Root groupoid and related Lie superalgebras
Annals of Representation Theory, Volume 1 (2024) no. 4, pp. 465-516.

We introduce a notion of a root groupoid as a replacement of the notion of a Weyl group for (Kac–Moody) Lie superalgebras. The objects of the root groupoid classify certain root data, the arrows are defined by generators and relations. As an abstract groupoid the root groupoid has many connected components and we show that to some of them one can associate an interesting family of Lie superalgebras which we call root superalgebras. We classify root superalgebras satisfying some additional assumptions. To each root groupoid component we associate a graph (called the skeleton) generalizing the Cayley graph of the Weyl group. We establish the Coxeter property of the skeleton generalizing in this way the fact that the Weyl group of a Kac–Moody Lie algebra is Coxeter.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.13
Classification: 17B22, 17B67, 17B99
Keywords: Kac–Moody Lie superalgebras
Gorelik, Maria 1; Hinich, Vladimir 2; Serganova, Vera 3

1 Department of Mathematics, Weizmann Institute of science POB 26 76100 Rehovot Israel
2 Department of Mathematics, University of Haifa Abba Khoushy Ave 199 Mt Carmel 3498838 Haifa Israel
3 Department of Mathematics, University of California 970 Evans Hall Berkeley, CA 94720-3840 United States
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2024__1_4_465_0,
     author = {Gorelik, Maria and Hinich, Vladimir and Serganova, Vera},
     title = {Root groupoid and related {Lie} superalgebras},
     journal = {Annals of Representation Theory},
     pages = {465--516},
     publisher = {The Publishers of ART},
     volume = {1},
     number = {4},
     year = {2024},
     doi = {10.5802/art.13},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.13/}
}
TY  - JOUR
AU  - Gorelik, Maria
AU  - Hinich, Vladimir
AU  - Serganova, Vera
TI  - Root groupoid and related Lie superalgebras
JO  - Annals of Representation Theory
PY  - 2024
SP  - 465
EP  - 516
VL  - 1
IS  - 4
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.13/
DO  - 10.5802/art.13
LA  - en
ID  - ART_2024__1_4_465_0
ER  - 
%0 Journal Article
%A Gorelik, Maria
%A Hinich, Vladimir
%A Serganova, Vera
%T Root groupoid and related Lie superalgebras
%J Annals of Representation Theory
%D 2024
%P 465-516
%V 1
%N 4
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.13/
%R 10.5802/art.13
%G en
%F ART_2024__1_4_465_0
Gorelik, Maria; Hinich, Vladimir; Serganova, Vera. Root groupoid and related Lie superalgebras. Annals of Representation Theory, Volume 1 (2024) no. 4, pp. 465-516. doi : 10.5802/art.13. https://art.centre-mersenne.org/articles/10.5802/art.13/

[1] Andruskiewitsch, Nicolás; Angiono, Iván On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci., Volume 7 (2017) no. 3, pp. 353-573 | DOI | Zbl

[2] Borcherds, Richard Generalized Kac–Moody algebras, J. Algebra, Volume 115 (1988) no. 2, pp. 501-512 | DOI | Zbl

[3] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann & Cie, 1968 | Zbl

[4] Chukovsky, Kornei Crocodile, Faber and Faber, 1964

[5] Dobrev, V. K.; Petkova, V. B. Group-theoretical approach to extended conformal supersymmetry: function space realization and invariant differential operators, Fortschr. Phys., Volume 35 (1987) no. 7, pp. 537-572 | DOI

[6] Fuks, D. B. Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, 1986 (Translated from the Russian by A. B. Sosinskiĭ) | Zbl

[7] Gabber, Ofer; Kac, Victor G. On defining relations of certain infinite-dimensional Lie algebras, Bull. Am. Math. Soc., Volume 5 (1981) no. 2, pp. 185-189 | DOI | Zbl

[8] Heckenberger, István The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math., Volume 164 (2006) no. 1, pp. 175-188 | DOI | Zbl

[9] Heckenberger, István; Yamane, Hiroyuki A generalization of Coxeter groups, root systems, and Matsumoto’s theorem, Math. Z., Volume 259 (2008) no. 2, pp. 255-276 | DOI | Zbl

[10] Hoyt, Crystal Regular Kac–Moody superalgebras and integrable highest weight modules, J. Algebra, Volume 324 (2010) no. 12, pp. 3308-3354 | DOI | Zbl

[11] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, 1990 | Zbl

[12] van de Leur, Johan W. A classification of contragredient Lie superalgebras of finite growth, Commun. Algebra, Volume 17 (1989) no. 8, pp. 1815-1841 | DOI | Zbl

[13] Moody, Robert V. A new class of Lie algebras, J. Algebra, Volume 10 (1968), pp. 211-230 | DOI | Zbl

[14] Penkov, I. B. Borel–Weil–Bott theory for classical Lie supergroups, Current problems in mathematics. Newest results, Vol. 32 (Itogi Nauki i Tekhniki [Progress in Science and Technology]), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 71-124 Translated in J. Soviet Math. 51 (1990), no. 1, 2108–2140 | Zbl

[15] Schechtman, Vadim V.; Varchenko, Alexander N. Arrangements of hyperplanes and Lie algebra homology, Invent. Math., Volume 106 (1991) no. 1, pp. 139-194 | DOI | Zbl

[16] Serganova, Vera V. Automorphisms of simple Lie superalgebras, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 48 (1984) no. 3, pp. 585-598 translated in Math. USSR Izvestiya 24 (1985), 539–551 | Zbl

[17] Serganova, Vera V. Automorphisms and real forms of Lie superalgebras, Ph. D. Thesis, Leningrad University, Saint Petersburg, Russia (1988)

[18] Serganova, Vera V. On generalizations of root systems, Commun. Algebra, Volume 24 (1996) no. 13, pp. 4281-4299 | DOI | Zbl

[19] Serganova, Vera V. Kac–Moody superalgebras and integrability, Developments and trends in infinite-dimensional Lie theory (Progress in Mathematics), Volume 288, Birkhäuser, 2011, pp. 169-218 | DOI | Zbl

[20] Serganova, Vera V. Quasireductive supergroups, New developments in Lie theory and its applications (Contemporary Mathematics), Volume 544, American Mathematical Society, 2011, pp. 141-159 | Zbl

[21] Sergeev, Alexander N.; Veselov, Alexander P. Grothendieck rings of basic classical Lie superalgebras, Ann. Math., Volume 173 (2011) no. 2, pp. 663-703 | DOI | Zbl

[22] Wakimoto, Minoru Infinite-dimensional Lie algebras, Translations of Mathematical Monographs, 195, American Mathematical Society, 2001 (translated from the 1999 Japanese original by Kenji Iohara, Iwanami Series in Modern Mathematics) | Zbl

[23] Yamane, Hiroyuki On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras, Publ. Res. Inst. Math. Sci., Ser. A, Volume 35 (1999) no. 3, pp. 321-390 | DOI | Zbl

[24] Zhang, Ruibin Serre presentations of Lie superalgebras, Advances in Lie superalgebras (Springer INdAM Series), Volume 7, Springer, 2014, pp. 235-280 | DOI | Zbl

Cited by Sources: