on_1(0([Tn, ts3on+1])) is well
defined and that this Hecke path has at least N folding points there. As previously, we

write
N4 =9 ( LNt O) 0 & (wu)® 2" Lo ?
IN+1 = IN w(wu) 32 1 fw(wu)’3'2N+1 0 w(wu) 32 1)’
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in order to study the case t > t3ov+1. With D = 1 + Zé\’zo(wu)&(gk_wﬂ) and a —
w! Z{gvzo(wU)?"Qk, we obtain

/ — ,132N+1 0 (D 0 )(1%> 0 W_I(WU)MNH ( ! N+1 0)
IN+1 = 2en "7 1 JNOYD N0 1)\ _p(mu)-32N 1! 0 w(wu)~32" 1

In fact &—a+w™! € Ogu'], and so (as before) modulo I'2°P, gy | acts on ¢([ts on+1,1])

as
-1 3.2N+1
(1 a) 0 . w ™ (wu)
0l —w(wu) ™32 + 0

SO as gy © R3on+1_1.

But for k < N, Rgon1_1(p(t)) € My_3 9 if, and only if, p(t) € My_3 on+2_9x) (le. t =
t3.(2n+2_9k)). So gy really acts on Rz on+1_1((t)) only for some ¢ in [t5 on+1) , 5 (on+2_on)]
and there exists Tvy1 with t3 ov+1 < Tivy1 < tgon+2 such that po (9 y1-9([Tng1,1])) =
Ry ont1_1(o([Tn+1,1])) and, as the direction of this line segment is different from that
of Ry on_1(@([Tn ,t39n+1])), there is a new folding point for this Hecke path, so at least
N + 1 folding points.

Remark 6.18. It is interesting to look at what happens in these two examples when
N goes to infinity. Actually US_; gne([0,tsn]) (resp. U_ v p([0,t59n])) is an increas-
ing union of Cy,—friendly line segments in .#; and the same is true for their images
in .#. So we get a half-open C—friendly line segment written (abstractly) goo¢([0, 1[)
(resp. o 0([0,1])) in .# and goo([0,1]) (resp. ¢’ @(]0,1])) in .#. A question is whether
they can reasonably be completed in a “closed” Co,—friendly line segment. The answer is
clearly no for example 2: this would lead to a Cso—Hecke path po_ (g5 ¢([0, 1)) with an
infinite number of folding points, contrary to Definition 5.9 and Proposition 5.18.

On the contrary we can make further calculations for example 1, as gy = gy is associ-
ated to a geometric sequence in k[, ™!, u,u!]. We consider the matrix

N

3k —1 3N+3

9N = (kzo(wu) @ (@) ) €GP,
—w 1— (wu)?

So
g = angh = (L Tl ) = (LD (5=3)

is a fixed element in Gi‘,ﬁ; (so gk € Gi‘f&%) By the following Lemma g}, fixes ([0, t3n43])-

S0 geotp([0,1]) is actually equal to gl o([0,1[). We shall prove now that gl ¢([0,1]) is a
Cso—friendly line segment. The associated Coo —Hecke path is then clearly [0 ps]U[ps pe]U
[ps —dJ.

We have to find a good Birkhoff decomposition for gl,. The details of the calculations
are similar to those above and left to the reader.

1 _ 1 0 ( 1 0) 0 w2u? 1 0
Joo T \w2u31 )\ —w 1)\ —x=24=3 ¢ w2431

_ 1 0\(1 - ! 0 w?ud 0 woub 1 0 1 0
T \w2u31 0 1 —w2u=3 0 —wu=6 0 wu06 1 w2u31 )"

Now
(ot ?) (resp. (2,60))  fixes o((ts, 1))( vesp. (fts, 11)),

0 wOub 0 w?ud
(—w’5u’6 0 ) (resp. (—w’Qu’S 0

Ann. Repr. Th. 2 (2025), 3, p.281-353 https://doi.org/10.5802/art.25


https://doi.org/10.5802/art.25

350

Nicole Bardy-Panse et al.

stabilizes Ag and induces on it R (resp. R2); moreover

(ehit) amd (3797

are in I'9°P. So the last expression for gl is a Birkhoff decomposition, telling that the
pair {Coo, gL 0([ts, 1])} is friendly. One can also deduce from these expressions the shape

of pc., (95#((0,1])).

Lemma 6.19. g} € (U;??OJ,rtsNMDU—N#’([O’l])) N Giﬁ% fizes ©([0,tsn+3])-

Proof. Tn SLy(k[w][u]) C &7(K), one may write gk = (34)(¢5" 2) (39)( L, 9), with

c=1— (wu)a= @ (ou)?N _ i o3N+2+3k 3N+3+3k
1— (wu)3 =
and
b— N 3k
1= (wu)? +w kz::l w(wu)

Now (_lw (1)) = x,N(—w) S UfN,go([O,l]) fixes gO([O, 1]) And
(59) = T wowsms (—="") € U0y
fixes also ¢([0,1]), as fu(j0,1)) (=X + 3kd) = 3k (see § 2.2.4). Moreover

3N+2+3k) c ymat

((11 ?) = H TR4-(3N+343k)5 (w o([0,t3343])

k=0
fixes QO([O, t3N+3]), as f@([O,t})(N + (3N + 3+ 3k)5) = (3N +3+ 3]€)t.
The last thing is now to prove that (Cal 9) is in UZE?OJFH)' We argue as in § 6.4 or [35,

2.12]. The matrix bt = (% _%.) is a basis of g,57, hence

Xns(hiy @A) = eap] (M) = (%5 2),
with v1 = 14+ A + A2u?? + -+ and v = 1 — A\u™ We take n = 3, \ = w?, so
(061 g) = [exp] (wSh;f) .

But f(0.17)(30) = inf{r € Z | (38) ([0, 1)) + 7 > 0} =3, 50 (¢,' 0) € UZAL,. O
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