Koszulity, supersolvability and Stirling Representations
Annals of Representation Theory, Volume 2 (2025) no. 2, pp. 173-247.

Supersolvable hyperplane arrangements and matroids are known to give rise to certain Koszul algebras, namely their Orlik–Solomon algebras and graded Varchenko–Gel’fand algebras. We explore how this interacts with group actions, particularly for the braid arrangement and the action of the symmetric group, where the Hilbert functions of the algebras and their Koszul duals are given by Stirling numbers of the first and second kinds, respectively. The corresponding symmetric group representations exhibit branching rules that interpret Stirling number recurrences, which are shown to apply to all supersolvable arrangements. They also enjoy representation stability properties that follow from Koszul duality.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/art.23
Classification: 16S37, 05B35
Keywords: Stirling number, Koszul algebra, Orlik–Solomon, Varchenko–Gelfand, quadratic algebra, Groebner basis, branching, holonomy Lie algebra, Drinfeld–Kohno, infinitesimal braid, chord diagrams

Almousa, Ayah 1; Reiner, Victor 2; Sundaram, Sheila 2

1 University of South Carolina Department of Mathematics Columbia, SC, USA
2 University of Minnesota – Twin Cities School of Mathematics, Minneapolis, MN, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ART_2025__2_2_173_0,
     author = {Almousa, Ayah and Reiner, Victor and Sundaram, Sheila},
     title = {Koszulity, supersolvability and {Stirling} {Representations}},
     journal = {Annals of Representation Theory},
     pages = {173--247},
     publisher = {The Publishers of ART},
     volume = {2},
     number = {2},
     year = {2025},
     doi = {10.5802/art.23},
     language = {en},
     url = {https://art.centre-mersenne.org/articles/10.5802/art.23/}
}
TY  - JOUR
AU  - Almousa, Ayah
AU  - Reiner, Victor
AU  - Sundaram, Sheila
TI  - Koszulity, supersolvability and Stirling Representations
JO  - Annals of Representation Theory
PY  - 2025
SP  - 173
EP  - 247
VL  - 2
IS  - 2
PB  - The Publishers of ART
UR  - https://art.centre-mersenne.org/articles/10.5802/art.23/
DO  - 10.5802/art.23
LA  - en
ID  - ART_2025__2_2_173_0
ER  - 
%0 Journal Article
%A Almousa, Ayah
%A Reiner, Victor
%A Sundaram, Sheila
%T Koszulity, supersolvability and Stirling Representations
%J Annals of Representation Theory
%D 2025
%P 173-247
%V 2
%N 2
%I The Publishers of ART
%U https://art.centre-mersenne.org/articles/10.5802/art.23/
%R 10.5802/art.23
%G en
%F ART_2025__2_2_173_0
Almousa, Ayah; Reiner, Victor; Sundaram, Sheila. Koszulity, supersolvability and Stirling Representations. Annals of Representation Theory, Volume 2 (2025) no. 2, pp. 173-247. doi : 10.5802/art.23. https://art.centre-mersenne.org/articles/10.5802/art.23/

[1] Adams, William W.; Loustaunau, Philippe An introduction to Gröbner bases, Graduate Studies in Mathematics, 3, American Mathematical Society, 1994 | DOI | MR | Zbl

[2] Akin, Kaan; Buchsbaum, David A.; Weyman, Jerzy Schur functors and Schur complexes, Adv. Math., Volume 44 (1982) no. 3, pp. 207-278 | DOI | MR | Zbl

[3] Almousa, Ayah Stirling Representations, 2024 (version 1.0, BSD-3-Clause licence, https://github.com/aalmousa/StirlingRepresentations.git)

[4] Aramova, Annetta; Herzog, Jürgen; Hibi, Takayuki Gotzmann theorems for exterior algebras and combinatorics, J. Algebra, Volume 191 (1997) no. 1, pp. 174-211 | DOI | MR | Zbl

[5] Arnol’d, Vladimir I. The cohomology ring of the group of dyed braids, Mat. Zametki, Volume 5 (1969), pp. 227-231 | DOI | MR | Zbl

[6] Avramov, Luchezar L. Infinite free resolutions, Six lectures on commutative algebra (Modern Birkhäuser Classics), Birkhäuser, 2010, pp. 1-118 | DOI | MR | Zbl

[7] Backelin, Joergen Low degrees in a Gröbner basis may force the Koszul property, 2024 (https://staff.math.su.se/joeb/papers/list.shtml)

[8] Bagno, Eli; Garber, David; Komatsu, Takao A q,r-analogue for the Stirling numbers of the second kind of Coxeter groups of type B, PU.M.A., Pure Math. Appl., Volume 30 (2022) no. 1, pp. 8-16 | DOI | MR | Zbl

[9] Bărcănescu, Şerban; Manolache, Nicolae Nombres de Betti d’une singularité de Segre–Veronese, C. R. Acad. Sci., Paris, Sér. A, Volume 288 (1979) no. 4, p. A237-A239 | MR | Zbl

[10] Bărcănescu, Şerban; Manolache, Nicolae Betti numbers of Segre–Veronese singularities, Rev. Roum. Math. Pures Appl., Volume 26 (1981) no. 4, pp. 549-565 | MR | Zbl

[11] Barcelo, Hélène Marie-Louise On the action of the symmetric group on the Free Lie Algebra and on the homology and cohomology of the partition lattice, Ph. D. Thesis, University of California, San Diego, USA (1988) (https://www.proquest.com/docview/303690441) | MR

[12] Berglund, Alexander Koszul spaces, Trans. Am. Math. Soc., Volume 366 (2014) no. 9, pp. 4551-4569 | DOI | MR | Zbl

[13] Berglund, Alexander; Börjeson, Kaj Free loop space homology of highly connected manifolds, Forum Math., Volume 29 (2017) no. 1, pp. 201-228 | DOI | MR | Zbl

[14] Björner, Anders; Edelman, Paul H.; Ziegler, Günter M. Hyperplane arrangements with a lattice of regions, Discrete Comput. Geom., Volume 5 (1990) no. 3, pp. 263-288 | DOI | MR | Zbl

[15] Björner, Anders et al. The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia of Mathematics and Its Applications), Volume 40, Cambridge University Press, 1992, pp. 226-283 | DOI | MR | Zbl

[16] Björner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, Günter M. Oriented matroids, Encyclopedia of Mathematics and Its Applications, 46, Cambridge University Press, 1999 | DOI | MR | Zbl

[17] Björner, Anders; Ziegler, Günter M. Broken circuit complexes: factorizations and generalizations, J. Comb. Theory, Ser. B, Volume 51 (1991) no. 1, pp. 96-126 | DOI | MR | Zbl

[18] Bokut, Leonid A.; Chen, Yuqun Gröbner–Shirshov bases and their calculation, Bull. Math. Sci., Volume 4 (2014) no. 3, pp. 325-395 | DOI | MR | Zbl

[19] Brauner, Sarah Eulerian representations for real reflection groups, J. Lond. Math. Soc. (2), Volume 105 (2022) no. 1, pp. 412-444 | DOI | MR | Zbl

[20] Brenti, Francesco Unimodal, log-concave and Pólya frequency sequences in combinatorics, Memoirs of the American Mathematical Society, 413, American Mathematical Society, 1989 | DOI | MR | Zbl

[21] Briand, Emmanuel; Orellana, Rosa; Rosas, Mercedes The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011), pp. 11-27 | DOI | MR | Zbl

[22] Bruns, Winfried; Herzog, Jürgen; Vetter, Udo Syzygies and walks, Commutative algebra (Trieste, 1992), World Scientific, 1994, pp. 36-57 | MR | Zbl

[23] Cartier, Pierre; Patras, Frédéric Classical Hopf algebras and their applications, Algebra and Applications, 29, Springer, 2021 | DOI | MR | Zbl

[24] Church, Thomas; Ellenberg, Jordan S.; Farb, Benson FI-modules and stability for representations of symmetric groups, Duke Math. J., Volume 164 (2015) no. 9, pp. 1833-1910 | DOI | MR | Zbl

[25] Church, Thomas; Farb, Benson Representation theory and homological stability, Adv. Math., Volume 245 (2013), pp. 250-314 | DOI | MR | Zbl

[26] Cohen, Frederick R.; Gitler, Samuel On loop spaces of configuration spaces, Trans. Am. Math. Soc., Volume 354 (2002) no. 5, pp. 1705-1748 | DOI | MR | Zbl

[27] Cohen, Frederick R.; Lada, Thomas J.; May, J. Peter The homology of iterated loop spaces, Lecture Notes in Mathematics, 533, Springer, 1976 | DOI | MR | Zbl

[28] Cordovil, Raul A commutative algebra for oriented matroids, Discrete Comput. Geom., Volume 27 (2002), pp. 73-84 | DOI | MR | Zbl

[29] Cox, David A.; Little, John; O’Shea, Donal Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer, 2015 | DOI | MR | Zbl

[30] de Longueville, Mark; Schultz, Carsten A. The cohomology rings of complements of subspace arrangements, Math. Ann., Volume 319 (2001) no. 4, pp. 625-646 | DOI | MR | Zbl

[31] Denham, Graham; Suciu, Alexander I. On the homotopy Lie algebra of an arrangement, Mich. Math. J., Volume 54 (2006) no. 2, pp. 319-340 | DOI | MR | Zbl

[32] Dimca, Alexandru Hyperplane arrangements. An introduction, Universitext, Springer, 2017 | DOI | MR | Zbl

[33] Dimca, Alexandru; Yuzvinsky, Sergey Lectures on Orlik–Solomon algebras, Arrangements, local systems and singularities (Progress in Mathematics), Volume 283, Birkhäuser, 2010, pp. 83-110 | DOI | MR | Zbl

[34] Dorpalen-Barry, Galen The Varchenko–Gel’fand ring of a cone, J. Algebra, Volume 617 (2023), pp. 500-521 | DOI | MR | Zbl

[35] Dorpalen-Barry, Galen; Proudfoot, Nicholas; Wang, Jidong Equivariant cohomology and conditional oriented matroids (2022) | arXiv

[36] Dowling, Thomas A. A class of geometric lattices based on finite groups, J. Comb. Theory, Ser. B, Volume 14 (1973), pp. 61-86 | DOI | MR | Zbl

[37] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995 (With a view toward algebraic geometry) | DOI | MR | Zbl

[38] Eisenbud, David; Popescu, Sorin; Yuzvinsky, Sergey Hyperplane arrangement cohomology and monomials in the exterior algebra, Trans. Am. Math. Soc., Volume 355 (2003) no. 11, pp. 4365-4383 | DOI | MR | Zbl

[39] Eisenbud, David; Reeves, Alyson; Totaro, Burt Initial ideals, Veronese subrings, and rates of algebras, Adv. Math., Volume 109 (1994) no. 2, pp. 168-187 | DOI | MR | Zbl

[40] Faber, Eleonore; Juhnke-Kubitzke, Martina; Lindo, Haydee; Miller, Claudia; Rebhuhn-Glanz, Rebecca; Seceleanu, Alexandra Canonical resolutions over Koszul algebras, Women in commutative algebra (Association for Women in Mathematics Series), Volume 29, Springer, 2022, pp. 281-301 | DOI | MR | Zbl

[41] Falk, Michael; Randell, Richard The lower central series of a fiber-type arrangement, Invent. Math., Volume 82 (1985) no. 1, pp. 77-88 | DOI | MR | Zbl

[42] Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer, 2001 | DOI | MR | Zbl

[43] Fresse, Benoit Homotopy of operads and Grothendieck–Teichmüller groups. Part 1, Mathematical Surveys and Monographs, 217, American Mathematical Society, 2017 (The algebraic theory and its topological background) | DOI | MR | Zbl

[44] Fröberg, Ralf Determination of a class of Poincaré series, Math. Scand., Volume 37 (1975) no. 1, pp. 29-39 | DOI | MR | Zbl

[45] Fröberg, Ralf Koszul algebras, Advances in commutative ring theory (Fez, 1997) (Lecture Notes in Pure and Applied Mathematics), Volume 205, Marcel Dekker, 1999, pp. 337-350 | MR | Zbl

[46] Geissinger, Ladnor; Kinch, D. Representations of the hyperoctahedral groups, J. Algebra, Volume 53 (1978) no. 1, pp. 1-20 | DOI | MR | Zbl

[47] Gulliksen, Tor H.; Levin, Gerson Homology of local rings, Queen’s Papers in Pure and Applied Mathematics, 20, Queen’s University, Kingston, Ontario, 1969 | MR | Zbl

[48] Hersh, Patricia; Reiner, Victor Representation stability for cohomology of configuration spaces in d , Int. Math. Res. Not., Volume 2017 (2017) no. 5, pp. 1433-1486 (With an appendix written jointly with Steven Sam) | DOI | MR | Zbl

[49] Hoge, Torsten; Röhrle, Gerhard Supersolvable reflection arrangements, Proc. Am. Math. Soc., Volume 142 (2014) no. 11, pp. 3787-3799 | DOI | MR | Zbl

[50] Jöllenbeck, Michael; Welker, Volkmar Minimal resolutions via algebraic discrete Morse theory, Memoirs of the American Mathematical Society, 923, American Mathematical Society, 2009 | DOI | MR | Zbl

[51] Josuat-Vergès, Matthieu; Nadeau, Philippe Koszulity of dual braid monoid algebras via cluster complexes (2021) | arXiv

[52] Klyachko, Aleksandr A. Lie elements in a tensor algebra, Sib. Mat. Zh., Volume 15 (1974), pp. 1296-1304 | MR | Zbl

[53] Kohno, Toshitake On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J., Volume 92 (1983), pp. 21-37 | DOI | MR | Zbl

[54] Kohno, Toshitake Série de Poincaré–Koszul associée aux groupes de tresses pures, Invent. Math., Volume 82 (1985) no. 1, pp. 57-75 | DOI | MR | Zbl

[55] Lehrer, Gustav I.; Solomon, Louis On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra, Volume 104 (1986) no. 2, pp. 410-424 | DOI | MR | Zbl

[56] Löfwall, Clas On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) (Lecture Notes in Mathematics), Volume 1183, Springer, 1986, pp. 291-338 | DOI | MR | Zbl

[57] Löfwall, Clas The holonomy Lie algebra of a matroid (2020) | arXiv

[58] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press; Oxford University Press, 1995 (with contributions by A. Zelevinsky, Oxford Science Publications) | DOI | MR | Zbl

[59] Mansour, Toufik; Munagi, Augustine O. Set partitions with circular successions, Eur. J. Comb., Volume 42 (2014), pp. 207-216 | DOI | MR | Zbl

[60] Matherne, Jacob P.; Miyata, Dane; Proudfoot, Nicholas; Ramos, Eric Equivariant log concavity and representation stability (2021) | arXiv

[61] Mazorchuk, Volodymyr; Ovsienko, Serge; Stroppel, Catharina Quadratic duals, Koszul dual functors, and applications, Trans. Am. Math. Soc., Volume 361 (2009) no. 3, pp. 1129-1172 | DOI | MR | Zbl

[62] McCullough, Jason; Peeva, Irena Infinite graded free resolutions, Commutative algebra and noncommutative algebraic geometry. Volume I. Expository articles (Mathematical Sciences Research Institute Publications), Volume 67, Cambridge University Press, 2015, pp. 215-257 | Zbl

[63] Milnor, John W.; Moore, John C. On the structure of Hopf algebras, Ann. Math. (2), Volume 81 (1965), pp. 211-264 | DOI | MR | Zbl

[64] Mora, Teo An introduction to commutative and noncommutative Gröbner bases, Theor. Comput. Sci., Volume 134 (1994) no. 1, pp. 131-173 | DOI | MR | Zbl

[65] Moseley, Daniel Equivariant cohomology and the Varchenko-Gelfand filtration, J. Algebra, Volume 472 (2017), pp. 95-114 | DOI | MR | Zbl

[66] Murai, Satoshi Generic initial ideals and exterior algebraic shifting of the join of simplicial complexes, Ark. Mat., Volume 45 (2007) no. 2, pp. 327-336 | DOI | MR | Zbl

[67] Orlik, Peter; Solomon, Louis Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189 | DOI | MR | Zbl

[68] Orlik, Peter; Terao, Hiroaki Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, 1992 | DOI | MR | Zbl

[69] Oxley, James G. Matroid theory, Oxford Graduate Texts in Mathematics, 3, Oxford Science Publications; Oxford University Press, 1992 | MR | Zbl

[70] Peeva, Irena Hyperplane arrangements and linear strands in resolutions, Trans. Am. Math. Soc., Volume 355 (2003) no. 2, pp. 609-618 | DOI | MR | Zbl

[71] Polishchuk, Alexander; Positselski, Leonid Quadratic algebras, University Lecture Series, 37, American Mathematical Society, 2005 | DOI | MR | Zbl

[72] Priddy, Stewart B. Koszul resolutions, Trans. Am. Math. Soc., Volume 152 (1970), pp. 39-60 | DOI | MR | Zbl

[73] Putman, Andrew; Sam, Steven V. Representation stability and finite linear groups, Duke Math. J., Volume 166 (2017) no. 13, pp. 2521-2598 | DOI | MR | Zbl

[74] Ross, Leonard E. Representations of graded Lie algebras, Trans. Am. Math. Soc., Volume 120 (1965), pp. 17-23 | DOI | MR | Zbl

[75] Scheunert, Manfred The theory of Lie superalgebras, Lecture Notes in Mathematics, 716, Springer, 1979 (An introduction) | DOI | MR | Zbl

[76] Schocker, Manfred Multiplicities of higher Lie characters, J. Aust. Math. Soc., Volume 75 (2003) no. 1, pp. 9-21 | DOI | MR | Zbl

[77] Shelton, Brad; Yuzvinsky, Sergey Koszul algebras from graphs and hyperplane arrangements, J. Lond. Math. Soc., Volume 56 (1997) no. 3, pp. 477-490 | DOI | MR | Zbl

[78] Shephard, Geoffrey C.; Todd, John A. Finite unitary reflection groups, Can. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[79] Shepler, Anne V.; Witherspoon, Sarah Poincaré–Birkhoff–Witt theorems, Commutative algebra and noncommutative algebraic geometry. Vol. I (Mathematical Sciences Research Institute Publications), Volume 67, Cambridge University Press, 2015, pp. 259-290 | MR | Zbl

[80] Stanley, Richard P. Modular elements of geometric lattices, Algebra Univers., Volume 1 (1971), pp. 214-217 | DOI | MR | Zbl

[81] Stanley, Richard P. Supersolvable lattices, Algebra Univers., Volume 2 (1972) no. 1, pp. 197-217 | DOI | MR | Zbl

[82] Stanley, Richard P. Invariants of finite groups and their applications to combinatorics, Bull. Am. Math. Soc., Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl

[83] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 (with a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl

[84] Stanton, Dennis; White, Dennis Constructive combinatorics, Undergraduate Texts in Mathematics, Springer, 1986 | DOI | MR | Zbl

[85] Stokes, Timothy Gröbner bases in exterior algebra, J. Autom. Reasoning, Volume 6 (1990) no. 3, pp. 233-250 | DOI | MR | Zbl

[86] Suciu, Alexander I.; Wang, He Formality properties of finitely generated groups and Lie algebras, Forum Math., Volume 31 (2019) no. 4, pp. 867-905 | DOI | MR | Zbl

[87] Sundaram, Sheila The homology representations of the symmetric group on Cohen–Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | DOI | MR | Zbl

[88] Sundaram, Sheila On a curious variant of the S n -module Lie n , Algebr. Comb., Volume 3 (2020) no. 4, pp. 985-1009 | DOI | MR | Zbl

[89] Sundaram, Sheila The reflection representation in the homology of subword order, Algebr. Comb., Volume 4 (2021) no. 5, pp. 879-907 | DOI | Numdam | MR | Zbl

[90] Sundaram, Sheila; Welker, Volkmar Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Am. Math. Soc., Volume 349 (1997) no. 4, pp. 1389-1420 | DOI | MR | Zbl

[91] Ufnarovskij, Victor A. Combinatorial and asymptotic methods in algebra, Algebra, VI (Encyclopaedia of Mathematical Sciences), Volume 57, Springer, 1995, pp. 1-196 | DOI | MR | Zbl

[92] Varchenko, Alexander N.; Gel’fand, Israil’ M. Heaviside functions of a configuration of hyperplanes, Funkts. Anal. Prilozh., Volume 21 (1987) no. 4, pp. 1-18 | MR | Zbl

[93] Webb, Peter A course in finite group representation theory, Cambridge Studies in Advanced Mathematics, 161, Cambridge University Press, 2016 | DOI | MR | Zbl

[94] Yuzvinsky, Sergey Orlik–Solomon algebras in algebra and topology, Usp. Mat. Nauk, Volume 56 (2001) no. 2(338), pp. 87-166 | DOI | MR | Zbl

Cited by Sources: