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Root groupoid and related Lie superalgebras

Maria Gorelik, Vladimir Hinich and Vera Serganova

Abstract. We introduce a notion of a root groupoid as a replacement of the notion of a Weyl group
for (Kac–Moody) Lie superalgebras. The objects of the root groupoid classify certain root data, the
arrows are defined by generators and relations. As an abstract groupoid the root groupoid has many
connected components and we show that to some of them one can associate an interesting family of
Lie superalgebras which we call root superalgebras. We classify root superalgebras satisfying some
additional assumptions. To each root groupoid component we associate a graph (called the skeleton)
generalizing the Cayley graph of the Weyl group. We establish the Coxeter property of the skeleton
generalizing in this way the fact that the Weyl group of a Kac–Moody Lie algebra is Coxeter.

1. Introduction

1.1. Generalities.

1.1.1. In this paper we present an attempt to generalize the notion of Weyl group to
Lie superalgebras. For a semisimple Lie algebra, the Weyl group parametrizes Borel
subalgebras containing a fixed torus. This cannot be directly extended to Lie superalgebras
since there are essentially different choices of Borel subalgebras. In order to describe all
Borel subalgebras, the notion of an odd (or isotropic) reflection was introduced many years
ago, see [5, 14, 17]. An odd reflection can not be naturally extended to an automorphism
of the Lie superalgebra. For many years a strong feeling persisted among the experts
that one should extend the notion of a Weyl group to that of a “Weyl groupoid”. One
attempt was made in [19]. A somewhat reminiscent construction of such a groupoid was
suggested by I. Heckenberger and collaborators [8, 9], see also [1]. In § 1.11 we comment
on these definitions. More recently another notion named Weyl groupoid was introduced
by A. Sergeev and A. Veselov [21] for finite-dimensional superalgebras in order to describe
the character ring (but we do not see a connection with our notion).
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The notion of a root groupoid presented in this paper is close to the one defined in [19].

1.1.2. The connection between semisimple Lie algebras and root systems can be described
from two opposite perspectives. One can start with a Lie algebra, choose a Cartan sub-
algebra and study the geometry of the set of roots. On the other hand, one can start
with a Cartan matrix and construct a Lie algebra by generators and relations. The second
approach was vastly extended to construct a very important family of infinite-dimensional
Lie algebras by Kac, Moody, Borcherds and others. Our approach follows the same pattern
for the construction of Lie superalgebras from combinatorial data.

1.1.3. The standard construction of a Kac–Moody Lie algebra comprises two steps. In
the first step one defines a huge graded Lie algebra factoring a free Lie algebra by so-called
Chevalley relations (we call this algebra the half-baked algebra). In the second step one
factors the half-baked algebra by the unique maximal ideal having trivial intersection with
the Cartan subalgebra (this is Victor Kac’s approach). Alternatively (Robert Moody) one
imposes an explicit set of Serre relations. Both approaches yield the same result in the
symmetrizable case.

One of the motivations of our work came from the observation that the classical Serre
relations can be interpreted as reflected Chevalley relations. This led us to the notion
of a root algebra which, roughly speaking, respects the symmetries determined by a root
groupoid. In many cases there is a unique root algebra which can be defined by Chevalley
relations reflected in all possible ways. Sometimes there is a number of root algebras
defined by a given root datum. The description of all root algebras is an open question
— we don’t know the answer even for Lie algebras. For finite dimensional and affine Lie
superalgebras all Serre relations were described in [23], see also [24]. One can see from
this description that Serre relations may involve more than two generators.

1.2. Root groupoid. In [11], 1.1, Kac defines a realization of a Cartan matrix A = (axy),
x, y ∈ X, as a triple (h, a, b) such that a = {a(x) ∈ h}, b = {b(x) ∈ h∗} and ⟨a(x), b(x)⟩ =
axy. Adapting this definition to Lie superalgebras, we add the parity function p : X → Z2
on the index set X and make a quadruple v = (h, a, b, p) an object of the root groupoid
R — the main object of our study. Every quadruple v defines a Cartan matrix by the
formula above. The pair (A, p) is called Cartan datum. There are three kinds of generators
in the set of arrows in R. Two of them are quite dull: one (a homothety) rescales a(x),
another (tautological arrow) is defined by an isomorphism θ : h → h′; the third kind are
reflexions that retain the same vector space h but change the collections a(x) and b(x)
by usual (even or odd) reflection formulas. Each generator f : v → v′ defines a linear
transformation hv → hv′ (it is the identity for homotheties and reflexions, and θ for the
tautological arrow defined by θ); two compositions of generators leading from v to v′ are
equivalent if they define the same linear transformation. The root groupoid R has a lot of
components, some of them, most probably, useless. However, some connected components
(we call them admissible) lead to interesting Lie superalgebras. It is worth mentioning
that Cartan matrices Av are different even inside one component: one type of reflexions,
isotropic reflexions, modify Cartan matrices in a certain way (see the formulas in § 2.2.2).

1.3. Root algebras. For each v ∈ R one defines a (huge) Lie superalgebra g̃(v) (we call
it the half-baked Lie superalgebra) in the same way as did V. Kac and R. Moody, see
§ 3.1.1. For an arrow γ : v → v′ in R the isomorphism h(γ) : h(v) → h(v′) does not extend
to a homomorphism of the half-baked algebras. We define a root algebra supported on a
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component R0 of R as a collection of quotients g(v) of g̃(v) such that for any γ : v → v′

the isomorphism h(γ) extends to an isomorphism g(v) → g(v′).
A component R0 of R is called admissible if it admits a root algebra. Admissibility can

be expressed in terms of weak symmetricity of the Cartan matrices at R0, see Theorem 3.9.
For an admissible component R0 there always exists an initial and a final object in the

category of root algebras. The initial root algebra gU is called universal. The final root
algebra gC is called contragredient. Note that gC in the admissible case is defined as the
quotient of g̃(v) by the maximal ideal having zero intersection with h. The universal root
algebra gU is obtained by imposing on g̃(v) reflected Chevalley relations — so generalizing
the classical Serre relations.

Note that these were the two different approaches of the founding fathers of Kac–Moody
Lie algebras: Victor Kac [11] factored the half-baked algebra by the maximal ideal having
zero intersection with the Cartan subalgebra, whereas Robert Moody [13] imposed on it
the Serre relations.

1.4. Graphs associated to the root groupoid. Define Sk ⊂ R (skeleton) as the sub-
groupoid whose arrows are the compositions of reflexions. Denote by Sk(v) the connected
component of v ∈ Sk. This is a contractible groupoid; it makes sense to study it as a
marked graph, whose edges are reflexions marked by the elements of the index set X.

We define the spine Sp as the subgroupoid of Sk whose arrows are the compositions of
isotropic reflexions only. For instance, if there are no isotropic reflexions (for example, if
p(x) = 0 for all x) then Sp has no arrows. The connected component of v in Sp is denoted
by Sp(v).

We show that the vertices of Sk(v) parametrize Borel subalgebras of a root algebra
g(v) that can be obtained by a chain of reflexions from the original Borel subalgebra b(v),
see Remark 4.7 and Corollary 5.13. Similarly, the vertices of Sp(v) parametrize Borel
subalgebras of a root algebra g(v) whose even part coincides with that of b(v), see 5.8.

In the classical case of Kac–Moody Lie algebras, Sk(v) is the Cayley graph of the Weyl
group and Sp(v) = {v}.

The Weyl group W acts on Sk(v) and each W -orbit has unique element in Sp(v), see
Corollary 5.8 for details.

1.5. Groups associated to the root groupoid. The only algebraic invariant of an
abstract connected groupoid is the automorphism group of its (any) object. The group
AutR(v) is one of a plethora of groups we assign to an admissible component R0. It acts
(up to a torus) on any root Lie algebra and on the set of its roots. For the component
corresponding to a semisimple Lie algebra, AutR(v) coincides with the Weyl group. In the
case of conventional Kac–Moody Lie algebras, AutR(v) is the product of the Weyl group
and a certain group of “irrelevant” automorphisms. The group of irrelevant automorphism
K(v) is very easy to describe. This is a subgroup of automorphisms θ ∈ GL(h(v)) pre-
serving all b(x) ∈ h∗ as well as all a(x) up to a constant. It is a unipotent abelian group in
the case of Kac–Moody algebras. The equality AutR(v) = W × K does not hold already
for gl(1|1), see § 2.5.3.

1.5.1. Skeleton subgroup. We will now present a combinatorial description of the quotient
group AutR(v)/K(v). We denote by SkD(v) the subset of vertices in Sk(v) having a Cartan
datum D-equivalent to Av, see Definition 2.10. The set SkD(v) has a group structure and
Proposition 5.21(3) claims that there is an isomorphism AutR(v)/K(v) = SkD(v).
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1.5.2. Weyl group. For a vertex v in an admissible R0 we define the Weyl group W (v)
(up to isomorphism, it depends on the component only) as a certain subgroup of GL(h)
generated by reflections (more precisely, by the reflections with respect to anisotropic
roots, see § 4.3). The Weyl group W (v) is a normal subgroup of AutR(v).

1.5.3. Spine subgroup. The intersection SpD(v) = Sp(v)∩SkD(v) is a subgroup in SkD(v).
Proposition 5.21 claims that AutR(v)/K(v) = SkD(v) is a semidirect product W (v) ⋊
SpD(v). In particular, if SpD is trivial, this gives Aut(v) = W ×K.

1.6. Coxeter properties. A fundamental property of a Kac–Moody Lie algebra is that
its Weyl group is a Coxeter group. We generalize this result to the Weyl groups appearing
in any admissible component. Similarly to the classical result, the length of an element
w ∈ W can be expressed as the number of positive anisotropic roots that become negative
under w, see Corollary 5.7.

An analog of the Coxeter property holds also for the skeleton Sk(v). The length of the
shortest path from v to v′ in Sk(v) can also be expressed as the number of real positive
roots that become negative, see Proposition 5.15.

The Coxeter property for groups provides its presentation in terms of generators and
relations, with relations defined by “pairwise interaction” of the generators. It turns out
that a similar presentation exists for the skeleton. In Section 6 we define the notion of a
Coxeter graph that generalizes that of a Coxeter group, and prove that the skeleton Sk(v)
is a Coxeter graph.

1.7. Fully reflectable components. Admissible Cartan matrices are not in general re-
quired to allow reflexions rx for all x ∈ X. We call a component R0 fully reflectable if all
reflexions are allowed at all vertices of R0. This means that Sk(v) is a regular graph of
degree |X|. In Section 7 we divide all admissible indecomposable fully reflectable compo-
nents into three types: finite, affine and indefinite. This trichotomy extends the similar
trichotomy for Kac–Moody Lie algebras. There is a full classification of those types that
contain an isotropic root; it has been done by C. Hoyt and V. Serganova, see [10, 19].
Curiously, there are only two new indefinite series having an isotropic root; they are called
Q±(m,n, k).

1.8. On the (lack of) uniqueness of a root Lie superalgebra. We have already
mentioned that, for an admissible component R0 there is an initial gU and a final gC root
algebra supported at R0. The natural map gU → gC is surjective and all root algebras are
factors lying in between. In Sections 8 and 9 we study the gap between gU and gC in the
fully reflectable case. The result of these sections can be summarized as follows.

Theorem. Let R0 be an admissible indecomposable fully reflectable component. Then
gU = gC except for the cases gC = gl(1|1), gU = sl(n|n)(i), (i = 1, 2, 4), sq(n)(2) and the
case when R0 is indefinite and nonsymmetrizable.

The similar result for symmetrizable Kac–Moody Lie algebras was proven by Gabber–
Kac [7]. Their proof was adapted to our symmetrizable case in Section 8. In the case
when gC = gl(1|1) the algebra gU has dimension (4|2) and the algebras gU and gC are the
only two root algebras in this component, see § 3.2.2. Note that the explicit realization of
gC for gU = sl(n|n)(i), (i = 1, 2, 4) and sq(n)(2) is given in [19].

The results for nonsymmetrizable affine algebras, S(2, 1, b) and sq(n)(2) are new.
We also prove that if gC ̸= gl(1|1) then any algebra g sandwiched between gC and gU is

a root algebra.
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1.9. Examples of calculation of Aut(v). In the last Section 10 we compute the skeleton
and the group AutR(v) for two classes of connected components.

The first one is the case of a “star-shaped” spine. It includes the algebras sq(3)(2),
B(1|1)(1), D(2|1, a), D(2|1, a)(1), Q±(m,n, k). Here one has AutR(v) = W ×K as in this
case SpD(v) is trivial. For the same reason AutR(v) = W for all finite dimensional Lie
superalgebras except for the case of gl(n|n); the latter is considered in Remark 10.5. The
second class is the class of components whose skeleton identifies with that of sl(1)

n . This
includes the root data for sl(k|l)(1), sq(n)(2) and S(2|1, b). In these cases the Weyl group
W (sl(1)

n ) acts simply transitively on the skeleta Sk(v). This allows one to realize the Weyl
group and SkD(v) = AutR(v)/K(v) as subgroups of W (sl(1)

n ).

1.10. Borcherds–Kac–Moody algebras. R. Borcherds in [2] introduced a generaliza-
tion of Kac–Moody algebras, where the Cartan matrix is real symmetric and satisfies
additional conditions. The proof of Gabber–Kac is valid for this class (see [11], 11.13) and
give gC = gU if the Cartan matrix is symmetrizable and satisfies the conditions (C1’)–(C3’)
in [11], 11.13). Borcherds–Kac–Moody (BKM) superalgebras were studied by M. Waki-
moto in [22]. Note that any symmetrizable Kac–Moody algebra is a BKM algebra, but
many symmetrizable Kac–Moody superalgebras (including gl(m|n) for m,n > 2) are not
BKM superalgebras. BKM superalgebras are root superalgebras.

1.11. Comment on the groupoids studied in [1, 9]. In [9] the authors assign a
groupoid (called the Coxeter groupoid) to a collection of vectors in a vector space h∗ en-
dowed with a nondegenerate symmetric bilinear form. The objects of the Coxeter groupoid
appearing in the definition in [9] correspond to different choices of Borel subalgebras of a
Kac–Moody superalgebra given by a symmetrizable Cartan datum; thus, they correspond
to the vertices of what we call a skeleton component. The arrows are generated by re-
flections with respect to all simple roots. Our result claiming coxeterity of the skeleton
(Theorem 6.6) means that the groupoid defined in [9] is contractible. For instance, it
assigns to a semisimple Lie algebra the Cayley graph of its Weyl group (which is con-
tractible when considered as a groupoid). In order to get for a semisimple Lie algebra the
classifying groupoid of the Weyl group instead of the contractible Cayley graph, one has
to identify the vertices having the same Cartan matrix as it is done in [1].

In the present paper we do something similar to [1]; however, instead of identifying
equivalent vertices, we add isomorphisms between them.

In our root groupoid we have generators for the arrows of three different types: apart
from reflexions, we have tautological arrows and homotheties that connect vertices with
D-equivalent Cartan matrices. In absence of isotropic reflexions (for instance for Kac–
Moody algebras) the Weyl group coincides with the automorphism group of an object
of the corresponding component of a root groupoid. In general, these two groups are
different, see Proposition 5.21 and Section 10.

1.12. Let us highlight the most important results of the paper.
• A criterion of admissibility in terms of weak symmetricity, see Theorem 3.9.
• The Weyl group is defined uniformly, see § 4.3.
• A general proof of the fact that the Weyl group is a Coxeter group generated by

the principal reflections, see § 5.2.
• A similar Coxeter property for the skeleton, see Theorem 6.6.
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• Root Lie superalgebras are classified in the finite and affine case, see § 3.2.2, § 7.4,
Theorems 9.1 and 10.1.

Apart from theorems proven, one of the important aims of the paper is to develop a
useful language to deal with Lie superalgebras. Many parts of this language (isotropic
(odd) reflexions, skeleton as the set of Borels, spine as the set of Borels with a fixed even
part, Weyl group as the Weyl group of the even part of the Lie superalgebra (slightly
modified as the latter is not Kac–Moody)) were in use for a long time, but we believe our
general setup gives a way to look at it uniformly.

2. Setup

2.1. Groupoid of root data. Recall that a groupoid is a category in which all arrows
are invertible.

Once and forever we fix a finite set X. The cardinality of X will be called the rank of
the root data and of the Lie superalgebras connected to them.

For a complex vector space h and a set X, a map a : X → h will be called injective if
the induced map SpanC(X) → h is an injective map of vector spaces.

2.1.1. We now define the root groupoid R.
The objects of R (the root data) are the quadruples (h, a : X → h, b : X → h∗, p : X →

Z2) where h is a finite dimensional vector space over C such that a, b are injective.
We will define the arrows of R by generators and relations. We have generating arrows

of three types:
(1) a reflexion1 rx : (h, a, b, p) → (h, a′, b′, p′) defined by a source (h, a, b, p) and a

reflectable element x ∈ X, see § 2.2 for the explicit formulas;
(2) a tautological arrow tθ : (h, a, b, p) → (h′, a′, b′, p) determined by θ : h ∼→ h′. Here

a′ := θ ◦ a, b′ = ((θ∗)−1) ◦ b.
(3) a homothety hλ : (h, a, b, p) → (h, a′, b, p) determined by λ : X → C∗, with a′(x) =

λ(x)a(x).
This collection of objects and arrows (=quiver) generates a free category denoted (tem-

porarily) F. In other words, the objects of F are the root data; the arrows in F are the
paths composed of the generating arrows. The groupoid R will be defined as the one with
the same objects as F, and whose arrows are equivalence classes of the arrows above. The
equivalence relation is defined below.

First of all, we define a functor h : F → Vect to the category of vector spaces car-
rying (h, a, b, p) to h, carrying the reflexions and the homotheties to the identities, and
tautological arrows to the respective isomorphisms of the underlying vector spaces.

2.1.2. The equivalence relation on each Hom-set of F is defined as follows: two compo-
sitions of arrows (h, a, b, p) → (h′, a′, b′, p′) are equivalent if they induce the same isomor-
phism h → h′.

1In this paper we follow the idea of K. Chukovsky [4] to use synonyms for different (although related)
objects. In loc. cit these are Hyppopotamus and Behemoth that are synonymous in Russian. In this paper
we will later introduce reflections generating the Weyl group, that will be related to, but different from
the reflexions defined now.
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2.2. Formulas for the reflexions. Any root datum (h, a, b, p) determines a Cartan ma-
trix A(a, b) = (axy)x,y ∈X given by the formula

axy := ⟨a(x), b(y)⟩.

Definition 2.1. An element x ∈ X is called reflectable at v = (h, a, b, p) if the following
conditions hold.

(1) If axx = 0 then p(x) = 1;
(2) If axx ̸= 0 and p(x) = 0 then 2axy

axx
∈ Z≤ 0.

(3) If axx ̸= 0 and p(x) = 1 then axy

axx
∈ Z≤ 0.

2.2.1. Let x ∈ X be reflectable at v = (h, a, b, p). The reflexion rx : v → v′ = (h, a′, b′, p′)
is defined as follows.

(anisotropic) If axx ̸= 0, then p′ := p and

a′(y) := a(y) − 2ayx
axx

a(x), b′(y) := b(y) − 2axy
axx

b(x).

(isotropic) If axx = 0 then p(x) = 1 and

(
a′(y), b′(y), p′(y)

)
:=


(

− a(x),−b(x), p(x)
)

if x = y,(
a(y), b(y), p(y)

)
if x ̸= y, axy = 0,(

a(y) + ayx

axy
a(x), b(y) + b(x), 1 + p(y)

)
if axy ̸= 0.

Definition 2.2. The pair (A = {axy}, p) will be called the Cartan datum for v.

Note that the reflectability of x ∈ X, as well as the formulas for the reflexion rx depend
only on the Cartan datum.

2.2.2. Let us indicate what happens to a Cartan matrix under a reflexion. Anisotropic
reflexions preserve the Cartan matrix. If rx : v → v′ is an isotropic reflexion (axx = 0),
the Cartan matrix (a′

yz) is given by the following formulas

a′
xy = −axy,
a′
yx = −ayx,

a′
yy =

{
ayy + 2ayx if axy ̸= 0
ayy if axy = 0.

a′
yz =


ayz if axz = 0, x, y ̸= z,
ayz + ayx if axz ̸= 0, axy = 0, x, y ̸= z

ayz + ayx
(
1 + axz

axy

)
if axz ̸= 0, axy ̸= 0.

Proposition 2.3. The category R is a groupoid.

Proof. It is enough to verify that each generating arrow in F has invertible image in R.
First of all, in our category the composition of two tautological arrows is tautological,
defined by the composition of the corresponding isomorpisms h

∼→ h′ ∼→ h′′. Similarly,
composition of two homotheties is a homothety. This implies that tautological arrows and
homotheties are invertible. Invertibility of reflexions follows from the formulas: one has
r2
x = id for all x (this is an explicit calculation). □

Note the following observation.

Lemma 2.4. All reflexions preserve the symmetricity of a Cartan matrix.

Ann. Repr. Th. 1 (2024), 4, p. 465–516 https://doi.org/10.5802/art.13

https://doi.org/10.5802/art.13


472 Maria Gorelik et al.

Proof. Anisotropic reflexion does not change the Cartan matrix. Isotropic reflexions do
change, but the resulting Cartan matrix remains symmetric if the original matrix was
symmetric. This results from a direct calculation. □

Definition 2.5. A connected component R0 of R is called symmetrizable if there exists
v ∈ R0 having a symmetric Cartan matrix.

Note that R0 is symmetrizable if all Cartan matrices of v′ ∈ R0 are symmetrizable in
the sense of Kac [11].

2.3. Properties.

2.3.1. One has obviously tθ ◦ tθ′ = tθ◦θ′ and hλ ◦ hλ′ = hλλ′ . The morphisms rx, tθ and
hλ commute with each other.

The root groupoid R consists of connected components some of which will lead to
interesting Lie superalgebras.

We present below properties of a component R0 of R that will be relevant to Lie theory.
This is weak symmetricity.

Definition 2.6.
(1) A root datum is locally weakly symmetric if axy = 0 implies ayx = 0 for any

reflectable x.
(2) A root datum is weakly symmetric if all root data in its connected component are

locally weakly symmetric.

Remark 2.7. Let v ∈ R. The group of automorphisms AutR(v) acts on h(v). This action
is faithful by definition of the equivalence relation on the Hom sets of F, see § 2.1.2.

Remark 2.8. The root groupoid R is an object of a “mixed” nature. It is a groupoid, but
its objects and Hom sets carry extra information (markings a, b, p, generators rx, tθ, hλ
for arrows). This is why we cannot easily replace R with any equivalent groupoid (for
instance, leaving only one object for each connected component).

Nevertheless, we can safely assume that h is the same vector space at all objects of a
given connected component R0, allowing however the tautological arrows tθ for automor-
phisms θ : h → h.

Remark 2.9. Tautological arrows and anisotropic reflexions (those with axx ̸= 0) preserve
the Cartan datum. Homotheties also preserve local weak symmetricity. Isotropic reflexions
usually do not satisfy this property. For this reason admissible root data with isotropic
reflexions can be classified under the assumption that all elements x ∈ X are reflectable
at every vertex, [10].

Definition 2.10. Two Cartan data, (A, p) and (A′, p′), will be called D-equivalent if
p = p′ and there exists an invertible diagonal matrix D such that A′ = DA.

Obviously, homotheties carry a Cartan datum to a D-equivalent one.

Remark 2.11. In studying a connected component R0 of R it is often important to
describe Cartan data (A(v), p) at all vertices v ∈ R0, up to D-equivalence. Since only
isotropic reflexions change the Cartan data, it is sufficient to perform only sequences of
isotropic reflexions, see § 4.2.4.
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2.4. Examples: reflectability.

2.4.1. We present an example of a reflexion rx : v → v′ such that all y ∈ X are reflectable
at v but some are not reflectable at v′.

Take the root datum v with X = {x, y}, the Cartan matrix ( 0 −s
−s 1 ), s ∈ N, p(x) =

p(y) = 1. Then x and y are reflectable at v. For the reflexion rx : v → v′ the reflected
Cartan matrix is ( 0 s

s 1−2s ) and p′(x) = 1, p′(y) = 0. Thus y is reflectable at v′ only if
2s

2s−1 ∈ N that is for s = 0, 1.

2.5. Examples: calculation of AutR(v).

2.5.1. Semisimple case. Let v = (h, a, b, p) represent a root system of a finite dimensional
semisimple Lie algebra. This means that p(x) = 0, a : X → h is a set of simple coroots and
b : X → h∗ is the set of simple roots. Both a and b give bases in h and h∗. Let us calculate
the group of automorphisms of (h, a, b, 0). Any reflexion rx : (h, a, b, 0) → (h, a′, b′, 0) gives
rise to an automorphism sx : v → v, sx = tsb(x) ◦ rx where the automorphism sb(x) : h → h

of h is the standard reflection on h with respect to b(x) ∈ h∗. Note that sx : v → v induces
precisely the automorphism sb(x) : h → h, so that the assignment sb(x) 7→ sx is compatible
with the action of the Weyl group W and of AutR(v) on h. Since the actions are faithful,
this defines an injective group homomorphism

i : W → AutR(v).

We claim that it is bijective. In fact, any automorphism η : v → v in R is a composition
of reflexions rx, tautological arrows and homotheties. Since reflexions, tautological arrows
and homotheties commute, one can, using § 2.3.1, present

η = hλ ◦ tθ ◦ i(w), (2.1)

for a certain w ∈ W . It remains to verify that if hλ ◦ tθ ∈ AutR(v), then it is the identity.
Since tθ does not change the Cartan matrix, hλ = id. Since any automorphism of v carries
a(x) and b(x) to themselves, and a(x) generate h, θ = id.

2.5.2. The case of Kac–Moody algebras. In the case when (h, a, b, 0) has the Cartan matrix
satisfying the conditions of [11, § 1.1], the calculation of § 2.5.1 works almost as well.

Let W denote the Weyl group and let W̃ = AutR(v). We have a group homomorphism
i : W → W̃ defined exactly as in the semisimple case. Precisely as in the semisimple case
we have a decomposition (2.1) of an automorphism η ∈ W̃ and deduce that hλ = id as
the Cartan matrix has no zero rows. Denote

K =
{
θ : h → h

∣∣ θ(a(x)) = a(x), θ∗(b(x)) = b(x), x ∈ X
}
.

Any θ ∈ K commutes with sb(x) : h → h. This implies that W̃ = W ×K.
Let us show K is a commutative unipotent group.
Denote by A ⊂ h and B ⊂ h∗ the subspaces spanned by the images of a and b. One

has dimA = dimB = |X| and dim h = 2|X| − r where r is the rank of the Cartan matrix.
This is equivalent to saying that the orthogonal complement B⊥ ⊂ h of B lies in A. If
θ is an automorphism of the triple (h, a, b), θ − 1 vanishes on A and has image in B⊥.
This means that (θ − 1)2 = 0. Moreover, any two such automorphisms commute. The
dimension of K is (|X| − r)2.
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2.5.3. Root datum for gl(1|1). We assume dim(h) = 2, X = {x}, a = a(x) ∈ h, b = b(x) ∈
h∗ so that a ̸= 0, b ̸= 0 but ⟨b, a⟩ = 0. The only isotropic reflexion carries the quadruple
v = (h, a, b, p = 1) to v′ = (h,−a,−b, 1). The tautological arrow t−1 : v′ → v is defined by
−1′ : h → h. The composition t−1 ◦ rx is an automorphism of v of order 2. It is easy to
see that Aut(v) = Z2 × K where Z2 is generated by the automorphism described above
and K = {θ : h → h| θ(a) ∈ C∗a, θ∗(b) = b}.

For more examples see § 5.4.3 and Section 10.

3. Root Lie superalgebras

In this section we define root Lie superalgebras corresponding to certain (admissible)
connected components of the groupoid R of root data.

3.1. Half-baked Lie superalgebra.

3.1.1. Let v = (h, a, b, p) ∈ R. We assign to v a Lie superalgebra g̃(v) generated by
h = h(v), ẽx, f̃x, x ∈ X, with the parity given by p(h) = 0, p(ẽx) = p(f̃x) = p(x), subject
to the relations

(1) [h, h] = 0,
(2) [h, ẽx] = ⟨b(x), h⟩ẽx, [h, f̃x] = −⟨b(x), h⟩f̃x
(3) [ẽx, f̃y] = 0 for y ̸= x

(4) [ẽx, f̃x] = a(x)
for each x ∈ X.

We call g̃(v) the half-baked Lie superalgebra defined by the root datum v ∈ R.

3.1.2. The following properties of g̃ := g̃(v) are proven in [11, Theorem 1.2] for Lie
algebras (the proof works verbatim for Lie superalgebras).

(1) The algebra h acts diagonally on g̃. We denote by g̃µ the weight space of weight
µ, so that g̃ = ⊕µ∈ SpanZ(b)g̃µ, where SpanZ(b) denotes the abelian subgroup of h∗

generated by b(x), x ∈ X.
(2) There is a standard triangular decomposition

g̃ = ñ+ ⊕ h ⊕ ñ−,

where ñ+ is freely generated by ẽx, x ∈ X and ñ− is freely generated by f̃x.
(3) For each x ̸= y one has g̃jb(x)+b(y) = 0 for j ̸∈ Z≥ 0 and g̃jb(x)+b(y) is spanned by

(adẽx)j ẽy.
The following theorem is very similar to [11, Theorem 2.2].

Proposition 3.1. Let v ∈ R have a symmetric Cartan matrix (axy). Let (·|·) be a non-
degenerate symmetric form on h satisfying the condition

• (a(x)|h) = ⟨b(x), h⟩ for any x ∈ X, h ∈ h.
Then there exists a unique extension of (·|·) to an invariant symmetric bilinear form on
g̃ = g̃(v). This extension enjoys the following properties.

(1) (ẽx|f̃y) = δxy.
(2) (g̃α|g̃β) = 0 unless α+ β = 0.
(3) [z, t] = (z|t)ν(α) for z ∈ g̃α, t ∈ g̃−α, where ν : h∗ → h is the isomorphism defined

by the original nondegenerate form.

□
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3.1.3. The algebra g̃(v) admits a standard superinvolution θ, that is an automorphism
whose square is id on the even part and −id on the odd part of g̃(v). We will define the
superinvolution θ by the following formulas.

• θ|h = −id.
• θ(ẽx) = f̃x.
• θ(f̃x) = (−1)p(x)ẽx.

3.1.4. Example: rank one. Let X = {x}. The Cartan matrix is a 1 × 1 matrix (axx).
In the discussion below we present h having the smallest possible dimension. The general

case can be treated using § 3.2.3.
If axx ̸= 0 and p(x) = 0, we have g̃ = sl2; if p(x) = 1, we have g̃ = osp(1|2).
If axx = 0 and p(x) = 0, g̃ is the (4|0)-dimensional algebra a(x), d, ex, fx, with h =

Span(a(x), d), a(x) = [ex, fx] central and [d, ex] = ex, [d, fx] = −fx.
In the remaining case p(x) = 1 and axx = 0. The algebra g̃ has dimension (4|2) with a

basis
a(x), d, ex, fx, e2

x, f
2
x ,

(ex and fx odd) with h = Span(a(x), d), a(x) = [ex, fx] central and [d, ex] = ex, [d, fx] =
−fx.

3.1.5. The space [g̃jb(x)+b(y), g̃−jb(x)−b(y)] lies in h for any j ≥ 0 and is at most one-
dimensional. We wish to describe, under certain assumptions, the greatest value of j for
which it is nonzero.

Assume that x ̸= y ∈ X, x is reflectable at v.
Let rx : v → v′ = (h, a′, b′, p′) be the corresponding reflexion in R. Choose j0 such that

b(y) + j0b(x) = b′(y), that is j0 = −2axy

axx
for axx ̸= 0, j0 = 1 for axx = 0, axy ̸= 0, and

j0 = 0 for axx = 0 = axy.

Lemma 3.2. Assume that X = {x, y} and x is reflectable at v = (h, a, b, p). Let j0 be
defined as above. Define the ideal I of g̃ = g̃(v) generated by the elements

E := (adẽx)j0+1ẽy, F :=
(
adf̃x

)j0+1
f̃y. (3.1)

Then
(a) If axx = 0 then the ideal I ′ generated by ẽ2

x, f̃2
x satisfies I ′ ∩ h = 0.

(b) If axx = 0, axy ̸= 0 then I ⊂ I ′ and I = I ′ iff ayx ̸= 0.
(c) I ∩ h ̸= 0 if and only if axx ̸= 0, ayx ̸= 0 and axy = 0.

Proof.
(a) Let axx = 0. Then p(x) = 1 and [

ẽx, f̃
2
x

]
= 0. (3.2)

Since [ẽy, f̃2
x] = 0 we obtain [ñ+, f2

x ] = 0; similarly, [ñ−, e2
x] = 0. This gives I ′ ∩ h = 0 and

establishes (a).
(b) Take axx = 0, axy ̸= 0. Then j0 = 1 so

F =
(
adf̃x

)2
f̃y =

(
adf̃2

x

)
f̃y, E =

(
adẽ2

x

)
ẽy.

In particular, I ⊂ I ′ and

[ẽy, F ] = ±
[
f̃2
x, a(y)

]
= ±2ayxf̃2

x.
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This gives I = I ′ if ayx ̸= 0. Consider the case ayx = 0. By the above, [ẽy, F ] = 0.
By (3.2) we have [ẽx, F ] = 0. Hence [ñ+, F ] = 0 and so F ̸∈ I ′. This completes the proof
of (b).
(c) By (a), (b) it follows that I ∩h = 0 if axx = 0, axy ̸= 0. Therefore we may assume that
axy = ayx = 0 or axx ̸= 0. It is enough to verify that [ẽz, F ] = [f̃z, E] = 0 for z = x, y.
These formulas are similar so we will check only the formula [ẽz, F ] = 0.

If axy = ayx = 0, then j0 = 0 and

[ẽx, F ] =
[
ẽx,
[
f̃x, f̃y

]]
=
[[
ẽx, f̃x

]
f̃y
]

= [a(x), fy] = −axyfy = 0

as well as [ẽy, F ] = ±ayxfx = 0 as required.
Consider the case when axx, axy, ayx ̸= 0. Then j0 = −2axy

axx
. Recall that f̃x, ẽx generate

sl2 if p(x) = 0 and osp(1|2) if p(x) = 1. Since [ẽx, f̃y] = 0, a direct computation implies

(adẽx)
(
adf̃x

)j0+1
f̃y = 0.

On the other hand, [ẽy, f̃x] = 0 implies

[ẽy, F ] = ±
(
adf̃x

)j0+1
a(y) = ±ayx

(
adf̃x

)j0
f̃x = 0

since [f̃x, f̃x] = 0 for p(x) = 0 and [f̃x, [f̃x, f̃x]] = 0 if p(x) = 1 (in the case axx ̸= 0,
p(x) = 1 the condition that x is reflectable at v implies that j0 is even, in particular,
j0 ≥ 2). Hence [ẽy, F ] = [ẽx, F ] = 0 as required.

Finally, if axx ̸= 0, axy = 0, ayx ̸= 0, then b′(y) = b(y) and a′(y) = a(y) − 2ayx

axx
a(x).

Furthermore, E = [ẽx, ẽy], so that[
f̃x,

[
f̃y, E

]]
= ±

[
f̃x, [ẽx, a(y)]

]
= ±ayxa(x) ̸= 0.

□

Proposition 3.3. Assume that x ̸= y ∈ X and x is reflectable. We also assume that if
axx ̸= 0 and axy = 0 then ayx = 0.

(1) The bracket [g̃jb(x)+b(y), g̃−jb(x)−b(y)] is zero for j > j0.
(2) [g̃b′(y), g̃−b′(y)] is spanned by a′(y).

Proof. The claim immediately reduces to the case X = {x, y}. Denote by I the ideal of g̃
generated by the elements

E := (adẽx)j0+1ẽy, F :=
(
adf̃x

)j0+1
f̃y.

By Lemma 3.2 we have I ∩ h = 0. The homomorphism g̃ → g = g̃/I is the identity on
h, so both claims of the proposition would follow from the similar claims for g. Since the
first claim of the proposition tautologically holds for g, we have proven it also for g̃.

To prove the second claim for g, we will study the isotropic and the anisotropic cases
separately.

The case axx ̸= 0. The rank one subalgebra defined by {x} ∈ X contains a copy of
sl2. g is integrable as an sl2-module as it is generated by the elements on which ẽx, f̃x act
locally nilpotently, see [11], Lemma 3.4. Therefore, the automorphism σ : g → g given by
the formula

σ = exp
(
f̃x
)

◦ exp (−ẽx) ◦ exp
(
f̃x
)
, (3.3)
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is defined. Its restriction on h is given by the standard formula σ(h) = h− 2
axx

⟨h, b(x)⟩a(x),
so σ(gU

µ) = gU
σ(µ), where the action of σ on h∗ is induced by its action on h. The latter

implies the second claim of the proposition for the algebra g.
The case axx = 0. If axy = 0, the second claim is immediate. In the case axy ̸= 0 a

direct calculation shows that[
[ẽx, ẽy] ,

[
f̃x, f̃y

]]
= (−1)p(y)axy

(
a(y) + ayx

axy
a(x)

)
. □

3.2. Coordinate systems and root algebras.

Definition 3.4. Let v ∈ R. A v-coordinate system on a Lie superalgebra g is a surjective
homomorphism g̃(v) → g whose kernel has zero intersection with h(v).

In other words, a v-coordinate system on g consists of an injective map of Lie superal-
gebras h → g (h is even commutative), and a collection of generators ex, fx such that the
relations (1)–(4) of § 3.1.1 hold.

Here is our main definition.

Definition 3.5. Let R0 ⊂ R be a connected component. A root Lie superalgebra g
supported on R0 is a collection of Lie superalgebras g(v), v ∈ R0, endowed with v-
coordinate systems so that for any α : v → v′ in R0 there exists an isomorphism a :
g(v) → g(v′) extending the isomorphism h(α) : h(v) → h(v′).

Let g be a root Lie superalgebra at R0. There is a weight space decomposition

g(v) = h(v) ⊕
⊕

µ∈ ∆(v)
g(v)µ

with ∆(v) ⊂ SpanZ(b). The elements of ∆(v) are called the roots of g (at v). The elements
b(x), x ∈ X, are the simple roots at v. Any α : v → v′ carries the root decomposition at
v to that at v′.

Definition 3.6. A component R0 of R is called admissible if it admits a root Lie super-
algebra.

3.2.1. Let v ∈ R. The half-baked algebra g̃(v) has a triangular decomposition. This
implies the existence of the maximal ideal r(v) having zero intersection with h(v). If R0 is
admissible, then the collection of gC(v) = g̃(v)/r(v) is a root Lie superalgebra supported
at R0. In fact, given a root algebra g with g(v) = g̃(v)/I(v), the quotient ideal r̄(v) =
r(v)/I(v) is the maximal ideal in g(v) having zero intersection with h(v). Obviously, any
isomorphism a : g(v) → g(v′) over α : v → v′ in R carries r̄(v) to r̄(v′), and therefore
induces an isomorphism gC(v) → gC(v′).

We call the collection gC = {gC(v)}v ∈R0 the contragredient Lie superalgebra supported
at an admissible component R0. In other words, the contragredient Lie superalgebra gC is
the terminal object in the category of root Lie superalgebras supported at an admissible
component R0.

The superinvolution θ of g̃ defined in § 3.1.3 induces an automorphism of gC.
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3.2.2. Rank one. The Lie algebra sl2 plays a prominent role in Lie theory. A similar role
in our setup will be played by root algebras of rank 1. Let us describe them all.

Let X = {x}. In this case g̃(v) is described in § 3.1.4. It is a root algebra.
If axx ̸= 0 or p(x) = 0, then gC = g̃.
If axx = 0 and p(x) = 1, the maximal ideal r of g̃ having zero intersection with h is

spanned by e2
x, f

2
x and gC = g̃/r ∼= gl(1|1). The algebras g̃ and gC are exactly the two root

algebras in this case as only these two allow an automorphism lifting γ = t−1 ◦ rx, see
§ 2.5.3.

3.2.3. Decomposable root datum. Let X = X1 ⊔X2 and let vi = (hi, ai : Xi → hi, bi : Xi →
h∗
i , pi : Xi → Z2, i = 1, 2, be two root data of ranks |X1| and |X2| respectively.

We define their sum v = v1 + v2 in an obvious way, as the root datum with h = h1 ⊕ h2
and a : X → h, b : X → h∗ and p : X → Z2 defined by the conditions

a|Xi
= si(ai), b|Xi

= s∗
i (bi), p|Xi

= pi,

where si : hi → h and s∗
i : h∗

i → h∗ are the obvious embeddings.
We will denote by R(X), R(X1) and R(X2) the groupoids of root data for the sets X,X1

and X2. The component R0 of R(X) containing v = v1 + v2 is obviously a direct product
R′

0 × R′′
0 of the corresponding components of R(X1) and R(X1). If g1 and g2 are root

algebras supported on the components R′
0 and R′′

0 respectively, the product g = g1 × g2
is a root algebra of R0. In particular, gC

1 × gC
2 is the contragredient root algebra for R0.

Theorem 3.9 implies that if R0 is admissible, then both R′
0 and R′′

0 are admissible. It is
not true in general that any root algebra supported on R0 is a product.

Here is the best we can say.

Proposition 3.7. Let X = X1 ⊔X2, v = v1 +v2 be defined as above, with v ∈ R0, v1 ∈ R′
0

and v2 ∈ R′′
0. Assume that all x ∈ X1 are reflectable at all v′ ∈ R′

0. Then any root algebra
supported on R0 uniquely decomposes as a product of a root algebra supported on R′

0 and
a root algebra supported on R′′

0.

Proof. The algebra g = g(v) is generated by h, ex, fx, ey, fy where x ∈ X1 and y ∈ X2. We
have to verify that [ex, ey] = 0 = [fx, fy] for x ∈ X1 and y ∈ X2. The reflexion rx : v → v′

with respect to x ∈ X1 carries, up to scalars, ex to f ′
x and fx to e′

x, retaining ey and fy.
Since [e′

x, f
′
y] = 0 = [e′

y, f
′
x], we deduce [ex, ey] = 0 = [fx, fy]. □

We can apply the sum of root data operation to an empty root datum ∅V corresponding
to X = ∅ and uniquely defined by a vector space V . For v = (h, a, b, p) the sum ∅V + v
has the form (h⊕V, a, b, p) and any root algebra based on it is the direct product of a root
algebra based on v with the commutative algebra V .

The following result is a corollary of § 3.2.2.

Corollary 3.8. Let R0 be an admissible component of R and g := g(v) be a root algebra.
Fix x ∈ X and set α := b(x). We denote by g⟨α⟩ the subalgebra of g generated by gα and
g−α.

(1) If axx ̸= 0 and p(x) = 0, one has g⟨α⟩ = sl2 and giα = 0 for i ̸∈ {0,±1}.
(2) If axx ̸= 0 and p(x) = 1, one has g⟨α⟩ = osp(1|2) and giα = 0 for i ̸∈ {0,±1,±2}.
(3) If axx = 0 and p(x) = 0 then g⟨α⟩ is the Heisenberg algebra and giα = 0 for

i ̸∈ {0,±1}.
(4) If p(x) = 1, axx = 0 and axy, ayx ̸= 0 for some y then g⟨α⟩ ∼= sl(1|1) and giα = 0

for i ̸∈ {0,±1}.
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(5) If p(x) = 1, axx = 0 and axy, ayx = 0 for all y then g⟨α⟩ is the (4|2)-dimensional
algebra described in § 3.1.4.

Proof. Clearly, g⟨α⟩ is a quotient of the algebra [g̃, g̃] where g̃ is the corresponding algebra
listed in § 3.2.2; this gives (1), (2), (3) and shows that in (4) it is enough to verify g2b(x) = 0.
This follows from Lemma 3.2(b). □

Note that Corollary 3.8 implies that x ∈ X is reflectable at v iff for α = b(x) the algebra
g⟨α⟩ is not the Heisenberg algebra and eα acts on g locally nilpotently.

3.3. Admissibility is just a weak symmetricity. In this subsection we prove the
following result.

Theorem 3.9. A connected component R0 of R is admissible iff it is weakly symmetric.

Proof.
(1) Let R0 be a weakly symmetric component of R. We claim that the collection of

gC(v) = g̃(v)/r(v) forms a root Lie superalgebra. Let rx : v′ → v be a reflexion. Let
g̃′ = g̃(v′), g = gC(v). Let us show that there exists a homomorphism ρ : g̃′ → g
that induces the identity on h. The half-baked Lie superalgebra g̃(v′) is generated
by h, ẽ′

y and f̃ ′
y, y ∈ X. In order to construct ρ, we have to find ρ(ẽ′

y), ρ(f̃ ′
y), and

verify the (very few) relations.
The weight of ẽ′

y is b′(y), so we have to look for ρ(ẽ′
y) in gC

b′(y). We know that g̃b′(y)
is one-dimensional. By Proposition 3.3(2), the ideal generated by g̃b′(y) contains
a′(y) ∈ h, so r(v) does not contain it. Therefore, gb′(y) is also one-dimensional.
We will define arbitrarily 0 ̸= ρ(ẽ′

y) ∈ gb′(y) and choose ρ(f̃ ′
y) ∈ g−b′(y) so that

[ρ(ẽ′
y), ρ(f̃ ′

y)] = a′(y). The latter is also possible by Proposition 3.3(2). It remains
to verify that [ρ(ẽ′

y), ρ(f̃ ′
z)] = 0 for y ̸= z.

(a) y ̸= x, z ̸= x. In this case the bracket should have weight b′(y) − b′(z) =
b(y) − b(z) + cb(x) for some c ∈ Z. This is not a weight of g̃, so the bracket
should vanish.

(b) z = x ̸= y. In this case the bracket should have weight b′(y) − b′(x) =
b(y)+j0b(x)+b(x) where j0 is defined as in § 3.1.5. According to Lemma 3.2(c)
the ideal generated by this weight space has no intersection with h, so this is
not a weight of g and the bracket vanishes.

Therefore, we have constructed a homomorphism ρ : g̃′ → g for each reflexion
rx : v′ → v. It is the identity on h, so it induces a homomorphism g′ → g. Any
reflexion has order two, so there is also a homomorphism g → g′ in the opposite
direction. Their composition preserves weight spaces, so it is invertible.

(2) Assume now that R0 is an admissible component. We will deduce that it is neces-
sarily weakly symmetric. Assume that there exists v ∈ R0, a v-reflectable element
x ∈ X and another y ∈ X such that axy = 0. Let g be a root algebra.

Look at the x-reflexion rx : v → v′. Since
b′(x) = −b(x), b′(y) = b(y)

one has g̃′
b(x)+b(y) = 0 so gb(x)+b(y) = 0. Therefore [ex, ey] = 0. One has

ayxex = [a(y), ex] = [[ey, fy], ex] = 0
so ayx = 0 as required. □
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3.4. Admissible components in rank two. In this subsection we show that any locally
weakly symmetric root datum of rank two belongs to an admissible component (that is,
local weak symmetricity implies weak symmetricity).

3.4.1. Fully reflectable. A component R0 of R is called fully reflectable if all x ∈ X are
reflectable at all v ∈ R0. Classification of fully reflectable root data is available for all
ranks. Fully reflectable admissible root data without isotropic real roots can be easily
classified as all Cartan matrices in the component are D-equivalent. The classification of
fully reflectable admissible root data with isotropic real roots was obtained in [10].

3.4.2. Symmetrizable. The cases axy = ayx = 0 as well as axy ̸= 0 and ayx ̸= 0 are
symmetrizable, therefore, symmetrizable at all vertices by Lemma 2.4.

3.4.3. Weakly symmetric but not symmetrizable. This is possible only if R0 contains an
object v having nonreflectable y ∈ X. Thus, the Cartan matrix should have form

A =
(
axx axy
0 ayy

)
,

with axy ̸= 0. Since y is nonreflectable, ayy = 0 and p(y) = 0.

(a) Let axx = 0 so p(x) = 1 since x is reflectable. Then

A =
(

0 axy
0 0

)
,

that, after the reflexion, will become

A′ =
(

0 −axy
0 0

)
which is D-equivalent to A.

(b) axx ̸= 0. In this case the Cartan matrix is not changed and therefore the component
is weakly symmetric.

3.5. The canonical extension of R0.

3.5.1. Let G,H be groupoids. A functor f : G → H is called a fibration if for any g ∈ G

and β : f(g) → h in H there exists α : g → g′ in G such that f(α) = β.
Given a fibration f : G → H and h ∈ H, the fiber of f at h, Gh, is defined as follows.

• Ob(Gh) = {g ∈ G|f(g) = h}.
• HomGh

(g, g′) = {α : g → g′|f(α) = idh}.

Remark. If f is not a fibration, the fiber Gh defined as above may change if one replaces
G with an equivalent groupoid. A more invariant notion of fiber has as objects the pairs
(g, α : f(g) → h).
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3.5.2. Let R0 be an admissible component of the root groupoid and let g be a root algebra
on R0. Define the groupoid of symmetries of g, G0, together with a fibration π : G0 → R0,
as follows. The groupoids G0 and R0 have the same objects. For α : v → v′ ∈ R0, we
define Homα

G0(v, v′), the set of arrows v → v′ in G0, as the set of isomorphisms g(v) → g(v′)
extending the isomorphism h(α).

The fiber of π at v ∈ R0 consists of automorphisms of g(v) that are the identity on h(v).
Any such automorphism a preserves the weight spaces, and so it is uniquely given by a
collection of λx ∈ C∗, µx so that a(ex) = λxex, a(fx) = µxfx. Since [ex, fx] = a(x) ̸= 0,
one necessarily has µx = λ−1

x .
Recall that the classifying groupoid of a group G is the groupoid having a single object

whose group of automorphisms is G.
The discussion above implies that the fiber of π at v identifies with the classifying

groupoid of the torus (C∗)X .

3.5.3. Canonicity of G0. Let g be a root algebra on R0. For any v the algebra g(v) has a
maximal ideal r(v) having no intersection with h(v).

Thus, g(v)/r(v) = gC(v) for all v. Let α : v → v′ be an arrow in R. Any isomorphism
g(v) → g(v′) extending h(α) induces an isomorphism gC(v) → gC(v′). This leads to a
functor G0 → GC

0 over R0, where GC
0 denotes (temporarily) the groupoid extension of R0

constructed as in § 3.5.2 with the root algebra gC. It is an equivalence as it induces an
equivalence of fibers at any v ∈ R0.

3.6. Universal root algebra.

3.6.1. In this subsection we will prove the existence of an initial object in the category
of root algebras associated to an admissible component R0 of R.

Let g be a root Lie superalgebra for the component R0. Fix v ∈ R0. The v-coordinate
system for g is a Lie superalgebra epimorphism g̃(v) → g(v). Let k(v) be its kernel.

Choose an arrow α : v′ → v in R presentable as a composition of reflexions. We denote
g′ = g(v′) and g = g(v). The existence of an isomorphism g′ → g lifting α proves that
gb′(x)−b′(y) = 0 for y ̸= x, so that k(v) ⊃ s(v) where s(v) is the ideal of g̃(v) generated by∑

g̃b′(x)−b′(y)(v), the sum being taken over all α : v′ → v presentable as compositions of
reflexions.

Let us verify that the collection gU = {gU(v) = g̃(v)/s(v), v ∈ R0} is a root Lie
superalgebra. Note that s(v) ⊂ k(v), so one has obvious surjective homomorphisms q :
gU(v) → g(v).

We have to define, for each arrow α : v → v′ in R, an isomorphism α̃ : gU(v) → gU(v′)
extending h(α) : h → h′. This is enough to verify separately for reflexions, homotheties and
tautological arrows. In the case when α is a tautological arrow or a homothety, it extends
to an isomorphism α̃ : g̃(v) → g̃(v′). Since the homotheties and the tautological arrows
commute with the reflexions, α̃ carries s(v) to s(v′), and this induces an isomorphism
gU(v) → gU(v′). It remains to define, for each reflexion rx : v → v′ in R, an isomorphism
ρ = r̃x : gU(v) → gU(v′) extending idh.

The algebra gU(v) is generated over h by the elements ey of weight b(y), fz of weight
−b(z), subject to relations listed in § 3.1.1 and factored out by s(v). Thus, in order to
construct ρ, we have to choose ρ(ey) ∈ gU

b(y)(v
′), ρ(fz) ∈ gU

−b(z)(v
′), so that ρ vanishes at

all the relations.
The weight spaces gU

b(y)(v
′) and gU

−b(y)(v
′) are one-dimensional by property (3) of § 3.1.2

as the map q : gU(v) → g(v) is surjective and the weight spaces gb(y)(v′) and g−b(y)(v′) are
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one-dimensional. We will define arbitrarily 0 ̸= ρ(ey) ∈ gU
b(y)(v

′) and choose ρ(fy) ∈ gU(v′)
so that [ρ(ey), ρ(fy)] = a(y). The latter is possible by Proposition 3.3(2). The rest of the
relations say that, for any composition of reflexions γ : v′′ → v with v′′ = (h, a′′, b′′, p′′),
the weight space gU

b′′(y)−b′′(z)(v) vanishes for all y ̸= z. Now ρ defined as above yields a
homomorphism as gU

b′′(y)−b′′(z)(v
′) = 0 by the definition of s(v′). Thus, we have constructed

an algebra homomorphism ρ : gU(v) → gU(v′).
Any reflexion has order two, so there is also a homomorphism in the opposite direction.

Their composition preserves weight spaces, so it is invertible.
This proves that the collection of algebras gU = {g̃(v)/s(v)} is the initial object in the

category of root algebras based on R0.

Definition 3.10. The root algebra gU = {g̃(v)/s(v)} defined as above is called the uni-
versal root Lie superalgebra defined by the component R0

2.

The superinvolution θ of g̃ defined in § 3.1.3 induces an automorphism of the universal
root algebra.

3.6.2. Serre relations. The classical Serre relations

(adex)−axy+1(ey) = 0, (adfx)−axy+1(fy) = 0,

for x, y ∈ X such that axx ̸= 0 are among the most obvious relations defining the universal
Lie superalgebra. They correspond to the summand g̃±(b′(x)−b′(y)) of s(v) defined by the
reflexion rx : v′ → v. The ideal s(v), however, is usually not generated by the classical
Serre relations.

3.6.3. Let gU = {gU(v)} denote the universal root algebra and let g = {g(v) = gU(v)/I(v)}
be a root algebra.

Any automorphism η ∈ AutR(v) lifts to an automorphism of gU(v) preserving I(v).
The converse of this fact also holds; one has the following easy result.

Lemma. Let gU be the universal root algebra at a component R0, v ∈ R0. Any AutR(v)-
invariant ideal J(v) of gU(v) such that J(v) ∩ h = 0 defines a canonical root algebra g
whose v-component is g(v) = gU(v)/J(v).

Proof. For any v′ ∈ R0 choose an isomorphism γ̃ : gU(v) → gU(v′) and set J(v′) = γ̃(J(v)).
By invariance of J(v) the ideal J(v′) is independent of the choice of γ̃. □

Remark 3.11. The lemma above implies that a root Lie superalgebra is canonically
determined by any of its component g(v) = g̃(v)/I(v). An ideal I(v) ⊂ g̃(v) defines a root
superalgebra iff it contains s(v) and its image in gU(v) is AutR(v)-invariant.

3.7. A side remark: groupoid extensions. The groupoid extension π : G0 → R0 has
fibers isomorphic to the classifying spaces of a torus. This very special type of extension
admits a description in terms of gerbes.

For v ∈ R0 and γ : v → v in R0 choose a lifting γ̃ : v → v in G0. This defines an
automorphism of the fiber (G0)v given by the formula α 7→ γ̃ ◦ α ◦ γ̃−1. The result is
independent of the choice of γ̃ as tori are abelian groups.

2It was J. Bernstein who once pointed out that factoring out by the maximal ideal having no intersection
with the Cartan subalgebra may be unjustified. The present work is to a large extent an outcome of his
remark.
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The above described action can be encoded into a groupoid extension p : T → R0 that
is a group over R0: one has a multiplication

m : T ×R0 T → T

corresponding to the fiberwise multiplication. Finally, π : G0 → R0 is a T-torsor: there is
an action

T ×R0 G0 → G0.

In more classical terms, we are talking about presenting an abelian group extension as
a torsor over a split abelian group extension that is a semidirect product of the base and
the fiber.

The group p : T → R0 is easy to describe. The groupoid R0 comes with the functor
h : R0 → Vect.

We define a functor T : R0 → Gp into the category of groups assigning to v the factor
group T (v) = h(v)/K(v) where

K(v) = {h ∈ h | b(x)(h) ∈ 2πiZ for all x ∈ X} .

The functor T gives rise to a groupoid extension p : T → R0 with Ob(T) = Ob(R0) and
HomT(v′, v) = HomR0(v′, v) × T (v).

The action T ×R0 G0 → G0 is defined as follows. Let g = {g(v)} be a root algebra
based on R0. To (α, τ) ∈ HomR(v′, v) × T (v) and α̃ : g(v′) → g(v), we assign τ ◦ α̃ where
τ : g(v) → g(v) is given by rescaling.

Note that the torsor G0 is nontrivial as, for instance, for g = sl2 the groupoid extension
π : G0 → R0 is the projection N(T ) → W of the normalizer of the torus to the Weyl group
that is not split.

4. Weyl group

Throughout this section we assume that R0 is an admissible component of R.

4.1. Real roots. For v ∈ R0 we denote

Q(v) = SpanZ{b(x)}x∈X ⊂ h∗(v),

The parity function p : X → Z2 extends to a group homomorphism p : Q(v) → Z2 that
we denote by the same letter p.

Lemma 4.1.
(1) For any γ : v → v′ the isomorphisms h(v) → h(v′) and h∗(v) → h∗(v′) induce

isomorphisms SpanC{a(x)}x∈X → SpanC{a′(x)}x∈X and Q(v) → Q(v′).
(2) The isomorphisms Q(v) → Q(v′) are compatible with the parity p.

Proof. The claim directly follows from the formulas for reflexions. □

Definition 4.2. An element α ∈ Q(v) is called a real root if there exists γ : v′ → v and
x ∈ X so that γ(b′(x)) = α.
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4.1.1. The collection of real roots in h(v) is denoted by ∆re(v). By Corollary 3.8, for any
root algebra g, ∆re(v) ⊂ ∆(v) and all real root spaces of g are one-dimensional. Real roots
coming as described above from γ : v → v′ form a subset Σγ(v). We write Σ(v) = Σid(v)
for the set of simple roots at v.

Clearly
∆re(v) =

⋃
γ:v→ v′

Σγ(v), (4.1)

but the union is not disjoint. Any α : v → v′ sends bijectively ∆re(v) to ∆re(v′) and
Σγ◦α(v) to Σγ(v′).

4.2. Isotropic, anisotropic and nonreflectable real roots.

Definition 4.3.
(1) A simple root b(x) ∈ h∗(v) is called isotropic if x is reflectable at v and ⟨a(x), b(x)⟩

= 0. One has always p(x) = 1 for an isotropic root b(x).
(2) A simple root b(x) ∈ h∗(v) is called anisotropic if x is reflectable at v and ⟨a(x),

b(x)⟩ ≠ 0.
(3) For an anisotropic simple root α = b(x) we define α∨ = 2a(x)

axx
∈ h(v).

We are going to extend these definitions to real roots. Since a real root at v is defined
by a path γ : v → v′ and a simple root at v′, the extension is possible if two simple roots
at v′ and v′′ defining the same real root, are of the same type.

Proposition 4.4. Let α ∈ Σγ1(v) ∩ Σγ2(v) so that α = γ∗
1(b1(x1)) = γ∗

2(b2(x2)) for
γi : v → vi. Then one of the following options holds.

(1) Both bi(xi) ∈ h∗(vi) are isotropic roots.
(2) Both bi(xi) ∈ h∗(vi) are anisotropic roots and (γ2 ◦ γ−1

1 )∗(b1(x1)∨) = b2(x2)∨.
(3) x1 is nonreflectable at v1 and x2 is nonreflectable ay v2.

Proof. We can assume, without loss of generality, that γ1 = idv and γ2 = γ : v → v′. Then
α = b(x) = γ∗(b′(y)).

Let g be a root algebra and let α = b(x) for v ∈ R0 so that x is v-reflectable. Then
g⟨α⟩ is not the Heisenberg algebra and ex acts locally nilpotently on g. If, for γ : v → v′,
α = γ∗(b′(y)), e′

y acts locally nilpotently on g(v′), and, since g⟨α⟩ is not the Heisenberg
algebra, this implies that y is reflectable at v′. Let now x be reflectable at v and y
reflectable at v′. Then Corollary 3.8 describes possible options for g⟨α⟩. This implies the
claim. □

4.2.1. Proposition 4.4 allows one to extend the classification of simple roots to all real
roots.

One has a decomposition
∆re(v) = ∆iso(v) ⊔ ∆an(v) ⊔ ∆nr(v), (4.2)

where
∆iso(v) is the set of isotropic real roots that are reflectable simple roots at some
v′ ∈ R0.
∆an(v) is the set of anisotropic real roots that are reflectable simple roots at some
v′ ∈ R0. Any anisotropic real root α ∈ ∆an(v) defines a coroot α∨ ∈ h(v).
∆nr(v) is the set of non-reflectable real roots, those that for any v′ ∈ R0 and x ∈ X
such that α = b(x), x is non-reflectable at v.
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Remark. In our definition isotropic roots are necessarily real. In another tradition, a
root of a symmetrizable Lie superalgebra is called isotropic if it has length zero. For the
real roots both notions of isotropicity coincide.

For α ∈ ∆an(v) the pair (α, α∨) defines a reflection sα acting both on h(v) and on h∗(v)
by the usual formulas

sα(β) = β −
〈
β, α∨〉α, sα(h) = h− ⟨α, h⟩α∨. (4.3)

Corollary 4.5.
(1) The set of real roots ∆re(v) ⊂ h∗(v) is AutR(v)-invariant.
(2) For γ ∈ AutR(v) and α ∈ ∆an(v) one has

sγ(α) = γsαγ
−1. (4.4)

Proof. The first claim is a direct consequence of formula (4.1) and Proposition 4.4. The
second claim directly follows from the formulas for sα. □

4.2.2. Skeleton. We define Sk ⊂ R as the subgroupoid having the same objects as R; an
arrow γ : v → v′ is in Sk if it can be presented as a composition of reflexions. This is the
skeleton groupoid.

We denote by Sk(v) the connected component of the skeleton containing v. Note that,
by definition, any arrow in Sk(v) induces the identity map of h(v), so any two arrows with
the same ends coincide. Therefore, Sk(v) is a contractible groupoid. Note that any arrow
γ : v → v′ in R can be decomposed γ = γ′′ ◦ γ′ where γ′ is in Sk and γ′′ is a composition
of a homothety and a tautological arrow.
Remark 4.6. As we prove later in Corollary 5.13, this decomposition is unique.
4.2.3. If β : v → v′ is a homothety or a tautological arrow, β(Σ(v′)) = Σ(v). Therefore,
for γ = γ′′ ◦ γ′ as above, Σγ(v) = Σγ′′(v). Since Sk(v) is contractible, it makes sense to
denote Σv′(v) = Σγ(v) for γ : v → v′ in Sk(v).

Thus, we have
∆re(v) =

⋃
v′ ∈ Sk(v)

Σv′(v) (4.5)

(the union still does not have to be disjoint).

4.2.4. Spine. We denote by Sp the subgroupoid of Sk spanned by the isotropic reflexions
only. The component of Sp containing v is denoted by Sp(v). It is obviously contractible.
Cartan data of Sp(v) describe all possible Cartan data for the component R0 of R con-
taining v, up to D-equivalence.

4.3. Weyl group and its actions. In this subsection we define the Weyl group assigned
to a component R0. By definition, the Weyl group identifies with a subgroup of GL(h(v)),
for every v. Any arrow γ : v → v′ defines an isomorphism of the Weyl groups at v and
at v′.

We also define an action of W (v) on Sk(v).
Remark 4.7. Every vertex v′ ∈ Sk(v) determines a Borel subalgebra bv′ of the root
algebra g(v). The objects of Sk(v) classify the attainable Borel subalgebras b′, that is
those containing a given Cartan subalgebra h(v) and such that codimb(v)(b′ ∩ b(v)) < ∞.
This follows from Corollary 5.13.
Definition 4.8. The Weyl group W = W (v) (at v ∈ R) is the group of automorphisms
of h(v) generated by the reflections with respect to anisotropic real roots.
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4.3.1. Embedding i : W (v) → AutR(v). The representation of AutR(v) in h = h(v) is
faithful by the definition of R. Let us show that W (v) is a subgroup of the image of
AutR(v) in GL(h(v)). Let α = b′(x) be an anisotropic root. Without loss of generality we
can assume that there is an arrow γ : v → v′ in Sk(v). Then the composition

γ−1 ◦ tsα ◦ rx ◦ γ : v → v

induces the reflection sα on h. This proves that generators of W (v) are in the image of
the embedding AutR(v) → GL(h(v)), so that the Weyl group identifies with a subgroup
of AutR(v).

It is clear that any arrow γ : v → v′ intertwines the canonical embeddings W (v) →
Aut(v) and W (v′) → Aut(v′).

Note that AutR(v) acts on W (v) so that the embedding i commutes with this action.
This means that W (v) is a normal subgroup of AutR(v).

Lemma 4.9. Let rx : v → v′ = (h, a′, b′, p) be an anisotropic reflexion, α = b(x) ∈ h∗.
Then sα(a(y)) = a′(y) and sα(b(y)) = b′(y) for all y ∈ X.

Proof. Immediate from the formulas 2.2.1 and (4.3). □

Lemma 4.10. Let rx : v → v′ = (h, a′, b′, p′) and rx : w = (h, aw, bw, pw) → w′ =
(h, a′

w, b
′
w, p

′
w) be reflexions. Let α ∈ ∆re satisfy the conditions

sα(a(y)) = aw(y), sα(b(y)) = bw(y), p(y) = pw(y), y ∈ X. (4.6)

Then
sα(a′(y)) = a′

w(y), sα(b′(y)) = b′
w(y), p′(y) = p′

w(y), y ∈ X. (4.7)

Proof. The automorphism sα carries the basis {b(y)} of Q(v) to the basis {bw(y)} of Q(w).
The Cartan matrices at v and w coincide and the formulas defining rx are the same. □

Remark 4.11. Note that if (4.6) holds then x is reflectable at v if and only if it is
reflectable at w. This is so as the Cartan matrices of v and of w coincide.

Proposition 4.12. Let w ∈ W (v), v′ = (h, a′, b′, p′) ∈ Sk(v). Then there exists a unique
v′′ = (h, a′′, b′′, p′) ∈ Sk(v) such that

w(a′(y)) = a′′(y), w(b′(y)) = b′′(y), y ∈ X. (4.8)

The proposition defines an action of the Weyl group W on Sk(v).

Proof. The uniqueness claim is obvious. For the existence, it is sufficient to verify the
claim for w = sα. We can assume that α = b(x) is a simple root at v and let rx : v → u be
the reflexion. If v′ = v then v′′ = u satisfies the requirements by Lemma 4.9. Otherwise,
choose an isomorphism ϕ : v → v′, present it as a composition ϕ = ϕn ◦ . . . ◦ ϕ1, where
each ϕi is a reflexion. We define an arrow ψ : u → v′′ as the composition ψ = ψn ◦ . . . ◦ψ1
where ψi = ry if ϕi = ry

3. Note that the composition ψ necessarily makes sense. Now a
consecutive application of Lemma 4.10 yields the result. □

Remark 4.13. The proof provides us with an explicit formula: Let α = bv(x). Then
v′′ = sα(v′) is the target of the composition ψ ◦ rx ◦ ϕ−1 : v′ → v′′, see the picture below.

3Note that ψi and ϕi are namesakes: they have the same name but are applied to different objects of
the groupoid.
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v•

rx α=bv(x)

��

ϕ1=ry1 // • . . . •
ϕn=ryn // v

′
•

u′=sα(v′)

		
u•

ψ1=ry1 // • . . . •
ϕn=ryn // v

′′
•

(4.9)

The embedding i : W (v) → AutR(v) can be easily expressed in terms of the action of
W on Sk(v).

Corollary 4.14. For any w ∈ W (v) let γw : v → w(v) be the arrow in Sk(v). Then

i(w) = tw ◦ γw.

Proof. The composition tw ◦ γw is an endomorphism of v. The automorphism i(w) is
uniquely defined by its action on h. The composition tw ◦γw provides the same action. □

We will show later (see Corollary 5.6) that the action of the Weyl group W (v) on Sk(v)
is free. It is not transitive in general. Here is what we can say about the orbits of the
action.

Proposition 4.15. For every v, v′ ∈ Sk(v) there exists w ∈ W (v) and a sequence of
isotropic reflexions

v
rx1→ . . .

rxk→ v′′

such that v′ = w(v′′). In other words, there exists w ∈ W (v) and v′′ ∈ Sp(v) so that
v′ = w(v′′).

Proof. Choose a presentation of ϕ : v → v′ as a composition ϕ = ϕn ◦ . . . ◦ϕ1 of reflexions.
If i is the first index for which ϕi is an anisotropic reflexion, we can, as in the proof of
Proposition 4.12, erase it, replacing reflexions ϕj , j > i with their namesakes ψj , so that
the target of the composition

ψn ◦ . . . ◦ ψi+1 ◦ ϕi−1 ◦ . . . ◦ ψ1 : v → v′′

satisfies the property sα(v′′) = v′, for an anisotropic root α defined by ϕi. Continuing
parsing the decomposition of ϕ in this way, we end up with the required decomposition. □

4.3.2. Principal reflections. In the case p(x) = 0 for all x and for all v ∈ R0, the Weyl
group W is known to be generated by simple reflections sb(x), x ∈ X for a fixed vertex
v ∈ R0. This is not true in general, as, for instance, there may exist v ∈ R0 for which all
axx = 0.

Here is what can be said in general.

Definition 4.16. Fix v ∈ R0. A root α ∈ ∆an(v), is called v-principal if there exists
v′ ∈ Sp(v) and an element x ∈ X such that α = b′(x). A reflection sα with respect to a
v-principal root is called a v-principal reflection.

One has

Proposition 4.17. The Weyl group W (v) is generated by v-principal reflections.
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Proof. Let α ∈ Σγ(v) be anisotropic where γ : v → v′ = (h, a′, b′, p′) is a composition of
reflexions and α = b′(x). We will prove the claim by induction on length of the presentation
of γ as a composition of reflexions.

If the sequence consists of isotropic reflexions only, α is principal and there is nothing
to prove. Otherwise there is an anisotropic reflexion in the sequence. We denote below by
ϕ′ a composition of isotropic reflexions and by ry the first anisotropic reflexion.

v
ϕ′
→ v1

ry→ v2
ϕ→ v′.

Let v1 = (h, a1, b1, p1) and β = b1(y). By Proposition 4.12, sβ carries v′ to a vertex v′′

obtained as the target of a composition of reflexions ψ : v1 → v′′ having the same indices as
the components of ϕ : v2 → v′. We denote v′′ = (h, a′′, b′′, p′′) and we get b′(x) = sβ(b′′(x)).
Therefore, sα = sb′(x) = ssβ(b′′(x)) = sβsb′′(x)sβ, the last equality by Corollary 4.5. Now sβ
is principal and v′′ has a shorter sequence of reflexions connecting it to v. □

Remark 4.18. The proof of Proposition 4.17 implies that any root α ∈ ∆an(v) is W -
conjugate to a principal root.

4.4. Modules over a root algebra.

Definition 4.19. Let g := g(v) be a root Lie superalgebra supported at R0. A weight
g-module M is, by definition, an g(v)-module M whose restriction to h is semisimple.

For a weight g-module M we denote by Ω(M) the set of weights of M .
We will now define integrable g-modules.

Definition 4.20. Let g = g(v) be a root Lie superalgebra. We say that a weight g-module
M is integrable if gα acts locally nilpotently on M for each anisotropic α ∈ ∆re.

Note that the adjoint representation of any root Lie superalgebra is integrable.
Let g be a root Lie superalgebra and let M be an integrable g-module. Corollary 3.8

implies that Ω(M) is W -invariant. Moreover, the multiplicities of the weights µ and w(µ)
coincide.

The adjoint representation of any root Lie superalgebra g is integrable. In particular,
the set of roots ∆(g) of any root algebra is W -invariant.

5. Coxeter structures

5.1. Introduction. A Coxeter structure on a group G is a set of elements si ∈ G such that
(G, {si}) is a Coxeter group. A Coxeter structure on a group provides its combinatorial
description.

In this section we prove that the Weyl group of any admissible component R0 has a
Coxeter structure. A somewhat similar combinatorial description can be given to the
components of the root groupoid.

5.1.1. Fix an indecomposable admissible component R0 and v ∈ R0. In what follows we
use the notation of § 4.2.2, suppressing the parameter v from the notation. Thus, we will
write h for h(v), Σ for Σ(v), and, for v′ ∈ Sk(v), Σv′ for Σv′(v). Recall that Σ = {b(x)}x∈X
and Q = SpanZ(Σv′) is independent of v′. We set

Q+
v′ := Z≥ 0Σv′ ⊂ Q, Q+ := Q+

v .
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5.2. Coxeter structure of the Weyl group. Fix a vertex v ∈ R0. Let α1, . . . , αm be
the set of v-principal roots and si be the reflection sαi . The Weyl group W is generated
by si. We say that w = si1 . . . sil is a reduced decomposition if it has minimal length. In
this case we say that ℓ(w) = l is the length of w.

Let
C :=

⋂
v′ ∈ Sp(v)

Q+
v′ .

Lemma 5.1. Let α be an anisotropic real root.
(1) There is w ∈ W such that w(α) is v-principal.
(2) If α ∈ Q+

v′ for some v′ ∈ Sp(v) then α ∈ C.
(3) Either α ∈ C or α ∈ −C.

Proof. For (1) see Remark 4.18. To prove (2) we notice that (Q+
v′ \Q+

v ) ∩ ∆re consists of
isotropic roots.

Now let us show (3). By (1) and (2) it suffices to check that if α ∈ C and si is a
principal reflection then si(α) ∈ C or si(α) ∈ −C. Indeed, let v′ be a vertex such that
αi ∈ Σv′ . Then si(α) ∈ Q+

v′ unless α = −αi. In the latter case α ∈ −C. □

Claim (2) of the Lemma above means that
Q+
v′ ∩ ∆an = C ∩ ∆an .

This is the set of positive anisotropic roots (with respect to any v′ ∈ Sp(v)).

Lemma 5.2. Let w = si1 . . . sit and let αi be a principal root such that w(αi) ∈ −C. Then
there exists j such that wsi = si1 . . . ŝij . . . sit.

Proof. Define βk := sik+1 . . . sit(αi) for k = 0, . . . , t − 1 and βt := αi. Since βt ∈ C and
β0 ∈ −C there is j such that βj ∈ C and βj−1 ∈ −C. Hence βj = αij . We get αij = u(αi)
for u := sij+1 . . . sit . Using the formula usαu−1 = suα, see Corollary 4.5, we obtain

wsi = si1 . . . sij−1

(
usiu

−1
)
usi = si1 . . . ŝij . . . sit .

□

Corollary 5.3. If w = si1 . . . sil is a reduced decomposition and αi is a principal root then
(1) ℓ(wsi) < ℓ(w) = l if and only if w(αi) ∈ −C.
(2) w(αil) ∈ −C.
(3) If ℓ(wsi) < ℓ(w) then for some j

sij . . . sil = sij+1 . . . silsi.

Proof. See [11, Lemma 3.11]. □

Corollary 5.4. W is a Coxeter group generated by s1, . . . , sm. In the Coxeter relations
(sisj)m = 1 the possible values of m are 2, 3, 4, 6 or ∞.

Proof. See [3, Théorème 6.1, § 1, Chapitre 4]. If α and β are principal roots so that
s1 = sα and s2 = sβ, it is easy to see that the union W ′(α) ∪ W ′(β), where W ′ is the
subgroup of W generated by s1 and s2, is a classical root system of rank 2. This implies
that m = 2, 3, 4, 6 or ∞. □

Corollary 5.5. If w(αi) ∈ C for all i then w = 1.

Proof. Follows from Corollary 5.3(2). □
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Corollary 5.6. Let v′ = w(v) ∈ Sk(v). If Q+
v = Q+

v′ then w = 1. In particular, the action
of W on Sk(v) is faithful.

Proof. If Q+
v = Q+

v′ then w(Q+
v ) = Q+

v and hence w(α) ∈ C for all anisotropic α ∈ Q+
v . □

5.2.1. We denote by ∆+
re(v) the set of real roots positive at v. We set ∆+

an(v) = ∆an ∩
∆+

re(v).

Corollary 5.7. Let v′ = w(v) ∈ Sk(v). Then ℓ(w) is the cardinality of the set ∆+
an(v) −

∆+
an(v′).

Proof. Let w = si1 . . . sil be a reduced decomposition. Set βj = si1 . . . sij−1(αij ). Then
v′ = sβl

. . . sβ1(v) and ∆+
an(v) − ∆+

an(v′) = {β1, . . . , βl}. □

Corollary 5.8. For v′ ∈ Sk(v) there exists a unique v′′ ∈ Sp(v) and w ∈ W such that
v′ = w(v′′). The cardinality of the set ∆+

an(v) − ∆+
an(v′) is equal to ℓ(w).

Proof. The existence of v′′, w follows from Proposition 4.15. An isotropic reflection does
not change the set ∆+

an , so ∆+
an(v′′) = ∆+

an(v) and the required formula for ℓ(w) follows
from Corollary 5.7. For the uniqueness assume that v′ = w1(v1) = w2(v2) for v1, v2 ∈
Sp(v). Then w−1

1 w2(v2) = v1 and ∆+
an(v1) = ∆+

an(v2), so ℓ(w−1
1 w2) = 0. Thus w1 = w2

and v1 = v2 as required. □

5.3. Skeleton as a graph. A structure similar to the Coxeter structure on the Weyl
group exists also on admissible components of the root groupoid. We fix v0 ∈ R and study
a combinatorial structure of Sk(v0). Note that, from the algebraic point of view, Sk(v0)
is a contractible groupoid, so it may be seen as something lacking any interest. However,
its arrows are compositions of reflexions, and remembering these reflexions makes a lot of
sense. In this subsection we present a description of the shortest path length in this graph,
similar to the one given in Corollary 5.7. It has a nice application to the description of
the group AutR(v) in § 5.4. In Section 6 we study a Coxeter property of Sk(v).

5.3.1. We look at the skeleton Sk(v0) as the graph where the reflexions connect the
vertices. Thus, the reflexions are the edges of our graph. We color the edges by elements
of h∗ = h(v0)∗: a reflexion v

rx−→ v′ is colored by the real root α = −b(x) = b′(x). Note
that ∆+

re(v′) is obtained from ∆+
re(v) by replacing the (existing) root −α with α.

For a path
v0

rx1−−→ v1
rx2−−→ . . .

rxt−−→ vt = v′

colored by the sequence (α1, . . . , αt) we have

∆+
re(v′) =

(
∆+

re(v′) ∪ {αi}ti=1

)
\ {−αi}ti=1. (5.1)

In particular, if a path is colored by the sequence (α1, . . . , αt) with αt = α1, then there
exists i such that αi = −α1.

We will start with an obvious remark.

Remark. Let v rx−→ v′ be a reflection. If axy = ayx = 0 and x ̸= y, then a′(y) = a(y),
b′(y) = b(y) and the yth rows (and the yth columns) of the Cartan matrices Av, Av′ are
equal.

Lemma 5.9. Given a path v0
rx→ v1

ry→ v2 colored by (α, β), α ̸= −β, the following
conditions are equivalent.

(1) α− β ̸∈ ∆C (the set of roots of gC).
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(2) There exists a path v0
ry→ v3

rx→ v2 colored by (β, α).

Proof. If (2) is fulfilled, both α and β are simple roots at v2, so their difference is not a
root. Let us prove that (1) implies (2). We have α,−β ∈ Σv1 , −α ∈ Σv0 and β ∈ Σv2 .
We will denote by Ai = (aixy) the Cartan matrix at vi and we will write ai(z) and bi(z)
instead of avi(z) and bvi(z).

If β is anisotropic, ⟨α, β∨⟩ = 0 as otherwise both s−β(α) = α − ⟨α, β∨⟩β and α are
roots, which would imply that α − β is also a root. This implies that a1

xy = 0. If β is
isotropic, we still have a1

xy = 0 as otherwise ry would carry α = b1(x) to α− β that is not
a root. Thus, by admissibility, a1

yx = 0. Using the remark in 5.3.1, we deduce −β ∈ Σv0
and α ∈ Σv2 so that

b0(x) = −α, b0(y) = −β
b1(x) = α, b1(y) = −β and a1(y) = a0(y)
b2(x) = α, b2(y) = β and a2(x) = a1(x).

We will show that x is reflectable at v2, y is reflectable at v3 and ry ◦ rx carries v2 to
v0. This will give the square in Sp(v) shown in the picture.

v1
ry

β   
v0

rx

α

>>

v2

rx

−α

~~
v3

ry

−β
``

Reversing the lower reflexions, we get the required result.
Note that reflectability of x ∈ X at v is determined by the xth row of the Cartan matrix

at v. By the remark in 5.3.1 the x-row of A2 is equal to the x-row of A1, so x is reflectable
at v2. Since b1(x) = b2(x), a1(x) = a2(x) and the xth row (resp., xth column) of A2 is
equal to the xth row (resp., xth column) of A1 we have

b0(z) − b1(z) = b3(z) − b2(z), a0(z) − a1(z) = a3(z) − a2(z).
Once more, by the remark in 5.3.1 applied to rx : v2 → v3, the y row of A3 is equal to

the y-row of A2, so y is reflectable at v3. It remains to show that ry carries v3 to v0. Since
b2(y) = b3(y), a2(y) = a3(y) and the yth row (resp., yth column) of A3 is equal to the yth

row (resp., yth column) of A2, we have
b1(z) − b2(z) = b′

0(z) − b3(z), a1(z) − a2(z) = a′
0(z) − a3(z).

Therefore, b′
0(z) = b0(z) and a′

0(z) = a0(z). Hence v′
0 = v0. □

Lemma 5.10. Let
v0

rx1−−→ v1
rx2−−→ . . .

rxs−−→ vs

be a path in Sp(v) colored by a sequence (α1, . . . , αs) with the property αi ̸= −αj for i ̸= j.
Assume that α = bv0(x) = bvs(y) is isotropic. Then α − αi ̸∈ ∆C, x = y and bvi(x) = α,
avi(x) = av0(x) for all i.

Proof. Set β := α − α1. Let us show that β is not a root. Assume the contrary. Then β
is even and β

2 is not a root. Since the set of even positive roots β such that β
2 is not a

root is preserved by isotropic reflexions, β = α − α1 ∈ ∆+
vs

. Therefore α1 ∈ −∆+
vs

. Since
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α1 ∈ ∆+
v1 , there should exist 1 < i ≤ s such that αi = −α1, a contradiction. Since β ̸∈ ∆C,

we have bv1(x) = bv0(x) = α and av1(x) = av0(x).
Now the assertion follows by induction in s. □

The following result describes an exchange property for a sequence of isotropic reflexions.

Proposition 5.11. Let

v0
rx1−−→ v1

rx2−−→ . . .
rxd−−→ vd

rxd+1−−−→ vd+1

be a path in Sp(v) colored by a sequence (α1, . . . , αd+1) with the property αd+1 = −α1
and αi ̸= −αj for 1 ≤ i < j ≤ d. Then xd+1 = x1 and there is a sequence of isotropic
reflexions

v0
rx2−−→ v′

2
rx3−−→ . . .

rxd−1−−−→ v′
d−1

rxd−−→ vd+1

colored by the sequence (α2, . . . , αd).

Proof. We apply Lemma 5.10 to the sequence of reflexions v1
rx2−−→ . . .

rxd−−→ vd and the root
α := α1. We deduce that α1 −α2 ̸∈ ∆C. This implies that, by Lemma 5.9, one can replace
the sequence v0 → v1 → v2 with v0 → v′

2 → v2 and then a simple induction gives the
required result. □

Remark 5.12. Lemma 5.10 implies that for v, v′ in Sp(v0) we have
bv(x) = bv′(y) ∈ ∆iso =⇒ x = y, av(x) = av′(y).

In § 10.4 below we will see that bv(x) = bv′(y) ∈ ∆an does not imply neither x = y nor
av(x) = av′(y).

Corollary 5.13. Let v′ ∈ Sk(v) satisfy ∆+
re(v′) = ∆+

re(v). Then v′ = v. In particular, if
a homothety can be presented as a composition of reflexions, it is the identity.

Proof. By Proposition 4.15 there exist v′′ ∈ Sp(v) and w ∈ W such that v′ = w(v′′). The
sets of positive anisotropic roots at v and at v′′ coincide as none of them can become
negative under an isotropic reflexion. Therefore, w = 1 by Corollary 5.7. This implies
that v′ ∈ Sp(v). Let

v = v0
rx1−−→ v1

rx2−−→ . . .
rxd−−→ vd = v′

be a sequence of isotropic reflexions colored by a sequence (α1, . . . , αd). Since ∆+
re(v′) =

∆+
re(v), the formula (5.1) implies αi = −αj for some i, j. Then by Proposition 5.11 the

sequence of isotropic reflexions can be shortened. □

Definition 5.14. For two vertices v, v′ ∈ Sk(v0) the distance d(v, v′) is defined to be the
minimal number of reflexions in the decomposition of the arrow v → v′.

Proposition 5.15. For v, v′ ∈ Sk(v0) the distance d(v, v′) is the cardinality of ∆+
re(v) −

∆+
re(v′).

Proof. If the difference ∆+
re(v) − ∆+

re(v′) is nonempty, it has an element that is a simple
root α at v that can be replaced with −α by a reflection. Continuing this, we can get,
after the required number of steps, a vertex v′′ having the same ∆+

re(v′′) as ∆+
re(v′). Then

by Corollary 5.13 v′′ = v′. □

Note the following description of non-reflectable roots.

Corollary 5.16. ∆nr = ∆re \ (−∆re).
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Proof. Obviously, if α is isotropic or anisotropic, −α ∈ ∆re. Let us assume that −α ∈ ∆re,
α ∈ Σv and −α ∈ Σv′ . By formula (5.1) any path connecting v with v′ contains an edge
where α becomes negative. This proves reflectability of α. □

5.3.2. Weyl vector. Choose ρv ∈ h∗ such that

2⟨ρv, av(x)⟩ = ⟨bv(x), av(x)⟩ (5.2)

for all x ∈ X. For each v′ ∈ Sk(v) we define

ρv′ := ρv +
∑

α∈ ∆+
an(v′) − ∆+

an(v)

α −
∑

α∈ ∆+
iso(v′) − ∆+

iso(v)

α.

Note that the formula (5.2) holds for all v′ ∈ Sk(v).

Remark. If ρv = ρv0 and v ∈ Sp(v0), then v = v0.

The collection of ρv′ , v′ ∈ Sk(v), is called the Weyl vector. The choice of ρv is not
unique. Weyl vectors play an important role in Lie theory.

5.4. Structure of AutR(v). The action of W (v) on Sk(v) extends to an action of AutR(v).

Proposition 5.17. There is a unique action of AutR(v) on Sk(v) such that for any u ∈
Sk(v) and γ ∈ AutR(v), bγ(u)(x) = γ(bu(x)).

Proof. Uniqueness follows from Corollary 5.13. It is therefore sufficient to verify that for
each u ∈ Sk(v) and γ ∈ AutR(v) there is u′ ∈ Sk(v) satisfying the property bu′(x) =
γ(bu(x)). We proceed as follows. We present γ = γ′′ ◦γ′ where γ′ : v → v′ is a composition
of reflexions and γ′′ is a composition of a homothety with a tautological arrow. Choose a
path

v = v0
rx1→ . . .

rxk→ vk = u

of reflexions connecting v with u. Since the Cartan data at v and at v′ are D-equivalent,
there is a namesake path

v′ = v′
0
rx1→ . . .

rxk→ v′
k = u′

defining u′ ∈ Sk(v). One obviously has bu′(x) = γ(bu(x)) which proves the claim. □

Corollary 5.18. The action of AutR(v) on h∗ preserves ∆re, as well as ∆iso, ∆an, ∆nr .

Proof. The first claim follows from the formula bγ(u)(x) = γ(bu(x)). The rest follows from
the fact that u and u′ = γ(u) have D-equivalent Cartan data. □

The group AutR(v) has a trivial part which we now describe.

Definition 5.19. An automorphism γ ∈ AutR(v) is called irrelevant if it can be presented
as a composition of a homothety and a tautological arrow.

The group of irrelevant automorphisms identifies with

K(v) =
{
θ : h → h

∣∣ ∀ x ∈ X θ(a(x)) ∈ C∗a(x), θ∗(b(x)) = b(x)
}
. (5.3)

Lemma 5.20. K(v) is a normal subgroup of AutR(v).

Proof. K(v) is the kernel of the action of AutR(v) on ∆re. □
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We can easily describe the image of AutR(v) in the automorphisms of Sk(v). The
description of the action presented above implies that the automorphism of Sk(v) defined
by γ ∈ AutR(v) is uniquely determined by the target v′ of γ′ : v → v′ where γ′ is the
composition of reflexions appearing in the decomposition of γ. The vertex v′ ∈ Sk(v) has
the Cartan datum D-equivalent to that of v. This identifies the image of AutR(v) with
the set of the vertices on Sk(v) satisfying this property.

5.4.1. We denote by SkD(v) the subset of (the vertices of) Sk(v) consisting of the ver-
tices whose Cartan data are D-equivalent to that of v. The set SkD(v) is endowed with
the group structure induced from the group structure on AutR(v). It is combinatorially
described using “namesake path” construction described in the proof of Proposition 5.17.
By construction we have an isomorphism

AutR(v)/K(v) = SkD(v). (5.4)

The composition W (v) i→ AutR(v) → SkD(v) is injective as W (v) ∩ K(v) is trivial by
Remark 4.6.

5.4.2. The group SkD(v) has a subgroup SpD(v) defined as the subset of SkD(v) belonging
to Sp(v). The following proposition summarizes what we know about the structure of the
automorphism group.

Proposition 5.21.
(1) W (v) ⊂ AutR(v) is a normal subgroup.
(2) K(v) ⊂ AutR(v) is a normal subgroup.
(3) There is a canonical isomorphism AutR(v)/K(v) = SkD(v).
(4) SkD(v) = W (v) ⋊ SpD(v).

Proof. Only Claim (4) needs proof. The intersection W (v) ∩ SpD(v) is trivial. Indeed, let
v′ = w(v) ∈ SpD(v). Any isotropic reflexion preserves the set of positive anisotropic roots,
so ∆+

an(v) = ∆+
an(v′). Thus, w = 1 by Corollary 5.7.

Every automorphism ϕ : v → v decomposes as

v
ψ→ v′ η→ v

where ψ is a composition of reflexions and η is a composition of a homothety with a
tautological arrow. By Proposition 4.15 ψ decomposes as v ρ→ v′′ γw→ v′ where ρ denotes a
composition of isotropic reflexions and γw is the unique arrow in Sk(v) connecting v′′ with
v′ = w(v′′). The Cartan data of v′ = w(v′′) and v′′ are D-equivalent (actually, the same),
so SkD(v) is generated by W and SpD. □

Corollary 5.22. Let gU be the universal root algebra at a component R0, v ∈ R0. An
ideal J(v) of gU(v) such that J(v) ∩ h = 0 defines a root algebra g having the v-component
g(v) = gU(v)/J(v) if and only if it is invariant with respect to SpD(v). In particular, if R0
has no isotropic reflexions, any ideal of gU having zero intersection with h defines a root
algebra.

Proof. By § 3.6.3 one has to verify that J(v) is invariant with respect to any γ ∈ AutR(v).
We will verify that any ideal is invariant with respect to the action of W (v) and of K(v).
The Weyl group is generated by reflections that are inner automorphisms by formula (3.3).
So, the Weyl group preserves all ideals. Any γ ∈ K(v) preserves the weights, so it preserves
the weight spaces. Thus, it multiplies by a constant each gU

α where α is a simple root or
its opposite. Since any root β of gU is either sum of simple roots or a sum of its opposites,
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γ acts on each gU
β by multiplication by a constant. Since any ideal of gU(v) is a sum of its

weight subspaces, any γ ∈ K(v) preserves it. Proposition 5.21 now implies the claim. □

We will see in § 10.1 that for all admissible fully reflectable indecomposable compo-
nents R0, except for gl(1|1), any ideal J(v) of gU(v) having zero intersection with h is
automatically SpD(v)-invariant and therefore gives rise to a root algebra.

Corollary 5.23. Assume that no Cartan data at different vertices of Sp(v) are D-equiva-
lent. Then AutR(v) is the direct product of the Weyl group W and the subgroup K of
irrelevant automorphisms. If, moreover, the Cartan matrix A(a, b) at v has no zero rows
and dim h = 2|X|− rkA(a, b) is minimal possible, K(v) is a commutative unipotent group.

Proof. Under the assumption, SpD(v) is trivial and so SkD(v) = W (v). Since W (v) is a
normal subgroup of AutR(v), one has a direct decomposition AutR(v) = W (v)×K(v). □

Proposition 5.24. Let R0 be an admissible component with finite dimensional gC ̸=
gl(n|n). Then AutR(v) = W (v).

Proof. By [16] the conditions of Corollary 5.23 are fulfilled. The rest follows from triviality
of the group K. □

Note that for gC = gl(n|n) one has AutR(v) = W (v) ⋊ Z2, see § 10.5.

5.4.3. Example. Look at the root datum containing the root algebra gl(1|2). Here X =
{1, 2}, h = Span{e, h1, h2} and h∗ = Span{ϵ, δ1, δ2} (the dual basis), the spine Sp(v0) has
three vertices

v0: a(1) = −e− h1, a(2) = h1 − h2, b(1) = ϵ− δ1, b(2) = δ1 − δ2, p(1) = 1, p(2) = 0;
v1: a(1) = e+ h1, a(2) = −e− h2, b(1) = δ1 − ϵ, b(2) = ϵ− δ2, p(1) = p(2) = 1;
v2: a(1) = h1 − h2, a(2) = e+ h2, b(1) = δ1 − δ2, b(2) = δ2 − ε, p(1) = 0, p(2) = 1.

The Weyl group W (v0) has two elements, with the nonunit interchanging δ1 with δ2.
The group AutR(v0) coincides with W (v0) by Proposition 5.24.

6. The Coxeter property of the skeleton

In this section we define Coxeter graphs and prove that the skeleton Sk(v) satisfies this
property. The notion of a Coxeter graph generalizes that of a Coxeter group. The Cayley
graph of a group G with respect to a set of generators S = {si} is Coxeter iff (G,S) is
a Coxeter group. There are, however, Coxeter graphs that do not come from Coxeter
groups. It is an interesting question to describe all finite Coxeter graphs.

6.1. Coxeter graphs. Let X be a finite set, G a graph with the set of vertices V and the
set of edges E, endowed with a marking r : E → X. We assume that G is connected and
that the edges having a common end, have different markings. We denote by rx : v → v′

the edge connecting v and v′ marked with x. By the assumption, for a chosen v such an
edge is unique, if it exists. Note that rx comes with a choice of direction for the edge
connecting v and v′.

A path ϕ : v → v′ consists of a sequence of arrows

v = v0
rx1→ . . .

rxn→ vn = v′.

We denote ℓ(ϕ) = n the length of ϕ.
The path ϕ−1 : v′ → v is obtained from ϕ by changing the direction of all arrows.
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Definition 6.1. A Coxeter loop ϕ : v → v is one of the following.
(1) ϕ = r2

x (These are called the trivial loops.)
(2) ϕ = (ry ◦ rx)m. (These are called the loops of length 2m).

Definition 6.2. Let ϕ, ψ : v → v′ be a pair of paths. If the concatenation ψ−1 ◦ ϕ is a
Coxeter loop, we will say that one has an elementary Coxeter modification ϕ ⇒ ψ.
Definition 6.3. A Coxeter modification from ϕ to ψ is a presentation ϕ = ϕ1 ◦ ϕ2 ◦ ϕ3,
ψ = ψ1◦ψ2◦ψ3 such that ϕ1 = ψ1, ϕ3 = ψ3 and one has an elementary Coxeter modification
ϕ2 ⇒ ψ2.
Definition 6.4. A marked graph (X,G, r) is called Coxeter if any pair of paths from v
to v′ can be connected by a sequence of Coxeter modifications.
6.1.1. As an example, take a group Γ generated by a set S of elements with s2 = 1. Let
G be the corresponding Cayley graph, where the vertices are g ∈ Γ, X = S, and g and h
are connected by the edge marked by s if g = hs. Then Γ is a Coxeter group iff G is a
Coxeter graph.

Let v ∈ R. We look at the skeleton Sk(v) as marked graph, with the reflection rx
marked with x ∈ X. Conversely, one has the following easy result.
Proposition 6.5. Let (X,G, r) be a Coxeter graph such that for any v ∈ V and x ∈ X
there exists an edge rx : v → v′. Then (X,G, r) is the Cayley graph of a Coxeter group if
and only if for any pair x, y ∈ X the length 2mxy of (x, y) loop ϕ = (ry ◦ rx)mxy : v → v
is independent of v.
Proof. The necessity of the condition is clear. Define Γ as the Coxeter group generated by
sx, x ∈ X subject to the relations (sxsy)mxy = 1. The isomorphism of (X,G, r) with the
Cayley graph of Γ is defined by an arbitrary choice of a vertex v ∈ V and the assignment
of sx to rx. Coxeterity of the graph implies that any two paths v → v′ in G define the
same image in Γ. □

Here is our main result.
Theorem 6.6.

(1) Sk(v) is a Coxeter graph.
(2) Nontrivial Coxeter loops may have length 2m where m = 2, 3, 4 or 6.

The proof of the theorem is based on a presentation of the skeleton Sk(v) as the
1-skeleton of a convex polyhedron. In the following subsection we present basic facts about
convex polyhedra. In § 6.3 we construct a polyhedron having Sk(v) as its 1-skeleton. This
easily implies Theorem 6.6.
Remark 6.7. Note that in the case when R0 is fully reflectable and all reflexions are
anisotropic the skeleton Sk(v) is isomorphic to the Cayley graph of the Weyl group.
6.2. Convex polyhedra: generalities.

6.2.1. Polytopes. Recall that a polytope P in a real finite dimensional affine space E is
defined as the convex hull of a finite set of points. The dimension of P is, by definition,
the dimension of the affine span of P .

A polytope P of dimension n has stratification P = P0 ⊔ . . .⊔Pn, where Pn is the inerior
of P in its affine span and Pk for k < n consists of points v for which the intersection of
all supporting hyperplanes at v has dimension k. Thus, P0 is the set of vertices of P and
P is the convex hull of P0.
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6.2.2. Polyhedra. In this paper we use a slightly generalized notion of a convex polyhedron.
We collect all necessary material here.

Definition. A polyhedron P in E is a closed convex set such that any v ∈ P has a neigh-
borhood isomorphic to a neighborhood of a point of a polytope, where by isomorphism
we mean the one given by an affine transformation.

The dimension of a polyhedron is the dimension of its affine span. The stratification
of points of a convex polytope extends to a stratification of a polyhedron: one has P =
P0 ⊔ · · · ⊔ Pn where Pn is the interior of P in its affine span and Pk consists of the points
for which the intersection of all supporting hyperplanes has dimension k. In particular, P0
is the set of vertices of P. This is a discrete subset of E, not necessarily finite. Moreover,
P is in general not a convex hull of P0.

For any v ∈ Pn−1 there is a unique supporting hyperplane at v. Its intersection with P

is a face of dimension n − 1. Each of them is a polyhedron of dimension n − 1 and their
union is ∂P.

The following notation is used below. A linear hyperplane H ⊂ V and v ∈ E define an
affine hyperplane v+H. The complement V \H consists of two components; their closures
are the halfspaces defined by H and denoted by H+ and H−. In the same manner v+H+

denotes the affine halfspace.
Note that P coincides with the intersection of the affine halfspaces v + H+ defined by

the faces of P of maximal dimension.

Definition 6.8. Let A be the set of supporting hyperplanes vα +Hα of P and let v+H+
α

be the affine halfspaces containing P. The cone of P, C(P) is defined as the intersection
∩α∈AH

+
α .

Obviously, if A0 ⊂ A satisfies the condition P = ∩α∈A0(vα + H+
α ) then C(P) =

∩α∈A0H
+
α . In particular, C(P) is the intersection of the linear halfspaces Hα defined

by the (n− 1)-faces of P.
Note that by definition C(P) is a convex cone in V and P is invariant under the action

of C(P): for ξ ∈ P and η ∈ C(P) one has ξ + η ∈ P.

Lemma 6.9.
(1) If C(P) ̸= {0} then ∂P is contractible.
(2) C(P) = {0} iff P is compact.
(3) P is compact iff it is a polytope.

Proof. Choose an interior point ζ ∈ P and define the projection from ∂P to the unit sphere
S with the center at ζ by the formula

ϕ(ξ) :=
(
ζ + R+(ξ − ζ)

)
∩ S.

Since P is convex, ϕ is injective. From the definition of P we see that ξ ∈ S is not in the
image of ϕ iff ξ ∈ ζ−C(P). Set U = (ζ−C(P))∩S. The restriction of ϕ to any (n−1)-face
is a stereographic projection. Since any point of P has a neighborhood isomorphic to a
neighborhood of a point of a polytope, the map ϕ is an open embedding and so it defines
a homeomorphism of ∂P with S \U . If C(P) ̸= {0}, U is a nonempty convex subset of S,
so S \ U is contractible. This proves Claim (1).

To prove Claim (2), note that the C(P) acts on P: if c ∈ C(P) and p ∈ P then p−c ∈ P.
Therefore, if C(P) ̸= {0}, P cannot be compact. On the contrary, if C(P) = {0}, ∂P is
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homeomorphic to a sphere, so it is compact. P is the convex hull of its boundary, so it is
also compact.

Finally, if P is compact then it is a convex hull of its boundary that is a finite union of
compact polyhedra of smaller dimension. This implies that P is the convex hull of the set
of its vertices. □

The only result we need in our study of the Coxeter property of the skeleton is the
following.

Corollary 6.10. For any polyhedron P of dimension > 2 one has H1(∂P) = 0.

6.3. A polyhedron defined by Sk(v). Let R0 be an admissible component of a root
groupoid, n = |X| and Sk(v) the skeleton. Let QR := Q ⊗Z R and for any vertex u of
Sk(v) set Q+

u,R :=
∑
α∈ Σu

R+α.

Lemma 6.11. There exists an injective map λ : Sk(v) → Q, u 7→ λu such that

λu − λu′ =
∑

α∈ ∆+
re(u) − ∆+

re(u′)

α.

Proof. Choose λv = 0, and set

λu :=
∑

α∈ ∆+
re(u) − ∆+

re(v)

α.

Here we use Corollary 5.13 and Proposition 5.15 of the main text to check injectivity
of λ. □

We define

P =
⋂

u∈ Sk(v)

(
λu −Q+

u,R

)
(6.1)

and

Q++
R =

⋂
u∈ Sk(v)

Q+
u,R. (6.2)

Proposition 6.12. P is a polyhedron in QR and C(P) = −Q++
R .

Proof. Set λv = 0. Let f be the linear function on QR such that f(bx(v)) = 1 for all
x ∈ X. Let

HN := {ξ ∈ QR | f(ξ) = N} , H+
N := {ξ ∈ QR | f(ξ) ≥ N} ,

PN := P∩H+
N , SkN (v) := {u ∈ Sk(v) | f(λu) ≥ N} , QN := H+

N∩
⋂

u∈ SkN (v)

(
λu −Q+

u,R

)
.

The following claims are obvious:
(1) SkN (v) is finite (the vertices are in −Q+(v)).
(2) P =

⋃
N < 0 PN ,

(3) PN ⊂ QN ,
(4) QN is a convex polytope (compact, bounded by finitely many hyperplanes).
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We intend to show that PN = QN and that the vertices of the polytope PN belonging to
H+
N \HN are precisely {λu|f(λu) > N}. This implies that P is a polyhedron. In fact, for

µ ∈ P choose N so that f(µ) > N . Then µ ∈ PN = QN , so µ has a neighborhood that is
a neighborhood in a polytope.

Note that all λu are vertices of P since there is a hyperplane in QR intersecting P at one
point λu. For the same reason all λu satisfying f(λu) > N are vertices of QN . In order to
show that QN = PN , it is sufficient to verify that any vertex µ of QN belongs to P. The
1-skeleton of QN is connected, so it is enough to verify that any edge of QN connecting λu
with another vertex µ, belongs to P. We know all edges of QN in a neighborhood of λu:
they are just bu(x), x ∈ X. If x is reflectable at u, there is an arrow rx : u → u′, and µ
lies on the segment connecting λu with λu′ . If bu(x) is non-reflectable, bu(x) ∈ Q++, so
λu − R+bu(x) is the infinite edge of P containing µ.

The minus sign in the formula for C(P) is due to the minus sign in the formula (6.1). □

Lemma 6.13. Let P be bounded. Then R0 is fully reflectable, Sk(v) is finite.
Proof. Sk(v) embeds into the intersection of P with a lattice, therefore, it is finite. If
x ∈ X is not reflectable at u ∈ Sk(v), the root bu(x) belongs to Q+

u , and, therefore, to all
Q+
u′ , u′ ∈ Sk(v). This contradicts the condition Q++

R = {0}. □

We will now be able to describe the faces of P. Let Y ⊂ X, |Y | = k and u ∈ Sk(v).
Let HY (u) be the affine k-plane passing through λu and spanned by bu(y), y ∈ Y . Set
FY (u) := P ∩HY (u). By definition F∅(u) = λu.
Lemma 6.14.

(1) Any k-dimensional face of P is of the form FY (u) for a certain u ∈ Sk(v) and a
k-element set Y ⊂ X.

(2) One has

FY (u) =
⋂

u′ ∈ SkY (u)

λu′ −
∑
y ∈Y

R+bu′(y)

 ,
where SkY (u) denotes the connected component of u ∈ Sk(v) in the subgraph
spanned by the arrows ry for y ∈ Y .

Proof. The boundary ∂P of P by the proof of Proposition 6.12 lies in the union of hy-
perplanes HY (u) for all (n − 1)-element subsets Y of X. It is clear that λu′ ∈ FY if and
only if λu′ −λu ∈ −

∑
y ∈Y R+bu(y). Note that λu −λu′ =

∑
α∈ ∆+

re(u)−∆+
re(u′) α, so each of

α ∈ ∆+
re(u) − ∆+

re(u′) lies in the non-negative span of bu(y) for y ∈ Y . Consider the arrow
u

γ−→ u′. Write it as γ = rxs . . . rx1 so that s is as small as possible. Let us show that all
xi ∈ Y . Let γi = rxi . . . rx1 , γi : u → ui and βi = bui−1(xi). Choose minimal i such that
xi /∈ Y . Then βi ≡ bu(xi) mod

∑
y ∈Y Rbu(y) — a contradiction. That proves (2). Now

for k = n − 1 the statement (1) follows since (2) implies that FY (u) has codimension 1.
For general k it follows by induction in codimension. □

Corollary 6.15. The map λ as in Lemma 6.11 establishes a one-to-one correspondence
between Sk(v) and the set of vertices of P. Moreover, Sk(v) identifies with the 1-skeleton of
P so that the reflexions rx : u → u′ in Sk(v) identify with the edges connecting λu with λu′.
Corollary 6.16. The two-dimensional face FY (u) of P defined by a two-element subset Y
of X is compact iff SkY (u) is the finite skeleton of a rank 2 fully reflectable component. In
this case SkY (u) isomorphic to the Cayley graph of the dihedral group Dm where m = 2, 3, 4
or 6.
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Proof. The claim immediately follows from Lemma 6.14. The allowable values for m result
from a well-known classification of rank 2 fully reflectable components with finite skeleton,
see, for example, [19]. □

Remark 6.17. The noncompact face FY (u) has a non-compact contractible boundary
homeomorphic to a line. It can be isomorphic to the Cayley graph of D∞, or it might
contain one or two infinite rays corresponding to non-reflectable roots.

Proof of Theorem 6.6. By Corollary 6.15 Sk(v) indentifies with the 1-skeleton of the poly-
hedron P. By Corollary 6.10 any pair of paths leading from u to u′ in Sk(v) is connected
by relations defined by compact 2-faces. Finally, by Lemma 6.16, compact 2-faces give
rise to Coxeter relations with m = 2, 3, 4, 6. □

Remark 6.18. The polyhedron P appeared first in [18] for the finite dimensional Lie
superalgebras.

7. A trichotomy for admissible fully reflectable components

7.1. Overview. From now on we will consider only indecomposable admissible fully re-
flectable components.

In this section we define three types of such components: finite, affine and indefinite. We
investigate the structure of the sets of roots of corresponding root algebras. Expectedly,
the trichotomy for admissible components is closely connected to the trichotomy for the
types of Cartan matrices defined by Kac in [11, Theorem 4.3].

7.1.1. We keep the notation of § 5.1.1. Fix an indecomposable admissible fully reflectable
component R0 and v ∈ R0. Let g be a root Lie superalgebra supported at R0. We denote
by ∆ = ∆(g) the set of roots of g and by r the kernel of the canonical map g → gC. Recall
that r is the maximal ideal of g having zero intersection with h.

In this section we will deduce some information about the ideal r for different types of
components, see Lemma 7.4, Corollary 7.5. In particular, we will be able to deduce, for
certain types of components, that they admit a unique root Lie superalgebra gC.

7.2. Roots. Recall that Σv′ = {bv′(x)}x∈X and Q+
v′ := Z≥ 0Σv′ ⊂ Q, Q+ := Q+

v . We
have ∆ ⊂ (−Q+ ∪Q+). Recall § 4.1.1 that

∆re =
⋃

v′ ∈ Sk(v)
Σv′ ⊂ ∆

and the root spaces gα, α ∈ ∆re, are one-dimensional, in particular, are purely even or
purely odd. This yields a decomposition of the family of real roots into even and odd
parts

∆re = ∆re,0 ⊔ ∆re,1.

For anisotropic α ∈ ∆re the elements α∨ ∈ g⟨α⟩ ∩ h are defined so that ⟨α, α∨⟩ = 2.
We define

∆im = {α ∈ ∆ |Qα ∩ ∆re = ∅} .
For each v′ ∈ Sk(v) we have the triangular decompositions

∆ = ∆+
v′ ⊔

(
−∆+

v′

)
, where ∆+

v′ := ∆ ∩Q+
v′ .

Proposition 7.1.
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(1) For v′ rx→ v′′ with x ∈ X, let α = bv′(x). One has

∆+
v′′ =

{
{−α} ∪ ∆+

v′ \ {α} if 2α ̸∈ ∆
{−α,−2α} ∪ ∆+

v′ \ {α, 2α} if 2α ∈ ∆.

(2) For any v′ one has ∆im ∩ ∆+
v′ = ∆im ∩ ∆+

v .
(3) Ω(r) ⊂ ∆im, except for the rank one algebra g̃ = gU with gC = gl(1|1), see 3.2.2.
(4) If R0 has rank greather than one, then

∆ = ∆re ∪ ∆im ∪
{

2α
∣∣∣α ∈ ∆re,1 is anisotropic

}
.

Proof. Claim (1) is standard and (2) follows from (1). Claims (3) and (4) follow from
Corollary 3.8. □

7.3. Types of R0.

7.3.1. The case of Kac–Moody Lie algebras. In [11, Thm. 4.3], Kac–Moody Lie algebras
are divided into three types according to the corresponding type of Cartan matrices as
follows. Let V := R ⊗Z Q; for v ∈ V we set v > 0 (resp., v ≥ 0) if v =

∑
α∈ Σ kαα with

kα ≥ 0 (resp., kα > 0) for each α ∈ Σ.
View an indecomposable Cartan matrix A as a linear operator on V . It is given by the

formula
A(v) =

∑
i

v
(
α∨
i

)
αi, v ∈ V.

By [11, Thm. 4.3], A satisfies exactly one of the following conditions
• ∃ v > 0 such that Av > 0 (type (FIN)).
• ∃ v > 0 such that Av = 0 (type (AFF)).
• ∃ v > 0 such that Av < 0 (type (IND)).

Moreover, one has
• (FIN) Au ≥ 0 implies u > 0 or u = 0.
• (AFF) Au ≥ 0 implies u ∈ Rv.
• (IND) Au ≥ 0 with u ≥ 0 implies u = 0.

It is proven there that the Kac–Moody Lie algebras of type (FIN) are all simple finite-
dimensional Lie algebras, the Kac–Moody Lie algebras of type (AFF) have finite growth:
they are always symmetrizable and can be obtained as (twisted) affinizations of simple
finite-dimensional Lie algebras. The Kac–Moody algebras of indefinite type have infinite
growth.

We present below a version of this trichotomy in terms of connected components of root
groupoids. The component is required to be indecomposable and fully reflectable. Note
that both conditions hold in the context of [11, Thm. 4.3].

7.3.2. Let R0 be a component of the root groupoid with a fixed vertex v and indecom-
posable A(v). Set

Q++ :=
⋂

v′ ∈ Sk(v)
Q+
v′ .

Obviously, Q++ = Q++
R ∩Q. Note that the sets ∆re and Q++ depend on the component

Sk(v) only. One has Q++ ∩ Qα = 0 for each α ∈ ∆re.
In the definition below we introduce three classes of components analogous to the classes

(FIN), (AFF), (IND) of Cartan matrices defined in [11, Thm. 4.3].
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Definition 7.2. We say that R0 is of type
(Fin) if Q++ = {0}.
(Aff) if Q++ = Z≥ 0δ for some δ ̸= 0.
(Ind) if R0 is not of type (Fin) or (Aff).

7.3.3. Purely anisotropic case. Assume that all simple roots b(x) at v are anisotropic.
Then the Cartan matrices A(v′) are the same at all v′ ∈ R0. Lemma 7.3 below shows
that in this case the classes (Fin), (Aff) and (Ind) coincide with (FIN), (AFF) and (IND).
Indeed, in this case Q++ =

⋂
w∈W w(Q+) is the union of W -orbits belonging to Q+.

Lemma 7.3.
(1) In the case (FIN) the unique W -orbit lying in Q+ is {0}.
(2) In the case (AFF) all W -orbits lying in Q+ are of the form {jδ} for j ∈ Z≥ 0 for

some δ ̸= 0.
(3) In the case (IND) the unique finite W -orbit lying in Q+ is {0}; Q+ contains an

infinite W -orbit.

Proof. Notice that Au ≥ 0 (Au = 0) for u ∈ V ⊂ h∗ means u(α∨) ≥ 0 (resp., u(α∨) = 0
for each α ∈ Σ.

For ν =
∑
α∈ Σ kαα ∈ Q+ set ht ν :=

∑
α∈ Σ kα. Let ν ∈ Q+ be such that Wν ∈ Q+ and

ht ν is minimal in its orbit. Viewing ν as an element of V we have ν ≥ 0 and ht rαν ≥ ht ν
for each α ∈ Σ. Then ν(α∨) ≤ 0 for all α ∈ Σ and therefore Aν ≤ 0. Hence ν = 0 in type
(FIN) and ν is proportional to δ in type (AFF).

In the remaining type (IND), assume Wν ⊂ Q+ is finite and ht ν is maximal. Then
ν(α∨) ≥ 0 for all α and, therefore, Aν ≥ 0. Hence ν = 0. By the assumption there exists
v > 0 such that Av < 0. Then Wv ⊂ Q+ by [11, Lemma 5.3] and, by the above, this is
an infinite orbit. □

7.3.4. Purely anisotropic components of finite and affine types. If p(x) = 0 for each x,
then gC is a Kac–Moody Lie algebra. In this case gC is finite-dimensional if and only if the
Cartan matrix A is of type (FIN) and a (twisted) affine Lie algebra if A is of type (AFF).

If we do not require all generators to be even, we have an extra requirement saying
that the x-row of A consists of even entries if p(x) = 1. Therefore, to every anisotropic
component one can associate a Kac–Moody Lie algebra by changing the parity of all
generators to 0. As we showed in the previous subsection, this operation does not change
the type of the corresponding components. We call all contragredient Lie superalgebras
obtained in this way from a Kac–Moody Lie algebra g the cousins of g.

The Cartan matrices of types (FIN) and (AFF) are well-known. Let us describe the
cases when such a matrix has a row with even entries.

In the type (FIN) the only such case is the type Bn and it has exactly one row with
even entries. The Kac–Moody Lie algebra with Cartan matrix Bn is so(2n + 1) and its
cousin is a finite-dimensional simple Lie superalgebra osp(1|2n).

The affine Kac–Moody Lie algebras whose Cartan matrices have at least one row with
even entries are so(2n + 1)(1), sl(2n + 1)(2) and so(2n + 2)2. The cousin of so(2n +
1)(1) is sl(1|2n)(2), the cousin of sl(2n + 1)(2) is osp(1|2n)(1), and so(2n + 2)(2) has two
cousins osp(2|2n)(2) and sl(1|2n + 1)(4), see [12] for the construction of (twisted) affine
superalgebras.
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7.4. Components of type (Fin). Most of the root Lie superalgebras of finite type have
isotropic roots.

Lemma 7.4. Assume that R0 is of type (Fin). Then
(1) ∆im = ∅.
(2) g = gC except for the case gC = gl(1|1) (see 3.2.2).
(3) g is finite-dimenisonal.

Proof. (1) follows from Proposition 7.1(4), (2) and (3) from Proposition 7.1(4). □

Corollary 7.5. If dim g < ∞ then R0 is of type (Fin).

Proof. It suffices to check that Sk(v) contains v′ with Σv′ = −Σ which is equivalent to
∆+
v′(gC) = −∆+

v (gC). Since dim g < ∞, ∆(gC) is finite. For each v′ ∈ Sk(v) let k(v′) be
the cardinality of ∆+

v′(gC) ∩ ∆+
v (gC). If k(v′) ̸= 0, then ∆+

v′(gC) does not lie in −∆+
v (gC), so

there exists α ∈ Σv′ with α ∈ ∆+
v (gC). By Proposition 7.1(2), there is a reflexion v′ → v′′

that replaces α (and, possibly, 2α) in ∆+
v′ with −α (and, possibly, −2α). This means that

k(v′′) is equal to k(v′) − 1 or to k(v′) − 2. Hence k(v′) = 0 for some v′ ∈ Sk(v). □

7.4.1. The results of C. Hoyt [10], see 7.5.1 below, together with 7.3.4, imply that the gC

of finite type are: gl(1|1) and all basic classical Lie superalgebras (except that the simple
algebra psl(n|n) should be replaced with gC = gl(n|n)). In all cases except gl(1|1) we have
gC = gU by Proposition 7.1(4).

7.5. Components of type (Aff).

Lemma 7.6. Let R0 be of type (Aff). Then
(1) Ω(r) ⊂ ∆im ⊂ Zδ \ {0}.
(2) r lies in the center of [g, g].
(3) If ⟨δ, a(x)⟩ ≠ 0 for some x ∈ X then g = gC.

Proof. Using Proposition 7.1 we get (1) and Ω(r) ⊂ ∆im ⊂ Zδ \ {0}.
Since g = [g, g] + h, r lies in [g, g] and [g, g] is generated by g±α for α ∈ Σ. Since

jδ±α ̸∈ Zδ, [g±α, r] = 0. This gives [[g, g], r] = 0 and establishes (2). For (3) assume that
r ̸= 0. Then r ∩ gjδ ̸= 0 for some j ̸= 0. Hence gjδ has a non-zero intesection with the
center of [g, g]. Since a(x) ∈ [g, g] for each x ∈ X this gives ⟨δ, a(x)⟩ = 0. □

7.5.1. Hoyt’s classification. Indecomposable contragredient Lie superalgebras with at least
one simple isotropic root were classified in [10]. In this subsection we review the results
of C. Hoyt’s classification that will be used in the following sections. Exactly one of the
following options holds in this case:

(1) dim gC < ∞.
(2) dim gC = ∞ and ∆im = Zδ, ∆ ⊂ Zδ + ∆′ for some finite set ∆′ ⊂ h∗ and some

δ ∈ ∆+. Note that, even though ∆+
v depends on v, it is positive or negative regard-

less of the choice of v ∈ R0 as δ is imaginary. In this case all symmetrizable contra-
gredient Lie superalgebras are twisted affinizations of simple finite-dimensional Lie
superalgebras. They also appear in Van de Leur’s classification of symmetrizable
Kac–Moody superalgebras of finite growth. In addition, there is the one-parameter
contragredient superalgebra S(2, 1; a) and the twisted affinization q(n)(2) of the
strange superalgebra psq(n) for n ≥ 3. By direct inspection one can check that
there exists m ∈ Z such that if α ∈ ∆ then α±mδ ∈ ∆.
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(3) The algebra gC = Q±(m,n, t) with dim(h) = 3 where m,n, t are negative integers,
not all equal to −1, with non-symmetrizable and nondegenerate Cartan matrices.
There are three linearly independent principal roots, therefore the Weyl group has
no non-zero fixed vectors in h∗. Hence Q±(m,n, t) are of type (Ind). Little is
known about Lie superalgebras of this type.

7.5.2. Let R0 be a component of R of type (2) in Hoyt’s classification 7.5.1. We will
prove that it is of type (Aff).

Lemma 7.7. Let F := Q∗
R and γ ∈ F satisfy ⟨γ, δ⟩ = 1 and ⟨γ, β⟩ ̸= 0 for any β ∈ ∆.

Then there exists v ∈ R0 such that ⟨γ, α⟩ > 0 for any α ∈ Σv.

Proof. Choose a vertex u ∈ R0. Let

Tu(γ) =
{
β ∈ ∆+

u

∣∣∣ ⟨γ, β⟩ < 0
}
.

We claim that Tu(γ) is finite. Indeed, since δ ∈ ∆+
u we have α+Mδ ∈ ∆+

u for sufficiently
large M and all α ∈ ∆′ while α−Mδ /∈ ∆+

u . On the other hand, if we choose
M > max

{
⟨γ, α⟩

∣∣α ∈ ∆′} ,
then ⟨γ, α+ sδ⟩ > 0 for all s > M . Thus,

Tu(γ) ⊂
{
α+ sδ

∣∣α ∈ ∆′,−M ≤ s ≤ M
}

and hence Tu(γ) is finite. Suppose that u does not satisfy the conditions of the lemma.
Then there is x ∈ X such that ⟨γ, b(x)⟩ < 0. Consider u rx−→ u′. By Proposition 7.1(2) we
get Tu′(γ) = Tu(γ) \ {b(x)} or Tu(γ) \ {b(x), 2b(x)} if 2b(x) is a root. Anyway |Tu′(γ)| <
|Tu(γ)|. Repeating the argument several times, we end up with a vertex v such that
Tv(γ) = ∅. □

Corollary 7.8. If R0 is of type (2), then Q++ = Z≥0δ and hence R0 is of type (Aff).

Proof. Let
F1 := {γ ∈ F | ⟨γ, δ⟩ = 1} , S+

γ = {ν ∈ Q | ⟨γ, δ⟩ ≥ 0} .
Then by Lemma 7.7

Q++ = ∩γ ∈F1S
+
γ = Z≥ 0δ.

□

7.6. Combining the results of [10] with § 7.3.3 we obtain the following result.

Proposition 7.9. Let R0 be an indecomposable fully reflectable component.
(1) The following conditions are equivalent:

• R0 of type (Fin);
• W is finite;
• dim g < ∞;
• dim gC < ∞.

(2) The following conditions are equivalent:
• R0 of type (Aff);
• W is infinite and h∗ contains a non-zero trivial W -orbit.

(3) The following conditions are equivalent:
• R0 is of type (Ind);
• g has an infinite Gelfand-Kirillov dimension.
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Remark 7.10. Cartan matrices of components of type (Fin) are usually nondegenerate.
The only exception is gl(n|n). Cartan matrices of type (Aff) are always degenerate, usually
of corank one. The only exception is sl(n|n)(1) where corank is two.

8. Symmetrizable root data

We retain the notation of Section 7. We continue to assume that all x ∈ X are reflectable
at all v ∈ R0. In this section we prove, following a method of Gabber–Kac [7], that if
R0 has a symmetric Cartan matrix (and, therefore, all Cartan matrices associated to R0
are symmetrizable) then gC is the only root algebra, except for the cases gC = gl(1|1) and
(ρ|δ) = 0 where (−|−) is the nondegenerate symmetric bilinear form on h∗ introduced in
Proposition 3.1 and ρ is as in § 5.3.2.

Fix v ∈ R0, an admissible component of R. We keep the notation of Section 3 for
the half-baked algebra g̃ = ñ− ⊕ h ⊕ ñ+, a root algebra g and the contragredient algebra
gC = g̃/r. We set b̃ := ñ+ + h, its image b in g and r± := r ∩ ñ±. Note that r± are ideals
of g̃.

8.1. Verma modules. Let M̃(λ) (resp., M(λ), MC(λ)) denote a Verma module of highest
weight λ over g̃ (resp., g, gC). Since Ω(M̃(λ)) ⊂ λ−Q+, the module M̃(λ) admits a unique
maximal proper submodule M̃ ′(λ).

The Verma modules M̃(λ), M(λ), MC(λ) admit unique simple quotients.

Lemma 8.1. One has
M(λ) = U(g) ⊗U(̃g) M̃(λ).

8.2. Embedding of r−/[r−, r−]. The composition

r− ↪→ g̃/b̃ ↪→ U(g̃)/U(g̃)b̃ = M̃(0)

has the image in M̃ ′(0) =
⊕

α∈ Σ M̃(−α). We denote by

ϕ : r− →
⊕
α∈ Σ

MC(−α) (8.1)

the composition of this with the projection⊕
α∈ Σ

M̃(−α) →
⊕
α∈ Σ

MC(−α).

Proposition 8.2. The map ϕ defined above is a map of g̃-modules with kernel [r−, r−].

Proof. This result is the main part of the proof of [11, Proposition 9.11]. □

8.2.1. Example. If gC = sl2 × sl2 with Σ = {α1, α2}, the image of ϕ in MC(−αi) is equal
to MC(−α1 − α2).

Recall that gU denotes the universal root algebra.

Corollary 8.3. Assume that
⊕

α∈ ΣM
C(−α) has no nonzero integrable subquotients. Then

gU = gC.

Proof. Let s = Ker(g̃ → gU). Set s− := ñ− ∩ s. Obviously, s ⊂ r so s− ⊂ r−.
Assume that r−/s− ̸= 0. This Lie superalgebra is a semisimple h-module with the

weights belonging to −Q+\{0}. This implies that it does not coincide with its commutator,
that is, that r−/(s− + [r−, r−]) ̸= 0. Since the adjoint representation of g is integrable,
r−/(s−+[r−, r−]) is a nonzero integrable g-module. Using Proposition 8.2 we get a nonzero
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integrable subquotient in
⊕

α∈ ΣM
C(−α) which contradicts the conditions. Thus, s− = r−,

so automatically s+ = r+ as the automorphisms θ, see § 3.1.3, defined on g̃, gU and gC,
identify s+ with s− and r+ with r−. □

8.3. Main result. In this subsection we assume that the Cartan matrix for r is symmetric,
i.e.

∀ x, y ∈ X ⟨b(x), a(y)⟩ = ⟨b(y), a(x)⟩.

Note that by Lemma 2.4 all Cartan matrices at r′ ∈ R0 are symmetrizable.
By Proposition 3.1 g̃ admits an invariant bilinear form such that the restriction of this

form on h is non-degenerate and and (a(x)|h) = ⟨b(x), h⟩ for each h ∈ h.

8.3.1. Let us show that r coincides with the kernel of this form (for symmetrizable Kac–
Moody algebras this fact was earlier noted in [15]). Indeed, since the kernel is an ideal
and the restriction of (−|−) on h is non-degenerate, the kernel lies in r. Since (g̃α|g̃β) = 0
for α+ β ̸= 0, one has (h|r) = 0. Thus

r⊥ := {g ∈ g̃ | (g|r) = 0}

is an ideal containing h, so r⊥ = g̃, that is r lies in the kernel of (−|−). Thus, the
algebra gC inherits a non-degenerate invariant bilinear form having the properties listed
in Proposition 3.1.

Theorem 8.4. Let R0 be symmetrizable and let g be a root Lie superalgebra. Then g = gC,
except for the cases gl(1|1) and (Aff) with (ρ|δ) = 0.

Proof. A symmeric nondegenerate bilinear form of gC allows one to define a Casimir op-
erator, see [11, § 2.5]. This operator acts on MC(λ) by (λ|λ+ 2ρ) · id. This implies[

MC(λ) : LC(µ)
]

̸= 0 =⇒ (λ|λ+ 2ρ) = (µ|µ+ 2ρ). (8.2)

Assume that r ̸= s. By Corollary 8.3, for some α ∈ Σ there is a non-zero homomorphism

r− → MC(−α).

Hence MC(−α) admits an integrable subquotient LC(µ) for some µ. Since LC(−α) is a
subquotient of MC(0), the formula (8.2) gives

(µ|µ+ 2ρ) = 0. (8.3)

If R0 is of type (Fin) and not gl(1|1) then r = s by Lemma 7.4(1).
Let us consider the case when R0 is of type (Aff). By Lemma 7.4(2), µ = jδ for some

j ∈ Z>0 and δ(h) = 0 for each h ∈ h ∩ [g, g]. Therefore (δ|α) = 0 for each α ∈ Σ. This
gives (δ|δ) = 0. Using (8.3), we get h∨

v = 2(ρ|δ) = 0.
It remains to consider the component R0 of type (Ind). By [10], the algebras Q±(m,n, t)

are not symmetrizable. The rest of the indefinite types satisfy ∆iso = ∅. Then axx ̸= 0 for
each x ∈ X and axy = ayx. It is easy to see that we can choose v ∈ R0 in such a way that
axx ∈ Z> 0. Then the integrability gives (µ|α) ≥ 0 for each α ∈ Σ. Since −µ ∈ Q+ and
µ ̸= 0, we obtain (µ|ρ) < 0, (µ|µ) < 0, a contradiction to (8.3). □
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9. The affine case

9.1. In this section we prove the following result.

Theorem 9.1. Let R0 be an indecomposable component of type (Aff). If R0 is of type
A(n − 1|n − 1)(1) (resp., A(2n − 1|2n − 1)(2), A(2n|2n)(4)), then gU = sl(n|n)(1) (resp.,
gU = sl(2n|2n)(2), sl(2n+ 1|2n+ 1)(4)). If R0 is of type q(n)(2) then gU = sq(n)(2). In the
rest of the cases gU = gC.

Let us first notice that for S(2, 1, b) Lemma 7.6(3) and § 10.4.3 imply gU = gC. In all
other cases we define for any root algebra g its subfactor ḡ := [g, g]/Z(g).

Then ḡC = [gC, gC]/Z(gC) is isomorphic to the twisted loop algebra L(s)σ for some simple
superalgebra s and an automorphism σ of finite order m. In particular, ḡC is perfect. The
superalgebra s is basic classical, exceptional or psqn. Its even part s0̄, therefore, is a
reductive Lie algebra.

Let h′ be the even part of the Cartan subalgebra of s. One can choose σ so that
σ(h′) = h′.

Furthermore, if kδ is an even root and ε = e
2πi
m then

ḡC
kδ =

{
h⊗ tk

∣∣∣h ∈ h′, σ(h) = εkh
}
.

The cohomology group H i(ḡC,C) has a natural h-module structure. We write H i(ḡC,
C)µ for the cohomology group of weight µ with respect to h-action.

Lemma 9.2. For every k ̸= 0

dim gU
kδ − dim gC

kδ = dimH2
(
ḡC,C

)
kδ
.

Proof. Let ĝ be the graded central extension of ḡC given by the exact sequence

0 →
⊕
k ̸= 0

H2
(
ḡC,C

)∗

kδ
→ ĝ → ḡC → 0.

Take the pullback

0 →
⊕
k ̸= 0

H2
(
ḡC,C

)∗

kδ
→ ĝ′ →

[
gC, gC

]
→ 0,

and then extend to the exact sequence

0 →
⊕
k ̸= 0

H2
(
ḡC,C

)∗

kδ
→ g → gC → 0

using the semidirect product decomposition gC = t ⋉ [gC, gC] where t ⊂ h is a suitable
abelian subalgebra.

We claim that g is a root algebra. Indeed, we just have to check the relations 3.1.1
at every vertex v ∈ R0. The only non-trivial relation is [ẽx, f̃y] = 0 for x ̸= y. This is
equivalent to b(x) − b(y) ̸= kδ and the latter follows from kδ ∈ Q+(v) for positive k and
kδ ∈ −Q+(v) for negative k.

Finally, let us prove that g = gU. Indeed, by Lemma 7.6 the kernel k of the map gU → g
lies in the center of [gU, gU] and is a direct sum

⊕
k ̸= 0 kkδ. Therefore gU = g. □
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9.1.1. Let δ have degree d in the standard grading of L(s)σ. The base change H2(s,C) →
H2(L(s),C[t, t−1]) composed with the linear map C[t, t−1] → C carrying

∑
cit

i to ckd,
yields a homomorphism

H2(s,C) → H2 (L(s)σ,C) . (9.1)
It is given on 2-cocycles by the formula

c̃
(
x⊗ ta, y ⊗ tb

)
= δkd,a+bc(x, y). (9.2)

Let ḡC = L(s)σ and h be a Cartan subalgebras of gC. Set h◦ := ker δ. Then h◦ acts
on s and therefore on H2(s,C). We denote by H2(s,C)◦ the h◦-invariant subspace. The
automorphism σ acts on H2(s,C)◦ and induces a Z/mZ-grading.

Remark. In most cases h◦ = (h′)σ and H2(s,C)◦ = H2(s,C). The only case h◦ ̸= (h′)σ
is when the Cartan matrix of gC has corank 2 and that happens for s = psl(n|n), n ≥ 2
and σ = id.

Lemma 9.3. If kδ is an even root and kd ≡ p mod m then the homomorphism (9.1)
induces an isomorphism H2(s,C)◦

p ≃ H2(L(s)σ,C)kδ.

Proof. The correspondence between the weight spaces follows from formula (9.2). Injec-
tivity of the map is straightforward. To prove surjectivity it suffices to show that every
class in H2(L(s)σ,C)kδ is represented by a cocycle φ such that

φ
(
x⊗ ta−m, y ⊗ tb+m

)
= φ

(
x⊗ ta, y ⊗ tb

)
(9.3)

for all a, b ∈ Z and x, y ∈ s. The Lie algebra s′ = [s0̄, s0̄] is semisimple. The corresponding
twisted affine Lie algebra ŝ′ is symmetrizable and, therefore, (ŝ′)U = (ŝ′)C. By Lemma 9.2
H2(L(s′)σ,C)kδ = 0. On the other hand L(s)σ0̄ = L(s′)σ ⊕ a for some abelian Lie algebra
a. Thus, we can choose φ so that φ(L(s′)σ,L(s)σ0̄ ) = 0. Since kδ is an even root, φ is
an even cocycle, so φ(L(s′)σ,L(s)σ) = 0. In particular, for every h ∈ (h′ ∩ s′)σ we have
φ(h ⊗ tm,L(s)σ) = 0. Let α be a non-zero weight of s with respect to (h′ ∩ s′)σ and
x ∈ sα, y ∈ s−α, we can choose h so that α(h) ̸= 0. Then the cocycle condition

dφ
(
x⊗ ta−m, y ⊗ tb, h⊗ tm

)
= 0

implies (9.3) for x ∈ sα, y ∈ s−α. Since the sα for all nonzero weights α generate s and
φ(x⊗ ta, y⊗ tb) = 0 for x ∈ sα and y ∈ sβ with α+ β ̸= 0, one proves the desired identity
for all x, y using linearity and the cocycle condition. □

Lemma 9.3 implies Theorem 9.1 in all cases when δ is an even root. If s ̸= psl(n|n) or
psq(n), H2(s,C) = 0 and then gU = gC. If s = psl(n|n) or psq(n), H2(s,C)◦ = C, see,
for instance, [20]. This gives the cases gU = sl(n|n)(1) and gU = sl(2n|2n)(2). The only
cases left are gC = psl(2n + 1|2n + 1)(4) and psq(n)(2) where δ is an odd root. For these
remaining cases the theorem will follow from the lemma below.

Lemma 9.4. If R0 is of type A(2n|2n)(4) or q(n)(2) then H2(ḡC,C)kδ = 0 for any odd k.

Proof. First let us deal with A(2n|2n)(4). In this case s = psl(2n+ 1|2n+ 1), m = 4 and
we can choose σ so that sσ = so(2n+ 1) ⊕ so(2n+ 1). We will establish an isomorphism
H2(s,C)◦

p ≃ H2(L(s)σ,C)kδ for odd k. As in the proof of Lemma 9.3, it suffices to check
that we can choose a cocycle φ satisfying (9.3). This in turn would follow from the
condition φ(h ⊗ t4,L(s)σ) = 0 for all h ∈ (h′)σ. Using the root description, [12], we see
that α and −α + kδ are both real roots of ḡC only for the short anisotropic α. Thus, if
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x ∈ ḡC
β for some long anisotropic root β then φ(x, ḡC) = 0. On the other hand, every h⊗ t4

can be obtained as a linear combination of [x, y], x ∈ ḡC
β and y ∈ ḡC

−β+4δ for some long
anisotropic roots β. Therefore φ(h ⊗ t4,L(s)σ) = 0 for all h ∈ (h′)σ. The statement of
lemma now follows from H2(s)1̄ = 0.

In the case of q(n)(2) we have a grading ḡC =
⊕

ḡC
i induced by the standard grading on

Laurent polynomials, with ḡC
0 = sl(n). For every i the term ḡC

i is the adjoint ḡC
0-module.

The parity of ḡC
i equals the parity of i. Let s = 2k+1. To compute H2(ḡC,C)sδ we consider

the first layer of the Hochshild–Serre spectral sequence (see, for instance, [6, § 5]) with
respect to the subalgebra ḡC

0:

H2
(
ḡC

0,C
)

⊕H1
(
ḡC

0,
(
ḡC
s

)∗)
⊕H0

(
ḡC

0,⊕a+b=s
(
ḡC
a ⊗ ḡC

b

)∗)
.

Since H2(ḡC
0,C) = 0, H1(ḡC

0, (ḡC
s)∗) = 0 and H0(ḡC

0, (ḡC
a⊗ ḡC

b)∗) = C we obtain that every
cocycle c ∈ H2(ḡC,C)sδ can be written in the form

c
(
x⊗ ta, y ⊗ tb

)
= γ(a, b) tr(xy), γ : Z × Z → C.

Furthermore γ has the following properties
• weight condition: γ(a, b) = 0 unless a+ b = s;
• skew-symmetry: γ(a, b) = −γ(b, a);
• γ(0, s) = 0;
• cocycle condition: γ(a, b+ c) = γ(a+ b, c) − γ(b, a+ c).

The last condition follows by direct computation using the property of the trace tr(uvw) =
tr(vwu). Without loss of generality assume that s > 0. By the cocycle condition and skew-
symmetry

γ(p, s− p) = γ(p, s− p+ 1 − 1) = γ(s+ 1,−1) + γ(p− 1, s− p+ 1).
By induction

γ(p, s− p) = pγ(s+ 1,−1) + γ(0, s) = pγ(s+ 1,−1).
Hence 0 = γ(s, 0) = sγ(s + 1,−1) that implies γ(s + 1,−1) = 0. Therefore γ ≡ 0. Thus,
H2(ḡC,C)sδ = 0. □

10. Description of root algebras. Examples

In Subsection 10.1 we describe root algebras in the indecomposable fully reflectable
case. In the rest of this section we compute some of the groups AutR(v).

In this section we identify admissibile components of R by root Lie superalgebras sup-
ported on them.

10.1. By contrast with the case gl(1|1), see § 3.2.2, we have the following

Theorem 10.1. Let R0 be an indecomposable admissible fully reflectable component of
the root groupoid, not isomorphic to gl(1|1). Then any ideal of gU having zero intersection
with h defines a root algebra. If R0 is of type (Aff) and gU ̸= gC then all such ideals are in
natural bijection with subsets of Z \ 0.

Proof. By Corollary 5.22 we need to consider only components with isotropic reflexions.
Furthermore, we are only interested in the case SpD(v) ̸= {1} and gC ̸= gU. By Lemma 7.4
and Example 10.4 (see below) this leaves us with components of type (Aff) listed in
Theorem 9.1. Let g be a root algebra and

JC := Ker
(
gU → gC

)
, J := Ker

(
gU → g

)
.
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By Theorem 9.1 we have
JC =

⊕
s∈Z\0

JC
sδ, dim JC

sδ ≤ 1.

It follows from the definition of Q++ that it is AutR(v)-stable. Since Q++ = Z≥0δ and
JC is AutR(v)-stable we obtain that JC

sδ is AutR(v)-stable for any s. Therefore any graded
subspace of JC is AutR(v)-stable. Moreover, by Lemma 7.6(2) any graded subspace of JC

is an ideal. Hence by § 3.6.3 the root algebras are in bijection with the graded subspaces
of JC. The last assertion follows from the description of gU given in Theorem 9.1. □

Remark 10.2. Note that by the above theorem a root algebra may not admit a superin-
volution θ as defined in § 3.1.3.

10.2. Star-shaped spines. Here we calculate the automorphism groups in a few small
examples.

Example 10.3. The following root datum contains root algebra q(3)(2). Take X =
{x1, x2, x3} and let h = h(v) have dimension 4 with the Cartan matrix 0 −1 1

−1 0 1
1 −1 0

 , p (xi) = 1 for i = 1, 2, 3.

Then the graph Sp(v) is a star with v at the center and three other vertices vi with
rxi : v → vi and the Cartan matrices

v1 :

 0 −1 1
1 −2 1

−1 −1 2

 v2 :

−2 1 1
1 0 −1
1 1 −2

 v3 :

 2 −1 −1
−1 2 −1
−1 1 0


with pvj (xi) = δij . We have three principal reflections sαk

, where

αk := b(xi) + b(xj) = bvi(xj) = bvj (xi)

for {i, j, k} = {1, 2, 3}. The Weyl group is generated by these reflections (this group is
isomorphic to the affine Weyl group A(1)

2 ). The group K(v) is the additive group C. If we
choose h of dimension greater than 4, the Weyl group will remain the same, but K(v) will
be different. Regardless of h, AutR(v) = W (v) ×K(v) by Corollary 5.23.

Example 10.4 (B(1|1)(1), D(2|1, a), D(2|1, a)(1), Q±(m,n, t)). All these cases are similar
to Example 10.3. We can (and will) choose a vertex v such that p(x) = 1 for all x ∈ X.
We always have axy ̸= 0 if x ̸= y. The graph Sp(v) is a star with the center at v. The
other vertices are vx with the edges rx : v → vx. If axx = 0 then p′(y) = 0 for each y ̸= x.
Hence Sp(v) consists of v and all vx such that axx = 0. Cartan data at all vertices of Sp(v)
are not D-equivalent, so by Corollary 5.23 is applicable. This gives Aut(v) = W ×K.

10.3. sl(1)
n , its relatives and friends. There is a number of components of the root

groupoid whose Cartan matrices satisfy common properties listed below in (10.1) and
whose automorphism groups allow a more or less uniform description. We call them
“relatives and friends of sl(1)

n ” and they consist of the types sl(k|ℓ)(1) for k, ℓ such that
k + ℓ = n and q

(2)
n .
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We take X = {xi}i∈Zn . Let v ∈ R0 be a vertex with the Cartan matrix of the following
form:

aij = 0 for j ̸= i, i± 1;
ai,i±1 ∈ {±1}, ai,i−1 + aii + ai,i+1 = 0
p(xi) = 1 ⇐⇒ aii = 0.

(10.1)

10.3.1. It is easy to check that
• If a Cartan matrix satisfies (10.1), then all xi are reflectable at v and

∑
i bv(xi) =∑

i bv′(xi) for each reflexion v → v′;
• all Cartan matrices in Sk(v) satisfy (10.1);
• two Cartan matrices A,A′ satisfying (10.1) are D-equivalent if and only if p(xi) =
p′(xi) for all i.

10.3.2. Let R0 be the component of R corresponding to sl(1)
n ; we will use bar notation

v̄ etc. for the objects connected to R0. Fix a linear isomorphism ι : Qv̄
∼→ Qv given by

ι(bv̄(xi)) := bv(xi).
Let v → v′ be a path in R0 and v̄ → v̄′ be its namesake in R0. It is easy to see that

bv(xi) = ι(bv(xi)).

This provides a bijection between the sets of real roots ∆re = ∆re. Note that all roots of
∆re are anisotropic. Since the set {bv(xi)}i∈Zn determines a vertex in Sk(v) by 5.13, this
gives a bijection between Sk(v) and Sk(v̄).

10.3.3. We identify Qv and Qv̄ via ι.
By Corollary 5.6 the Weyl group W (sl(1)

n ) acts freely on Sk(v̄). By Proposition 4.15 this
action is transitive. This gives a simply transitive action of W (sl(1)

n ) on Sk(v). Note that
the Weyl group W can be identified with a subgroup of W (sl(1)

n ) as it is generated by a
part of the reflections belonging to W (sl(1)

n ).
Let us compute

Aut(v)/K(v) = SkD(v) =
{
w ∈ W

(
sl(1)
n

) ∣∣∣ Aw(v) is D-equivalent to Av
}
.

10.3.4. Action of W (sl(1)
n ). By § 10.3.1, the vector

δ :=
n∑
i=1

bv′(xi)

does not depend on the choice of v′ ∈ Sk(v).
View Qv as a subset of V = SpanZ(ε1, . . . , εn, δ) by setting

b(xi) = εi − εi+1 for i = 1, . . . , n− 1; b(xn) = δ + εn − ε1.

We can extend the parity function p : Qv → Z2 to p : V → Z2 by setting p(ε1) = 0. Set

Q̄ :=
{

n∑
i=1

kiεi

∣∣∣∣∣
n∑
i=1

ki = 0, ki ∈ Z
}
.

(Note: Q̄ is the lattice for the finite root system An−1.) By [11, Theorem 6.5], W (sl(1)
n ) =

Sn ⋉ Q̄ and this group acts on V as follows:
• Sn acts on {εi}ni=1 by permutations and stabilizes δ;
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• Q̄ acts on V by the formula
ν ∗ µ := µ− (µ, ν)δ for ν ∈ Q̄, µ ∈ V

where the bilinear form on V is given by
(εi, εj) = δij , (εi, δ) = (δ, δ) = 0.

Note that W (sl(1)
n ) stabilizes δ. By § 10.3.1, Aw(v) is D-equivalent to Av if and only if

pv(xi) = pw(v)(xi) for all i. Therefore,

w ∈ SkD(v) ⇐⇒ p(wεi) − p(εi) is independent of i. (10.2)
We will now compute the groups SkD(v) using the formula (10.2).

10.3.5. Case sl(k|ℓ)(1), k, ℓ ̸= 0. We can choose v in such a way that p(xi) = 0 for i ̸= k, n
and p(xn) = p(xk) = 1. Note that p(δ) = 0. Denote by Sk ⊂ Sn (resp., Sℓ ⊂ Sn) the group
of permutations of {εi}ki=1 (resp., of {εi}ni=k+1). In this case p(wεi) = p(εi) for w ∈ Q̄, so
SkD(v) ⊃ Q̄.

One has
Sn ∩ SkD(v) =

{
w ∈ Sn

∣∣ p′(w(εi − εi+1)) = p′(εi − εi+1) for i = 1, . . . , n− 1
}
.

If k ̸= ℓ this gives Sn ∩ SkD(v) = Sk × Sℓ. In the case k = ℓ we have
Sn ∩ SkD(v) = (Sk × Sk) ⋊ Z2, where Z2 interchanges the two copies of Sk. Hence

SkD(v) =
{

(Sk × Sℓ) ⋉ Q̄ if k ̸= ℓ
((Sk × Sk) ⋊ Z2) ⋉ Q̄ if k = ℓ.

Note that the Weyl group has the form W = (Sk×Sℓ)⋉Q0 where Q0 ⊂ Q̄ is the subgroup
spanned {εi−εi+1}k−1

i=1
∐

{εi−εi+1}n−1
i=k+1. Observe that W has an infinite index in SkD(v).

Remark 10.5. For R0 of type A(k− 1|ℓ− 1) a similar reasoning (replacing the index set
X = {xi}i∈Zn with the set X = {x1, . . . , xn}) shows that Sk+ℓ acts transitively on Sk(v)
and that

SkD(v) =
{
Sk × Sℓ if k ̸= ℓ
(Sk × Sk) ⋊ Z2 if k = ℓ.

Note that the Weyl group is in both cases Sk × Sℓ.

If k = l then K(v) = C and Aut(v) is a nontrivial semidirect product of C and SkD(v).

10.3.6. Case q
(2)
n . Using [11, Thm. 6.5] and [19], one gets

W = Sn ⋉ 2Q̄.
We will choose v so that p(xi) = 0 for i = 1, . . . , n− 1 and p(xn) = 1. Note that p(δ) = 1.

In this case p(wεi) = p(εi) for w ∈ Sn, so Sn ⊂ SkD(v). Hence
SkD(v) = Sn ⋉Q′

where Q′ = Q̄ ∩ SkD(v). Take ν ∈ Q̄. One has
p(ν ∗ εi) − p(εi) ≡ (ν, εi) mod 2,

so

Q′ =
{

n∑
i=1

kiεi

∣∣∣∣∣
n∑
i=1

ki = 0, ki ∈ Z, ki − kj ≡ 0 mod 2
}
.

If n is odd this gives Q′ = 2Q̄, so SkD(v) = W and AutR(v) = W ×K.
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If n is even, 2Q̄ has index 2 in Q′. Thus W has index two in SkD(v), so that W ×K is
an index 2 subgroup of AutR(v).

10.4. A deformation of sl(2|1)(1). A very interesting relative of sl(2|1)(1) is the root Lie
superalgebra S(2|1, b) defined in [19]. We will recall some of the results of [19] below. Set
X := {x1, x2, x0} and fix h with dim h = 4.

Let R(b), b ̸= 0, be the component of R containing a vertex v such that pv(x1) =
pv(x2) = 1, pv(x0) = 0 and the Cartan matrix Av is equal to

A(b) :=

 0 b 1 − b
−b 0 1 + b
−1 −1 2

 for b ̸= 0.

In studying skeleta of R(b) it is convenient to allow permutations of the elements of X.
This leads to the action of S3 on the components of R with the index set X and, as we
will see soon, carries components R(b) to components of the same type.

Permuting x1 and x2 in A(b) we obtain A(−b), so R(b) is mapped to R(−b). In partic-
ular, each root algebra for S(2|1; b) is isomorphic to a root algebra for S(2|1; −b).

Lemma 10.6. For any vertex v ∈ R(b) the Cartan matrix Av = (a(v)
xy ) is of the form

σ(DA(b + i)) where i ∈ Z, D is an invertible diagonal matrix and σ ∈ S3 is an even
permutation. One has pv(x) = 1 if a(v)

xx = 0 and pv(x) = 0 otherwise.

Proof. It is enough to verify what happens to the Cartan datum under an isotropic reflex-
ion rx : v → v′. Since permuting x1 and x2 in A(b) yields A(−b), it is enough to verify
the assertion for x = x1. In this case we have

Av′ =

0 −b −1 + b
b −2b b

1 2−b
b−1 0

 .
Taking the homothety hλ : v′ → v′′ with λ = (−1,−b−1, b− 1) we get

Av′′ =

 0 b 1 − b
−1 2 −1
b− 1 2 − b 0

 .
Applying now the cyclic permutation carrying x2 to x1, we get the Cartan matrix A(b−1).
It is easy to see that going along the other isotropic reflexion would produce in the same
way the matrix A(b+ 1). □

Corollary 10.7.
(1) R(b) is admissible if and only if b ̸∈ Z;
(2) if R(b) is admissible, then for i ∈ Z each root algebra for S(2|1; ±b±i) is isomorphic

to a root algebra for S(2|1; b).

Proof. Note that A(b) is locally weakly symmetric for b ̸= ±1. Using Lemma 10.6 we
obtain the assertions. □

10.4.1. From now on we assume that R(b) is admissible i.e. b ̸∈ Z. Using Lemma 10.6
we obtain

(1) all x are reflectable at each v ∈ R(b);
(2) for each reflexion rx : v → v′ we have bv′(y) = bv(x) + bv(y) if y ̸= x;
(3) a real root is isotropic if and only if it is odd.
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10.4.2. Let Rv̄ be the component of the root groupoid with dim h′ = 4 and a vertex v̄
such that pv̄(x1) = pv̄(x2) = 1, pv̄(x0) = 0 and the Cartan matrix

Av̄ :=

 0 −1 −1
−1 0 −1
−1 −1 2

 .
Then the component Rv̄ of v̄ is of type sl(2|1)(1).

As in § 10.3.2, § 10.4.1(2) yields a linear isomorphism ι : Qv̄ → Qv by setting ι(bv̄(xi)) :=
bv(xi); by the same arguments, this gives a bijection between Sk(v) and Sk(v̄) with bv(xi) =
ι(bv̄(xi).

Note that, contrary to § 10.3.2, ι preserves p(xi).

10.4.3. We have

Q++
v = ι

(
Q++
v̄

)
= Nδ for δ :=

∑
bv(xi).

Therefore, S(2|1, b) is of type (Aff). Note that ⟨δ, av(x1)⟩ = 1 ̸= 0, so by Lemma 7.4(3)
gU = gC.

10.4.4. By § 10.4.1(3) we see that ι : Qv̄ → Qv establishes a bijection of real, isotropic
and anisotropic roots for v̄ and v. Moreover, the bijection between Sk(v) and Sk(v̄) gives a
bijection between the spines Sp(v) and Sp(v̄). In particular, Sp(v) has two principal roots
α := bv(x0) and bv(x1) + bv(x2) = δ − α. Using § 10.4.1 we obtain

W = W ∼= A
(1)
1

and for each ν ∈ Qv̄ we have wι(ν) = ι(wν).

Proposition 10.8. Aut(v) = W ×K.

Proof. It is enough to check that all Cartan matrices in Sp(v) are not D-equivalent. Note
that Sp(v) can be seen as the infinite graph

. . .
rx0→ v−1

rx2→ v0
rx1→ v1

rx0→ v2
rx2→ v3

rx1→ v3
rx0→ . . .

Consider the equivalence relation on the set of 3×3 matrices generated by the action of
A3 (the group of even permutations in S3) and B ∼ DB for a diagonal invertible matrix
D. Observe that A(b) ̸∼ A(b′) if b ̸= b′.

In the proof of Lemma 10.6 we showed that if Av ∼ A(b), then for an isotropic reflexion
v
rx→ v′ we have Av′ ∼ A(b ± 1). This implies that Avk

∼ A(b − k), so Avk
̸∼ Av0 for any

k ̸= 0. Hence the group SpD(v0) is trivial, so Aut(v0) = W ×K. □
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11. Short glossary

admissible component a component admitting a root superalgebra
contragredient superalgebra the smallest root Lie superalgebra for an

admissible component; for example, Kac–Moody
(super)algebras and Borcherds algebras of finite rank

half-baked algebra § 3.1.1
fully reflectable § 1.7, these are the components corresponding to

the Kac–Moody (super)algebras
reflexion isotropic/anisotropic § 2.2.1
reflection § 4.2.1
root Lie superalgebra § 3.2
roots: isotropic, anisotropic § 4.2

non-reflectable
roots: real Definition 4.2
roots: principal § 4.3.2
skeleton § 4.2.2
spine § 4.2.4
weakly symmetric Definition 2.6
universal root superalgebra the largest root Lie superalgebra for

an admissible component

Warning. The numbering of formulas and theorems in this version of the paper was changed
according to the guidelines of the journal. We retained the original numbering in the arXiv
version of the paper.

Acknowledgments

V.S. enjoyed numerous visits to Weizmann Institute whose pleasant atmosphere is grate-
fully acknowledged. We are grateful to J. Bernstein whose comment initiated the project
and to R. Moody whose question triggered our Sections 5 and 6 devoted to Coxeter
properies of the root groupoid. We are also grateful to V. Kac and A. Sherman for valu-
able comments and to L. D. Silberberg and S. K. Kerbis for locating numerous mistakes
in the earlier versions of the manuscript. We thank the anonymous referees for helpful
suggestions.

References
[1] Nicolás Andruskiewitsch and Iván Angiono, On finite dimensional Nichols algebras of diagonal type,

Bull. Math. Sci. 7 (2017), no. 3, 353–573.
[2] Richard Borcherds, Generalized Kac–Moody algebras, J. Algebra 115 (1988), no. 2, 501–512.
[3] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV:

Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre
VI: systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337, Hermann & Cie, 1968.

[4] Kornei Chukovsky, Crocodile, Faber and Faber, 1964.
[5] V. K. Dobrev and V. B. Petkova, Group-theoretical approach to extended conformal supersymmetry:

function space realization and invariant differential operators, Fortschr. Phys. 35 (1987), no. 7, 537–
572.

[6] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics,
Consultants Bureau, 1986, Translated from the Russian by A. B. Sosinskĭi.
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