Framization of Schur–Weyl duality and Yokonuma–Hecke type algebras
Annals of Representation Theory, Volume 2 (2025) no. 1, pp. 1-35.

We study framizations of algebras through the idea of Schur–Weyl duality. We provide a general setting in which framizations of algebras such as the Yokonuma–Hecke algebra naturally appear and we obtain this way a Schur–Weyl duality for many examples of these algebras which were introduced in the study of knots and links. We thereby provide an interpretation of these algebras from the point of view of representations of quantum groups. In this approach the usual braid groups is replaced by the framed braid groups. This gives a natural procedure to construct framizations of algebras and we discuss in particular a new framized version of the Birman–Murakami–Wenzl algebra. The general setting is also extended to encompass the situation where the usual braid group is replaced by the so-called tied braids algebra, and this allows to collect in our approach even more examples of algebras introduced in the knots and links setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.20
Classification: 20C08, 17B37, 20F36
Mots-clés : Schur–Weyl duality, Yokonuma–Hecke algebras, framization, framed braid group, tied braid algebra

Lacabanne, Abel 1; Poulain d’Andecy, Loïc 2

1 Laboratoire de Mathématiques Blaise Pascal (UMR 6620), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, 63178 Aubière Cedex, France
2 Laboratoire de Mathématiques de Reims (UMR 9008), Université de Reims Champagne-Ardenne, Moulin de la Housse - BP 1039, 51100 Reims, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_1_1_0,
     author = {Lacabanne, Abel and Poulain d{\textquoteright}Andecy, Lo{\"\i}c},
     title = {Framization of {Schur{\textendash}Weyl} duality and {Yokonuma{\textendash}Hecke} type algebras},
     journal = {Annals of Representation Theory},
     pages = {1--35},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {1},
     year = {2025},
     doi = {10.5802/art.20},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.20/}
}
TY  - JOUR
AU  - Lacabanne, Abel
AU  - Poulain d’Andecy, Loïc
TI  - Framization of Schur–Weyl duality and Yokonuma–Hecke type algebras
JO  - Annals of Representation Theory
PY  - 2025
SP  - 1
EP  - 35
VL  - 2
IS  - 1
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.20/
DO  - 10.5802/art.20
LA  - en
ID  - ART_2025__2_1_1_0
ER  - 
%0 Journal Article
%A Lacabanne, Abel
%A Poulain d’Andecy, Loïc
%T Framization of Schur–Weyl duality and Yokonuma–Hecke type algebras
%J Annals of Representation Theory
%D 2025
%P 1-35
%V 2
%N 1
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.20/
%R 10.5802/art.20
%G en
%F ART_2025__2_1_1_0
Lacabanne, Abel; Poulain d’Andecy, Loïc. Framization of Schur–Weyl duality and Yokonuma–Hecke type algebras. Annals of Representation Theory, Volume 2 (2025) no. 1, pp. 1-35. doi : 10.5802/art.20. https://art.centre-mersenne.org/articles/10.5802/art.20/

[1] Aicardi, Francesca; Juyumaya, Jesús Tied links, J. Knot Theory Ramifications, Volume 25 (2016) no. 9, Paper no. 1641001 | DOI | MR | Zbl

[2] Aicardi, Francesca; Juyumaya, Jesús An algebra involving braids and ties (2017) | arXiv

[3] Aicardi, Francesca; Juyumaya, Jesús Kauffman type invariants for tied links, Math. Z., Volume 289 (2018) no. 1-2, pp. 567-591 correction ibid. 297, No. 3-4, 1953-1954 (2021) | DOI | Zbl

[4] Arcis, Diego; Espinoza, Jorge Tied–boxed algebras (2023) | arXiv

[5] Arcis, Diego; Juyumaya, Jesús Tied monoids, Semigroup Forum, Volume 103 (2021) no. 2, pp. 356-394 | DOI | MR | Zbl

[6] Chlouveraki, Maria From the framisation of the Temperley–Lieb algebra to the Jones polynomial: an algebraic approach, Knots, low-dimensional topology and applications (Springer Proceedings in Mathematics & Statistics), Volume 284, Springer, 2019, pp. 247-276 | DOI | MR | Zbl

[7] Chlouveraki, Maria; Juyumaya, Jesús; Karvounis, Konstantinos; Lambropoulou, Sofia Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebras, Int. Math. Res. Not., Volume 2020 (2020) no. 1, pp. 214-286 | DOI | MR | Zbl

[8] Chlouveraki, Maria; Lambropoulou, Sofia The Yokonuma–Hecke algebras and the HOMFLYPT polynomial, J. Knot Theory Ramifications, Volume 22 (2013) no. 14, Paper no. 1350080 | DOI | MR | Zbl

[9] Chlouveraki, Maria; Pouchin, Guillaume Representation theory and an isomorphism theorem for the framisation of the Temperley–Lieb algebra, Math. Z., Volume 285 (2017) no. 3-4, pp. 1357-1380 | DOI | MR | Zbl

[10] Chlouveraki, Maria; Poulain d’Andecy, Loïc Representation theory of the Yokonuma–Hecke algebra, Adv. Math., Volume 259 (2014), pp. 134-172 | DOI | MR | Zbl

[11] Chlouveraki, Maria; Poulain d’Andecy, Loïc Markov traces on affine and cyclotomic Yokonuma–Hecke algebras, Int. Math. Res. Not., Volume 2016 (2016) no. 14, pp. 4167-4228 | DOI | MR | Zbl

[12] Chmutov, Sergei; Jablan, Slavik; Karvounis, Konstantinos; Lambropoulou, Sofia On the link invariants from the Yokonuma-Hecke algebras, J. Knot Theory Ramifications, Volume 25 (2016) no. 9, Paper no. 1641004 | DOI | MR | Zbl

[13] Drinfel’d, Vladimir G. Almost cocommutative Hopf algebras, Algebra Anal., Volume 1 (1989) no. 2, pp. 30-46 | MR | Zbl

[14] Espinoza, Jorge; Ryom-Hansen, Steen Cell structures for the Yokonuma–Hecke algebra and the algebra of braids and ties, J. Pure Appl. Algebra, Volume 222 (2018) no. 11, pp. 3675-3720 | DOI | MR | Zbl

[15] Flores, Marcelo; Juyumaya, Jesús; Lambropoulou, Sofia A framization of the Hecke algebra of type B, J. Pure Appl. Algebra, Volume 222 (2018) no. 4, pp. 778-806 | DOI | MR | Zbl

[16] Goundaroulis, Dimos A survey on Temperley–Lieb-type quotients from the Yokonuma–Hecke algebras, Algebraic modeling of topological and computational structures and applications (Springer Proceedings in Mathematics & Statistics), Volume 219, Springer, 2017, pp. 37-55 | DOI | MR | Zbl

[17] Goundaroulis, Dimos; Juyumaya, Jesús; Kontogeorgis, Aristides; Lambropoulou, Sofia Framization of the Temperley–Lieb algebra, Math. Res. Lett., Volume 24 (2017) no. 2, pp. 299-345 | DOI | MR | Zbl

[18] Jacon, Nicolas; Poulain d’Andecy, Loïc An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants, Math. Z., Volume 283 (2016) no. 1-2, pp. 301-338 | DOI | MR | Zbl

[19] Jacon, Nicolas; Poulain d’Andecy, Loïc Clifford theory for Yokonuma–Hecke algebras and deformation of complex reflection groups, J. Lond. Math. Soc., Volume 96 (2017) no. 3, pp. 501-523 | DOI | MR | Zbl

[20] Jimbo, Michio A q-analogue of U(𝔤𝔩(N+1)), Hecke algebra, and the Yang–Baxter equation, Lett. Math. Phys., Volume 11 (1986) no. 3, pp. 247-252 | DOI | MR | Zbl

[21] Juyumaya, Jesús Markov trace on the Yokonuma–Hecke algebra, J. Knot Theory Ramifications, Volume 13 (2004) no. 1, pp. 25-39 | DOI | MR | Zbl

[22] Juyumaya, Jesús A Partition Temperley–Lieb Algebra (2013) | arXiv

[23] Juyumaya, Jesús; Lambropoulou, Sofia Modular framization of the BMW algebra (2010) | arXiv

[24] Juyumaya, Jesús; Lambropoulou, Sofia An adelic extension of the Jones polynomial, The mathematics of knots (Contributions in Mathematical and Computational Sciences), Volume 1, Springer, 2011, pp. 125-142 | DOI | MR | Zbl

[25] Klimyk, Anatoli; Schmüdgen, Konrad Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | DOI | MR | Zbl

[26] Lacabanne, Abel; Vaz, Pedro Schur–Weyl duality, Verma modules, and row quotients of Ariki–Koike algebras, Pac. J. Math., Volume 311 (2021) no. 1, pp. 113-133 | DOI | MR | Zbl

[27] Lai, Chun-Ju; Nakano, Daniel K.; Xiang, Ziqing Quantum wreath products and Schur–Weyl duality I, Forum Math. Sigma, Volume 12 (2024), Paper no. e108 | DOI | Zbl

[28] Lehrer, Gustav I.; Zhang, Ruibin B. Strongly multiplicity free modules for Lie algebras and quantum groups, J. Algebra, Volume 306 (2006) no. 1, pp. 138-174 | DOI | MR | Zbl

[29] Martin, Paul; Saleur, Hubert The blob algebra and the periodic Temperley–Lieb algebra, Lett. Math. Phys., Volume 30 (1994) no. 3, pp. 189-206 | DOI | MR | Zbl

[30] Martin, Paul; Woodcock, David Generalized blob algebras and alcove geometry, LMS J. Comput. Math., Volume 6 (2003), pp. 249-296 | DOI | MR | Zbl

[31] Mazorchuk, Volodymyr; Stroppel, Catharina G(,k,d)-modules via groupoids, J. Algebr. Comb., Volume 43 (2016) no. 1, pp. 11-32 | DOI | MR | Zbl

[32] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023 (published electronically at http://oeis.org)

[33] Orellana, Rosa; Ram, Arun Affine braids, Markov traces and the category 𝒪, Algebraic groups and homogeneous spaces (Tata Institute of Fundamental Research Studies in Mathematics), Volume 19, New Delhi: Narosa Publishing House. Published for the Tata Institute of Fundamental Research, 2007, pp. 423-473 | MR | Zbl

[34] Poulain d’Andecy, Loïc Invariants for links from classical and affine Yokonuma–Hecke algebras, Algebraic modeling of topological and computational structures and applications (Springer Proceedings in Mathematics & Statistics), Volume 219, Springer, 2017, pp. 77-95 | DOI | MR | Zbl

[35] Poulain d’Andecy, Loïc; Wagner, Emmanuel The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras, Proc. R. Soc. Edinb., Sect. A, Math., Volume 148 (2018) no. 6, pp. 1269-1278 | DOI | MR | Zbl

[36] Poulain d’Andecy, Loïc; Zaimi, Meri Fused Hecke algebra and one-boundary algebras, Pac. J. Math., Volume 328 (2024) no. 1, pp. 77-118 | DOI | MR | Zbl

[37] Reshetikhin, Nicolai Yu. Quantized universal enveloping algebras, the Yang–Baxter equation and invariants of links, I (1987) (Technical report)

[38] Ryom-Hansen, Steen On the representation theory of an algebra of braids and ties, J. Algebr. Comb., Volume 33 (2011) no. 1, pp. 57-79 | DOI | MR | Zbl

[39] Ryom-Hansen, Steen On the annihilator ideal in the bt-algebra of tensor space, J. Pure Appl. Algebra, Volume 226 (2022) no. 8, Paper no. 107028 | DOI | MR | Zbl

[40] Sakamoto, Masahiro; Shoji, Toshiaki Schur–Weyl reciprocity for Ariki–Koike algebras, J. Algebra, Volume 221 (1999) no. 1, pp. 293-314 | DOI | MR | Zbl

Cited by Sources: