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Framization of Schur—Weyl duality and
Yokonuma—Hecke type algebras

Abel Lacabanne and Loic Poulain d’Andecy

ABSTRACT. We study framizations of algebras through the idea of Schur—Weyl duality. We provide
a general setting in which framizations of algebras such as the Yokonuma-Hecke algebra naturally
appear and we obtain this way a Schur—Weyl duality for many examples of these algebras which were
introduced in the study of knots and links. We thereby provide an interpretation of these algebras
from the point of view of representations of quantum groups. In this approach the usual braid groups
is replaced by the framed braid groups. This gives a natural procedure to construct framizations
of algebras and we discuss in particular a new framized version of the Birman—Murakami—Wenzl
algebra. The general setting is also extended to encompass the situation where the usual braid group
is replaced by the so-called tied braids algebra, and this allows to collect in our approach even more
examples of algebras introduced in the knots and links setting.

1. INTRODUCTION

The Yokonuma—Hecke algebra is a natural generalization of the usual Hecke algebra
in the sense that the Hecke algebra originally appeared in the study of the permutation
representation of GL,,(F,) with respect to its Borel subgroup, while the Yokonuma-Hecke
algebra plays a similar role when replacing the Borel subgroup by its unipotent radical.

The Yokonuma—Hecke algebra was also studied from the point of view of knots and
links, and was used to produce invariants (see for example [7, 8, 12, 21, 24] generalizing
the well-known construction of the Jones and HOMFLY-PT polynomials from the usual
Hecke algebra. The precise topological meaning of these invariants in relation with the
HOMFLY-PT polynomial was then elucidated [7, 35]. In this context, the Yokonuma-—
Hecke algebra is referred to as a “framization” of the usual Hecke algebra, and there were
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subsequent attempts to “framize” other known algebras and use them for knot theory [6,
11, 15, 16, 17, 23]. These framizations are usually defined via generators and relations and
it is not always clear what the correct definition should be (see for example [16, 17]).

The usual Hecke algebra also appears in another famous context, which is the quan-
tum Schur—Weyl duality, relating it to the representation theory of the quantum groups
Uq(gly) [20, 37]. The Schur-Weyl duality completes the picture in which the Jones and
HOMFLY—-PT polynomials are seen as particular cases of Reshetikhin—Turaev invariants
associated to quantum groups. Thus a similar interpretation of the Yokonuma—Hecke
algebra in a Schur—Weyl duality with quantum groups seems desirable and natural to
expect.

The first goal of this paper is to prove a Schur-Weyl duality statement for the Yoko-
numa—Hecke algebra, as well as for various related algebras such as framizations of the
Temperley—Lieb algebra, and the so-called algebra of braids and ties [2, 38]. Namely, for
each algebra, we find a quantum group and a tensor product of representations such that
the given algebra is related to the centralizer of the quantum group action. Sometimes we
get the full centralizer and sometimes only a subalgebra of this centralizer. To incorporate
the algebra of braids and ties in this picture, we also need to consider smash products of
quantum groups by symmetric groups. In any case, we will thus find the precise meaning
of all these algebras from the point of view of quantum groups.

The usual Hecke algebra can be seen as a deformation of the group algebra of the
symmetric group, and the Yokonuma—Hecke algebra has a similar interpretation in terms
of a deformation of the wreath product (Z/dZ)" x&,,, also known as the complex reflection
group G(d,1,n). A Schur-Weyl duality context for this group exists and a quantization
of this duality can be obtained in terms of the Ariki—Koike algebra, which is another
deformation of the group G(d, 1,n), and in terms of the quantum group Ug(gly, ®--- @
gly,), see [31, 40] and references therein. We prove that a Schur-Weyl duality with
Ug(gly, © -+ @ gly,) also applies to the Yokonuma-Hecke algebra instead of the Ariki-
Koike algebra. Nonetheless, we find that the extension of the Schur—Weyl duality of the
Hecke algebra to the Yokonuma—Hecke algebra is easier and more natural than for the
Ariki-Koike algebra, and is in fact a particular case of a general procedure developed
in this paper. Here, the action of a braid group that factors through the Hecke algebra
is replaced by an action of the framed braid group that naturally factors through the
Yokonuma—Hecke algebra.

The second goal of the paper is to provide a general procedure to construct framizations
of algebras from the point of view of the Schur-Weyl duality. This general procedure
culminates in Theorem 3.3 that contains in particular the following statement.

Theorem. We have a morphism of algebras ® : kFBg, — Ends(VE").

Here the space V. =V; @& --- @ Vj is a direct sum where each Vj, is a representation of
a bialgebra Ap with the property that the usual braid group acts on the tensor products
Vb®k and centralizes the action of Ap. Of course the main example we have in mind is
when the algebra A; is a quantum group acting on a finite-dimensional representation
Vi. The algebras in Schur—Weyl duality in the theorem are then the tensor product
A= A1X-.-KA; and the group algebra k7B, of the framed braid group. The particular
case factoring through the Yokonuma-Hecke algebra is found when A, = U,(gly,) and V},
is the vector representation of dimension Ny, so that V' is the natural vector representation
of dimension N1 + ---+ Ng of A= U(gly, ©--- D gly,)-
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In this approach, the Yokonuma—Hecke algebra is naturally obtained and we recover as
well the natural framization of the Temperley—Lieb algebra. This also allows us to give a
natural definition of a framization of the Birman—-Murakami—Wenzl algebra, which seems
to be new. Any algebra appearing in a Schur—Weyl duality can be framized following this
procedure. The one-boundary extension of the previous theorem is also proved, involving
the framed affine braid group, and is applied to affine versions of framizations of algebras,
such as the affine and cyclotomic Yokonuma—Hecke algebras.

This procedure of framization is mostly used to construct invariants of knots and links,
and sometimes several versions of a framization of an algebra are proposed. For example,
there have been at least three tentatives of framization of the Temperley—Lieb algebra [16].
With our procedure of framization, we find that the correct framization of the Temperley—
Lieb algebra should be the Schur-Weyl dual of the quantum group Uy(gly®- - - @gly). One
of the three proposed framizations is then natural to consider from our point of view, as
it was also advocated in [9], see also Remark 5.8.

Another advantage of the approach through the Schur—Weyl duality is that we recover
naturally some isomorphism theorems for the framizations of algebras (see Remark 5.3 for
example). In fact, we advocate the point of view that the correct framization of a given
algebra should be isomorphic to a direct sum of matrix algebras over tensor products
of the algebra we started with. This comes up naturally in the approach through the
Schur—Weyl duality and is also natural from the point of view of invariants of knots and
links [9, 18, 35]. The representation theory of the framizations of algebras is also recovered
from this point of view.

Finally we also provide the general procedure allowing to obtain algebras related to
braids and ties. One of our motivations was to explore and to generalize, from the Schur—
Weyl duality setting, the relationship between the algebra of braids and ties and the fixed
points of the Yokonuma—Hecke algebra under the action of a symmetric group. To do so in
a general setting, we first upgrade this relationship to the level of the framed braid group.
We define a natural action of the symmetric group on the group algebra of the framed
braid group, and by taking the fixed points under this action we make the connection with
the tied braid monoid of [1].

We upgrade the Schur—Weyl duality previsouly obtained by adding a natural symmetry
of the representations, so that the fixed point subalgebras for a natural action of the
symmetric group on the framizations of algebras naturally enter the picture. The general
procedure leads to the following braids and ties version of the preceding theorem (see
Theorem 7.1).

Theorem. We have a morphism of algebras ¥ : TB,, — Endaxe,(VE").

Here the algebra TB,, is the tied braid algebra while A and V are as in the first theorem,
with the additional assumption that all bialgebras Ay are the same and all representations
Vi are the same. In this situation, the symmetric group &, naturally acts on A and V
naturally becomes a representation of the smash product.

The algebraic description of the centralizers in these Schur—Weyl duality settings will
thus provide braids and ties versions of well-known algebras. For example, we recover
the algebra of braids and ties from the Yokonuma-Hecke algebra [2] and we recover a
braids and ties version for the Temperley—Lieb algebra, also called partition Temperley—
Lieb algebra [22] (see also [4] for related constructions). We also propose a definition by
generators and relations of a BMW algebra of braids and ties, which seems natural in our
approach and which seems different from the one in [3].
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Our goal is not to be exhaustive concerning the framizations of algebras and their braids
and ties versions, but is more to provide a Schur—-Weyl duality setting in which these
framizations naturally appear. We give many examples, some of those are well known
and many others deserve a more thorough study. We also note that the Yokonuma—Hecke
algebra appears as a special case in [27] where a Schur—Weyl duality statement different
from ours is given.

2. ALGEBRAIC PRELIMINARIES

Let us start with some short and easy algebraic lemmas. Let k be a field.

2.1. External tensor products of algebras. Let d € N*. For all 1 <b < d, let A, be a
unital k-bialgebra. Recall that this means in particular that we can make tensor products
of Ap-modules and that we have a notion of a trivial representation ¢, : Ap — k, that we
denote 14,, and which satisfies 14, ® V;, = V;, ® 14, = V;, for any Ap-module V3, where the
isomorphisms are given by the trivial identity map.
We consider the algebra
A=A1X---KA,;.

As a vector space, this is the usual tensor product, and the multiplication is performed
independently in each factor for pure tensors and extended linearly. Given Ap-modules
Wy for b =1,...,d, the tensor product becomes naturally a representation of A that we
denote W1 X - - - X W,. The tensor product of two such representations of A is defined by
performing the tensor product of Ay-modules in each factor.

Now we fix an Ap-module V;, for each b=1, ..., d. We see it as an A-module, namely,
we make the following identification:
Vb:1A1@---@1141)71@%@1,4})“@-n@lAd. (2.1)

Finally, we define the following A-module:
V=Vvig---aV;.

Explicitly, the action of an element a; ® --- ® aq in A is given by

QR - Qag-v= (Hec(ac)> ap-v, YVveVyandb=1,...,d.
c#b

We have the following relation between the centralizer of A in V®" and the centralizers
of the various Aj.

Lemma 2.1. Suppose that for all 1 < b < d and r # s we have HomAb(wa, Vb®s) =0.
Then we have

Enda (V®") =~ @@ Mat(n) (Ends, (Vi) ®--- ® Enda, (V")) (2.2)
vEgn v
the sum being taken over all d-compositions v = (v1, ..., vq) of n.

The notation Maty(B), for an algebra B, means the algebra of square matrices of size
N with coefficients in B. The multinomial coefficients appearing as sizes of the matrix

algebras are:
ny n!
v] ul.yg’
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Proof. We have the following decomposition of the vector space V&":

d
ven — @ Vo, @ - QVy, .

ay,...,an=1

Looking at (2.1), we see that the summand V,, ® ---®V,, is an A-submodule isomorphic
to V1®”1 X..-X Vd®'/d, where v is the number of indices among aq, ..., a, which are equal
to b. There are therefore (Z) summands corresponding to the composition v. Therefore
we have the following decomposition of V®" as an A-module:

ver~ @ (VPR R Vd®”d)®(3) . (2.3)

vEqn

The statement of the lemma follows from the general fact that given A,-modules W, WY,
we have

Homy (Wi K- KWy, Wi K --- K W) = Homy, (W1, W]) ® --- ® Homa, (Wg, W) ,

together with the hypothesis which implies that there is no homomorphism commuting
with A between summands corresponding to different compositions. O

Remark 2.2. Without the assumption, the isomorphism in the lemma remains valid if
we replace the full centralizer End 4 (V®") by its subalgebra generated by the subspaces:

Homg(Vy, ® - @V, Vi ® - @ W,)

for a’s and b’s giving the same composition, namely such that [{i | a; = 2}| = [{i | b; = x}|
forallz =1, ..., d.

Remark 2.3. One can explicitly give the isomorphism of Lemma 2.1 using the idempo-
tents m, corresponding to the projections on the summands of the decomposition

@ n
V®n ~ @ <V'1®l/1 X... X Vd®l/d> (V) )
vEgn
If m,: V' — V is the projection on the summand Vj, of V', the idempotent 7, for v Eg4 n is
given by
Ty, = Z 7Tb1®-"®7Tbn€EndA (V®n)
(b17 ey bn) € {1’ ~--»d}n

{ilbi=k}|=vi
The isomorphism of the lemma then sends f € End(V®") to the family (7, fm,)uen-
The assumption of Lemma 2.1 indeed implies that if v # p then 7, fr, = 0. Each 7, fm,
can be seen as a matrix of size () with coefficients in Enda, (V;*"") ® - - ® Enda, (V")
since m, projects onto (") summands all isomorphic as A-modules to V;*"' K- K V.

2.1.1. Consequences. The isomorphism of the lemma implies a Morita equivalence between
End4(V®") and the direct sum of the algebras inside the matrix algebras. In particular,
the irreducible representations of the direct sum in the right hand side of (2.2) are indexed
by

(v,p1, ..., pa) withvEgn and p, €It (EndAb (Vb@wb)) ,
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the dimension of this representation being (Z) ngl dim(pp). The total dimension of the
algebra End 4(V®") is of course:

2
Z <Z> dl(,ll) e dl(,‘i) ,  where dz(/l;,) — dim (EndAb (VE)@)V”)) ‘

vEgn

2.2. One-boundary extension. We keep the same context, and suppose that we are
moreover given for all 1 < b < d an Ay-module M;. To lighten the notations, we denote:

C® = Enda, (M, © ;") .

We consider the A-module M = M; X --- X M, and we have the following one-boundary
generalization of Lemma 2.1.

Lemma 2.4. Suppose that for all 1 <b <d and r # s we have Homa, (M, @ V", M}, ®
V,2¥) = 0. Then we have

EndA(M & V®”) ~ @ Mat<n) (Cl(/i) R ® C}/‘j)) ,

vEgn
the sum being taken over all d-compositions v = (v, ..., vy) of n.
Proof. We use the decomposition (2.3) of V®" in M ® V®" and conclude with the same
argument as in the proof of Lemma 2.1. O

Similar consequences as in § 2.1.1 can be deduced.

2.3. Centralizer and group action. Let A be a unital k-algebra. Suppose that we are
given a finite group G that acts by algebra automorphisms on A. We denote the action
G x A — Aby (g,a) = 9a. We can now define the smash product algebra A x G of A
and k[G] as the k-vector space A ®y k|[G] equipped with the following multiplication:

(a®g)- (b h)=a%b®gh, VYabeA, Vg hedG.

We will often identify a € A witha®1 € Ax G and g € G with 1® g€ AxG.
We now fix an A x G-module W. The centralizer algebra End 4(W) inherits an action
of G by conjugation. Namely, this action is defined, for g € G and ¢ € End (W), by

(9-8)w)=g-6(97"v), YveW
Indeed, we have that g - ¢ € End4(W) since
(9-9)(a-v)=g-¢(g7'a-v) =g-6(%ag"v)
=g%-¢(97" v)=ag-o(g7"v) =a-(g:9)(v).
Lemma 2.5.

(i) The centralizer algebra Endaxg(W) of A x G is the fized point subalgebra of
Enda(W):
End.q(W) = Endg(W)© .
(ii) Assume that |G| is invertible in k. Let X be an algebra equipped with an action of
G by algebra automorphisms. If we have a surjective algebra morphism

p X = EndA(W),
commuting with the action of G, then ¢ restricts to a surjective algebra morphism
¢ XY = Endy(W)Y .
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Proof. For Lemma 2.5(i), note that W, being an A x G-module, is in particular both
an A-module and a G-module, and that centralizing the action of A x G is equivalent
to centralizing both actions of A and G. Then it is immediate that for an element in
End 4 (W), centralizing the action of G is equivalent to being in End4(W)%.

For Lemma 2.5 (ii), since ¢ commutes with the action of G, it is clear that X is sent to
the fixed points End4(W)%. To check the surjectivity, take an element y in End4(W)%.
From the surjectivity of ¢, there is an element z in X such that ¢(z) = y. Now taking

the average i .x, it is straightforward to see that this is an element in X which
8€ 1G] 2vgeG Y g

is sent to y. O
2.3.1. Main example. We take the general setting of § 2.1 with the additional assumption
that all bialgebras Ai, ..., Ay are equal to one and the same bialgebra A and all
modules Vi, ..., Vy are equal to one and the same A©-module V(©:
A=A0R. .. ®AD and Vi=- =V;=V.

In this case, the algebra A is equipped naturally with an action of the symmetric group
&4, obtained by permuting the tensorands:

O"(£131®"'®33d):$071(1)®"'®$G—1(d) VoeBy, Vxl,...,fchA(O).

Therefore we consider the algebra A x &, defined by this action.

There is also a natural action of G; on V by permuting the d summands. That is,
fixing a basis of V() and using it for Vi, ..., Vg, a permutation o € & is represented by
a block-permutation matrix sending identically V; to V).

We extend diagonally this &4-action to V&, Explicitly, the resulting action of o € &y
permutes the summands of V" as follows:

d
ven — @ Vo, ® - @ Vg, and o : Vg, @@V, = Vo) @ @ Vi, -

ai,...,an=1

Again, we mean that o sends identically Vo, ® - @ Vg, to Vi4) ® -+ @ Vi(q,)-
Together with the action of A, this yields an action of A x &4 on V&, We recall from
Lemma 2.5 (i), that

Enda.e, (V") = Endy (VE) S
where the action of G4 on End4(V®") is by conjugating with the action of G4 on V®".

Example 2.6. Our main example will be A®) = U,(gly) so that
A=Uy(gly) X ---RUg(gly) = Uq (gly @ --- D gly)

and the module V(© is the standard vector representation CV, so that V is the standard
vector representation CV @ --- @ CV by block-diagonal matrices.

As before, we aim at a description of the centralizer End axe,(V®") as a direct sum of
matrix algebras (over tensor products of A()-centralizers). To do this, we introduce some
notations.

Given a k-algebra B and a finite group G, we define the algebra Cg(B) of G-circulant
matrices with coefficients in B by

Ca(B) = {(f (hilg))g,hEG

f:G—>B}.
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More precisely, fixing an ordering of G = {g1, ..., gn}, we choose an element f(g;) € B
for each element of GG, that is we choose a function f : G — B. Then we write the
following matrix

flea)  flo'ar) o f(on'ar)
| S fleo) '
f (gf19N> oo flea)
The algebra C(B) is the algebra made of all these matrices with f : G — B varying. It
is a subalgebra of Mat)q|(B).

Remark 2.7. An element f: G — B written as > /- f(g)g is an element of the group
ring B[G]. The matrix M above is the matrix representing f in the right regular repre-
sentation of B[G|. Therefore Cq(B) is an algebra isomorphic to B[G] = B ®k k|G]. Note
that we recover the usual circulant matrices when G is a cyclic group of finite order.

We are ready to formulate the final result of this section. To lighten the notation, we
denote by B,(CO) the endomorphism algebras End 4 ((V(?)®F).

Lemma 2.8. Suppose that for all 7 # s we have Hom 40 (V)27 (V(0)®5) = 0. Then

we have
0 0
Endane, (VE") = @ Mat (1.0, (Cory e, (BN @@ BY)), (2.4)
24
where a partition X\ in the sum is written as (111,212, e nl”), that is, l; is the number of

i occurring in X and [(A) =11 + -+ + I

Proof. We introduce some notations. We will denote @ = (ay, ..., a,) € {1, ..., d}"™.
Such an element @ corresponds to a composition v = (v, ..., v4) Fq n, where v; counts
the number of elements of @ equal to i. We denote C, the set of all @ corresponding to v.
The sets C,, are the orbits for the &,-action on {1, ..., d}" by place permutations. We
can write the space V®" as

n:® @Vm@...@Van'

w:dn aeCy,

Now, from Lemma 2.5(i), we need to calculate the fixed points under the Gg4-action of
End4(V®"), which we recall is the conjugation of an element of End4(V®") by the &4-
action on V&n,

The Sg4-action on V&" comes from the action on {1, ..., d}" extended diagonally from
the natural action on {1, ..., d}. This action permutes the sets C) corresponding to
compositions having the same components in different order. With this &g-action, any
composition v is equivalent to a partition A of n with at most d non zero parts, and we
write v ~g, A if this is the case. So now we have

=P b PVaue--V,.

A I/Nbd)\aECu

I0) <
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https://doi.org/10.5802/art.20

Framization of Schur—Weyl duality and Yokonuma—Hecke type algebras 9

The assumption of the lemma implies that there is no A-linear morphisms between two
subspaces corresponding to different compositions, so we get:

(CF)
Endaxe, (V®n)= @ ( @ EndA(@ Va1®"‘®Van)> .

AR acCy,

n vVs LA
TN ET R

For a given ), the action of G4 on V®" permutes transitively the summands corresponding
to different v. So an element of EBVNGd/\ Enda(@zec, Va, ® -+ ® Vi, ), in order to be fixed
under conjugation by this &g-action, must have equal components in all the summands.
Therefore it is enough to look at the summand corresponding to v = A. But still there is
a residual action inside the summands. Writing A = (14,22, ... nl*), we obtain

G
Endaye, (V®") = @ Enda ( T Va1®~--®Van) ,

AFn acC)y
N <d
where G is a subgroup of &, isomorphic to &;, x --- x &;,. More precisely, G is
the subgroup of elements permuting the numbers in {1, ..., d} which appear with equal
(and non-zero) multiplicities in @ € C). In particular it leaves stable the subset C) of
{1, ..., d}™

Then we decompose the set C'y as a union of orbits for the action of G:
1 k
C)\:C)\I_l-“I_IC/\ .

Note that we have not included in G the subgroup permuting the numbers in {1, ..., d}
appearing with zero multiplicities in @ € C). As a result, it is easy to see that the
stabilizers of elements of Cy for the GGy-action are all trivial. In other words, each orbit
C4 is equivalent to G with its left regular action.

Now, we repeat the reasoning in the proof of Lemma 2.1, noticing that for any @ € C\,
as an A-module, we have V,, ® --- @V, = V1®)‘1 X..-KX Vd®)‘d. The A-centralizer of this

module is Bg\?) ®--® ng) and thus, we see elements of Enda(@zcc, Vo, ® -+ ® V4, ) as

matrices with coefficients in Bg\?) R ® Bg(jl) and with lines and columns indexed by C).

We write such a matrix M as a block matrix using the decomposition of C into G-
orbits. So M = (M;j); j=1,..,r and the block M;; has its lines indexed by Ci and its
columns by C’ﬁ;. As discussed above, this means that the coefficients of M;; can be indexed
by pairs (g, h) where g,h € G. Finally, it is now immediate to check that the condition
of being fixed by G is equivalent to the condition that for each block M;;, the coefficient
indexed by (g, h) actually only depends on h~1g. This means that each block is an element

of Ca,(BY ® - @ BY)).
The cardinal of C) is (2) while the cardinal of each C} is |Gy| = I3!---1,!. Thus

the number k£ of blocks in the matrix above is (g)m This concludes the proof of
Lemma 2.8. 0

Remark 2.9. One can make a remark similar to Remark 2.2. Namely, if we remove the
assumptions in the lemma above, we still have a subalgebra of the centralizer isomorphic
to the right hand side of (2.4). In fact, what we really have proven is that taking the fixed
points under &4 of the direct sum of matrix algebras found in Lemma 2.1 results in the
right hand side of (2.4).

Ann. Repr. Th. 2 (2025), 1, p.1-35 https://doi.org/10.5802/art.20


https://doi.org/10.5802/art.20

10 Abel Lacabanne & Loic Poulain d’Andecy

2.3.2. Consequences. Asin § 2.1.1, the isomorphism of Lemma 2.8 implies a Morita equiv-
alence, and in particular a description of the irreducible representations, which can also
be obtained by applying Clifford theory to the fixed point subalgebra (see for example
[19, § 3] and also Remark 2.7). We have that the irreducible representations are indexed
by

A En with £(\) < d,

(N p1y - ey pas A1y ) where { p, € Irr (BE\(Z)) ’
A € it (Gy,)

where we have denoted a partition A = (A, ..., Ag) = (1122, .nl»). The dimension of
this representation is

<n> ngl dim pp [T dim A;

A L. . !
Note that the total dimension of the direct sum of matrix algebras in (2.4) is
2
dy,...d
Z (7;) H , where dj, = dim (B,io)) . (2.5)
byt o !
IA) <d

Explicit examples will be given in § 7.

3. FRAMED BRAID GROUP AND CENTRALIZERS OF TENSOR PRODUCTS

In this section, we keep the setting of the previous section with the algebra A being
the external product of bialgebras A, ..., A3. We will add the assumption that for
each algebra A; and its module V3, we have a morphism from the braid group B, to the
centralizer End 4, (V;®"). This assumption will imply that a certain “framization” of the
braid group naturally appears when looking at the centralizers of the algebra A.

In this section, d is still a fixed positive integer and we assume that the field k contains
a primitive d* root of unity ¢, and that d is invertible in k. In particular k contains d
distinct d*™ roots of unity, which are all powers ¢?, with b=0, ..., d — 1.

3.1. Braid group and framed braid group.

3.1.1. The Artin—Tits braid group of type A. We will denote by B,, the Artin—Tits braid
group of type A,_1. A presentation using generators and relations is given by

Bn = <81, ey Sn_l‘SiSj = SjSZ' if ’Z — j’ > l,SiSjSZ' = SjSiSj if ‘Z —j’ = 1>.
3.1.2. The framed braid group. The framed braid group FBg,, (of type A) is defined as the

wreath product By, ! Z/dZ, where the braid group B, acts on (Z/dZ)" via permutations.
An explicit presentation by generators and relations is given by the following

$i8j = 858 if ’Z —]| > 1,
SiSjSi = SjSiSj if ’Z —]| = 1,
FBan = f“'“’f”‘l’ td=1 for all 1 < i < n,
b tn tit; = tjt; for all 1 <i,7 < n,
sitj = ts,(j)Si foralll<i<nand1<j<n
Here s; acts on indices 1, ..., n as the transposition (7,7 + 1).
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3.2. Framed braid group and centralizers. For all b € {1, ..., d}, we assume the
existence of an element R(®) ¢ End(V, ® V) such that, for any n > 2, we have an algebra
morphism given by

kB, — Enda,(V;%")

®p .
si = BY (i=1,...,n-1),

(3.1)

where as usual R denotes the map which acts as R® on factors i and i + 1 in V})®".

Since ]:E(b) and §~b)
braid relation Rz(b)R( +)1R( ) = RE?légb)}?gbjl being satisfied.
Note that we slightly abuse notations by not indicating the dependence on n for the

maps ¢p. The relevant n will always be clear from the context. Note also that ¢ is also
trivially defined for n = 0,1 since in these cases the braid group B, is the trivial group.

obviously commute when |i — j| > 1, the assumption amounts to the

Example 3.1. If A; is a quasi-triangular Hopf algebra, the action of the R-matrix of A
on the tensor product V, ® V;, provides a map R® satisfying the above assumptions.

Our main examples will be when A, = U,(g), namely a quantum enveloping algebra,
where g is gly or a complex simple Lie algebra. In this case, R® is obtained through
the action of the universal R-matrix on a finite-dimensional weight representation V3. We
refer to [25] for more details on quantum enveloping algebras.

Remark 3.2. The braid group does not always generate the centralizer End Ab(VEX’”). If
Ay is a quantum enveloping algebra of a simple complex Lie algebra, Lehrer and Zhang [28]
give a sufficient condition on the representations V; such that the braid group generates
the centralizer algebra.

Our goal now is to define elements realizing the framed braid group in the centralizer
End 4 (V®") of the algebra A in V®", First, we define 7: V — V by

T(U):Cb_lv ifoel, Vb=1,...,d.

With respect to the decomposition V' = @5:1 V4, the endomorphism 7 is simply block
diagonal, namely, we have:

d
=@ ay, .

b=1
Then we define o: V@V -V ®V by

oclv@w) = W ifveV,,weV, with b # c,
RO wew) ifv,we V.

Note that the subspaces V, ® V. and V. ® V}, are simply permuted by o if b # ¢, and V, @V},
is globally fixed by 0. An equivalent description of o is:

d
5 (b
o =P RV |vev, & P Plvev.ov.ay,
b=1 b#c

where Ply,gv.av.ev, is the flip operator sending v ® w to w ® v.
To denote endomorphisms of V", we use the following standard notations:

=1y ' ®@r@ldy"" and oy =1y '@o@Id}T "
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We are ready to state the relation between the framed braid group and the centralizer of
A in V@, Recall that the maps ¢, denote the morphisms from the usual braid group to
the centralizers End 4, (V,%"), set up in (3.1).

Theorem 3.3. Let n > 1.
(i) We have the following morphism into the centralizer of A in VE™:

kFByn — Endg(VEm)

P : ti — T (izl,...,n),
S; = 0j (i:1,...,n—l).
(ii) We have:
O(kFByn) ~ @ Mat(n) (61(kB,,) ® - ® 9a(kBy,)) (3.2)
vEgn

Proof. (i) As in the proof of Lemma 2.1, we look at the following decomposition of V' as
a direct sum of A-modules:

d n
3]
Ve = P Ve @@ Ve, = @ (VR RV ) , (3.3)
at,...,an=1 vEgn
where each (a1, ..., a,) corresponds to a composition v such that v; is the number of
elements among a1, ..., ag which are equal to j.
The map 73, @ = 1, ..., n, is equal to ¢%~'Id on the summand V,, ® --- ® V,,,, and

therefore commutes with the action of A. If a; = a;1.1 = b, the map o; is equal to Rgb) on

Vo, ® -+ @V, , that is it acts as R® on factors i and i + 1 and as the identity on other
factors. This also commutes with A, since only A; acts non-trivially on V3 ® V;, and its
action is centralized by R(®). Finally, if a; # a;+1 then the summand V,, ® --- ® Vj,, is
isomorphic to the same summand but with V;, and V,,, , exchanged. This isomorphism of
A-modules is given by the flip operator actlng on factors ¢ and ¢ + 1. This coincides with
the action of o; in this case, which therefore commutes with the action of A.

We have shown that the image of the given map indeed takes values in the centralizer
of A. Now it is straightforward to check that the relations of the framed braid group
are satisfied. For example, to check the braid relation between o; and o;41, the action
is non-trivial only on V,, ® V., ® V4, ,, and one splits the verification in several cases,
depending on which among a;,a;11, a;+2 are equal to each other.

(ii) First of all, the summands corresponding to different sequences (ay, ..., a,) in (3.3)
are distinguished by the eigenvalues of the commuting operators 71, ..., 7,. Therefore, in
the image of the framed braid group, we have all projections onto the different summands
Vo, ® - @ Vg,

Then for two summands V,, ® --- ® V,, and V;, ® --- ® V},, corresponding to the
same composition, one is obtained from the other by a permutation of the indices. The
corresponding permutation operator is the corresponding isomorphism of A-modules. It
is easy to see that such a permutation operator is in the image of the framed braid group,
using suitable o’s for permuting factors with different indices.

Now for a composition v, we consider the simplest summand V,, ®- - -®V,,, corresponding
to v, namely, the summand

V1®V1 R ® Vd®Vd 7
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which is obtained by taking a; = --- =a,, =1, ay,41 = -+ = Ayy+1, = 2 and so on. At
this point, it remains to show that the subalgebra

$1(kBy,) ®@ -+ ® ¢pa(kB,,)

of its endomorphism algebra is obtained in the image of kB . This is the case since this
subalgebra is generated by the restrictions of the operators oy, ..., o,,-1, and oy, 41, ...,
Ovy+vs—1, and so on. O

We can strengthen the conclusion of the preceding theorem if we add some natural
assumptions on the centralizers of the algebras Ap. First, assume that forallb=1, ..., d,
the image of the braid group B, generates the centralizer algebra End Ab(%@m) for all
n > 0. In other words, the maps ¢, are all surjective. In this case, the formula in the
second item becomes obviously:

O(kFBan) ~ P Matn (EndA1 (Vi) @+ @ Bnda, (V). (3.4)
vEgn

Comparing with Lemma 2.1, we see that this is the full centralizer End4(V®") if we
add the further assumption that Hom, (V,®", V;®*) = 0 if r # s. We summarize in the
following statement.

Corollary 3.4. For allb =1, ..., d, assume that Homa, (V;®",V,®*) = 0 if r # s and
that for all n > 0, the image of the braid group B, generates the centralizer algebra
Enda, (V;®"). Then the centralizer algebra End 4(V®™) is generated by the image of FBg.,.

Example 3.5. The assumptions of the corollary are satisfied for Ug,(gly) with its funda-
mental vector representation or for U,(gly) with any of its irreducible representations.

Note that the assumption Homy, (V;", V;®%) = 0 if r # s will not always be satisfied if
Ay = Ugy(sly). For example if V; is the vector representation, we have

Hom , (V, ™, Vi) £ 0 for any k > 0.
Here the assumption will be satisfied if r, s < V.

3.3. The idempotents E; ;. We define elements F; ;, for 4,7 = 1,...,n, which will be
important in the following. They are defined in the commutative subalgebra of the group
algebra kF By, generated by t1,...,t,:

d
1 _
Eyj=22 tit;" and  Ei=Ei .
a=1

The elements E; ; are idempotents, which satisfy obviously E; ; = E;; and:

tiEi,j = tjEi,j = Ei,jti = Ei,jtj . (35)
Moreover, their relations with the other generators si,...,s,_1 are
skEij = Es, (i),5,(j)Sk and in particular siE; = E;s; . (3.6)

To calculate the images of the idempotents E; ; by ®, the map given in Theorem 3.3, we
introduce the following operator on V ® V:

d
e =P ldy,ev, P Oyev.
b=1 btc
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or equivalently
vw ifv,weV,,

® =
e {0 if v e Vy,w eV, with b# c.

For any i # j, we denote ¢; j the endomorphism of V®™ acting as ¢ on factors ¢ and j, and
as the identity on the other factors. As before, we denote ¢; = €; ;1.

Proposition 3.6. We have:
gij = ®(Eij) andin particular e = ®(E;) .

Proof. We have that ®(E; ;) is e, 77, * and thus if we have a vector in V} in the ith

factor and a vector in V, in the ;' factor, we find that it is multiplied by 522:1 ¢lb—ca,
This is 1 if b = ¢ and 0 otherwise. 0

3.3.1. Framization of a characteristic equation. The idempotents E; ; and their images ¢; ;
are useful to find relations satisfied in the centralizer algebra End 4(V®") in addition to the
relations of the framed braid group. We show how it works when we know a characteristic
equation for the maps R®) e End(V, ® V3), namely we assume that we know non-zero
elements A, ..., A\; of k such that:

(R® —x)...(R® —x.)=0, b=1,....,d.

The point is that the eigenvalues of R® are the same for all b=1,...,d.
This assumption easily implies the following relations for the images of the generators
of the framed braid group FB, in the centralizer End4(V®"):

81(0’1‘ —)\1)...(0'1' _)\k) =0 and (1—&)(0‘? —1) =0. (37)

This is immediate, since o; is the flip operator when restricted to the kernel of the projector
€i, while it is the direct sum of the operators Rz(b), b=1,...,d, when restricted to the
kernel of 1 —¢;. We note that any linear combination with two non-zero coefficients of the
relations above implies both relations. Explicit examples will be given in § 5.

4. THE FRAMED AFFINE BRAID GROUP AND ONE-BOUNDARY CENTRALIZERS

In this section, we give the variants of the preceding section involving the affine braid
group and its framed version when we consider the one-boundary setting.

4.1. The affine braid group and its framed version. We denote by B2 the affine
braid group (or type B, Artin-Tits braid group) with generators sg, $s1,...,$,-1 and
defining relations:

S$0S150S1 = 81505150
$iSj = Sj8; for all 4,7 =0,1,...,n — 1 such that |i — j| > 1, (4.1)
SiSi+1Si =  Si+1SiSi+1 for all i = 1, ey, — 2.

The framed affine braid group FB;H is defined as the wreath product B 7Z/dZ,

n
where the braid group B acts on (Z/dZ)" as follows. The generators s, ..., s, 1 act
as permutations as before, and the additional generator sy acts trivially. An explicit
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presentation of ]-"iji is with generators sg, s1,...,S,—1 and t1,to,...,t,, with defining
relations (4.1) and
t? =1 forallj=1,...,n,
titj = tjtl' for all 2,] = 1, ey N, (4.2>
tiso = sotj forallj=1,...,n,
tjsi = sitsi(j) for alljzl, ceey nandizl, ceey n—1.

4.2. Framed affine braid group and centralizers. As before for the one-boundary
situation, we add into the picture an A-module M = M; X --- X My where each M, is an
Ap-module, and we look at the centralizer of A in M @ V",

Note that we keep our assumption (3.1) of the existence of a morphism from the usual
braid group to each centralizer Enda,(V,®"). Here, we assume moreover that, for all

be{l,...,d}, we have an element K® ¢ Endy, (M ® Vj) satisfying on M, ® V, ® V4

~ N ~ ~ N v N

KO RO O RO) — [0) g ®) ) g (b)

where we have extended K©® to M, ® Vb®2 by acting trivially on the last factor and R®)
to My ® Vb®2 by acting trivially on the first factor. This means that we have the following
morphism:

KBy = Enda, (M, V")
o so — KO (4.3)
si = RY (i=1,...n-1),
where we have extended naturally K® to act on My, ® Vb®" by acting trivially on all but

the two first factors (also Rz(»b) acts on Vb®” as before and trivially on M}). The morphisms
¢ extend the morphisms ¢, from (3.1).

Example 4.1. The main example of such maps arises from the double braidlng in a
braided category. If M and Vj, are two objects of a braided category, the map KO =
RVb MbRMb v, satisfy our assumptions. In the case of quantum groups, this situation have
been considered, for example, in [33].

Our goal now is to define elements realizing the framed affine braid group in the cen-
tralizer Enda(M ® V®"). We have already the action of the framed braid group on
V& realized by the elements 71, ..., 7, and o1, ..., 0,_1. We extend naturally these
actions to M ® V™" by acting as the identity on M. So it remains to define an operator
00: MV — M®V. Recall that V =V, @& --- ® V. We will define oy on each summand
in the direct sum

M@V=MeWVié oMoV, .

Let be {1, ..., d} and write
MaVy=(MR - KME---KM) V.

In words, the action of oy is defined by acting with K on “legs” Mj, and V}, of the tensor
product and trivially on the other factors. More precisely, we define

oo (ml®"'®mb®"'®md)®vb'_>2(ml®"'®m/®"'®md>®'U,7

where K®) (my @) = S m’ @', Of course oy is extended to M ® VE™ by acting trivially
on the last n — 1 factors.
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We have the natural one-boundary generalization of Theorem 3.3. Recall that the maps
#3 denote the morphisms from the affine braid group to the centralizers End 4, (Mp@V,E™),
set up in (4.3).

Theorem 4.2. Let n > 1.
(i) We have the following morphism into the centralizer of A in M @ VE":

kFBiY,  — Enda(M ® V")

o ti — 7 (i=1,...,n),
S; — 0; (i:O,...,n—l).
(ii) We have:
o (kFBYT,) = @ Mat(n) (617 (kBi) @ -~ @ 63T (kBT)). (4.4)
vEgn

Proof. (i) We only need to check that og is in the centralizer and that the relations of
F B?li involving sg are satisfied. Write the following immediate decomposition as a direct
sum of A-modules:

d
Mo Ve = @ MRVy, @ - ®V,, . (4.5)

ai,...,an=1

On a given summand, the map oy acts as K(@1) on the factors M,, and V,, and trivially
elsewhere. This commutes with A since only A,, acts non-trivially on these factors and
its action is centralized by Kla),

For the relations of ]-"Bffi that we need to check, the commutation of oy with all
generators 7; is immediate since 7; acts as the multiple of the identity ¢%~!Id on the
summand M ® V,, ® --- ® V,,, which is stable by 0g. The commutation of o¢ with

09, ..., onp—1 is also immediate. For the braid relation involving sg, let us apply it on one
given summand M @ V,, @ --- @V, .
If a1 = as = a, the relation acts non-trivially only on the factors M,,V,,, Vs, of

the tensor product, and it becomes on these factors the relation K@ R @ pl) —
R@ (@ R(a) (@) " This is satisfied by our running hypothesis (4.3).

If a1 = a and ao = b with a # b, the relation acts non-trivially only on the factors
Mg, My, V,, Vy of the tensor product. Ignoring the other factors, let us apply it on a vector
of the form mg ® my @ vy @ vy. Denote K@ (m, @ v,) = Xm’ @ v/ and KO (my, @ vy) =
S m” @ 0", and recall that o1 acts on v, ® vy, as the flip. An easy calculation shows that
both sides of the relation ogoi0001 = o109010¢ gives the same result:

ma®mb®va®vbt—>Zm/®m"®v/®v”.

(ii) We can reproduce verbatim the reasoning in the proof of item (ii) of Theorem 3.3
until we are left with checking that we have in the image of ®*f the subalgebra

" (xB57) @ - @ 0T (kB
of the endomorphism algebra for the summand
M®V1®l/1 ®'“®Vd®yd .

The first factor ¢§1 (kBT) is generated by the operators oo, 071, ..., 0, —1. For the action
aff (s9) of the generator sg of Bff, one needs to consider the operator oy, ...o10007 . ..
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0;11, since the 0;’s around g act as permutation operators in this case. The remaining
generators of ¢4 (kBall) are obtained with y41, ..., 0y, 41,—1. And similarly one can get

any qﬁgﬁ(kBﬂf) in the subalgebra generated by og,01, ..., opn_1. O

With the same reasoning as before Corollary 3.4, we get its analogue for the one-
boundary case.

Corollary 4.3. Assume that for allb=1, ..., d, the image of the affine braid group Bf;ﬁ
generates the centralizer algebra Enda, (M, ® V,°") for allm > 0. Then we have

o (kFB) ~ P Mat(ny (Enda, (My ® V") @ - @ Enda, (Mg @ V")) . (4.6)

vEqn

If moreover we assume that Hom 4, (M, ® VZX)T,MZ, ® V})®S) = 0 when r # s, then the
centralizer algebra Ends(M @ V®™) is generated by the image of J-"Bgi.

Example 4.4. When A, = U,(gly) and V4 is the vector representation, the surjectivity is
satisfied [33]. If M, is a finite-dimensional irreducible representations, the other assump-
tion is satisfied as well. Again, one has to be careful for this second assumption in other
examples such as Uy(sly).

5. RECOLLECTION OF FRAMIZATIONS OF ALGEBRAS

In this section, we consider several algebras appearing in the literature as framizations
and we provide a new example for the Birman—Murakami—Wenzl algebra. Each exam-
ple will be seen as a centralizer algebra for a certain (product of) quantized enveloping
algebras.

In this section, we take an indeterminate g and the field k = C(q).

5.1. The quantum Schur—Weyl duality. We recall the well-known statements called
quantum Schur-Weyl duality [20, 37]. Let N > 1 and U,y(gly) denote the quantum group
associated to the Lie algebra gly. Let V' be the vector representation of U,(gly). The
centralizer Enqu(g[N)(V®”) is described with the help of the Hecke algebra H,. We fix
the normalizations such that the Hecke algebra H,, is defined as the quotient of the braid
group algebra kB,, by the following quadratic relations:

st=(g-q)si+1, i=1,...,n-1 (5.1)
Theorem 5.1. There is a surjective morphism from the Hecke algebra to the centralizer:
¢ : H,— Endy, g, (VE") . (5.2)

It is an isomorphism if and only if n < N.

Moreover, if n > N, the kernel of ¢ is generated by the g-antisymmetrizer on N + 1-
points. For N = 2, the (unnormalised) g-antisymmetrizer on 3 points is given by

1

Ay =1—q's1 —q 'so+q 152+ q 25981 — ¢ 518251 . (5.3)
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5.2. The Yokonuma—Hecke algebra. For each b = 1, ..., d, we take A; to be the
quantum group Uy(gly,), for some integer N, > 1, and Vj, its vector representation of
dimension N,. Then the algebra A is

A= UQ(g[Nl) XX UQ(Q[Nd) = Uq(g[N1 Q- D g[Nd) )

the quantum group associated to the Lie algebra of block-diagonal matrices with block sizes
Ni, ..., Ng. The representation V of A is the natural vector representation of dimension
Ni+---+ Ny

The Yokonuma-Hecke algebra YH,,, is defined as the quotient of the framed braid
group algebra kF By, by the additional relation

s?:(q—q_l)Eisi—i—l, i=1,...,n—1, (5.4)
where we recall that F; = % St 1
Theorem 5.2. There exists a surjective homomorphism
® : YHg, — Enda(V®") .
It is an isomorphism if and only if n < Ny for all 1 < b <d.

Proof. Recall that we already have the algebra morphism
® : kFBa, — Enda(VO™")

following from Theorem 3.3. From the discussion of the action of E; in § 3.3, namely
Formula (3.7), we know that the following relations are satisfied in the image by ®:

Ei(sf—<q—q*1)si—1>:0 and (1—Ei)(322—1>:0.

The sum of these two relations gives the additional relation (5.4) of the algebra YHg .
Therefore, the morphism ® factors through the algebra YHg,,.

The surjectivity is obtained by an application of Corollary 3.4, whose hypotheses are
satisfied here.

If n < Ny for all 1 < b < d, the centralizers End Ab(Vb@m) are all isomorphic to the Hecke
algebra H,,, from the usual Schur—Weyl duality in Theorem 5.1. Thus the second item of
Theorem 3.3 reads in this case:

®(YHq,) ~ Mat () (Hy, ®---®@H,,). (5.5)
vEgn

The right hand side has dimension

> <Z>2V1!...Vd! Y <Z> o

vEgn vEgn

It is easy to see that YHg, is spanned by elements t{*...t%"s,, where a1, ..., ap €
{1, ..., d} and elements s,, are indexed by elements w of the symmetric group &,, (see
for example [10, 21]). This shows that the dimension of YHg,, is less or equal than n!d".
We conclude that ® is an isomorphism. O

Remark 5.3. The proof shows that the Yokonuma-Hecke algebra YH,, is isomorphic
to the direct sum of matrix algebras in the right hand side of (5.5). This was also shown
directly in [18] over the ring C[g, ¢~ !]. The representation theory of YH,,, can be deduced,
see [10, 19] and § 2.1.1.
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5.3. Framization of the Temperley—Lieb algebra. We keep the setting of the pre-
ceding section, 4, = U,(gly,) and V} the vector representation of dimension N, and we
consider the case Ny =--- = Ny = 2.

The Temperley—Lieb algebra TL,, is defined as the quotient of the Hecke algebra H,, by
the additional relation, if n > 2,

1—q sy —q tsg+q 25189 + ¢ 2581 — ¢ s1s981 =0 .

Note that this relation implies the same relation with si, s replaced by s;,s;41. Since
all Np’s are equal to 2, the Temperley—Lieb algebra is isomorphic to the centralizer
EndAb(Vb®”) forany b=1, ..., d, as was recalled in § 5.1.

The following analogue of the Temperley—Lieb algebra in the framized situation was
defined in [17], see also [9, 16].

Definition 5.4. The framization of the Temperley-Lieb algebra, denoted FTLg ,,, is the
quotient of the Yokonuma-Hecke algebra YH,,, by the relation:

EqEs (1 —q 's1 —q tsa+ g %s1s2 + g 28981 — q73818281> =0. (5.6)

Here again, the same relation with indices 1, 2 replaced by 7,7+ 1 is implied. Note that
from the properties of the elements F; recalled in § 3.3, the product FyFs commutes with
s1 and so.

Theorem 5.5. The algebra F'TLy,, is isomorphic to the centralizer Enqu(g[g)(V®”) where
V' is the vector representation of dimension 2d.

Proof. We already have the surjective morphism
® : YHqn — Endgy g (V")

from Theorem 5.2. First we need to check that the defining relation (5.6) of FTLg,, is
satisfied in the image by ®. From the description of the image by ® of the idempotents
FE; in Proposition 3.6, we have that the product F1FEs acts as follows on V@V ® V: it
acts as the identity on subspaces of the form V, @ V, ® V,, where a =1, ..., d, and acts
as 0 on all other subspaces V, ® V, ® V..

On subspaces V, ® V, ® V,, the relation (5.6) is satisfied since the g-antisymmetrizer As
acts as 0 from the usual Schur—Weyl duality, and on other subspaces it is trivially satisfied
since 1 Ey acts as 0.

Therefore, the morphism & factors through the algebra FTLg4,. The second item of
Theorem 3.3 reads in this case:

®(FTLyy) ~ P Mat(n) (TLy, @+ ® TLy,) . (5.7)

vEgn
To conclude that ® is an isomorphism, one can show that the dimension of FTLg,, is less

or equal than the dimension of the right hand side. This can be found in [9]. O

In [9] the algebra FTLg,, is directly shown to be isomorphic to the direct sum in (5.7)
and the representation theory is described. This is an example of the general setting in
§2.1.1.
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5.3.1. The Complex Temperley—Lieb algebra. Variants of the algebra FTL,,, were defined,
see [9, 16]. In particular, the so-called complex Temperley-Lieb algebra CTLg,, is defined
as the quotient of the Yokonuma-Hecke algebra YHg, by the relation:

d
1 _ _ _ _ _
B Z t‘ftgtg (1 —q lgy — q Loy + q 25189 + q 25981 — q 3313251) =0. (5.8)
a,b,c=1
From the point of view of the action of the algebra YHy, on V®" from the preceding
sections, the meaning of the prefactor

d d
% > ththts = (; > t‘f) E\Es
a,b,c=1 a=1

is easy to explain. It acts on V®V ® V' as follows: it is proportional to the identity on the
subspace V1 ® V1 ® Vi, and it acts as 0 on all other subspaces V, ® V;, ® V.. In particular,
on all these latter subspaces, the relation (5.8) is automatically satisfied. On the subspace
Vi ® Vi ® V; it is satisfied only if the dimension of V; is 2.

From the preceding discussion, using the same reasoning as in the preceding subsection,
we get the following interpretation of the algebra CTLg,, as a centralizer. We need to take
A=U(gly ®gly, - D gly,) (and V is of dimension 2 + Na + - - + Ng).

Theorem 5.6. There exists a surjective homomorphism
® : CTLg, — Ends (V") .
It is an isomorphism if and only if n < Ny for all 2 < b < d.
Again, as in the preceding subsection, we recover the isomorphism

CTL4n ~ P Mat (n) (TL,, ®H,,®---®H,,),

vEgn

which was proved directly in [9] along with the representation theory of CTLg ,, which is
a particular case of § 2.1.1.

Remark 5.7. It is straightforward to generalize the above picture, by taking various
idempotents and various g-antisymmetrizers in relations similar to (5.6) or (5.8), in order
to relate to centralizers End4(V®") for various values of Ny, ..., Ng. For example, one
can take s € {1, ..., d} and replace the prefactor in (5.8) by % Zg,b,c:l ¢os=Dgatbis to
relate to the centralizers when N is of dimension 2 and other Ny’s arbitrary.

Remark 5.8. We conclude from this subsection, as was also advocated in [9], that the
most natural framized versions of the Temperley-Lieb algebra are, first, the algebra FTLg ,
and, second, the algebra CTLg,. The other variant called Yokonuma-Temperley—Lieb
algebra, see [16], does not seem to be naturally related to any centralizer.

5.4. Framization of the Birman—Murakami—Wenzl algebra. In this section, we
work over the field k = C(¢,a) with two indeterminates. The Birman-Murakami-Wenzl
algebra, BMW algebra for short, is defined as the quotient of the braid group algebra kB,
by the additional relations

eisi =a e fori=1,...,n—1, (5.9)

eisflei = atle for i —j] =1, (5.10)
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where

=i (5.11)
q—q !

We will denote this algebra by BMW,,(¢,a) or BMW,, if the parameters are clear from
the context. As a consequence of the defining relations, the generators s;’s satisfy a cubic

relation:
(si — a_l) (312 — (q - q_1> si — 1) = 0. (5.12)

The quotient by the relations e; = 0 gives back the Hecke algebra. Other implied relations
in BMW,,(¢,a) are

a—al
el = (q—ql +1)e;, (5.13)

eieje; = e; for |i—j|=1. (5.14)

The algebra BMW,, can be seen as a deformation of the Brauer algebra and its dimension
is equal to (22722!! =(2n-1)-2n—-3)---5-3- 1.

An instance of Schur—Weyl duality [37, Sections 5 and 6] shows that for specific spe-
cializations of a, this algebra is related to a centralizer algebra for U,(sp,y) or Ug(soan).
Let V' be the vector representation of Ugy(spyy) or Uy(soan).

Theorem 5.9.

(1) Specialize a to q
the centralizer

6 : BMW, (q,qul)—>Enqu(502N) (ven (5.15)

N=1_ There is a surjective morphism from the BMW algebra to

It is an isomorphism if and only if n < N.
(ii) Specialize a to —q™¥ 1. There is a surjective morphism from the BMW algebra to
the centralizer

6 = BMW, (q,—¢"*") = Endy, (g, (V") . (5.16)
It is an isomorphism if and only if n < N.

Remark 5.10. A similar statement also exists for Uq(502N+1) but one needs to add a
square root of gq.

In [23], a definition of the framization of the BMW algebra is proposed and seems not
to be related to the context of the present article. We propose a different definition for
the framization of the BMW algebra that we can relate with a centralizer. Recall the
idempotents F; introduced in § 3.3.

Definition 5.11. The framization of the BMW algebra, denoted FBMW (¢, a), is the
quotient of the framed braid group algebra kF B, by the additional relations

eisi =a e fori=1,...,n—1, (5.17)
eisﬁleiEiH = aileiE’Hl for ¢ = 1, ey N — 2, (5.18)
where
-1
S; — S,
e, =F; — ——— . 5.19
(2 (2 q _ q_l ( )
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Note that the definition of e; in the algebra FBMW g, (g, a) involves the idempotent E;.
As a consequence, the cubic relation (5.12) is replaced by

(si — ail) (512 — (q — q71> s; E; — 1) =0. (5.20)

The quotient by the relations e; = 0 now gives back the Yokonuma—Hecke algebra. As for
the usual BMW algebra, some additional relations are implied.

Lemma 5.12. The following relations are satisfied in FBMW g ,,(q, a):

eiEi = €4, (5'21)
a—a!

612 = <q — q_1 +1 €i, (522)

eiE; = Eje; for alli,7j, (5.23)

eieje; = e F; forli—j|=1. (5.24)

Proof. Using the definition of e; in terms of F; and s; and the relations (3.5), we have that
61'152' = ti+1ei. Therefore
tie; = atisie; = asitip1e; = asieit; = eit; = tiy1€;

and t;t;. +11 e; = ¢;. Then Relation (5.21) follows from the definition of F; in terms of ¢;, t;41.

Relation (5.22) follows immediately from (5.21).

As for Relation (5.23), first note that s; commutes with Ej if j # i + 1. Moreover, s;
commutes with F; 1 F;. Recall also that all E;’s commute. Now we claim that these facts
together with (5.21) imply Relation (5.23). First, for j # i+ 1, this is immediate. Second,
for j =i+ 1, we have:

Eit1e;=Ei1Bie; = e i1 By = e BBy = e Bt .

Finally, Relation (5.24) immediately follows replacing e; by its definition and using the
previous relations. O

The main purpose of Definition 5.11 is that the framization of the BMW algebra relates
to some centralizers of Uy(soon @ - - - @ s02n) and Uy(spyy @ - - - @ spyy ). Note that, unlike
the gl situation with the Yokonuma-Hecke algebra, here we have a single integer N
involved. This is because this dimension fixes the value of the parameter a and therefore
can not vary.

Proposition 5.13.
(i) For each b = 1,...,d, we choose the algebra Ay, = Uy(soan) and Vj its vector
representation of dimension 2N. There exists a homomorphism
& : FBMW,, (q, pal *1) — Endy (VE) .

(it) For each b = 1,...,d, we choose the algebra Ay, = U,(spyy) and Vj its vector
representation of dimension 2N. There exists a homomorphism

® : FBMW,, (g, —¢"*") — Enda (V") .

Proof. We only prove the case of A = U,(s09n)®?, the case of spyy is similar. We already
have the algebra morphism

® : kFBg, — Endy (VE")
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following from Theorem 4.2. It suffices to show that the relations of the framed BMW
algebra are satisfied. Let v = v; ® - - - ® v, € V& with v; being in the summand Va, of V.

Let us start with (5.17). If a; # a;+1, then E; acts by 0 and s; acts on v by permuting the
components vg, and vq, . Therefore the element e; acts by 0 on v and the relation (5.17)
is satisfied. If a; = a;+1, then E; acts by the identity on v and the relation (5.17) is
satisfied by Theorem 5.9.

Relation (5.18) is proven in the same fashion. The term e;F;11 acts on v by 0 unless
a; = aj+1 = aj+2 where it acts by the identity on v. In that second case, Relation (5.18)
is once again a consequence of Theorem 5.9. g

From § 3, since the morphisms ¢ are surjective, we have in both cases above:

D(FBMW 4,0) = €D Mat ) (Enda, (V™) ®-- @ Enda, (V) (5.25)

vEgn

where for simplicity we omit the parameters of the algebras. Moreover, if n < N, the
morphisms ¢ are isomorphisms, and therefore

O(FBMWq,,) = @) Matny (BMW,, ®--- @ BMW,, ). (5.26)
vEgn v
At this point it is natural to ask about the injectivity of ®. One way to answer this is to
have an upper bound on the dimension of FBMW,, corresponding to the dimension of
the right hand side of (5.26).
Actually, we conjecture the following natural isomorphism theorem similar to the ones
obtained for the Yokonuma—Hecke algebra and their Temperley—Lieb versions.

Conjecture 5.14. Over some subring of C(q,a), we have

FBMWq,, = €D Mat ) (BMW,, ®--- @ BMW,, ). (5.27)

vEgn

In particular, we conjecture that the dimension of the algebra FBMW, ,, is:

2
dimFBMW,,, = (") @)l (2va)l

ny.l !
vegn 2 rmi...rq-

This was checked for small values of n and d. For d = 2, the sequence of dimensions start
with 1,2,10,84,1014,16140 for n = 0,1,2,3,4,5. This does not seem to be on [32].

5.5. Affine and cyclotomic Yokonuma—Hecke algebras. For b =1, ..., d, we take
once again A, = Uy(gly,) and V; the vector representation of dimension N,. We also take
a module M} in the category O for U,(gly,). In this case, we have for each b a morphism

o M Endg, (M, @ V)

where the affine Hecke algebra H‘;‘LH is the quotient of the algebra of the affine braid group
k[B] by the Hecke relation s? = (¢ — ¢ ')s; + 1 forall i = 1,...,n — 1. We refer
to [33] where it is also shown that this morphism is surjective if M}, is a finite-dimensional
irreducible module. Another situation where qb?;‘ff is surjective is when M} is a parabolic
universal Verma module, see [26].

Now recall from [10] the definition of the affine Yokonuma-Hecke algebra YHZ%Z as the

quotient of the algebra k[F Bgi] of the framed affine braid group by the quadratic relation
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s?=(q—q ')E;s;+1foralli =1, ..., n—1. The following result is obtained immediately
combining the results from § 4.1 with the calculation already made in Theorem 5.2.

Theorem 5.15. There exists a homomorphism
o YHT — Enda (M @ Vo) .

It is easily obtained using the results from § 4.1 that it is surjective if for example each
My is a finite-dimensional irreducible module or a universal parabolic Verma module.
Now for simplicity, assume that all Np’s are equal to a number N and that all M,’s are
the same finite-dimensional irreducible U, (gly)-module M ). Then all maps 3 factors
through the same cyclotomic quotient (or Ariki-Koike algebra)
BT HYS, - Bndg, (M@ VE")

N

where HJ7, is the quotient of HT by the relation (sg — A1) ... (5o — Am) = 0. It is clear
that such a relation must exist since sq is acting on a finite-dimensional space. Of course,
the eigenvalues A1, ..., Ay, depend on the choice of the module M ). The number m of
eigenvalues is the number of irreducible components in the decomposition of M(©® & V(©)
and these eigenvalues are computed for example in [13, Remark after Proposition 5.1]
or [33]. We do not need to know the explicit values for our purposes here.

In this situation, we have obviously that the morphism ®*¥ from Theorem 5.15 factors

through a quotient of YH?{EL called in [10] the cyclotomic Yokonuma—Hecke algebra. This

is defined as the quotient of YHfo1 by the same relation (sg— A1) ... (so — Ap) = 0 and we
denote this algebra by YHS®

d,m,n"’

We now give conditions when the map ®*f from Theorem (5.15) is an isomorphism be-
tween the cyclotomic Yokonuma—Hecke algebra and the endomorphism algebra End 4 (M ®
V"), Suppose that M) is the finite dimensional representation of U, (gly) associated
to the partition p, which is of length at most N. We will use several times below the
known decomposition of the tensor product M©) @ V() (see for example [33]). The num-
ber of summands of M© @ V(© is given by the number of partitions of length at most
N obtained from p by adding one box. Denote by 1 =r; < ro < .-+ < rp, < N (resp.
€1 > cg > -+ > ¢p) the rows (resp. columns) of addable boxes of p.

Lemma 5.16. The map ¢3: HYS, — End 40 (M© @ (V)& is an isomorphism if

m,n

and only if n <c;—cip1, n <rig1 —r;andn < N+1—ry, foralll <i<m.

Proof. This follows from [33, Theorem 6.20], which provides the dimension of the endo-
morphism algebra. An equivalent argument would be to compare the Bratelli diagram
describing the branching rule of M @ (V(O))®” and the poset of m-partitions: they are
equal at the levels n satisfying the condition of the lemma, which implies the equality of
dimensions of HYS, and End 4. (M 0) @ (VO)en), O

n

Using the results obtained in § 3 we immediately obtain the following proposition.

Proposition 5.17. The map ®: YHYS = — End 40 (M @ V®") is an isomorphism if

d,mmn

and only ifn < c¢; —cip1, n <rig1 —riandn < N+1—ry foralll <i<m.
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Proof. By Corollary 4.3 we have an isomorphism

o (YHSY, ) ~

d,m,n

@ Mat(z) (EndA(O) (M(O) ® (V(O))®V1) . ®End 0 <M(0) © (V(0)>®ud)) '

vEgn

Using Lemma 5.16, we obtain that End 4 (M©) @ (V(©0))®¥k) ~ HYS forall1 <k <d.
Therefore @ (YHS'® ) is of dimension

2
Z <Z> m”y! - mP gl = mn! Z <IT/L> = (dm)"n! = dim (YHZernn> ;

vEgn vEgn

and therefore ®* is an isomorphism. The last equality above is proved in [11]. O

As in the previous sections, we recover an isomorphism proved in [34]

YHES, =~ @ Mat(n (HYS, ©- - 0 HYS, ).

vEgn

Indeed, given d,n and m, it suffices to find a partition p and an integer N large enough
such that the conditions of Proposition 5.17 are satisfied. For example, one can choose
N > mn and p = (((m — 1)n)™, ((m — 2)n)", ..., n"), the exponent being repetition of
entries:

Similar results can be obtained if M©) is a universal parabolic Verma module, using
the surjectivity result in [26, Theorem 4.2].

Remark 5.18. We could as well consider specific choices of N and of M©), where the
quotient of HP isomorphic to the endomorphism algebra of M ) @ (V)& has an
explicit description in terms of generators and relations. For example,

(1) f N=2and M () is the k" symmetric power of the vector representation of glo,
then for n < k, the centralizer of M©) @ (V(9))®" is isomorphic to a specialization
of the blob algebra of Martin and Saleur [29], also known as the one-boundary
Temperley—Lieb algebra. See also [36] for generalizations to gl .

(2) if M is the irreducible representation of gly given by the partition ((N — 1)k,
(N —2)k,...,k), then for n < k, the centralizer of M @ (V(0)®" is isomorphic
to a specialization of the generalized blob algebra of Martin and Woodcock [30].

In these two cases, we leave to the reader to find a presentation by generators and
relations of the quotient of YHJ" =~ (m = 2 in the first case, m = N in the second

case) isomorphic to the centralizer End 4 (M ® V™), thereby defining framizations of the
one-boundary Temperley—Lieb algebra and of the generalized blob algebra.
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6. TIED BRAID ALGEBRA AND FIXED POINTS SUBALGEBRA OF k[FB,,]

In the section, we still suppose that d is invertible in our base field k and that a primitive
d*™ root of unity exists in k. We then fix once again a primitive d'" root of unity ¢.

6.1. Another presentation of the group algebra of FB,;,. We give another presen-
tation of the group algebra, over the field k, of the framed braid group. This is similar
to [19, Section 2.2], where another presentation of the Yokonuma—Hecke is given, in terms
of idempotents.

Definition 6.1. An ordered partition of n in d parts is a d-tuple (Iy, ..., I;) of subsets
of {1, ..., n} such that

(1) if a # b then I, N I, = 0,
(2) Lu---Ul;={1,...,n}.

We denote by Py(n) the set of ordered partitions of n in d parts.

Note that a part I, is allowed to be empty and that the order of the sets (I3, ..., I)
in such an ordered partition is relevant. A direct application of the multinomial theo-
rem shows that [Py(n)| = d". Another explanation of this equality is that the set Pz(n)
parametrizes the one-dimensional representations of the group (Z/dZ)"™, as developed be-
low. We define the position of j in an ordered partition I = (I, ..., I), denoted by
pos;(I), as the unique integer 1 < a < d such that j € I,.

Given an element I € Py(n), we define an element E; in the group algebra of the group
(Z/dZ)™, that we also consider in the group algebra of the framed braid group FBg y, by

&_H<

=1

1 d
EZ l(pos;(I)—1) z) ) (61)

The elements (Ey); ¢ p,(n) form a complete family of mutually orthogonal minimal central
idempotents in k[(Z/dZ)"]. They satisfy:

tiE; = Egt; = (*(- 1By

Note that we can recover the element t; from the Ej’s:

d
ST SeH
a=1 IEPd(n)
pos,(1=a

Since {th - thro |1 < k; < d,o € B,} is a basis of k[FBg,,] we deduce that
{Ero|1 € Py(n),o € By}

is a basis of k[FBg,]. We also have immediately the following alternative presentation of
the algebra k[FBg.,).
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Proposition 6.2. The group algebra k[FBg,| has a presentation with generators si, ...,
Sp—1 and Er, I € Pg(n) with relations

8iSj = 8jSi, if li—jl>1,
5i8jS; = 558357, if ’Z - ]’ =1,
ErE; =01, for I,J € Pyp(d),
> Er=1,
Ie€Pr(d)
siEr = Eg, (154, for1 <i<n and I € Py(n).
Here, s;(I) denotes the element of Py(n) obtained from I = (I, ..., Ig) by applying the

transposition (i,i+ 1) to each I.

6.2. Action of &; on k[FB,,]. The above presentation of the algebra k[FBg,| makes
apparent an action by automorphisms of the symmetric group &4. Indeed the symmetric
group &4 acts on the set Py(n) by

w - (Il, e Id) = (wal(l), e wal(d)) forw e Ggand I € Pd(TL)
This action naturally endows k[FBg,,] with an action of &4 by linearly extending
w- (Ero) = Eyro, forwe &y, I € Py(n)ando € B,. (6.2)

From the presentation in Proposition 6.2, it follows easily that this induces an action of &4
on k[FBg,] by automorphisms of algebras (the only argument needed is that the action
of &4 on Py(n) permuting the subsets commutes with the action of &,, permuting the
letters 1,...,n).

6.3. Fixed points subalgebra (k[]—'Bdm])Gd. We consider the set of orbits of Py(n)
under the action of the symmetric group &y:

Pa(n)/Sa~{{L,....La} | LHU---Ul;={1,...,n}and [, NI, =0 for 1 <a#b<d}.

Once again, we stress that some of the I, might be empty, that is, this set is the number of
ways of writing {1, ..., n} as a disjoint union of d subsets, some of them possibly empty,
and the order of the subsets not relevant. Therefore, this set is in bijection with the usual
partitions (that is, unordered partitions) of {1, ..., n} in at most d non-empty subsets.
We denote by Bg(n) the cardinal of Py(n)/Sy4. It is easy to see that:

Buln) = [Puln) /€4 = 3 (Z)l,ll, , (63

AFn
) <d
where [; in the sum is the number of parts of A equal to i, namely \ = (141,22, ... nln).
For d > n, since we can not find more than n non-empty disjoint subsets of {1, ..., n},
we recover the usual partitions of {1, ..., n} (with no restriction on the number of parts).

Therefore, if d > n, By(n) does not depend on d anymore and is equal to the Bell number.
Given I € P4(n) we denote by [I] its orbit in P4(n) under the action of &4. For such
an orbit [I], we then define an element Ej;; € k[FBg,,] fixed under the action of &4:

By= . Er.

Je[I]
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From the formula (6.2) giving the action of G4 on the group algebra of FBgy,, it is
immediate that the set

{E[I]U‘ [I} S Pd<n>/6d70 € Bn}

is a k-basis of (k[FBg]).
Finally, recall that we have introduced for 1 < i, j < d the elements

d
1 _
Ei,j = 8 E t?tj a and El = Ei,i—l—l .
a=1

Multiplying E; j by > jep, () Er (which is 1), we obtain that:

E, ;= > Ey.
IePn(d)
pos, (I)=pos; (I)

Moreover, one also easily checks (as in [19, Lemma 4.1]) that

Ep= I  E; Il (-E,.
1<%4,j<n 1<4,5<n
pos; (I)=pos; (1) pos; (I)#pos; (1)

A statement similar to [19, Proposition 4.2] follows straightforwardly.

Proposition 6.3. The subalgebra (k[}"Bdm])Gd of kK[FBaq)| is the subalgebra generated by
S1y «vvy Sn—1 and El, ey Enfl.

6.4. The tied braid algebra. The tied braid monoid has been introduced by Aicardi
and Juyumaya in [1]. In this section, we relate the algebra of the tied braid monoid to
the subalgebra of fixed points (]k[]:Bdm])Gd. This is similar to [19, Section 4], where a
relationship is obtained between the algebra of braids and ties and the fixed points of the
Yokonuma—Hecke algebra under the action of &g.

Let us start by defining the tied braid algebra as the algebra of the tied braid monoid.

Definition 6.4. The tied braid algebra TB,, on n strands is the k-algebra with generators

S1, ..., Sp—1 that we require to be Ninvertiblg and satisfying the usual braid relations,
together with additional generators Ey, ..., F,_1 satisfying the relations
E,E; = EE; forall 1 <i,j <n, E?=E;forall1<i<n,
§,F; = E,;5; forall 1 <i < n, EZ-E]- = Ejgi for |1 — 5] > 1,
E3;3; = 3;8,E; for |i — j| =1, B35 =557 Ej for |i — j| =1,

EZE]@ = EjgiEj = glE'jEZ for ‘Z _.7’ =1

Arcis and Juyumaya showed [5, Proposition 4.8] that the tied braid monoid is a semidi-
rect product between the partition monoid and the braid group. As a consequence, one
can describe a basis of the tied braid algebra. Since the elements s; for 1 < i < n satisfy
the braid relations, we have a well defined element ¢ € TB,, corresponding to an element
o€ B,.

For 1 <i<j<n we set
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and also E” =1fori € {1,...,n}. Note that Ei,z‘+1 - E,. Finally, a set partition of
{1, ..., n} having at most n non-empty parts can be identified with an unordered partition
[I] € Pn(n)/&,, and we set

fm= Il Eu
1<i<j<n
pos; (I):POSJ‘ ()

This element is an idempotent of TB,, and the description by Arcis-Juyumaya [5] of the
tied monoid as a semidirect product immediately shows that

{fma ‘ [I] S Pn(n),a S Bn}

is a basis of TBy,. Therefore, TB,, is free over k[B,| of rank the usual Bell number By, (n).
Moreover, a triangular change of basis easily shows that the elements f7) can be replaced

by the elements E (1] Where

Ep=II By II (1-Eu)-
1<i,j<n 1<i,j<n
pos; (I)=pos; (I) pos; (I)7pos; (1)

Similarly to [19, Corollary 4.5], we have:

Theorem 6.5. The following map defines a surjective morphism of algebras:
TBn — k[dem]Gd

gi'—>5i

E, — FE;
which is an isomorphism if and only if d > n.

Proof. The assertion that the assignment s; — s; and E, — FE; defines a morphism of
algebras boils down to a simple calculation using the relations in k[FBg,]. The surjectivity
follows from Proposition 6.3. If d > n, en element [I] € Py(n)/S, can be identified with
an unordered partition in P,(n)/&, (by removing some empty subsets in [/]). In this
case, one has immediately that a basis of TB,, is sent to a basis of k[]—"Bdm]Gd, and the
morphism therefore becomes an isomorphism.

If d < n, elements [I] € Py(n)/Sy are identified with a strictly smaller subset of
Pn(n)/S,, (the set partitions with at most d non-empty parts). In this case, a strictly
smaller subset of the basis of TB,, is sent onto the basis of k[F. Bdm]Gd and the morphism
cannot be injective. ([l

7. TIED BRAID ALGEBRA AND CENTRALIZERS OF TENSOR PRODUCTS

We now study the action of the tied braid algebra on centralizers, in the spirit of § 2.3.
We start from the construction of § 3, with the additional assumption that all bialgebras

Ai, ..., Aq are equal to one and the same k-bialgebra A and all modules Vi, ..., Vy
are equal to one and the same A®-module V(©):
A=A0R..8AOQ and V= =V;=VO |

So we have an algebra morphism from the braid group algebra to the centralizer of A©)
on (V)& (for any n > 0):

¢ : kB, — End 4 ((V<0>)®”> . (7.1)
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Note that in this section this single morphism plays the role of the morphisms ¢y, for all
b=1, ..., d. This allowed us to define, in Theorem 3.3, a morphism of algebras

P k[flgd,n] — Endy4 (V®n) . (7.2)

This morphism was given explicitly on the generators t;, s; of FBg,. Below we will also
give it on the new generators Ey, defined in (6.1), of k[FBg].

7.1. Centralizers of semi-direct product. As explained in § 2, we have the natural
action of &4 on A (permuting the factors) and the corresponding algebra A x &, acting
on V®", Moreover, we recall that:

End e, (V") = Endy (VO

The action of G, on the centralizer Ends(V®") is simply by conjugating with the ac-
tion of &4 on V®". We recall for convenience of the reader that we have the following
decomposition of V&

d
yen — @ Vo, @@V, (7.3)

ai,...,an=1
and that an element ¢ € G, acts by permuting the summands as
o Va1 K-V, — Va(al) (SRR Va(an) . (74)
Note that this is different from the action of &,, by permuting the factors.

7.2. Action of the tied braid algebra. The image of the element F; under the mor-
phism & in (7.2) is easily seen to be the projector onto one summand of the decomposi-
tion (7.3) of V&
(I)(E[) N VAL Vposl(I) Q& Vposn(l) . (7.5)
Indeed, recall that E; is the idempotent associated to the irreducible representation of
(Z/dZ)™ corresponding to t; — ¢P>i()=1 In view of the action of ®(t;) in Theorem 3.3,
the above description of ®(E7) follows immediately.
We are ready to state the general result relating the tied braid algebra with centralizers
of tensor products. Note that the images by ® of the elements s; and E; of the framed
braid group algebra were described explicitly in § 3.

Theorem 7.1. For any d > 1, we have a morphism of algebras
TB, — Endaxe, (V®")
U o Si o= O(sy) (1=1,...,mn—1), (7.6)
E, = ®E) (i=1...,n-1).
This morphism is surjective if the morphism ® in (7.2) is surjective.

Proof. We start by checking that the morphism ® in (7.2) is G4-equivariant and thus
induces an algebra morphism

K[FByn]® — Endy (VE)S (7.7)

The equivariance of the morphism ® on the generators s; amounts to the fact that the
action of &4 on V®" commutes with the image ®(s;). This follows easily from the de-
scription of ®(s;) = 0; in § 3. Indeed either ®(s;) sends a summand ...V, ® Vg, ... to
oo Vi ® Vg, ..., in which case it commutes with the action (7.4), or it acts inside a given
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summand ...V, ® V., ... (if a; = a;41) in which case its action does not depend on the
value of a;, since all algebras A are the same, and it also commutes with the action (7.4).

For the equivariance of the morphism ® on the generators E;, we have that ®(o -
Er) = ®(E,.r) acts as the projector on the summand Vi (0.1) @ -+ @ Vipos (0.1)- Since
pos;(o - I) = o(pos;(I)), it is equal to the conjugate by the action of o in (7.4) of the
projector on Vi (1) ® =+ @ Vjo (1)- This concludes the proof of the equivariance.

Composing the morphism in (7.7) with the one obtained in Theorem 6.5 sending TB,,
to k[FBa,)4, we get the morphism ¥

T : TB, — Ends(V®")% = End ge,(VE") ,

the last equality being item (i) in Lemma 2.5. The statement about the surjectivity of the
morphism follows from item (ii) in Lemma 2.5. O

7.3. Examples of algebras of braid and ties. In this section, we take an indeterminate
q and the field k = C(g).

7.3.1. The Hecke algebra of braids and ties. We take A(®) = U, (gly) and V©) the vector
representation of U, (gly) of dimension N. Then the algebra A is isomorphic to U, (gl%?)
and the representation V' is the vector representation of dimension dN.

The Hecke algebra of braids and ties BTY is the quotient of the tied braid algebra TB,,
by the additional quadratic relation of the Yokonuma—-Hecke algebra

§22 = (q — q_l) glEv’Z + 1.
This algebra was defined in [2] but we have slightly modified the name.
Theorem 7.2. We have a surjective morphism
) H ®
¥ . BT, — Enqu(g[%d)xed (V n) .
This is an isomorphism if and only if n < d andn < N.

Proof. We already have a surjective morphism TB,, — Enqu(g[gd)NGd(V@)”) thanks to
Theorem 7.1. It then suffices to recall that the quadratic relation is satisfied in the
centralizer as shown in Theorem 5.2.

Then we have to show that ¥ is injective if and only if n < d and n < N. One can
forget about the Uq(g[j‘?,d) x G g-module structure and consider only the resulting map to
Endg (V®™). Then the injectivity follows from the results of [39]. O

Here we take d = n and we use the above theorem for N > n. Applying the general
results from § 2.3, we deduce the following isomorphism

BT};I = @ Mat(z)/h!"-ln! (C@ll X xSy, (H)\l R ® H)\n)> , (7.8)
P\
where we recall that a partition A in the sum is written as (lll, o2 nl“), that is, [; is

the number of ¢ occurring in A\. The algebras H), are usual Hecke algebras. We recover,
with a slightly different formulation, an isomorphism theorem proved in [14].

Specifying the setting of § 2.3.2, we find an indexation of irreducible representations
over C(q) of BT by

(Np1yeeey Py A1y ooy Ay), where Abn, pi BN, AjE L,
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where we have identified the irreducible representations of the symmetric group and of the
Hecke algebra with partitions. The dimension of this representation is:

n\ [[i=; dim p; dim A;
A .. 0!

We recover the description of the semisimple representation theory of BTE, see [19, 38].
Note that the general formula for the total dimension of the direct sum of matrix
algebras simplifies nicely and we find:

dim BT}, = > <A> Azi = 'Z ( ) =n!B(n) ,

AFn

where B(n) is the Bell number. The sequence n!B(n) starting from n = 0 with 1, 1, 4, 30,
360 is the sequence A137341 on [32].

7.3.2. The Temperley—Lieb algebra of braids and ties. We keep the same setting and we
impose moreover that N = 2. In view of § 5.3, it is natural to define the Temperley—Lieb
algebra of braids and ties BTEL as the quotient of the Hecke algebra of braids and ties
BT by the additional relation:

EyEq (1 —q 8 — ¢ B+ ¢ 5% + g 25 — q_3§1§2§1) =0.
Theorem 7.3. We have a surjective morphism
¥ : BT," — End, U (014 %654 (vemy .
This is an isomorphism if and only if n < d.

Proof. We already have a surjective morphism in Theorem 7.2 from the Hecke algebra
of braids and ties BTH. Moreover, the fact that the additional relation defining BT "
is satisfied in the centralizer was already proved in Theorem 5.5. As for the preceding
theorem, the injectivity statement follows from the results of [39]. We skip the details. O

Applying the general results from § 2.3 (and taking d = n), we obtain the following
isomorphism in terms of usual Temperley—Lieb algebras:

BTTL ~ @Mat /l Lol (C@le...xeln (TL)\l R---® TL)\n)) . (79)
AFn
Specifying the setting of § 2.3.2, we find an indexation of irreducible representations over
C(q) of BT by
(A p1sooey Py Ay Ay),  where AEn, pibE N (U(ps) <2), Ak,

where we have identified the irreducible representation of TLj with partitions of £ with no
more than two parts. The dimension of this representation is the same as for the algebra
BT, The total dimension is:

2
Cy, ...C
dim BTV =} (Z) 7;1' l 2o
\en 10 ... lpt
where Cf = k—il(%f) is the Catalan number. This sequence starts (from n = 0) with

1,1,4,29,334,5512 and does not seem to be on [32]. The algebra BTEL is also called
partition Temperley—Lieb algebra, see [39, Section 5] and [22].
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7.3.3. The BMW algebra of braids and ties. Here we extend our ground field with another
indeterminate k = C(g, a). We define the BMW algebra of braids and ties BTBMW a5 the
quotient of the tied braids algebra TB,, by the relations:

€% = a e fori=1,...,n—1, (7.10)
e B; = e fori=1,...,n—1, (7.11)
eiﬁjileif?j = CbileiEj for |’L - j| = 1, (712)

—571
¥
e

m
N

where ¢; is defined as e; = E; — T.

Note that Relations (7.10)) and (7.12) were defining relations of the framization of the
BMW algebra FBMWg,. On the other hand, Relation (7.11) was a consequence of the
defining relations in FBMW, ,,. However, it was proved using the explicit definition of the
element F; in terms of ¢;,¢;11. Such an argument is not available here and that is why
we put (7.11) as a defining relation of BTPMW  And indeed one can check for n = 2 that
it is not implied by the other relations. It is easy to check that all other relations from
Lemma 5.12 are also satisfied in BTEMW,

In fact our goal is to have defining relations for BTE’MW which are enough to prove the
expected isomorphism:

BTT]?MW ~ @ Mat(:)/ll!---ln! (C@ll X xSy, (Bl\/[VV,\1 R R BMW)\n))
AFn

[}

BMW
Tn

and in particular, to lead to a resulting dimension of B given by

2
' 2210)0 L (2A0)!
dim BTBMW — n (21 n :

This sequence of dimensions starts (from n = 0) with 1,1, 5,48, 747 and is not on [32]. We
have checked that the defining relations above give the correct dimension for n < 3.

For some specializations of a, we leave to the reader to formulate the obvious analogues
of Proposition 5.13 (adding the &4-action into the picture, as above).
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