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ABSTRACT. This paper initiates a systematic study of the cyclotomic KLR algebras of affine types A
and C'. We start by introducing a graded deformation of these algebras and then constructing all
of the irreducible representations of the deformed cyclotomic KLR algebras using content systems,
which are recursively defined using Rouquier’s @-polynomials. This leads to a generalisation of the
Young’s seminormal forms for the symmetric groups in the KLR setting. Quite amazingly, the same
theory captures the representation theory of the cyclotomic KLR algebras of affine types A and C,
with the main difference being that the definition of the residue sequence of a tableau depends on
the Cartan type. We use our semisimple deformations to construct two “dual” cellular bases for the
non-semisimple KLR algebras of affine types A and C. As applications we recover many of the main
features from the representation theory in type A, simultaneously proving them for the cyclotomic
KLR algebras of types A and C'. These results are completely new in type C and we, usually, give more
direct proofs in type A. In particular, we show that these algebras categorify the irreducible integrable
highest weight modules of the corresponding Kac—Moody algebras, we construct and classify their
simple modules, we investigate links with canonical bases and we generalise Kleshchev’s modular
branching rules to these algebras.

1. INTRODUCTION

The KLR algebras are a remarkable family of graded algebras that were independently
introduced by Khovanov-Lauda [36] and Rouquier [62, 63]. These algebras are now central
to many of the recent developments in representation theory, not least because these
algebras categorify the positive part of quantised Kac-Moody algebras [68].
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The cyclotomic KLR algebras are natural finite dimensional quotients of the KLR al-
gebras that categorify the irreducible highest weight representations of the corresponding
quantum groups [10, 14, 31, 69]. These algebras are only well understood for quivers of

type Aél_)l and A, where it has been possible to bootstrap results using the Brundan—
Kleshchev isomorphism theorem [10], which shows that the cyclotomic KLR algebras of
type A are isomorphic to the (ungraded) Ariki-Koike algebras. Using the Brundan-
Kleshchev isomorphism, there is now an extensive literature in type A including a cate-
gorification theorem [11], cellular bases [9, 24|, and results on Specht modules [13, 25, 40].

Very little explicit information is known about the cyclotomic KLR algebras for other
Cartan types and even in type A our understanding is imperfect because it is seen through
the lens of the Brundan—Kleshchev isomorphism theorem, which does not keep track of
the grading. Hu and Shi have proved an amazing general formula that gives the graded
dimensions of the weight spaces of the cyclotomic KLR algebras of symmetrisable Cartan
type [28]. Recent work of the second author and Tubbenhauer [56, 57] shows that the

cyclotomic KLR algebras of types Aéi), B, Cél_)l and Dgl_)l are graded cellular algebras,
in the sense of [21, 24|, using the weighted KLRW algebras pioneered by Webster [69, 70,
71] and Bowman [9], who mainly consider type A. The combinatorics in this paper is
influenced by a beautiful series of papers by Ariki and Park [5, 6, 7], which determine the
representation type of the cyclotomic KLR algebras in certain types, and by the attempts
of Ariki, Park and Speyer [8] to construct Specht modules for the cyclotomic KLR algebras
of affine type C. The semisimplicity of the cyclotomic KLR algebras of types A and C is
determined in the papers [52, 65].

The cyclotomic KLR algebras are defined by generators and relations with the most
important relations being encoded in Rouquier’s )-polynomials. Modulo a choice of signs,
which do not affect the algebras up to isomorphism, the “standard” @-polynomials in
literature take the form

u—v iti — 7,
Qij(u,v) =< (u—v)(v—u) ifisj,
u—v? if i = j,

where ¢ and j are vertices of the underlying quiver and u and v are indeterminates of
degree 2 (see subsection 2B for more detailed definitions.) Our starting point is to consider
“deformations” of these polynomials, such as

u—v— 2’ ifi — 7,

Tilw,v) =S (u—v+a?) (v-—u+a?) ifisy,
2\ 2 ap - .

u— (v—2?) if ¢ = j,

where z is an indeterminate over K of degree 1. (We allow more general deformations.)
Using the standard Q-polynomials @; j(u,v), and a dominant weight A, we define the
“standard” (cyclotomic) KLR algebras %2 via Definition 2C.2. Using the deformed Q-
polynomials Q7 ;(u,v), the same definition gives us the deformed (cyclotomic) KLR al-

gebras Rﬁ, for n > 0. For quivers of types Aéljl and Ce(lf)l we show that the deformed
cyclotomic KLR algebras R2 are split semisimple graded algebras over K[z*] = K[z, 2z~ 1].
We prove this by introducing content systems, which are a generalisation of the classi-
cal content functions from the semisimple representation theory of the symmetric groups.
Unlike the classical situation, a content system consists of two functions that determine
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“contents” and “residues”, where the content function is determined by the @-polynomials.
We use content systems to construct irreducible representations of the deformed cyclotomic
KLR algebras of types A and C over K[z*], giving a generalisation of Young’s seminormal
forms in the KLR setting. The appearance of seminormal forms in the representation the-
ory of the KLR algebras of type A is not surprising but, at least for us, this was unexpected
for the algebras of type C.

The graded semisimple deformations of the cyclotomic KLR algebras gives a new way
of approaching the non-semisimple representation theory of the cyclotomic KLR algebras,
even though these algebras are rarely semisimple. The deformed cyclotomic KLR algebras
are semisimple over K[f[} but they stop being semisimple when x is not invertible, which
allows us to recover the standard cyclotomic KLR algebras from the deformed algebras
by specialising = 0. In this way, we can use the semisimple representation theory of
RA over K[z, 27!] to understand the non-semisimple representation theory of Z2 over K.
In fact, throughout the paper we work mainly with the deformed KLR algebra R2, both
because R is easier to work with and because it has a richer representation theory that
encodes everything about %7{}

The first main result of this paper, Theorem 4F.1, is the following.

Theorem A. Let #2 be a cyclotomic KLR algebra of type Agl_)l or Cél_)l. Then # is a
graded cellular algebra.

Knowing that an algebra is cellular gives a framework for understanding its representa-
tion theory, including a construction of the irreducible representations of the algebra. We
actually prove several enhanced versions of Theorem A. First, over a positively graded
ring K, such as K[z], we show that the deformed KLR algebra Rﬁ over K is a graded K-
cellular algebra, where K-cellularity further generalises cellular algebras to the category
of finite dimensional graded algebras that are defined over graded rings. Secondly, we
construct four different cellular bases of RQ, two of which specialise to give cellular bases
of z@f}, and two of which give bases for the split semisimple algebra R} when we extend
scalars to K[z*].

The proof of Theorem A starts by using our generalisation of Young’s seminormal
forms to show that R2 has two seminormal cellular bases, {f3} and {f5}, over K[zF]. The
seminormal bases are characterised as bases of simultaneous eigenvectors for the generators
Y1, -, Yn Of Rﬁ, where the eigenvalues are given by our content systems. The seminormal
bases are then used to show that R2 has two “integral” cellular bases, {13} and {3}
(Definition 4A.5), that are defined over K[z] and which specialise to give cellular bases
of #). In type A, the 1-bases of R} generalise the ¢-bases constructed in [24]. The
transition matrix from the f<-basis to the 1)-basis is unitriangular, as is the transition
matrix from the f-basis to the 1”-basis, so it is very easy to deduce properties of -bases
from the seminormal bases.

The key difference between the 9-basis and the 1)”-basis, and between the f<-basis
and the f-basis, is that one is defined using the reverse dominance order on the set of
(-partitions and the other is defined using the dominance order. (Here £ is the level of the
dominant weight A; see subsection 3B.) That is, by reversing the choice of partial order
in our definitions we can switch between these two families of cellular bases. In turn,
this leads to the construction of two closely related families of cell modules, or Specht
modules, {S,;} and {S}}, and two families of simple RA(F[z])-modules {Dy;} and {D}}.
Throughout the paper we keep track of these two families of modules because, aside from
the notation, doing this requires almost no extra work, with the only real difference being
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whether we work with the dominance or reverse dominance order. In fact, we need to work
with these two “dual” families of modules because some of our main results are proved by
exploiting the close connections between these two families of modules.

Once we have proved that R and %2 are cellular algebras, we next turn to understand-
ing their representation theory. We first use the semisimple representation theory to show
that Rﬁ (and %’T/}), is a graded symmetric algebra. There is a natural symmetrising form
that is defined using defect polynomials (Definition 4D.2), which are graded analogues of
the generic degrees from the representation theory of cyclotomic Hecke algebras [50]. In
particular, this allows us to show that SY is isomorphic to the dual of S5, up to shift. The
defect of a Specht module is equal to the degree of its defect polynomial. Defect is a key
invariant of the blocks of the cyclotomic KLR algebras, which generalises the p-weight of
a partition in the modular representation theory of the symmetric groups.

As a second application of the semisimple representation theory, we give explicit Specht
filtrations of the modules obtained by inducing and restricting the Specht modules of R}
over an arbitrary ring. Together with the combinatorics based on the defect polynomials,
the graded branching rules for the Specht modules translate into our next main result,
which is a categorification theorem. To state this we need to introduce some notation.

Let K be a field and x an indeterminate over K. We consider K[z| as a positively graded
ring, with « in degree 1, and set A = Z[q, ¢~ ']. Let Repx R2(K[z]) be the category of graded
RA(K[z])-modules that are finite dimensional as K-vector spaces and let Projg R2(K[z]) be
the full subcategory of projective R2(K[z])-modules. Let

[RepKRﬁ\(K[ajD} and [ProjK R?(K[x])}

be the direct sum of the Grothendieck groups of these categories for n > 0, which we
consider as free A-modules by letting ¢ act as the grading shift functor.

Suppose that T is a quiver of type Aél_)l or type C’él_)l. Let Uy(gr) be the correspond-
ing quantised Kac-Moody algebra and let U4(gr) be Lusztig’s A-form of U,(gr). For a
dominant weight A, let L(A)4 be the A-form of the corresponding irreducible integrable
highest weight module for U4(gr) and let L(A)* be is dual, with respect to the Cartan
pairing.

Theorem B (Cyclotomic categorification theorem). Suppose that ' is a quiver of type

Agl_)l or C’e(l_)1 and let A be a dominant weight. Then, as U(gr)-modules,
L(A)a = [Proj RI(K[Z])|  and  L(A)Z = [Repy(RI(K[a])]

This result, which is Theorem 6D.20, is not new. In type Agljl it is one of the main
results of [11]. More generally, [31] establishes this result whenever I" is a quiver of sym-
metrisable Cartan type. What is new about this result is that it is deduced almost directly
from the graded branching rules for the Specht modules of R} (K[z]), which directly encode
the action of Uy (gr) on the Grothendieck groups. This explicit link with the representation
theory of RA(K[x]) makes it much easier to apply this result to the representation theory
of R}(K[x]). In fact, the information flow is stronger in both directions, so we also use the
representation theory of RA(K[z]) to better understand L(A). In particular, we are able
to give detailed information about the canonical bases of L(A) 4 and L(A)% and their role
in this categorification theorem.

Our approach to Theorem B is partly based on [11], although our perspective is fun-
damentally different because we work almost exclusively inside the Grothendieck groups
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of the cyclotomic KLR algebras whereas [11] works mainly inside a combinatorial Fock
space, which we also use. In particular, we use Theorem A, and the triangularity of the
decomposition matrices of R2(K[xz]), to show that Lusztig’s bar involution is triangular
on the basis of Specht modules. Our arguments work simultaneously for the algebras of

type Aéljl and Céi)l and, via Theorem A, we obtain two versions of Theorem B cor-
responding to the ¥ and 4™ cellular bases. This gives two explicit realisations of the
irreducible integrable highest weight U4(gr)-modules L(A)4 and L(A)%.

Our next main goal is to classify the irreducible graded R2 (K[z])-modules. Our parallel
theories, using the ¢ and " cellular bases, leads to two combinatorial descriptions of the
crystal graph of L(A), which we call the <-crystal graph and the >-crystal graphs in this
introduction. To describe these, let I be the vertex set of the quiver I'. The paths in the
crystal graphs of L(A) are labelled by n-tuples i € I"™, corresponding to generalisations of
Kleshchev’s good node sequences (Definition 6F.5). Each good node sequence i determines

two paths: one path 0, s p in the <-crystal graph and a second path 0, s U path in
the >-crystal graph. Here, 0, is the empty ¢-partition and wu, v are f-partitions of n. Let

/Ciz{uepﬁ

Ovjf»uforsomeieln}

and

/czz{uepﬁ

O«K»ufor somejEI"}

be the vertex sets of the two crystal graphs. Calculations with the canonical bases in the
Grothendieck groups Repg R2 (K[z]) and Projy RS (K[z]) allows us to classify the irreducible
RA(K[z])-modules over a field, for n > 0. As Theorem 6F.14, we prove.

Theorem C. Let K be a field. Up to shift, {Dy|n € K5} and {Dy|v € K} are both

complete sets of pairwise non-isomorphic irreducible R2 (K[z])-modules.

In particular, over any field, this result classifies the irreducible modules of the cyclo-
tomic KLR algebras of type Agl_)l and C’él_)l.

Theorem C implies that there is a bijection m: K — K7 such that D}, = D;(u)‘
In Corollary 5E.8 we show that if

i<

peEK, and 0w p
is a path in the <-crystal graph of L(A) then there is a unique ¢-partition

v =m(p) suchthat 0, — U

is a path in the >-crystal graph. This gives a way to compute the ¢-partition m(u). In
the special case of the symmetric groups, this gives another description of the Mullineuz
map, which describes what happens to the simple modules of the symmetric group when
they are tensored with the sign representation. We introduce a sign representation for the
algebras R2 (K[z]) and show in our setting, which generalises that of the symmetric groups,
the Mullineux map is the function pu — m(u)’, where p’ is the ¢-partition conjugate to p;
see subsection 4A.

Finally, we show that Kleshchev’s modular branching rules [38] extend to give branching
rules for the simple R2(K[z])-modules. For i € I, let E and F be the corresponding
i-restriction and i-induction functors and let e; and f; be Kashiwara’s operators on the
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crystal graph of L(A). We refer the reader to subsection 6G for the precise definitions and
statements, but the main results take the form:

Theorem D. Suppose that p € KC5, v € K7 and i,5 € I. Then, up to grading shift,

n’
D3, =soc(ErDS) D}, =head (FDj.),
Dz, = soc (E]ADE) and D%, = head (FJADID,) :

In type Agl,)l, Brundan and Kleshchev [11, Theorem] prove one version of this result
by lifting Ariki’s [1, 4] and Grojnowski’s work [22], from the ungraded representation the-
ory, into the KLR world. More generally, for any symmetrisable Cartan type, Lauda and
Vazirani [44] show that analogues of these modular branching rules categorify the crystal
graph of L(A) by lifting parts of Grojnowski’s approach to the KLR setting. Lauda and
Vazirani’s result does not imply Theorem D because it is not clear how their crystal graph
is related to the labelling of the simple modules given in Theorem C. Our proof of Theo-
rem D is almost axiomatic in that it uses Theorem B to lift the result from Theorem B
and properties of the canonical basis.

Throughout the paper we work almost exclusively with a deformed cyclotomic KLR
algebra RQ that has a content system to prove our results, after which the results for %’,{}
are obtained by specialising the deformation parameters to 0. We show by example that

1)

every cyclotomic KLR algebra of types Ag 1, and 0(1_)1 has a graded content system over

Z[z], so our results apply to all cyclotomic KLR algebras of affine types A and C over any

ring. In type Agl_)l, the results we obtain for %2 were known but those for R2 are new.

In type Céi)l, all of these results are completely new. As we note in subsection 2B, the
results in this paper also extend to quivers of type Ao and C. It likely that the general
framework that we develop can be modified to work in other types.

It is quite striking that we are able to prove all of these results using a common frame-

S_)l and C’él_)l. Ultimately, the reason

work for the cyclotomic KLR algebras of type A
why this works is that our deformation arguments show that the algebra R} over K[z*] is
isomorphic to a direct sum of matrix algebras that depend only on n and ¢, and not on
the choice of dominant weight A or even on the quiver I'. In fact, Theorem 3F.8 shows
that if n and ¢ are fixed then, for any choice of content system, the deformed cyclotomic
KLR algebras over K[z¥] are canonically isomorphic as ungraded algebras.

An index of notation is included at the end of the document, before the list of references.

2. KLR ALGEBRAS

2A. Graded rings, algebras and modules. Throughout this paper we work with Z-
graded rings, algebras and modules. For convenience, we refer to each of these structures
as being graded. This section recalls the basic definitions that we need for modules over
graded rings.

All rings in the paper will be commutative integral domains with 1. A graded ring is a
ring K that has a decomposition K = @, .7 K4 as an additive abelian group such that
KqK. C K.4. In particular, note that Ky is a subring of K.}

Let K be a graded commutative domain. Then:

We apologise to the readers who instantly think that K is a field. In the body of the paper we mostly

work with a field K, which is a k-algebra (often the field of fractions of the ring k), and we consider modules
over the graded rings k[z], K[z] and K[zF].
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e A graded K-module is a K-module M that admits a decomposition
M =@, c7z My as a Kp-module such that KgM, C My ..

e A graded K-algebra is a K-algebra A that admits an decomposition
A=8,c7Aq as a graded K-module such that KjA, C Agye.

e A graded A-module is an A-module M that admits a decomposition
M =@,c7 M; as a graded K-module such that AgM. C Mg, e.

It R =@, R, is a graded ring, algebra or module let R be the corresponding structure
obtained by forgetting the grading. An element m € R is homogeneous of degree d if
0 # m € Ry, in which case we set deg(m) = d. By definition, 0 is not homogeneous. In
particular, note that if » € R and m € M are homogeneous then deg(rm) = deg(r) +
deg(m). Further, R is positively graded if there are no elements of negative degree (that is,
these are non-negatively graded structures) and R is concentrated in degree d if R = Ry.

In this paper the three types of graded rings K that we consider are:

e commutative domains K with 1,
e polynomial rings k[z] = K|[z|, where z is a (possibly empty) family of indetermi-
nates over K with each indeterminate having degree 1,
e Laurent polynomial rings K[z¥] = K[z, z7!], where K is a field that is a k-algebra,
such as the field of fractions of k.
In these rings, the elements of k and K are in degree 0.

A graded field is a graded ring in which every nonzero homogeneous element has a
multiplicative inverse. In particular, K and K[z*] are graded fields. By [67, Theorem 4.1]
all graded fields are of this form.

If A is a graded K-algebra and M is a graded A-module then graded submodules,
quotient modules, projective modules, ... are defined in the obvious ways. If K is a
graded field and A is a graded K-algebra then an irreducible graded A-module is a graded
A-module that has no non-trivial proper graded A-submodules. We emphasise that irre-
ducible graded modules make sense when the ground ring is a graded field that is not a
field.

Remark 2A.1. Let K be a field and A a graded K-algebra. Then a graded A-module
D is an irreducible graded A-module if and only if D is an irreducible A-module by [60,
Theorem 4.4.4 and Theorem 9.6.8]. In contrast, if A is a graded K[zT]-algebra then an
irreducible graded A-module is not necessarily irreducible when we forget the grading. For
example, if A = K[z*] and D = K[z¥] then D is an irreducible graded A-module but D is
not irreducible as an A-module because, for example, it contains the (non-homogeneous)
ideal (x + 1)K[z%].

If M and N are graded A-modules then a homogeneous A-module homomorphism of
degree d is an A-module homomorphism f: M — N such that deg f(m) = deg(m) + d
whenever m € M is homogeneous. In this case we write deg f = d. The map f is an
A-module isomorphism if it is bijective and it is homogeneous of degree 0.

Let ¢ be an indeterminate and set A = Z[q,¢"!] and A = Q(q). If M = @, M, is a
graded A-module and s € Z let ¢°M = @,(¢° M )4 be the graded A-module that is equal
to M as an ungraded module, has (¢° M)y = My_s and with A-action inherited from the
action on M.

If M and N are graded A-modules let Hom4 (M, N) be the homogeneous A-module
homomorphisms of degree 0. Then Homa(¢?M,N) = Homyu(M,q ?N) is naturally
identified with the set of homogeneous maps M — N of degree d, for d € Z. Set
HOMA(M, N) = @, ¢z Hom4(¢?M, N). Define End4(M) and END 4(M) similarly.
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Remark 2A.2. For geometric reasons, indeterminates are usually put in degree 2. It is
more convenient for us to put the indeterminates in z in degree 1 because then the graded
field K[z*!] has a unique irreducible graded representation, namely itself; see Remark 2A.1.
(In contrast, if we set deg(z) = 2 then K[zT!] and ¢gK[z!] are non-isomorphic irreducible
graded K[z*!']-modules.) On the other hand, {¢?K|d € Z} is a complete set of pairwise
non-isomorphic unique irreducible graded K[z]-modules, where the K[z]-module ¢?K is
concentrated in degree d and x acts as multiplication by O.

If A is a graded K-algebra then we will usually work in the category Rep A of finitely
generated A-modules with homogeneous maps of degree 0. If K = @, Ky and K = K
is a field let Repk A be the full subcategory of Rep A consisting of A-modules that are
finite dimensional as K-vector spaces. Similarly, let Proj A be the additive subcategory
of Rep A consisting of projective graded A-modules and let Projkx A be the corresponding
subcategory of Repk A. The proofs of our Main Theorem B-Theorem D take place in the
categories Repg R} (K[z]) and Projk RA (K[z]).

Let [Repk 4] and [Projk A] be the Grothendieck groups of the categories Repk A and
Projk A, respectively. Given a module M in Repg A, or in Projg A, let [M] be its image
in [Repk A] or [Projk A], respectively. Both [Repk A] and [Projg A] are free A-modules
where ¢ acts by grading shift. That is, [¢M] = q[M].

2B. Quivers and @-polynomials. In this section we fix the Lie theoretic data that will
be used throughout the paper. Let N = Z>( be the set of non-negative integers.
Let T' be a symmetrisable quiver T' with vertex set I. Let (C,P, PV,II,I1V) be the
Cartan data attached to I', consisting of:
o A symmetrisable Cartan matriz, C = (c;j)ije1 satisfies c;; = 2, ¢;; < 0 for i # 7,
cij = 0 whenever cj; = 0. Since C is symmetrisable, there exists a diagonal matrix
D = diag(d;|i € I) such that DC' is symmetric
e The weight lattice P is a free abelian group with basis the simple roots
II = {Ozi | S I}
e The dual weight lattice is P¥ = Hom(P,Z) has basis the simple coroots
v ={a)|i € I}.
The Cartan pairing ( , ): PY x P —Z and fundamental weights {A;|i € I} C P are
given by
(o aj) =ci; and (o), Aj) = &y, fori,5 € I.
The positive root lattice is Q* = >, c Ny, and Pt = @, o ; NA; is the set of dominant
weights of T'. The height of o = Y, crhio; € QT is ht(a) = 3, c 1 hi- Let Q;F be the set
of all elements of Q" of height n. Set h = Q ®z PV. As C is symmetrisable, there exists
a symmetric bilinear form ( | ) on h* such that

2(ay| A
(O{Z’|Oéj) = dicij = Cijdj and <a;/,)\> = M, for A € f)* and i € I.
(cvslevi)
Fix n € N and let &,, be the symmetric group on n letters. As a Coxeter group, &,, is
generated by the simple transpositions o1, ..., 0,—1, where o, = (k,k+1) for 1 <k < n.

Let L: & — N be the length function on &,, so if w € &,, then L(w) = [ if [ is minimal
such that w = oy, ...04, for some 1 < a; < n. A reduced expression for w € &, is any
expression w = oy, ...0q, With [ = L(w).

The group &,, acts from the left on the set I™ = I x --- x I by place permutations: if
weG"andi= (il, e Zn) € I" write wi = (iw(l)a cey Zw(n))
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In this paper we will mainly consider the quivers of type Aél_)l (e > 2) and C’él_)l (e > 3),
for which we use the following quivers:

Type Dynkin diagram ) (doy -+ .y de—1)
0
AY, T agtar+ ot aeatac (L1, 1L1)
e—1le—2 2 1
cl, ST R e 20t e (2,1,.00,1,2)

Here, § is the null root, which satisfies (6, ') = 0, for i € I. Notice that for both of these
quivers we have I = {0,1, ..., e — 1}. Our arguments apply equally well to the infinite
quivers Ay and Cy but there is no real gain in considering these because the cyclotomic
KLR algebras for these quivers are isomorphic to cyclotomic KLR algebras for a suitably
large finite quiver.

Fix a (graded) commutative domain K = @,cz K4 and let u,v be indeterminates
over K. Following Rouquier [63, Definition 3.2.2] and Kashiwara—Kang [31], a family of
Q-polynomials for T" is a collection of polynomials Q;;(u,v) € Klu,v], for i,j € I, such
that Q; j(u,v) = Qji(v,u), Qii(u,v) =0 and if i # j then

Qi,j(u,v) Z tijip.qufv? where 2; j —c;; 0 € K& and  t 4 € Kq, (2B.1)
p,q=>0
where d = —2(a;|a;) — p(as|ag) — g(aj|a;). That is, Q; j(u,v) is homogeneous of degree d.

By assumption, Q; j(u,v) = Q;i(v,u), SO tijpg = tjiqp. One standard choice for these
polynomials is

U —v if i — j,
Qij(u,v) =4 (u—v)(v—u) ifisj, (2B.2)
u — v? if i = j.

As discussed in the introduction, this paper uses “deformed analogues” of these standard
Q-polynomials. More examples can be found in Example 3A.2 below.
For i,5,k € I and indeterminates u,v and w over K, define the three variable Q-
polynomials
Q" u, v _Q‘k} v, w
Qi,j,k(uv v, w) = 52k ”( ) . ( ) ) (2B3)

u—w

where §;;, is the Kronecker delta. Then Q; jx(u,v,w) € K[u,v,w].

2C. KLR algebras. This section defines the (cyclotomic) KLR algebras, which are one
of the main objects of interest in this paper. Unless otherwise stated, all of our algebras
are K-algebras, where K is a (graded) commutative integral domain with one.

As in the last section, let K = @, K4 be a graded commutative ring with one and fix

algebraically independent indeterminates uq, ..., u, over K. The symmetric group &,
acts on Kluq, ..., uy] by permuting mdetermmates [ = = f(uwa)s -5 Uwm)), for
weG,and f € K[ul, ceey Up).
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Recall from subsection 2B, that I = {0,1,..., e — 1} is the (finite) vertex set of
the quiver I' and that we have fixed a family Q; = (Qi;(u,v));jer of Rouquier’s Q-
polynomials. In addition, fix a family of homogeneous weight polynomials

W= (WZ(U))ZGI

such that
(e} [A)
Wi(u) = Z ai;ku(a”A)_k, for a;, € Kq,1 and a;;0 = 1. (2C.1)
k=0

The weight polynomials W determine a dominant weight A = Aw, = >, LiA; € PT,
where [; = deg W;(u) for i € I. The level of Ais £ =", 1;. We assume ¢ > 1.

A cyclotomic KLR datum is a triple (I', Qr, W), where I' is a quiver and Q; and W7
are families of Q-polynomials and weight polynomials for I', respectively. The quiver I’
has vertex set I and comes equipped with a Cartan datum as in subsection 2B.

fae@flet I*={iel"|a=wo; + +a,}

Definition 2C.2. Let (I, Q7, W) be a cyclotomic KLR datum and suppose that a € Q.
The KLR algebra %o = Z.(Qr) is the unital associative K-algebra generated by

{Liliel“U{Yp|l <k<n}U{ym|l<m<n}

subject to the relations:
(KLRl) 1i1j = 6i,j]-i and Zie[o‘ 1i =1
(KLR2) ypli = Liyx and  ykYm = Ym¥k
(KLR3) Yrym = ym¥r it m # k, k+1
(KLR4) ViePm = Yy if |m - k| >1
(KLR5) ¥rli = 1o,5%%,
(KLR6) (Yryrt1 — yntr)li = iy iy i = Uk 1¥r — Yrur) 1
(KLR7) %721 = Qigipss (Yo, Yit1) 1
(KLR8) (Vr+1¥k¥r+1 — Yu¥r1¥i)li = Qip g inso Uk Yk+15 Ykt2) 1i
for all i € I* and all admissible & and m. The cyclotomic KLR algebra is the quotient
algebra

Ry = RN (Q1, W) = Bo | VL (W), (2C.3)
where #X(W7) is the two-sided ideal of %, generated by {W;, (y1)1;]i € I°}.

Set #n = @, ¢ g #a and TN = Docor R

We abuse notation and use 1j, y, and 1, for both the generators of %, and %, and
for their images in Z2 and #». When we want to emphasise the base ring K we write
Kn(K) = Zn(Qr, W1, K) and Z2(K) = %,(Q1, W, K).

Importantly, the algebras %, and #2 are graded K-algebras with degree function

degli =0, degymli = (i, |®i,)=2d;, and degypli = — (a, ]aikH) ,

foriel", 1<k<nandl1l<m<n.
Inspecting the relations, there is a unique anti-isomorphism * of %,, and of %’7{}, that
fixes each of the generators. If M is a graded %,’}—module then the graded dual of M is

M® = HOMy (M, K), (2C.4)
where the Z2-action on M® is given by (af)(m) = f(a*m), for a € Z», f € M® and

m € M.
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We reserve the notation %2 for the cyclotomic KLR algebras that are defined using
Q-polynomials such that @Q; j(u,v) € Kolu,v], such as the standard @-polynomials given
in (2B.2). For most of this paper we work with cyclotomic KLR algebras R} that are de-
fined using “deformations” of the standard @-polynomials, such as those in Example 3A.2
below.

Remark 2C.5. There is an extensive literature for the cyclotomic KLR algebras of affine

type A. Almost all of these papers work with the quiver Agl,)l. In particular, in character-

istic p > 0 the group algebra of the symmetric group is isomorphic to a cyclotomic KLR

algebra of type A;ljl. As this paper simultaneously treats affine types A and C, we have

chosen our notation to be consistent with the literature in affine type A and so that both

quivers have the same vertex set {0,1, ..., e — 1}. This is why we work with quivers of
(1)

types A,; and C’él_)l even though a more natural notation would be to work with quivers
of types Agl) and C’él).

When K is positively graded the algebras in this paper fit into the general framework
developed by Kang and Kashiwara in [31]. In particular, [31] proves the following result
using an intricate induction on n.

Proposition 2C.6 (Kang—Kashiwara [31, Theorem 4.5]). Suppose that K is a positively
graded ring. Then RA(K) is free as a K-module.

Proof. By [31, Theorem 4.5], R}(K) is projective as an R} | (K)-module, which im-
plies that R2(K) is projective as an R} (K)-module. This gives the result since R (K)
=K. ([l

A cyclotomic KLR datum (I', Q;, Wy) is standard if Q; ;(u,v), W;i(u) € Kolu,v], for
all i,7 € I. A (cyclotomic) KLR algebra is standard if its cyclotomic KLR datum is
standard. Many papers in the literature define KLR algebras over positively graded rings
K = @,~0 K, but in almost all cases they only consider standard @-polynomials, like
those in (QB.Q). Non-standard @-polynomials, such as those in Example 3A.2 below, play
an important role in this paper.

Let k be a commutative integral domain with 1. Let K be a field that is a k-algebra.
(Often, K will be the field of fractions of k.) Let x be a (possibly empty) tuple of indetermi-
nates over K. In this and later sections, we work over the polynomial ring k[z] = K[z] and
the Laurent polynomial ring K[z*] = K[z, z7!] with indeterminates z. We consider K[z]
as a positively graded ring, and K[z*] as a Z-graded ring, with the indeterminates in z all
having degree 1; compare Remark 2A.1.

Fix a standard family of standard @-polynomials Q; together with a family of standard
weight polynomials W, both with coefficients in k. Let ZMk) = Z22(Qr, W1,K) be
the corresponding cyclotomic KLR algebra over k. A K[z]-deformation of (I',Qr, Wy)
is a cyclotomic KLR datum (I, Q7, W7) such that QF = (Q%(u,v))me[ is a family
of Q-polynomials with coefficients in k[z] and W7 = (W;*(u)); e is a family of weight
polynomials such that the polynomials in Q; and W are the degree zero terms of the
polynomials in Q? and W%, respectively. That is, Qr = Q%x:O and Wy = W%m:O‘
(Here, and below, if f(x) € K[z] then f(z),—o is the constant term of f(z).)
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Notation 2C.7. Suppose that (', QF, W7) is a k[z]-deformation of (I', Q;, W7). Let
Rp(klz]) = %, (Q7, W.Klz])  and Ry (K[z¥]) = 2, (Q7, W, K[z™])
be the corresponding cyclotomic KLR algebras over K[z] and K[z*], respectively.

The k[z]-deformations (T, Q% W%) used in this paper are part of the data of a content
system, which is the subject of the next section. Non-trivial examples of the polynomials
Q% and W? are given in Example 3A.2 below. We will sometimes use the deformed KLR
algebras R, (K[z]) = R.(QT,K[z]) and R,(K[z*]) = R,(WT,K[z¥]) determined by the

polynomials Q7F. Let Qf*jk(u,v,w) be the analogue of the three variable Q-polynomials
in (2B.3) determined by (T, QF, W7).

As before, let Z2(K) = Z2(Qr, W1,K) be the standard cyclotomic KLR algebra de-
termined by (', Qr, Wy). By specialising the indeterminates in z to zero, the relations
of Rﬁ(k[@)‘gzo coincide with those of the algebra %2 (K), so we have the following trivial
but useful observation

Proposition 2C.8. Suppose that (T', Q7, W7) is a k[z]-deformation of (I', Q;, W;). Con-
sider k as a graded K[z]-module by letting z act as zero. Then Z2(k) = RA(K) =
k ® RA(K[z]) as graded algebras.

That is, the standard cyclotomic KLR algebra %2 (k) is isomorphic, as a graded alge-
bra, to the specialisation of RA(k[z]) at z = 0. Equivalently, 22 (k) is the degree zero
component, with respect to the z-grading, of the algebra R (k[z]). Note also that R} (k[z])
is free as a K[z]-module by Proposition 2C.6.

It turns out that the representation theories of the algebras #2 (k) and R2(k[z]) are
very similar, with the theory for R2(k[z]) being slightly richer. In contrast, under the
assumptions introduced below, the algebra R2(K[z%]) is semisimple, which makes it a
useful tool for studying the algebras RA(k[z]) and RA(k) = %2 (k). Note that RA(K[z])
embeds into R2(K[z*]) by Proposition 2C.6.

2D. Bases of KLR algebras. For each w € &,, fix a preferred reduced expression
W = 0gq, ...0q and define 1, = g, ...1,,. In general, ¥, depends on the choice of the
preferred reduced expression for w.

Theorem 2D.1 (Khovanov-Lauda [36, Theorem 2.5], Rouquier [62, Theorem 3.7]). The

algebra R,, is free as a K-algebra with basis {{,y]" ... yn"lijlw € &y, my, ..., m, €
N,iel"}.
Given 1 < k < n, define the divided difference operator
f=%F
Op: Klut, ..., up)| — K ui, ..., up]; f —» ———.
Ul — Uk+1

The next result follows easily from the relations in Definition 2C.2.

Lemma 2D.2 (Kang-Kashiwara [31, Lemma 4.2]). Let V be an R,-module and f €
Kluy,...,uy] such that f(yi, ..., yo)1;V = 0, for i € I". Suppose that i = ig4q, for
some 1 < k < n. Then

(ka)<y17 ) yn)llv =0 and (akf)(yl, cee yn)llv =0.
Lemma 2D.3. Let f = (u1 —a1)...(u1 — a;) € K|ui,ug), for ay,...,a; € K. Then
(01 f)(a1,u) = (u—az)...(u—a).
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Proof. This follows easily by induction on ¢ using the general identity dx(fg) = (°* f)Org+
Ok f)g. O

Following [32, (1.6)], if 1 <r < n, define ¢, = > ;¢ n ¢rli € %y by
ol = (@r(Yr — yr1) + DL if dp = i,
o w’l‘li if iy 75 ir+1~

By definition, ¢,1; is homogeneous and degy,1; > 0. If w = 0gq4, ...0,,, is a reduced
expression for w € &4 define v, = 4, - - - @a,,. Parts (b) and (c) of the next lemma show
that ¢,, does not depend on the choice of the reduced expression.

(2D.4)

Lemma 2D.5 (Kang, Kashiwara and Kim [32, Lemma 1.5]). The following identities

hold:

(a) If 1 <r < n, then ©21; = (Qs, 4,41 (Yrs Yr41) + Girin s ) i

(b) If1<r<n-—1,then rori10r = Ory10rPr1-

(C) If ‘T - 3’ > 1, then PrPs = PsPr-

(d) fwe &y, and 1 <t < n, then Yyt = Yu(r)Puw-

(e) f1 <k <nand wk+1)=wk)+1, then vy = Yuy(r)Puw-

(f) If w € &, then ,~10,1; = H (Qiviv Yar Yb) + i iy ) 1i
1<a<b<n
w(a) > w(b)

3. CONTENT SYSTEMS FOR KLR ALGEBRAS

This section introduces content systems, which are the basic combinatorial tool under-
pinning this paper. Using content systems, we will give analogues of Young’s seminormal
forms for cyclotomic KLR algebras of types Agl_)l and CV

._1, which are then used to prove
the main results of this paper.

3A. Content systems. As in subsection 2C, in this subsection we let K be a commutative
ring with 1 and fix a family of indeterminates z and work over the rings K[z]. In this section,
K is the field of fractions of k and we will mainly work over K[z*]. Let (T, Q7, W7T) be
a K[z]-deformation of the standard cyclotomic KLR datum (I',Q;, Wy). This section
studies the algebras R2(k[z]) and R} (K[z*]) under the additional assumption that they
come equipped with a content system, which is the subject of this subsection.

As in subsection 2C, the cyclotomic KLR datum (', Q7, W7) determines a dominant
weight A = AW% € Pt of level £. Fix an (-tuple p = (p1, ..., p¢) € I¢, the £-charge, such
that A = 3201 A,,.

Let T'y be the quiver of type AXY = Ay X --- X Ay, with £ factors. More explicitly, T
has vertex set J; = {1,2, ..., ¢} xZ and edges (Il,a) — (l,a+1), for all ({,a) € Jy. Given
(k,a),(l,b) € Jp, write (k,a)—(l,b) if (k,a) # (I,b) and there is an arrow between (k,a)
and (I, b), in either direction. Similarly, write (k,a) - (I,b) if (k,a) # (I,b) and there are
no arrows between (k,a) and (I,b). By definition, if k # [ then (k,a) - (1, b).

Definition 3A.1. A content system for R2(K[z]) with values in K[z] is a pair of maps
(c,r), with

c: Jy—K[z] and r: J—1,
such that:
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(a) If 1 <1 < ¢ then r(l,0) = p;. Moreover, if i € I then
W(u) = H (u—c(l,0)).

le [1,K],pl:i
(b) If (k,a) € Jyand j € {r(k,a—1),r(k,a+1)} then there exists a unit € = ¢, ; € kK*
such that
Q%(k,a),j (C(kaa)ﬂ}) =€ H (C(k’,b) - ’U).
be{a—1,a+1}
r(k,b)=j

(c) If (k,a),(l,b) € Jy with —n < a,b < n then r(k,a) = r(l,b) and c(k,a) = c(l,b) if
and only if (k,a) = (1,b).
The function c is the content function of the content system and r is the residue function.
A content system (c,r) is graded if c(k,a) is homogeneous of degree (a;|a;) = 2d;, where
i=r(k,a) €I for (k,a) € Jy.

Almost all of the content systems that we consider will be graded. Even though content
systems are defined using a quiver of type I'y, the quiver I is not assumed to be of this type.
Notice that the roots of the polynomials W:*(u) are pairwise distinct by conditions (a)
and (c) of Definition 3A.1.

By definition, a content system (c,r) depends on the choices of K = K[z], I', QF, W7,
p and n. To define a content system we need to specify all of this data. As we will
see, content systems are closely related to semisimple representations. In particular, the
theory below implies that content systems do not exist for most choices of (standard)
@-polynomials or over fields of positive characteristic. As we explain in Theorem 3F.8
below, if a content system exists then the algebra RA(K[zT]) is uniquely determined up
to non-homogeneous isomorphism. On the other hand, the examples below show that
by deforming the standard ()-polynomials we can always find content systems for any
standard cyclotomic KLR algebra %2 of type AS)I or type 0291-

In the examples below, we give the minimum information necessary to specify the
Q@-polynomials. Recall from (2B.1) that ij(u,v) = Qii(v,u), Ql%i(u, v) = 0 and that
ij(u,v) = 1 if ¢ and j are not connected in I'; so we only need to specify one of the
polynomials Ql%j (u,v) and Qii(v, u) whenever i and j are connected in I'.

Example 3A.2. The content systems below are completely new, so the use of the ad-
jectives classical and reduced is purely descriptive. For parts (a)—(e), we allow n > 0 to
be arbitrary and we take K = Z[z| = Z[z]|, where z = (z) and z is an indeterminate of
degree 1 over Z. For the examples of level £ = 1 we identify J, with Z via the obvious map
(1,a) + a and set p = (0). Throughout we use the weight polynomials W7 = (W;(u)),
where Wi(u) = [T; e (1,9,p,=i (v — c(1,0)) in accordance with Definition 3A.1(a). If a,b € Z
with b # 0 let [ ¢] be the integer part of § and set @ = a (mod e) € I.
(a) (The quiver I'y) Let T' = T'y, the quiver of type AX!, and let p = ((1,0), ..., (¢,0)).
Let QF = Qg be the standard Q-polynomials for 'y given by (2B.2). Let r’¢ be
the identity map on .J, and define c’¢ to be identically zero. Then (r’¢,c’t) is a
content system for 2 = R2, where A = Ao+ + Ao

(b) (Classical contents) Let I" be a quiver a type Aél_)l. Define

ij (u,v) = {

(v—u+a?) (ut+2%—-v) ifisj,

(u+ 2% —v) if i — 7,
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fori,j€e I ={0,1,...,e—1}. Then A = Ag and ¢ = 1. Then a content system for
RA is given by the functions c(a) = ax? and r(a) = @, for a € Z. More explicitly,
(c,r) is given by the table:

a | -1 0 1 e—1 e 2e—1 2e 3e—1
rla) [e—1 0 1 . e—1 0o ... e—1 0 e—1
cla) | =22 0 22 ... (e—1)a? ex? ... (2e—1)2% 2ex? ... (3e—1)a?

Here, and below, the shading in the table highlights how the content function
depends on e = |I|. The residue function r is the standard residue function for

type Agl_)l. We call this a classical content system because we recover the content
function used in the classical semisimple representation theory of the symmetric
groups by setting z = 1. For more details, see Example 3B.3.

To verify this example, and the examples that follow, observe that if e > 2
and r(a) = i and c(a) = cz then (¢ + 1)z —v = Q7 (c(a),v) = €(c(a+ 1) —v)
by Definition 3A.1(c), so we require c(a + 1) = (¢ + 1)z (and € = +1). The
calculation when e = 2 is similar except that we also need to inductively assume
that c(a — 1) = (¢ — 1)z. In this way, the content function c is completely de-
termined by the (Q*-polynomials and the “initial condition” given by the weight
polynomial W (u) = u —c(0) = u.

There is a related content system (c’, r’) that is, in a certain sense, dual to (c,r),
which is given by c'(a) = ¢(—a) and r'(a) = r(—a), for a € Z. This is a special
case of a general construction given in subsection 5E; so similar remarks apply to
every example below.

(¢) (Reduced contents) Let I' be a quiver a type Agl_)l. Define
(u—v)(v+2%—u) ife=2and (i,5) = (0,1),
ij(u,v): (u—v—az?) if e>2and (i,7) = (0,¢),
(u—v) ifi—j#e,

for i,5 € I. As in the last example, A = Ag and £ = 1. Then a content system
(c,r) for R} is given by the functions r(a) = @ and c(a) = |4]2?, for all a € Z.
More explicitly, (c,r) is given by the table:

a | -1 0 1 e—1 e e+1 ... 226—1 2 2e+1 ... 3e—1 3e
rfa) |le—1 0 1 ... e—1 0 1 .. e—1 0 1 ..o e—1 0
cla) | =22 0 0 0 22 22 ... 22 227 222 ... 222 322

(d) (Classical contents) Let I be a quiver a type Ce(l_)l. Define
u—(v—2?)? ifi=0=1=j,
Qf’j(u,v): (u+a2?)?—v ifi=e—-1<e=j,
(u—v+a?) ifi—j,
for 4,5 € I. As in the last example, A = Ag and £ = 1. For an integer a set

a’ = |-%] and let @ be the unique integer such that ¢ = @ (mod 2(e — 1)) and

0 <@ < 2e—1. A content system (c, r) for R is given by the functions

B (a+1)%z4 ifa=0, B
- {(-1)@’(a+ Ne? gm0 (@) = {

a ifa <e,

—a — 2 otherwise,
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for a € Z. More explicitly, (c,r) is given by the table:

a |—1 0 1 ... e—=2 e—-1 e 2e — 3 2e — 2 2e —1
rla) | 1 0 1 ... e—-2 e-1 e—2 1 0 1
cla) | 022 122* 222 ... (e—1)2% €2z* —(et+1)z? ... —(2e—2)2% (2e—1)%2* 2ex?

Notice that we cannot set c(0) = 0 because this would force ¢(—1) = 2? = ¢(1),

which would violate Definition 3A.1(c). As we will see, the residue function r is the
type C’e(l_)l residue function used by Ariki, Park and Speyer [8]. (Again, compare
with Example 3B.3.)
(e) (Reduced contents) Let I' be a quiver a type Céi)l. Define
u—(v—22)? ifi=0=1=j,
ij(u,v) ={(u+a?)?—v ifi=e—-2«e—1=7,
(u—v) if i — j,
for i,j € I. As in the last example, A = Ag and £/ = 1. A content system (c,r) for
RA is given by the functions
(2a' +1)22* ifa=0, a if @ <e,
— , d rla)=< .
(-1)¥(2d’ +2)z* ifa>0 —T —2 otherwise,

for a € Z. More explicitly, (c,r) is given by the table:

a |—1 0 1 ... e=2 e—-1 e oo 2e—3 2e—2 2e—-1
rla) | 1 0 1 ... e—2 e—1 e—2 ... 1 0 1
c(a) | 022 122* 222 ... 222 3%t —42® ... —42? 5% 62>

(f) (Higher levels, many parameters) We extend the examples of content systems for
level one algebras given in Examples (b)—(e) to algebras of level £ > 1. Let I' be

a quiver of type Aéljl or Céi)l, as above, and let A € P' be a dominant weight
with /-charge p € I‘. Fix a family of indeterminates = (x,z1, ..., 2¢) over
Z and set K = Z[z]. Let Q% be one of the families of @-polynomials given in
Examples (b)—(e) and let (rg,cp) be the corresponding level one content system
for A = Ag. A content system for the algebra R is then given by setting r(k,a) =
i =ro(pr +a) €I and c(k,a) =co(px + a) + xzdi, for (k,a) € Jy.
(g) (Higher levels, one parameter) We can tweak the last example to give a content
system that is defined over Z[z| for any ¢ > 1. For example, in type Aél_)l to
satisfy Definition 3A.1(c) we can fix integers ¢; > ca +2n > -+ > ¢y + 2n, and
then specialise xj, to czz? in example (f), for 1 < k < ¢. For type C’él_)l, we need
€1 > co+2n? > -+ > ¢; + 2n%. More generally, if K is a “large enough” ring
such that 2n - 1x # 0 then a higher level content system with values in K|z] is
given by defining c(k,a) = (cx + a)z, for suitable choices ¢y, ..., ¢, € K such that
ck+a=c+bonlyif (k,a) = (I,b) for —n < a,b <nand 1 <k, <{. The content
system in Example 3A.2 (d)—(f) extend to higher levels in essentially the same way
except that extra care is required in choosing the “initial contents” c(k,0), for
1 < k </, to ensure that Definition 3A.1(c) is satisfied. We leave the details to
the reader.
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(h) (Non-graded content systems) In characteristic zero, the content systems given
in Examples (a)—(f) are all graded content systems for any n > 0. By Proposi-
tion 2C.8, the standard cyclotomic KLR algebra g%’fl\ is isomorphic to the algebra
RA/zRA obtained by specialising all of the indeterminates at 0. We can obtain un-
graded content systems for R2 over Z by specialising the indeterminates to a fixed
prime p. Reducing modulo p, it follows that the algebra Rﬁ / pr} is isomorphic to
the corresponding standard cyclotomic KLR algebra %2 (Z/pZ), defined over the
finite field Z/pZ.

(i) (Finite type) It is possible to construct content systems for some quivers of finite
type, such as type A., but we do not consider these here. The main difference is
that in finite type the irreducible modules defined in Proposition 3C.2 below exist
only for certain /-partitions.

In particular, (b)—(e) and (g) of Example 3A.2 show the following:

Lemma 3A.3. Let I' be a quiver of type Agljl or C’é?l and suppose that (T, Qr, Wy)
is a standard cyclotomic KLR datum for #2(Z). Then there exists a Z[z]-deformation
(T, Q7, W7) of (I',Qr, W) such that the algebra RA = RQ(Q%, W7, Z[z]) has a content
system (c,r) with values in Z[z].

If k is a field of characteristic p > 0 then the functions (c,r) from Example 3A.2(b)—(h)
define content systems only for “small” values of n because the uniqueness requirement
of Definition 3A.1(c) fails whenever n is too large. For example, in characteristic 2 ex-

amples (c¢) and (d) define contents systems in type Cél_)l only when n = 1. However,

since content systems for cyclotomic KLR algebras of types Agl_)l and Cél_)l always exist

over Z[x] we can use content systems to construct cellular bases for these algebras by base
change from Z[z].

Lemma 3A.4. Suppose that (c,r) is a content system and i = r(l,a) and j =r(l,a + 1),
for (I,a) € Jy. Then j—i and, in particular, i # j. Moreover, j = r(l,a — 1) if and only
ifi=jorjsi.

Proof. By Definition 3A.1(b), ij (c(k,a),v) is a nonzero polynomial in v, so i # j and
(ajla;) # 0 by (2B.1). Hence, j—i. If; in addition, r(l,a — 1) = j then ij(c(k,a),v) is
a polynomial of degree 2 in v. O

Lemma 3A.4 implies that if (c,r) is a content system for R} and T is a quiver of type

Agl_)l and 1 <[ </ then either r(l,a) = p; +a or r(l,a) = p; — a, for all a € Z. Similarly,

if I' is of type Ce(l_)l then r(l,a) = r(p; + a) or r(l,a) = r(p; — a), where r is the level

one residue function used in (¢) and (d) of Example 3A.2. As sketched in example (b)
above, the content function is almost uniquely determined by the cyclotomic KLR datum
(T, QF, W7) because c(l,0) is a root of the polynomial W%(lyo)(u) and c(l,a+1) is a root of
the polynomial Qi%j (c(l,a),v), where i =r(l,a) and j = r(l,a + 1). So, defining a content
system (c,r) amounts to finding a k[z]-deformation (T, Q7, W7) of the cyclotomic KLR
datum.

3B. Tableau combinatorics. By Definition 3A.1, a content system (c,r) with values
in K[z], is just a pair of functions. This subsection extends these functions to maps
on {-partitions and standard tableaux, and the next subsection uses this combinatorics
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to construct irreducible graded representations of the deformed KLR algebra R} over
K[zT]. These representations, which are modelled on Young’s seminormal forms, are the
foundations that this paper are built on. We start by setting up the required combinatorics.

A partition is a weakly decreasing sequence of positive integers. If A = (A1, ..., A,) is
a partition, then the size of A is |\| = >"i_; A, and we set A\ = 0 for ¢t > r. An (-partition
is an ordered tuple A = (AM]...|A(D)) of partitions. The size of A is |A| = 32°_; [A)].
Let P! be the set of f-partitions of size n. We identify partitions and 1-partitions in the
obvious way.

If A\, € P! then X dominates p, written XA > p, if

k—1 s k—1
ZNMQ+2;&MZZ;M©

Similarly, the reverse dominance order < is defined by A < p if g > A. Write A> p and
pu<aXif A pand A # p.

In this paper, we consider the set of /-partitions Pf; both as the poset (Pf;, >), un-
der dominance, and as the poset (Pﬁ, <), under reverse dominance. As we will see, the
interplay between the dominance and reverse dominance partial orders corresponds to a
duality in the representation theory.

Let N! = {(k,r,c)|1 <k <fand r,c € Zoo} be the set of nodes, which we consider as
a totally ordered set under the lexicographic order >. We also use the reverse lexicographic
order <. (We emphasize that our use of, and notation for, the lexicographic and reverse
lexicographic orders coincides with how we use the notation the dominance and reverse
dominance orders.) Identify an ¢-partition A € 737‘; with its Young diagram, which is the
set of nodes:

+Zu,@, for1<k</{ands>1.
r=1

A={(kro[1<k<rand1<ec<AP}.

Remark 3B.1. In this paper the node (k,7,¢) € N sits in component k, row r and
column ¢ of an (-partition. This is different to the conventions of [19], where the com-
ponents of the nodes are indexed in order (r,c, k). The convention used in this paper is
preferable because many places in this paper order the nodes lexicographically, or reverse
lexicographically, looking first at the component index and then at the row and column
indices.

A A-tableau is a bijection t: A — {1,2, ..., n}. The group &,, naturally acts from
the left on the set of all A-tableaux. A A-tableau t is standard if t(k,r,c) < t(k,r + 1,¢),
and t(k,r,c) < t(k,r,c+ 1), whenever these nodes are in A. That is, the entries in each
component of a standard tableau increase along rows and down columns. Let Std(\) be
the set of standard A-tableaux. For P C U, P5, set

Std(P) = {s|s € Std(A) for A € P}
and
Std?(P) = {(s,t) |s,t € Std(X) for A € P}.

Write Shape(t) = X if t € Std(A). Given t € Std(P5) and 1 < m < n let t},, be the
subtableau of t containing the numbers in {1, ..., m}. That is, t|,, is the restriction of t
tot71({1, ..., m}).

Armed with this notation, we can now extend (c,r) to functions on ¢-partitions and
tableaux.
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Definition 3B.2. Let A = (k,7,¢) € N} be a node. The content of A is c(A) = c(k,c —
r) € K[z] and the residue of A is r(A) = r(k,c—r) € I. If i € I, then A is an i-node if
r(A) =i.

Let t € Std(A) a standard A-tableau, for A € P:. Fix 1 < m < n. Define

cm(t) =c (tfl(m)) and rm(t) =r (tfl(m)> ,

which are the content and residue of m in t, respectively. Similarly, the content sequence
and the residue sequence of t are

c(t) = (ci(t), ..., cu(t)) € Klz]" and r(t) = (ri(t), ..., ra(t)) € I,
respectively. Let Std(i) = {t € Std(P%)|r(t) = i} be the set of standard tableaux with
residue sequence i.

Example 3B.3. Suppose that £ = 1 and let A = (5,3,2). Using the content systems

from parts (b)—(e) of Example 3A.2 for the quivers Aél) and C’él), the different residues
and contents in A are:

Quiver Example 3A.2 Contents Residues
0|z |2x| 3z |4z 0 1 21011
Agl) (b) —z| 0 | 21011
—2z| —w 1 2
0 0 0 T | x 0 1 2 0 1
AV (c) —z| 0|0 210 |1
-z | —x 1 2
22 | 2z |3222| 4z |52x2 0 1 2 1 0
c?  (d) and (e) 0 | 22|22 101
2274 0 2 1

The symmetric group &,, acts on I and K[z]™ by place permutations. Write wc(t) and
wr(t) for the content and residue sequences obtained by acting with w, for w € &,,.
From subsection 2B, recall that o; = (4,7 + 1) € &,, for 1 < j < n.

Lemma 3B.4. Suppose that s € Std(A) and t € Std(u), for A\, u € PL.

(a) We have s =t if and only if c(s) = c(t) and r(s) = r(t).

(b) Suppose A = p, c(s) = o,c(t) and r(s) = opr(t), for some 1 < m < n. Then

S = opt.

Proof. (a) If s # t then let m be minimal such that sy,;, # ty,,. Set p = Shape(s(,—1)) and
let A= (k,r,c) =s1(m)and B = (I,s,d) = t~!(m). Then A and B are addable nodes
of u. If £ =1 then it is well-known and easy to check that ¢ — r # d — s. Consequently,
(k,c —r) # (I,d — s) and, hence, (¢ (s),rm(s)) # (cm(t),rm(t)) by Definition 3A.1(c).
Therefore, (c(s),r(s)) # (c(t),r(t)), giving (a).
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Now consider (b). By assumption, c(o,,s) = c(t) and r(o,,s) = r(t), so o5 = t by (a).
Hence, s = o,,t as claimed. O

Part (b) implies that if o,,,t ¢ Std(P%) then no standard tableau has content sequence
omc(t) and residue sequence o, r(t).
Given 1 <m < n and t € Std(i), for i € I", define scalars in K[zT] by

N Ot (£),Fnt1 (1)
Qm o : r . ¢ o t _ m\t),rm+ . 3B5
( ) m(t), m+1(t)( ( ) Jrl( )) (Cm-‘rl(t) - Cm(t))2 ( )

Note that Q%m(t),rm+1(t)(cm<t)’Cm+1(t)) € K[z], so Qmn(t) € K[z] unless r,(t) = rpyi(t).
Further, if r,,,(t) = ry41(t) then @, (t) is well-defined because ¢, (t) # Cn1(t) by Defini-
tion 3A.1(c) and Definition 3B.2.

The following result looks innocuous but it is the key to constructing the seminormal
representations of RA (K[z*]).

Lemma 3B.6. Suppose that t € Std(A) and let s = oy,t, where 1 < m < n. Then
Qm(t) # 0 if and only if s € Std(X). Consequently, if (c,r) is a graded content system and
s € Std(A) then Qy,(t) is a nonzero homogeneous element of K[z*].

Proof. For the duration of the proof set (k,a,b) = t~1(m) and (I,¢,d) = t~*(m + 1), so
that ¢, (t) = c(k,b — a), rn(t) =r(k,b—a), cpm+1(t) = c(l,d — ¢) and rp41(t) = r(l,d — ¢)

Suppose first that s = o,t € Std(A). If ry,(t) = rpri(t) then cp(t) # cmtr(t)
by Lemma 3B.4, so that Q(t) = —1/(cms1(t) — cm(t))? # 0. Now suppose that
tm(t) # rme1(t). By (3B.5), Qn(t) = 0 only if c(l,d — ¢) is a root of Q%(kﬂ)’r(l’d_c)(c(k:,
b—a),v). By axioms (b) and (c) of Definition 3A.1, c(I, d—c) is not a root of Qﬁk,bia)’r(l’d%)
(c(k,b—a),v) if (k,a) -/ (I,¢), so we can assume that k =1 and d — ¢ = b — a + 1 since
otherwise (k,a) -/ (I,c¢). However, if d — ¢ =0 — a £ 1 then m and m + 1 are on adjacent
diagonals in A, which is not possible since t and s = o,,t are both standard. Hence,
Qm(t) # 0 when s is standard.

Now, suppose that s ¢ Std(A). This happens if and only if m and m + 1 are in the
same row or same column of the same component of t. That is, £k = [ and either a = ¢
and d =b+1, or b =dand ¢ = a+ 1. That is, either rp+1(t) = r(k,b —a + 1) and
Cm+1(t) =c(k,b—a+1),or rpy1(t) =r(k,b—a—1) and ¢p41(t) = c(k,b—a—1). Hence,
in both cases, @ (t) = Qr&m(t)vrmﬂ(t) (cm(t), Cmt1(t)) = 0 by Definition 3A.1(b).

Finally, if (c,r) is a graded content system and s € Std(A) then @Q,,(t) # 0, so it is
homogeneous and nonzero in view of the remarks before the lemma. Moreover, Q,,(t) has
the expected degree by (2B.1) since c(k, a) is homogeneous of degree («;|a;) by Defini-
tion 3A.1, where i = r(k,a). O

3C. Seminormal forms. We continue to assume that (c,r) is a (graded) content system
that takes values in k[z]. Even though (c,r) takes values in K[z] the representations that
we construct are modules for the K[z*]-algebra R2 (K[z*]) because the action of the KLR
algebra on these modules involves the scalars @, (t) from (3B.5), and these scalars typically
belong to K[z*], not K[z]. To prove irreducibility we also use the following elements, which
are not defined over K[z].
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Definition 3C.1. Let i € I"™. If t € Std(i), define

SI1 I 2o ) ki),

k=1 seStd() c(t) — ci(s)
ck(s) # k()

If (c,r) is a graded content system then F} is homogeneous element of R} (K[z*]) of
degree 0 since ci(s) appears in the product only if rg(t) = ri(s). Note that 1; = 1,4, for
t € Std(i).

The next result gives a generalisation of Young’s classical seminormal forms to KLR
algebras with content systems. As noted in subsection 2A, K[z*] is a graded field, which
explains the claim that the module Vj is an irreducible graded R} (K[z*])-module. Recall
that K is the field of fractions of k.

Proposition 3C.2. Let A € P.. Suppose that there exist scalars
{Br(t) € K[zF]|1 <k < n and t,oxt € Std(\)}
satisfying the following conditions:
(a) 5k(0kt)6k(t) = Qk(t) if 1<k <nandoit e Std()\);
(b) Br(t)Bi(oxt) = Be(t)Br(out) if 1 < k,l < n, |k —1| # 1 and oxt, oyt € Std(N);

(¢) Br(okr10kt)Bra1(owt) Br(t) = Bry1(okoky1t) Br(oks1t) Brar(t) if 1 <k <n—1and
all the tableaux appearing in this equation are standard.

Then there exists a graded R2(K[z*])-module Vy that is free as an K[z*]-module with
homogeneous basis {v; |t € Std(A)} and where RA (K[z*])-action is determined by

Ori(t).rn (8
Ch1(t) — cr(t)
for all admissible k, i € I"™ and t € Std(A) and where vs = 0 if s ¢ Std(X). Moreover, if
K[zT] is a graded field then Vj is irreducible.

Live = Grpvr,  Ukvr = Ce(t)vr,  Ypvr = Br(t)vo,e + t

Proof. To prove that Vy is an R2(K[z*])-module it is enough to check that the action of
the generators of RA(K[z*]) on Vj respects the relations of Definition 2C.2. The action
respects the cyclotomic relation

Wi, (yl)li =0, forallie I,

by Definition 3A.1(a). The relations (KLR1)-(KLR4) and (KLR6) are easily checked
by direct calculation, with condition (b) of the proposition used for (KLR4) and rela-
tion (KLR5) following by Lemma 3B.4 (b).

To check relation (KLRT), for each t € Std(A) it is enough to prove that

Yilioe = QF o W 1) Lo, l1<k<nandiel™ (3C.3)
If ot is not standard, then rg(t) # rg41(t) by Lemma 3B.4 (b) and Qg (t) = 0 by Lemma 3B.6.
So,
@Dilivt =0=4 r(t)Qi(t)JkJA(t) (ck(t), chpr(t))oe = Qi,ikﬂ (Yks Yrt1) Live.
On the other hand, if oxt is standard then
4]
21,0, = re(t) rega (1) Az .
it = (Blost) ) + s T e = Qo 0 it (3C4)

where the second equality follows using condition (a) of the proposition and the definition
of Qk(t). Hence, (3C.3) holds in all cases.
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We now verify relation (KLR8). Let t € Std(A), 1 < k <n—1andie€ I". To
simplify notation, set i = i, i’ = ixy1 and i’ = i o and define t; = opt, to = opy1t,
to1 = Okt1t1, ti2 = oxta and tio1 = optor = op4i1tia. Note that if t; ¢ Std()\), then
to; ¢ Std(A). Similarly, t1o ¢ Std(A) if ta ¢ Std(A) and ti21 ¢ Std(A) if either t1o ¢ Std(A)
or ta; ¢ Std(A). Using these facts and some routine, although slightly lengthy calculations
for the first equality (cf. [26, Lemma 3.8]), shows that

(VrVr+1¥k — Vrp1Vrrs1) Live
_ <5 ,5 » Ck(t) + Ck+2(t) — 20k+1(t)
" (chr1(t) = ck(t))?(crralt) — crra(t))?
Br(t) Br(t1) — 5k+1(t)5k+1(t2)) ”
Crr2(t) — cr(t)

+ (Bk(tzl)ﬁkﬂ(tl)ﬁk(t) - 5k+1(tlz)ﬂk(t2)ﬁk+1(t))vtm

Qr(t) — Qry1(t) S Qi (Yrr2s Yrr1) — Qi (Yk, Yry1)
Cora(t) —cu(t) T Yk — Yk+2

= Qiirir (Yk> Y+1, Yr+2) Livi
where we have used conditions (a) and (c¢) of the proposition, and (3B.5), for the second

equality. Hence, relation (KLRR) is satisfied. We have now shown that all of the relations
in Definition 2C.2 are satisfied, so Vj is an R2(K[zF])-module.

+00

= 6ii” 1ivt

We next prove that V) is an irreducible graded R (K[z*])-module when K[z*] = K[z*]
is a graded field. First note that
Fivs = b5, for all t,s € Std(Pf;), (3C.5)

by Definition 3C.1 and Lemma 3B.4 since vs is a eigenvector for the y;’s. Now suppose
that v € Vy belongs to a graded R} (K[z*])-submodule M of Vy and write v = 3 rsvs,
for r¢ € Klz*]. If 7 # 0 then ryvy = Fiv € M. Hence, v, € M since M is a graded
submodule and K[z¥] is a graded field. To show that M = Vj it is enough to show
that vy,: € RAv whenever t € Std(A) and oxt € Std(M), for 1 < k < n. Under these
assumptions, Fy, +1rv = Bi(t)vg,e. So it is enough to prove that S (t) # 0, which follows
from assumption (a) since B (t)Bk(oxt) = Qk(t) and Qx(t) # 0 by Lemma 3B.6.

Finally, it remains to determine the grading on V. Since we have already shown that
the action of R2(K[zT]) on Vj respects the relations and that Vj is irreducible, and {vs}
is a homogeneous basis, we can fix a grading on V) by fixing the degree of one of these
basis elements. The degrees of the other basis elements are now uniquely determined by
the RA(K[z*])-action since V} is cyclic. O

Remark 3C.6. Suppose that the content system (c, r) is not graded and takes values in K.
Then the argument of Proposition 3C.2 shows that Vj is an irreducible R} (K)-module.

Proposition 3C.2 constructs the module V) subject to the existence of suitable scalars
Br(t), for 1 < k < n and t € Std(A). There are two natural choices (see (4A.8)), but for
now we define:

1 if opt>t, 307
6k(t) N Qk(Ukt) if to oyt. ( ' )
Lemma 3C.8. The coefficients i (t) defined by (3C.7) satisfy the conditions of Proposi-

tion 3C.2.
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Proof. The only condition that is not obvious is that the S-coefficients satisfy the “S-braid
relation”

Br(Ok410%t) Bra1 (041) Br(t) = Brt1(0kOk41t) Br(Thg1t) Brg1 (1),

for t € Std(P%) and 1 < r < d such that all the tableaux in this identity are standard.
In fact, since B(t) depends only on the nodes t=!(k) and t'(k + 1), we have Bi(t) =
Br+1(0koks1t), Brr1(okt) = Br(ors1t) and Bi(ogr10kt) = Brs1(t). These equalities imply
the B-braid relation above. O

For each X € P! Proposition 3C.2 constructs an irreducible R2(K[z*])-module Vy. We
now fix the choice of S-coefficients given by (3C.7) and define Vy to be the RA(K[zT])-
module defined by Proposition 3C.2.

If t is a standard tableau then it is not clear from Definition 3C.1 that the element F;
is nonzero. This now follows by virtue of (3C.5) and Lemma 3C.8.

Corollary 3C.9. Let t € Std(X), for A € P.. Then F # 0 in R (K[z7F]).

The next result shows that the representations constructed in Proposition 3C.2 are pair-
wise non-isomorphic and, up to isomorphism, independent of the choice of S-coefficients
in Proposition 3C.2.

Corollary 3C.10. Suppose that A\, u € P.. Then V) = V, as R (K[zF])-modules if
and only if A = p. Moreover, up to isomorphism, Vj is mdependent of the choice of
homogeneous scalars {3 (t) |t € Std(A)} satisfying conditions (a)—(b) of Proposition 3C.2.

Proof. Suppose first that XA # p. By Lemma 3B.4 and (3C.5), if t € Std(A) then FiVy # 0
and FiV,, = 0. Hence, Vy # V.

To prove the second statement suppose that Vy = V,, and that V) = (|t € Std(A))
and V{ = (vf|t € Std(N\)) are two R (K[z*])-modules Wlth homogeneous structure con-
stants {0,(t)} and {B.(t)}, respectively, satisfying the conditions of Proposition 3C.2. In
particular, note that if o,t € Std(A) then 3,(t) and f£.(t) are both nonzero by Propo-
sition 3C.2(a) and Lemma 3B.6. Define a K[z*]-linear map 0: Vy — V} inductively as
follows. First, fix any tableau t; € Std(A) and set 6(v,) = vi,. By way of induction,
suppose that (v, ),...,0(vy,,_,) have been defined and that t,,, € Std(X) \ {t1,...,t;m—1}
is a standard tableau such that t,, = oxt;, where 1 <k <nand 1 <[l < m. Set

O(vr,.) = 7 (Vk — A Y ().

Bk(tl)
By Proposition 3C.2, if 6(vy,) # 0 then 6(wv,,) # 0. By induction, 6(v¢) is defined and
nonzero for all t € Std()\). In particular, 6 is a K[z*]-module isomorphism. Moreover,
O(vr) € BV = KlzF]] by (3C.5), so O(vy) = &wi, for some scalar & € K[z*]. Since Vy
and V{ are both R2(K[z¥])-modules, the construction of Proposition 3C.2 guarantees that
0 is an R2(K[z%])-module homomorphism and that Vy = VJ, as claimed. O

Motivated by the seminormal forms of Proposition 3C.2, we now use (graded) content
systems to study the algebras RA (K[z*]). Our next goal is to prove a semisimplicity result
for RA(K[z*]), which we will use to study the algebras R} (k[z]) and %2 (K).
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3D. Weight modules. This subsection looks at R, (K[z*])=modules that are spanned

by simultaneous eigenvectors of y1,...,y,. This is a first step towards finding a basis for
Ry (K[z™]).
Suppose that V is an R} (K[z*]-module. Let ¢ = (cy,...,¢,) € K[z*]" and i € I", where

¢, is homogeneous of degree (ay, |, ), for 1 < k < n. The (c,i)-weight space of V is the
K[z*]-module

Vei={veV|yliv=cpvfor 1 <k <n}.

A weight module is an R, (K[zT])-module that is a direct sum of (c,i)-weight spaces and
is of finite rank as a K[z*]-module. For example, the module V of Proposition 3C.2 is an
R, (K[zT])-weight module.

The next result is similar to the classification of the irreducible representations of the
affine Hecke algebras of rank 2. The connection with the seminormal forms of Proposi-
tion 3C.2 is evident in part (b).

Proposition 3D.1. Let V be a weight module for Ry(K[z*]) and suppose that 0 # v € V
is a homogeneous vector such that y1v = c1v, y2v = cov and 1;;v = v, where ¢q,c3 € K[gi]
and 4,5 € I with ¢; and ¢o homogeneous of the appropriate degree. Then one of the
following of the following mutually exclusive cases occurs:

(a) If Qj5(c1,c2) # 0 then (v, w) is an Ra(K[zF])-weight module of rank 2 such that
w = P10, 1w = cow, Yyow = ciw and 1w = w.

(b) If i = j then ¢ # co and V = (v, w) is an Ro(K[zF])-weight module of rank 2 such
that w = (¢ — ﬁ)’u, y1w = cow, Yow = cyw and 1w = w.

(c) If i # j and Q%(Cl,CQ) = 0 then either V = (v) is an Ry(K[z¥])-weight module
of rank 1 with v = 0, or (v,w) is an Ry(K[z¥])-weight module of rank 2 with
w = 1v and YPrw = 0.

Proof. As in the statement of the proposition, suppose that v € V and 1;v = v, y1v = v
and yov = cou. As in part (a), we first assume that Q%(cl,cl) # 0. Then i # j since
Q7 (u,v) = 0. Let w = ¢1v. Then ¢w = Q%(cl,@)v # 0, so w # 0. The remaining
claims in (a) now follow easily from the relations.

Next, suppose that (b) holds, so that i = j. If ¢»;v = 0 then 0 = yotp1v = (Y1y1+1)v = v,
which is a contradiction so 11v # 0. By assumption, V' = (v, ¢;v) and v is a weight vector,
so Y1v + av must be a weight vector for some 0 # a € K[z*]. Applying the relations,
Y2 (Y10 + av) = e1¢1v + (acy + 1)v. Since this is a weight vector, comparing coefficients,
acy = ace + 1. Hence, ¢; # ¢ and w = ¢1v —
claims in part (b) now follow easily.

Finally, it remains to consider (c), when i # j and ij(cl,(:g) =0. fw=vYv#0

v is a weight vector. The remaining
co—c1

then Yjw = v = 0 since Qz%(cl,cz) = 0. In this case 1;jv = v and 1w = w, so
(v,w) is K[z*]-free of rank 2. On the other hand, if w = 0 then K[z¥]v is an irreducible
Ro(K[zF])-module that is free of rank 1 as claimed. O

The symmetric group &, acts on K[z*]" and I™ by place permutations. Recall the

definition of the elements ¢, € RA(K[z*]) from (2D.4).

Corollary 3D.2. Let V be a weight module for R, (K[z¥]) and let 0 # v € V; be
homogeneous, for i € I" and ¢ € K[z¥]|". Suppose that 1 < r < n and that (c,,i,) #
(¢r41,%r41). Then 0 # @,v € Vg ¢ 5.4
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Proof. By (KLR6), ¢v € Vi ¢ .5 + 0iinyy Vei- In particular, ¥,v € Vi ¢ g5 if ip # dpq1. If
ir = irq1 then v € Vi o .5 in view of Proposition 3D.1(b) since

Urly = (Ve (yr — Y1) + D1
in this case. Finally, ¢, is invertible in R2(K[z*]) by Lemma 2D.5(a), so @,v # 0. O

3E. Content reduction. One of the main results of this subsection is Corollary 3E.9,
which shows that {F;|t € Std(P%)} is a family of pairwise orthogonal idempotents in
RA(K[z*]). To prove this we argue by induction on n to classify all weight modules for

Z2 (K[zT]) by showing that the eigenvalues of y1, ..., ¥, are given by the content functions
on the standard tableaux.

IfieI™and 1 < m < n define iy, = (i1, ..., 4y,) € I™. Ifiec I"™ and j € I let
ij = (i1, ..., im,J) € I™HL Let Iy = {r(s) |'s € Std(P%,)} be the set of residue sequences

of the standard tableaux of size m. If j € I™ set

= > 1 €R}K[zF]).
iel™
i,Lm:j
By (KLR1), if i,j € I™ then 1;,1;, = d;j1i, and, moreover, Iga =2 5erm Lin
Let V be an RA(K[z*])-module and suppose that 1 < m < n. For s € Std(Pe ) define
Vs to be the simultaneous ci(s)-eigenspace of y;, acting on 1,5V, for 1 <k < m. That is,

V. is the K[zF]-module
Vs:{vel V‘ykv—ck()vfor1<k<m}

An RA(K[z*])-module V is m-content reduced if V is free as a K[z*]-module and V =
> osestd(pe) Vs as a K[zF]-module. The module V is content reduced if it is n-content
reduced. If V' is m-content reduced then the sum V' =3 ¢ c giq(pe ) Vs Is necessarily direct
because V; N V; = 0, for s # t € Std(P%,). In particular, every content reduced module is
a weight module for R, (K[z*]).

Suppose that V is an RA(K[z*])-module. We can consider V as an R, (K[z*])-module
using the canonical surjection R, (K[z*]) — RA2(K[zF]). By Theorem 2D.1 and Defini-
tion 2C.2, over any ring there is an algebra embedding of R;, into R;, that sends 15 to 1;,,
for j € I"™. Therefore, V is an R,,(K[z*])-module by restriction. Since V' is an RA(K[gi])—
module, it is killed by the weight polynomials W7, so the Ry, (K[z*])-action on V makes
V into an R (K[z*])-module. Let Resga (V) and Resg,, (V) be the restrictions of V' to an
RA (K[zT])-module and R,,(K[z*])-module, respectively.

The modules V) of Proposition 3C.2 are content reduced. Conversely, we have:

Lemma 3E.1. Let V be an m-content reduced R2(K[z*])-module, where 1 < m < n.
Then
Resga (V @ V™, for some ay > 0,
AePh,

as an R (K[zF])-module.

Proof. Since V is m-content reduced, by definition, it is free as a K[z*]-module and has a
homogeneous basis of weight vectors. Let v € V; be such a basis vector, where s € Std(\)
and A € P.. To prove the lemma it is enough to show that RA (K[zt])vs = Vi. Let
ds = di € &,, be the permutation such that s = dst§ and set Urg = Op-10L and vy = wdtvt;l?
where t = dit§ for t € Std(X). Then v is a nonzero element of V; by Corollary 3D.2.
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Moreover, {v¢ |t € Std(A)} is linearly independent since these weight spaces are disjoint.
Let W be the submodule of V' spanned by the {v|t € Std(A)}. By Proposition 3D.1
and Lemma 3B.4(b), if t € Std(A) and 1 < k < n then there exist scalars S (t) such that

_ Or (), k41 ()
’L/}k’l)t = Bk( )kat + mvt.

In particular, W is an R (K[z¥])-submodule of V. Further, since W is an R2 (K[z*])-
module, relations (KLR7), (KLR4) and (KLRS8) imply that these coefficients satisfy con-
ditions (a)—(c), respectively, of Proposition 3C.2. (In fact, the reader can check that
Br(t) € K[z] is given by (3C.7).) Therefore, W = Vy by Corollary 3C.10, completing the
proof. O
Remark 3E.2. Using Definition 2C.2, it is easy to see that if 1 < m < n then there is
a surjective algebra map from R2 (K[z*]) onto the subalgebra of RA(K[z*]) generated by
Y1, ooy Ym—1, Y15 -+, Ym and 15, for j € I™. It follows from Corollary 4A.12 below that
this map is an isomorphism, but we cannot prove this yet. For now it is enough to work
with m-content reduced modules, which are combinatorial shadows of these isomorphisms.

The next lemma can be viewed as the module theoretic origin of Definition 3C.1. In

the lemma we assume that ci, ..., cy € K[z] only because (c,r) takes values in K[z].
Lemma 3E.3. Let V be an RY(K[z*])-module. Suppose that [T, (y, — cx)1;V = 0,
where 1 <r <nand cy, ..., cy € K[z] are pairwise distinct and i € I™. Then

N
1L,V = @ Vik, where Vi, ={veliV|yv=cpv}, for 1 <k <N.

Proof. This follows by applying the easy (polynomial) identity

ZH

k=1 1%k (ck — CZ)
t

We now show that every R2(K[z¥])-module is content reduced, which is the linchpin of
this subsection.

Theorem 3E.4. Let V be a K[z*]-free RA(K[z*])-module. Then V is content reduced.

Proof. We argue induction on m to show that V is m-content reduced, for 1 < m < n.
Suppose m = 1. Fix i = (i) € I. By Definition 3A.1(a),

I[[ si—ctopti=0 =[] (-c0)nLv=o.
1<i<¢ 1<i<¢
p1=1 p1=1

In view of Definition 3A.1(c) and Lemma 3B.4 (a), there is a self-evident bijection between
the sets of standard tableaux Std(P}) and contents {c(/,0) |1 <1 < ¢}. Hence, the module
V' is 1-content reduced by Lemma 3E.3. This establishes the base case of our induction.
Let 1 < m < n. By induction, we assume that V is m-content reduced. For the
inductive step we show that V = eateStd(Pf;Hl) V;. Fix s € Std(P%) and j € I and set

Vs,j = le(s)jnVs- To show that V' is (m + 1)-content reduced it is enough to prove that

Vij= > Vi, for all s € Std(P!,) and j € I. (3E.5)

testd(PL,, )
tym=s and rpy41(t)=j
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Let Add;(s) = {t7}(m + 1)|t € Std(P%),tym = s and r,11(t) = j} be the set of addable
j-nodes for s. By Lemma 3E.3, to prove (3E.5) it suffices to show that

H (clye=71) = Ym+1)Vs; =0, (3E.6)
(I,r,c) € Add,(s)

since the contents c(l, ¢ — r) in this product are distinct by Lemma 3B.4. By convention,
empty products are 1, so the last displayed equation includes the claim that V5 ; = 0 if
there are no standard tableaux with residue sequence i = r(s)j.

Let (k,a,b) =s™(m) and set u =s(;,_1) € Std(P%,_1). Define Add;(u) as above.

We consider two cases.

Case 1. j = rp(s): By assumption, Add;(u) = Add;(s) U {(k,a,b)}. Hence, in view
of Lemma 2D.2 and Lemma 2D.3, it follows by induction that

H (c(l,c—=7) — ym+1)Vs; = 0.
(1,r,c) € Add; (u)\{(k,a,b)}

Hence, (3E.6) holds when j = ry,(s).

Case 2. j # rp(s): Set A = {(k,7,¢) € Nr(k,r,c) = j and (r,¢) = (a + 1,b) or
(r,¢) = (a,b+1)}. Then [A] = —(ay,,(s), @) and Add;(s) € Add;(u) U A (disjoint union).
By Definition 3A.1(b),

Qr@m(s) j(cm(s),v) =€ (c(k,e—r) —v), for some € € k*.
(kyric) € A

Hence, by induction, if v € V5 ; then 2v = €[T(krc)c alc(k,c — 1) — ym+1)v. Therefore,

H (clyc—=71) = Ym1) Vo = H (clye—7) — Ymy1) - Y4 Vs
(I,r,c) € Add,;(u)UA (1,r,c) € Add(u)

— tim I1 (c(lye—7) = ym) - Ym Vs

(I,r,c) € Add;j (u)

Com I (clie=7) = ym) - Liwjem(s)m Ve
(I,r,c) € Addj (u)

=0,

where the second equality uses (KLR6) and the last equality follows by induction. In
particular, (3E.6) holds by Lemma Lemma 3E.3 whenever Add;(s) = Add;(u)UA. We need
to consider the cases when Add;(s) is properly contained in Add;(u)UA, where Lemma 3E.3
potentially gives weight spaces of V5 that are not indexed by standard tableaux.

Suppose first that (k,a,b+ 1) € A and (k,a,b+ 1) ¢ Add;(s). Define ¢; = ¢(s) and
it =r(s), for 1 <1 <m and set ¢;y1 =c(k,b+1—a) and iy11 = r(k,b+1—a). Let c =
(c1, ...y cmg1) and i = (i1,...,im41). By Lemma 3E.3, V; is a (possibly zero) summand
of V5. By way of contradiction, suppose that V.; # 0 and fix a nonzero homogeneous
vector v € V.;. Let A = Shape(s). Then (k,a,b+ 1) is not an addable node of X, so
(k,a — 1,b) € X. By induction, V is m-content reduced, so Vy = RA (K[z*])v as an
RA (K[zF])-module by (the proof of) Lemma 3E.1. Therefore, without loss of generality,
we can assume that s(k,a — 1,b) = m — 1. In particular, ¢;+1 = ¢p—1 and iyp1 = im—1.
Moreover, 1,—1v = 0 by Proposition 3C.2, since o,,—15 ¢ Std(A) by Lemma 3B.4(b).
Similarly, ¥, v = 0 because V is m-content reduced and no tableau in Std(P%,) has content
sequence (c1, ..., Cm—1,Cm—1) and residue sequence (i1, ...,4m—1,im—1). Consequently,

Ann. Repr. Th. 1 (2024), 2, p. 193-297 https://doi.org/10.5802/art.8


https://doi.org/10.5802/art.8

220

Anton Evseev € Andrew Mathas

(Vm¥m—1Ym — Ym-1¥mPm-1)v = 0. Therefore, Q%yn—l,im,im+1 (Ym—15Ym> Ym+1)v = 0 by
(KLR8). However, Qi ,,im(¢m—1,¢m) =0, so

X
,Q .. (C c ) _ ?m—lfl'm (ym-i-h cm)
tm—1,tm,tm+1 m—15 Cmy Ym—+1

Ym+1 — Cm—1
B {e(c(k,b —1—a) —yms1) ifr(k,b—1—a)=in_1,

€ otherwise,

where € € kK* and the last equality follows by Definition 3A.1(b). By Definition 3A.1(c),
c(k,b—1—a) # cmt1, 50 Qiny_ 1 imimss YUm—1:Ym> Ym+1)v # 0, giving a contradiction!
Hence, V. ; = 0.

Similarly, if (k,a,b+1) ¢ A and (k,a,b+1) € Add,(s) then let ' = (c1, ..., ¢m, i)
and i’ = (i1, ..., im, iy, 4q), Where ¢, =c(k,b—a—1) and i, . = r(k,b—a—1). Then
(k,a,b—1) € XA and Vy y is a summand of Vi by Lemma 3E.3. Arguing as in the last
paragraph, we deduce that Vo 3 = 0.

Consequently, if j # rp,(s) then the last displayed equation, combined with Lemma 3E.3,
shows that (3E.6) holds.

We have now established (3E.5) in all cases, so V is (m + 1)-content reduced. This
completes the proof of the inductive step and, hence, the proof of the proposition. O

Applying Theorem 3E.4 to the regular representation, and using Lemma 3E.1, shows
that the algebra RA(K[zT]) is completely reducible. Proposition 3G.4 makes this more
explicit.

Corollary 3E.7. Let V be a K[z*]-free R}(K[z*])-module. Then V = @, F,V as a
K[zT]-module, where the sum is over t € Std(P?) such that F;V # 0.

Proof. By Definition 3C.1, if t € Std(P%) then V; C {v € V |v = Fw}. On the other hand,
V = @, V; by Theorem 3E.4. Therefore, V; = {v € V' |v = Fiv} since FsVNEV = 64 F{V
by Lemma 3B.4. O

Corollary 3E.8. Suppose that t € Std(P%) and 1 < m < n. Then y,,Fi = c,n(t)F in
Ry (Kz™]).-

Proof. Take V = RA(K[z%*]) to be the regular representation, which is free as a K[z*]-
module by base change from Proposition 2C.6 since R (K[z%]) = K[z*] OK[a] RA(Kz]).
First note that Fy # 0 by (3C.5). By Corollary 3E.7, V; = FtRQ(K[fE]). AsFi=F-1¢
FiRA(K[z*]) = V4, this implies the result. O

Hence, using Lemma 3B.4 and Definition 3C.1, we obtain:
Corollary 3E.9. Let s, t € Std(P%). Then FyF, = 0¢F; in RA(K[z*]).

Corollary 3E.10. Suppose that i € I". Then, in R2(K[z]),

L= Y F

t € Std(i)

In particular, 1; = 0 if and only if i ¢ Ig},.

Ann. Repr. Th. 1 (2024), 2, p. 193-297 https://doi.org/10.5802/art.8


https://doi.org/10.5802/art.8

Content systems and deformations of cyclotomic KLR algebras of type A and C 221

Proof. Take V = RA(K[z*]) to be the regular representation of R2(K[zF]). By Corol-

lary 3E.7,
LRA(K = P ERIKzT]).
t € Std(i)
Hence, the element 1;— 37, ¢ g4q(5) It acts on 1 {RA(K[z*]) as multiplication by zero by Corol-
lary 3E.9. Therefore, by (KLR1), this element acts on R2(K[z%t]) as zero. Hence, 1; =

>_testd() £t by the faithfulness of the regular representation. Finally, these arguments
show that if Std(i) = 0, then 1; = 0. That is, 1; = 0 if and only if i ¢ IZ};. O

Remark 3E.11. The last two corollaries are the main results of this subsection. Rather
than the approach we have taken, these results can also be deduced from Proposition 3C.2
by first showing that V' = @, Vj is a faithful R} (K[z*])-module, which can be proved
after computing the (graded) dimension of R2(K[z¥]) using ideas from [8, 11]. That the
representation V is faithful now follows from Corollary 3E.10. The next section gives a
different take on this description of RA(K[z*]) as the endomorphism algebra of V.

Corollary 3E.12. Suppose that rg(t) # rpy1(t) for t € Std(P%) and 1 < r < n. Then
YmUrFt = Cop(m)(Y)YrFr whenever 1 < m < n. In particular, ¢ Fy = 0 if oxt is not
standard.

Proof. Suppose that rg(t) # rpy1(t). The claim that ynYpFy = Cop(m)(t)rFr follows
immediately from (KLR6) and Corollary 3E.8. For the second statement, 1f opt ¢ Std(PY)
then the node t~(k + 1) is either directly to the right of, or directly below, t~1(k).
Therefore, ri(t) # rg4+1(t) by Lemma 3A.4. Consequently, by Lemma 3B.4(b), there is

no element in Std(P%) with residue sequence oxr(t) and content sequence oyc(t). Hence,
Yy = Fo 10 = 0 by Corollary 3E.10. O

3F. The algebra Sfb. This subsection introduces the algebra Sf;, which is the “universal”
semisimple cyclotomic KLR algebra of level £. In the next subsection we show if RA (K[z*])
has a content system then it is isomorphic to Sﬁ. We maintain the notation of the previous
subsections except we work over the field K.

Recall from subsection 3A that T’y is the quiver of type AX’, with vertex set J, =
{1,..., 0} x Z. Let S4(K) be the standard cyclotomic KLR algebra defined using the
(standard) @Q-polynomials and weight polynomials of Example 3A.2(a). Let (c’¢,r’t) be
the content system for S’ (K) given in Example 3A.2(a), so that c’¢ is identically zero
and r’¢ is the identity map on .J,. By assumption, z is the empty sequence for S’ so, by
convention, K[z*] = K.

To avoid confusion, if t € Std(P%) let r’/¢(t) be the residue sequence of t with re-
spect to the content system (c’,r’¢). Explicitly, r/¢(t) = (r{(t),...,rJt(t)) € J} where
rJe(t) = pr + b —a if t~1(m) = (k,a,b). For convenience, set J%, = {r’¢(t) |t € Std(P%)}.
By Lemma 3B.4, if j € J&, 4 then there exists a unique standard tableau t € Std(Pf;) such
that r/¢(t) = j since c¢’¢ is identically zero.

Lemma 3F.1. Suppose that 1 <k <nandje J. Theny; =--- =y, =0and 1; # 0 if
and only if 1; = I} for some t € Std(P4). Consequently, ¥y 1; = 0 if jr,— jr+1 and 1; =0
lf]k:]k+1 Or Jk = Jk+42 for 1 §k<n—1).

Proof. Let V be the left regular representation of S%(K). Then V = @, estd(pe) Ve by The-

orem 3E.4. Since ¢’ is identically zero, v, acts as multiplication by zero on V4, for
1 <m <nandtéeStd(P). Hence, y; = --- = y,, = 0 proving the first claim.
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Next, we show that 1; # 0 if and only if 1; = F}, for some t € Std(P%). Observe that if
s,t € Std(PY) then s = t if and only if r’¢(s) = r’¢(t) by Lemma 3B.4 since c, is identically
zero. Hence, 1; = F} for some t € Std(P%) by Corollary 3E.10. The remaining statements
now follow by Corollary 3E.10 and Corollary 3E.12. 0

Definition 3F.2. Let X\ € be. For s,t € Std(A) set Uy = wwlrje(t), where w € &,, is the
unique permutation such that s = wt.

Corollary 3F.3. The algebra S’(K) is spanned by {Ug | (s,t) € Std*(P%)}.
Proof. By Theorem 2D.1 and Lemma 3F.1, S¢ is spanned by the set
{¢w1rJz(t) ‘w €6, and te Std(Pﬁ)} :

Hence, it is enough to show that if ¢y 1., # 0, for t € Std(Pf) and w € &, then

wt € Std(PY). Since w is a product of simple reflections, it is enough to consider the case
when w = o, = (k,k+1), for 1 <k < n. If tis standard then oyt is standard unless k and
k+1 are in the same row, or the same column of t, in which case 1315 = 0 by Lemma 3F.1.
Hence, if 13,1; # 0 then ojt € Std(PY) as we needed to show. d

Arguing by induction on n, it is easy to see that if s,t € Std(P%) and r/¢(s) = wr'e(t),
for some w € G,,, then Shape(s) = Shape(t).

Given u,w € &, write u =< w if there is a reduced expression w = oy, ..., such that
u=0q, ...0q, for some 0 <k < [. (This is the right weak Bruhat order on &,,.)

Lemma 3F.4. Let t € Std(P’) and suppose that wt is standard, for some w € &,,. Then
ut is standard whenever u < w.

Proof. If 1 <r <t <mn and u(r) > u(t) then w(r) > w(t) since u < w. The result follows
easily from this observation. ]

Lemma 3F.5. Let A € Std(P’). Then there exists an irreducible left S’ (K)-module Wy
with basis {w |t € Std(A)} and where the S’ (K)-action is determined by

We,t  if ot € Std(A),

1jwt = 5j,r1z(t)wt7 Ymwy = 0,  YPrpwy = {O otherwise
for all j € J;' and all admissible k and m.

Proof. By Lemma 3F.1, the map t — r’¢(t) gives a bijection Std(P%) — J&,q such that
F; = 1;, where i = r/¢(t). Moreover, by (3B.5) and Lemma 3F.1,

O(t) = {1 if oyt € Std(PY),

0 otherwise.
Therefore, in view of (3C.7), the lemma is a special case of Proposition 3C.2. O

Remark 3F.6. The RA(K[z*])-module Vj is irreducible only over K[z*]. In contrast, it
is easy to see that the module W), is irreducible over any field.

Remark 3F.7. Lemma 3A.4 is also a consequence of [41, Theorem 3.4]. By Lemma 3F.1,
the natural grading on Wy concentrates everything in degree 0.

We now prove that S’ (K) is a split semisimple algebra.
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Theorem 3F.8. The algebra S’ (K) is a split semisimple algebra and {Wy |\ € Pf} is a
complete set of pairwise non-isomorphic irreducible S£-modules, up to shift.

Proof. Recall from Corollary 3F.3 that the elements {Ug | (s,t) € Std?(P%)} span SE(K).
By Lemma 3F.4 and Lemma 3F.5, if s, t € Std(u) then the action of W on the module Wy
is given by Vgw, = dyyws, for u € Std(A). In particular, if g # X then Uq acts as zero on
Wx. Moreover, this implies that the set {Wg | (s,t) € Std?(P%)} is linearly independent,
and so is a basis of S’ (k) by Corollary 3F.3. Extending scalars to K, there is a well-defined
algebra isomorphism

£:SLK)— D Endk(Wx); Ut > e,
AePL
where eg is the matrix unit given by eg(wy) = dyws. It follows that € is an algebra
isomorphism since {Ug} is a basis of S (K) = K @k S (K), completing the proof. O

Remark 3F.9. As in Remark 3F.7, the grading on S’ (K) puts everything in degree zero.
The complete set of irreducible graded S’ (K)-modules is {¢?Wx | € P and d € Z}. In
contrast, if x is an indetermmate in degree 1, then the complete set of irreducible graded
St K[zt ]) modules is {K[zE] @k Wx| A € Pz} since K[z*] is the unique irreducible graded
K[z*]-module.

The proof of Theorem 3F.8 and Corollary 3F.3 gives a basis of S (K).
Corollary 3F.10. The algebra S’ (K) is free as a k-module with basis
{Uq | (s, t) € Std*(P))}.
3G. Semisimplicity of deformed cyclotomic KLR algebras. This subsection re-

turns to the framework of subsection 3A. In particular, we assume that (Q%, W%) is a
K[z]-deformation (Q;, W) and that (c,r) is a content system for R} with values in K[z].
This subsection proves that the algebras R2(K[z*]) and S’ (K[z*]) are isomorphic as un-
graded algebras, where K is the field of fractions of K.
Recall the elements @1, ..., p,_1 € RA(K) defined in (2D.4).
Lemma 3G.1. Suppose that t € Std(P’) and 1 < k < n. Then, in R} (K[z*]),
. Fy.tor  if oyt is standard,
Prit = 0 otherwise,

Proof. By Lemma 2D.5(d), if 1 < m < n then ¢g(ym — ¢) = (Yo, (m) — ¢)¢k- Hence, the
result follows by Definition 3C.1 (and Lemma 3B.4). O

Let t € Std(A) and 1 < m < n. Note that if j = r/¢(t) then rlt(t) # rm_H()
by Lemma 3F.1. Recall the scalar Q,,(t) for R} (K[z*]) from (3B.5). Set

qm(t):{czmml ) /a0, O A i@ and ont >t

1 otherwise.

Note that g, (t) is well-defined because @, (t) # 0 by Lemma 3B.6. Moreover,

i 15(6) - ey (6 and BE(0) £ 0 (1), then gu(®)am(omt) = Qm(®) ™ (3G:3)

Let S (K[zF]) = K[zT] @k SE(K). Recall that if A is graded then A forgets the grading
on A.
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Proposition 3G.4. There is an (ungraded) algebra isomorphism

0: 8L (KzF]) = RAMK[zY)

such that ©(y,,) =0,

o) = {It 1= € K
V0 ifjé JRy, ’

epF if j=r't(t) € J2 .
@(ﬂ%lj) _ {Qk:( ok : J n( ) Std
0 if j ¢ J&q.
for all j € J;' and all admissible m and 7.

Proof. First, note that ©(¢x) = >7; ©(¢x1;), so the images of the generators of S’ under ©
are uniquely determined. Hence, once we show that © is a homomorphism it is necessarily
unique. If 1 < m < n then y,, = 0, by Lemma 3F.1, so the assumption that y,, € ker ©
does not prevent © from being an isomorphism. Similarly, by Lemma 3F.1, if j € J,™ then
1; # 0 if and only if j € Jg .

To show that © is an algebra homomorphism it is enough to check that it respects
the KLR relations (KLR1)-(KLRS8) and the cyclotomic relation (2C.3). The cyclotomic
relation (2C.3) is trivially satisfied and checking relations (KLR1)—(KLR4) and (KLR6) is
easy, so these are left to the reader. Relation (KLR5) is routine using Lemma 3G.1. For
relation (KLR7) it is enough to show that if j € J;* and 1 < k < n then

) (7/)131.]) =0 (Q]’k,jkﬂ (yk7 yk-l—l)lj)
By definition, the right-hand side is equal to

F, ifj= rJf(t) € J&q and ji 7 Jry1,
0 otherwise.

S) (ij:jk+1 (ykayk-i-l)]',i) = {

If j ¢ J&y then O(1;) = 0, so we may assume that j = r/¢(t), for some t € Std(P%). If
Jk - Je+1, then

S] (wilj) = qu(t)qr(oKt) p Pl

= Do) (Qr,‘iﬂt)wiﬁl(t) Wk 1) + 5r,if<t>,riﬁ1<t>> s

= qi(t)qr(ont) Qr(t) F

= Ft7
where we have used Lemma 2D.5 (f) for the second equality and (3G.3) for the last equality.
On the other hand, if ji — jg+1 then O(¢71;) = O(Yrl,,;)O(¥rl;) = 0 since oxj ¢ J&.4
(compare with Lemma 3F.1). Hence, O respects the quadratic relation (KLR7).

Now consider the deformed braid relation (KLRS8). Since y,,, = 0 for 1 < m < n, we
need to verify that if 1 < k < n and t € Std(P!) and

© (¢k¢k+1¢k1r»’z (t)) =0 (?/)k+1ll)k¢)k+1 L, (t))

If opop+10kt = Ok r10K0k+1t is not standard then both sides are zero, so we can assume
that this tableau is standard. By Lemma 2D.5(b) and Lemma 3F .4, it is enough to show
that

@ (Okr106) Qg1 (k) qr (1) = Qo1 (OkOR111) Gk (Oh41t) G (1).
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It follows from (3G.2) that gx(or+10kt) = qrr1(t), qr+1(okt) = qr(og1t) and gi(t) =
Qk+1(0kok41t), so (KLR8) is satisfied.

We have now proved that © is an algebra homomorphism. By Corollary 3E.10, to show
that © is surjective it is enough to check that 1;Fi, yiFi and ¥ Fi belong to the image
of O, for all i € I", t € Std(P’) and all admissible k. Certainly, 1;F; = Orie Pt =
0 70 (1O (Lpg () € im ©. Hence, yiFt € im © by Corollary 3E.8. Finally, consider ¢ Ft. If
ot is not standard, then ¢, Fy = 0 by Corollary 3E.12. Otherwise, by (2D.4) we have

. B [ (en(t) = ek (V)R F + Fe i i (t) = v (b),
(0710 (valong) = uFi = {wkﬂ i (1) # 1 (1),

In both cases it follows that 1y F; € im O, where we use Definition 3A.1(c) when rg‘ (t) =

rgil(t). Hence, © is surjective.

We have now shown that © is a surjective algebra homomorphism from S’ (K[z*]) to
RA(K[z*]). Let K be any field containing K[z*]. Extending scalars to K and using Propo-
sition 3C.2, Corollary 3C.10 and Theorem 3F.8, the algebra Rﬁ} (K) has at least as many
isomorphism classes of (ungraded) simple modules as S’(K). Hence, by a dimension
count, the induced map O from S (K) to Z2(K) is an isomorphism. Therefore, O,
and hence O, is injective. It follows that ©: S’ (K[z*]) — R2(K[z*]) is an isomorphism
of ungraded algebras, so the proof is complete. O

Remark 3G.5. The isomorphism © of Proposition 3G.4 is not homogeneous because, in
general, the elements v, 1; and ©(1);1;) have different degrees.

Recall the irreducible graded R (K[z*])-module Vy, for A € P%, defined before Corol-
lary 3C.10. Combining Theorem 3F.8 and Proposition 3G.4 shows that R (K[zF]) is
isomorphic to a direct sum of matrix algebras over K[z*]. Hence, we have:

Corollary 3G.6. The algebra RA(K[z*]) is a split semisimple algebra over K[z¥] and
{Va| X € PL} is a complete set of pairwise non-isomorphic irreducible graded R (K[z%])-
modules.

In particular, up to isomorphism, the irreducible module Vy does not depend on the
choice of content system (c,r), for A € P.. We already knew from Corollary 3C.10 that
V) is independent of the choice of S-coefficients in Proposition 3C.2.

4. CELLULAR BASES OF RA(K[z%])

The main results of this paper follow from the construction of cellular bases for the
algebra R2(K[z]), which is the focus of this section. The cellular bases that we construct
are analogues of the 1-bases of [24]. Using the results of section 3 it is easy to see that the
1-bases are linearly independent. The main difficulty is showing that the -bases span
the algebra RA(K[z]).

Throughout the section, we continue to assume that (I', Q7, W7) is a k[z]-deformation
of a standard cyclotomic KLR datum (I', Qr, W) and (c,r) is a (graded) content system
with values in Kk[z] and we let K be the field of fractions of k. section 3 studied the
semisimple representation theory of the algebra RA(K[zt]).
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4A. Integral and seminormal bases. Partly inspired by [24, 51], this subsection defines
the two new bases of RA(k[z]) that will ultimately allow us to prove our main results.
Defining these bases is easy, but it will take some time to prove that they are both
(cellular) bases over K|z].

Recall from subsection 3B that > is the dominance order on P.. If s € Std(P!) is
a standard tableau and 1 < m < n then s}, is the subtableau of s that contains the
numbers in {1, ..., m}. Extend the dominance order to Std(P%) by defining s > t if
Shape(s,,,) > Shape(t},,), for 1 <m < n. Write s>t if s > t and s # t. Similarly, given
(s,t), (u,v) € Std?(PL) write (s,t) &> (u,v) if s > u and t > v. As before, write (s,t)> (u, V)
if (s,t) > (u,v) and (s,t) # (u,v).

Definition 4A.1 (Residue dominance). Let s and t be two standard tableaux. Write
s» tifr(s) =r(t)and s > t. If \,u € P, write X » p if there exist s € Std(A) and
t € Std(p) such that s » t.

In what follows we could replace the posets (P, <) and P., ) with (P%, <) and (P, »),
respectively. However, doing this does not give very much additional information because
all of our definitions are compatible with the block decompositions R = D, RA and the
residue dominance orderings are just the dominance ordering restricted to these subalge-

bras. We remark that in type AS—)1 the algebras R2 are indecomposable by [11, (1.4)]

(and [48]). In type Ce(P1 it is not known if R2 is indecomposable, although we expect this
to be the case.

Let A € PY. The conjugate of A is the f-partition X' = {({ —k +1,¢,7) | (k,r,c) € A}.
That is, A’ is the /-partition obtained from X by reversing the order of the components and
then swapping the rows and columns in each component. As is well-known, if A, u € Pﬁ
then X > p if and only if X < /. Similarly, the conjugate tableau to t € Std(A) is the
standard X-tableau t’ with t'(k,r,¢) =t({ — k + 1,¢,r), for (k,r,c) € X.

It is well-known that there exist unique tableaux t3 and tj such that tj < s < t5,
for all s € Std(A). Explicitly, t5 = (tb)‘(l)| . ]t”’\(z)) is the standard A-tableau with the

numbers 1, 2,...,n entered in order from left to right along the rows of t‘”\(l)7 and then the
rows of 2 and so on. Similarly, t3 = (tq’\(l)\ e |t<‘)‘(£)) is the standard A-tableau with
numbers 1,2, ..., n entered in order down the columns of the tableaux tq’\(m, . ,t“’\m. By

construction, t§ = (t5,)".

Definition 4A.2. For each standard tableau t € Std(P%), let d5,df € &, be the unique
permutations such that dit] =t = dfty. As important special cases, set d = df; and

Recall from subsection 2B that L: &,, — N is the length function on &,,. Although
normally stated using slightly different language, the following lemma is well-known and
easy to prove. See, for example, [40, Lemma 2.18].

Lemma 4A.3. Suppose A € P5. Then d5 = (dj)~!. Moreover, if t € Std(\) then
3= (d)'dy, A=)y, and  dY =df,
with L(d}) = L(d{) + L(dy) = L(dy).

In subsection 2D, we fixed a preferred reduced expression w = o, ...0q,, for each w €
S, and we defined 1y, = g, ... 1%q,,. In particular, we have preferred reduced expressions
for the permutations dy, d3, d; and d that define elements )4z, Vds Yo, Yoz € RA (K[z]).
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Recall from subsection 3B that NV = {(k,r,¢)|1 < k < £,r,c > 1} is the set of nodes,
which we consider as a totally ordered set under the lexicographic order, and that we
identify an /-partition with its diagram {(k,r,¢) € N |1 < ¢ < )\yf)}.

Fix A € P.. An addable node of A is a node A = (k,7,¢) € N\ A such that AU {A} €
PL.,. Similarly, a removable node of X is a node A € X such that A\ {4} € P
If t € Std(A) let Add(t) = Add(A) and Rem(t) = Rem(A) be the sets of addable and
removable nodes of A.

Let t € Std(A) and 1 < m < n and define:

Adds, (1) = {4 € Add(t;,n) \ f(A) = ry(t) and A < t(m)

Remy, (t {A € Rem(t};,) ‘ r(A) = r,(t) and A < t1(m)

}}
\ (4A.4)

em® (t

) =
Adds, (t) = {A € Add(tym) [ r(4) = ru(t) and A > t7(m)
u(6) = {4 € Rem(ty,) | r(4) = r(t) and A > 7 (m) }.

Recall from subsection 2C that * is the unique anti-isomorphism of R2 that fixes the
generators of Definition 2C.2.

Definition 4A.5 (Integral bases). Let s,t € Std(X), for A € P.. Define
v =vagyalig¥as and g = Yayrlg Y,

where i§ = r(t3), i} = r(t}) and

(ym — c(A)) and X = ﬁ H (ym — c(4)).

m=1 A € Addg, (t5) m=1 A € Add’, (t3)

By definition, if (s,t) € Std*(P%) then ¢g and % are elements of R2(K[z]), which
depend on the choices of reduced expressions for dg, d, dZ and d;. We will abuse notation
and consider 1% and %, as elements of R} (k[z]), RA(K[z*]) and of # (k). Tt is not yet
clear that the elements 15 and g, are nonzero but, if they are, they are homogeneous.

To prove that {5} and {1/1';} are bases of R2(Kk[z]) we will use some closely related
seminormal bases of RA( [zF]). As we will see, the seminormal bases give other realisations
of the graded R} (K[z*])-modules V) from Proposition 3C.2. In fact, this is the key to
proving that the 1-bases are linearly independent.

Definition 4A.6 (Seminormal bases). Let s,t € Std(X), for A € PL. Set
fs = FsugFy and fo = Fo% Fr.

By definition, fJ, f% € RA(K[z*]) and these elements do not typically belong to
RA(K[z]). We will show that {f3} and {f5} are cellular bases of R2(K[z*]). Since g and
Y% are both homogeneous so are f3 and fg.

Below we prove many parallel results for the elements {¢g} and {fg}, and for the
elements {¢%} and {f5}. In almost every case, the proofs are identical except that the
Y)“-basis and f<basis use the poset (P%, <) whereas the ¢”-basis and f>-basis use the
poset (P% ). For this reason, we work with a generic symbol A € {4,p} and write g,

HA
=
—

1, tf, de, ... in place of 3, f3, t3, df, ... and ¥%, fg, 13, di, ..., respectively.
Lemma 4A.7. Let s,t,u,v € Std(P.). Then 65,00, f3 = FufSF, and dsu0u f5 = FufSFy.
Proof. This is immediate from Corollary 3E.9 and Definition 4A.6. U
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In contrast, it is rarely true that F,)ps Fy = dsu0nibs, for (s,t), (u,v) € Std?(PL).

We want to show that the sets {15} and {f&} are bases of R2(K[z*]) and that the
transition matrices between the 1-bases and the corresponding f-bases are unitriangular.
Before we can prove this we need a better understanding of how R2(K[zT]) acts on the f-

bases and to do this we connect these bases to the seminormal representations of section 3.
Motivated by (3C.7), for s € Std(P5) and 1 < k < n define scalars 5;(s), 53(s) € K[z] by

1 if s<oys 1 if s> oys
) ? d >(s) = ’ 4A.8
fis) {Qk (s) if ogxs<s, o Fis) {Qk (s) if ogsps. ( )

Repeating the argument of Lemma 3C.8 shows that:

Lemma 4A.9. The coefficients {57(s)} and {5%(s)} satisfy conditions (a)—(c) of Propo-
sition 3C.2.

Hence, the coefficients {37(s)} and {35 (s)} both determine irreducible graded R2 (K[zT])-
modules Vi and V¥, respectively. By Corollary 3C.10, Vi = V¥. Let {v{ |t € Std(A)} be
the basis of V}\A from Proposition 3C.2. More explicitly, fix a nonzero vector v,a € Fia V)\A

A A

and define v{" by induction on L(d;') by setting

O, (s)0k+1()
N _ ri(s) VK41 N
T <¢k P () )Us

where di = s,,d2® with L(df') = L(d®) + 1, and we set pp(s) = cpr1(s) — ci(s) € K[z].
The next result should be compared with Proposition 3C.2.

Proposition 4A.10. Let (s,t) € Std*(P%) and suppose that 1 <k <n, 1 <m <n and
i € I". Then the elements fg and f§ are nonzero and

11f; = 6ir($)fsqt ymfsqt = Cm(S)f; ¢kfst - #k;l@fst + Bk( )fut7

Lifg = 6ir(s)f:t Ymfa = cm(s) [ Vrfe = %k;)l@fst + Bi(s) fis

where u = oys.

Proof. Let & € {«,p}. Since f& = Fw&F:, the formulas for 1;f5 and v, f& follow
from Corollary 3E.10 and Corollary 3E.8, respectively. We use these formulas below
without mention.

To prove the remaining claims, fix t € Std(A) and let W be the K[zF]-submodule
of RA(K[z*]) spanned by {f& |s € Std(A)}. Let ©;: W® — V2 be the map given by
Oc(w) = wof, for w € W. We prove by induction on dominance order for t that
there exists a nonzero scalar a;, which depends only on t, such that O(fs) = aw?, for
s € Std(X). To prove this, first consider the special case when t = tf. By Proposition 3C.2,

A A o A A A
¢tAtAUtA = 1 2l = I I | I (Cm (tA) —C(A)) U A = A8V,
At Ity t Aty
1 A LA
m=1 4 e AddS (t2)

where ap = [Ln [Ta(cm(ty) — c(A)) € Klz]. If A € Adds,(ty) then r(A) = ry(ty), so

each factor of a,a is nonzero by Definition 3A.1(c). Consequently, a,a # 0. Moreover,
A A
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o sv% = aav’s 4 since Fol = =, forall s € Std(A). In view of (4A.8) and Proposi-

tyty ty T otyty
tion 3C.2, if y € Std(A) then
A A N A YN A
Tty = B¥aplioa Ve = 0 Fbap v = aggty s

where the last equality uses Lemma 4A.7. It follows that ©,s is multiplication by a,s
A A
In particular, the map ©,a is an R (K[z*])-module isomorphism and Wtﬁ =~ V2 which
A

A

implies the desired formulas for fsff by Proposition 3C.2 and (4A.8).

Finally, suppose that t # tf and let di* = Oay - - - Oq, be the preferred reduced expression

that we fixed for the permutation di’ € &, in subsection 2D. Recalling the definition
of @, (t) from (3B.5), define

Qt) = Qa,(0a,t)Qay (0a30a,t) - - - Qay, (Tay - - - Ty t) -
Then Q(t) # 0 by Lemma 3B.6. Applying Proposition 3C.2(b) k times,

AN N A A N
VsV = ¢d$wtftf¢:lfvt = Q(t )%M/} 2 AU 2 ath(tﬁbdsﬁvtf = atﬁQ(t)vs

Therefore, ©; is multiplication by the scalar ax = a,Q(t), so O: WS = V2 s an
A

isomorphism. Hence, the formula for vy, f5 follows from Proposition 3C.2. The proof
of Proposition 4A.10 is complete. 0

Since f& = Fytp4 Fy, this also shows that ¥g and 9%, are nonzero, for (s, t) € Std?(P%).
Although we do not state them explicitly, applying the automorphism * to Proposi-
tion 4A.10 gives similar formulas for the right actions of the generators of R (K[z™])
on the f-bases.

The first corollary of Proposition 4A.10 was established in its proof.

Corollary 4A.11. Let A € P% and suppose t € Std(\). Then, as R2 (K[z*])-modules.
vy EBK Ifye and VX = EBK | fye-

Corollary 4A.12. The sets {f3](s,t) € Std?(P%)} and {f% | (s,t) € Std?(PL)} are bases
of R (K[z*]).

Proof. Let i € I"™. By Corollary 3E.10, 1; # 0 if and only if i € I}y = {r(u) |u € Std(P%)}.
Moreover, if i € Ig,, then 1; = ZueStd(-) F,. Hence, as K[z*]-modules,
RA (K @ LR (K Z R, where RS = F.R2 (K[zE]) F,.
i JEIStd s tEStd('Pﬁ)

If (s,t) € Std?(P%) then f& # 0, by Proposition 4A.10, and f& € R4, by Corollary 3E.9.
(s,t) € Std?(P%). Hence, {fs} is a basis of R}(K[zF]) and the last displayed equation
becomes RA (K[zF]) = D(s.t) e staz(pt) RA. O

The next result shows that the idempotents F; are scalar multiples of the basis elements
fi and fg. These scalars, 74 and 97, play an important role in what follows.

Corollary 4A.13. Suppose that t € Std(P%). Then there exist nonzero homogeneous
scalars 77, 7% € K[zF] such that

1 1
%fé =F = %fft-
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Proof. Let & € {«,»}. By Corollary 4A.12, Fy = Y, ru iy, for some ry, € K[z*].
Multiplying on the left and right by F; and applying Lemma 4A.7 and Corollary 3C.9
shows that Fy = ryfr. By Corollary 3C.9, ry # 0. Therefore, setting 7f° = %tt gives the
result. g

Lemma 4A.14. Suppose that (s,t), (u,v) € Std?(P%). Then
faldy = 0wife and  fofl = dwn fo

Proof. Let & € {a,p}. Tf u # t then f5 4 = (f& F)f4 = f& (Fufs) = 0, where we have
used Lemma 4A.7 twice. Hence, it remains to consider the products fs? ft%. In particular,
s, t and v all have the same shape.

By Proposition 4A.10, for u € Std(X) there exist homogeneous elements py,q, €
RA(K[z*]), which are independent of t, such that fj = fét and fét = quf5. Therefore,

using Corollary 4A.13 and Lemma 4A.7,
fs%fte = psfétfte = pthft?ft% = VtAPSQtthte = 'YtAPSQtfte = PYtAfsev
as required. O

We need to determine the ~y-coefficients explicitly, which is possible because they sat-
isfy the following recurrence relation involving the scalars Q(s) from (3B.5). Note that
Qk(s) # 0 whenever oys is standard by Lemma 3B.6.

Lemma 4A.15. Let A € {<,>} and suppose that s,t € Std(P%) with s A t = os, where
1 <k <mn. Then v = Qr(s)y

Proof. By (4A.8), BkA (s) = 1. Therefore, using Lemma 4A.14 and Proposition 4A.10
several times,

Oy, (s)r
’ytAfsﬁ :fs?fté :fs§ Y — COLER fss
Pk(s)

2000 (S)rnn (), O (s £2
Pr(s) pr(s)?

= fs? <1/)l% -

N Or, ($)re+1 A
= fa <Q S)rk+1(s)< k(S), cry1(s)) — Pk()) ss

For the third equality, notice that vy f5 introduces a term involving f& but this term
does not survive because f4 f& = 0 by Lemma 4A.14. The result now follows by Corol-

lary 4A.12. O
Lemma 4A.16. Suppose that t € Std(\), for A € P.. Then
oo b e adag 1) (Em(t) — c(4)) ond = b A e aaaz, 1) (Cm(t) — c(4))

¢ me—=1 HB € Remy, (t) (Cm(t) - C(B)) ' m=1 HB € Rem’, (1) (Cm(t) - C(B))

Proof. We consider only the result for +{ and leave the symmetric case of 7¢ to the
reader. We argue by induction on dominance. If t = tJ then fé\ti = yj‘\lii. Therefore,

by Lemma 4A.14 and Proposition 4A.10,
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Yl = fagfig = unfie = [T II (@) —c(A) fis
m=1 A€AddZ, (t5)
As Rem;,(t3) = 0, for 1 < m < n, this gives the result when t = t§. If t>t] then,
by Lemma 4A.15, there exists a tableau s and an integer a, with 1 < a < n, such
that s <9t = 0,5 and 77 = Qu(s)7S. To complete the proof, write (k,r,¢) = t~!(a) and
observe that Addj, (t) = Add;,(s) and Rem, (t) = Remj,(s) if m # a,a + 1. Moreover,
Addg(t) = Addy(s) and Rem(t) = Remj_(s) and
Add(s k,r,c)}, ifrg(s) =r(k,7,c),
e (g = [ Um0, 0s) =l
Addj(s) U A, otherwise,
where A is the set of addable r,(s)-nodes in {(k,r + 1,¢), (k,r,c — 1)}. Similarly,
Rem(s) U {(k,r,c)}, ifry(s)=r(k,rc),
Remg 4(t) = < :
Remj(s) \ R, othewise,
where R is the set of removable r,(s)-nodes in {(k,r+1,¢), (k,r,c—1)}. By induction, the

lemma holds for 7Z. Hence, recalling the definition of Q,(s) from (3B.5), the Lemma 4A.16
holds for 74 since 77 = Qq(s)ys. This completes the proof. O

We can now compute the transition matrices between the ¥-bases and the corresponding
f-bases.

Proposition 4A.17. Suppose that s,t € Std*(\), for A € PL. In R} (K[z*]),
Vg = fat Z auw fov and Vo = fa + Z buv fiv

paA nEA
(uv) € Std? () (u,v) € Std? ()

for homogeneous coefficients in K[z*] such that
e ay, # 0 only if r(u) =r(s), r(v) = r(t) and either p< A, or p = A, u<sandv=t
e by # 0 only if r(u) = r(s), r(v) = r(t) and either > A, or g = A, u>sand v =t.

Proof. Let & € {«,>}. By Theorem 3E.4 and Corollary 4A.13,

1
1i§ :ZFU :ijﬁn
u Yu

u

where both sums are over u € Std(if). Using Proposition 4A.10,

R 1 1
wtﬁtﬁ = y)%lif = Z jyfflﬁ = Z A H H (cm(u) — C(A))flﬁl
uestd(is) Tt westd(id) 1t m=1Ac AddS ()

for some a, € Klzt]. If u = tf then the coefficient of f£, in the displayed equation is 1

by Lemma 4A.16. Now suppose that u € Std(iy ) and u 4 t§. Let m be minimal such that

tim # (ty)ym- Then A = u~l(m) € Addj(ty), so f4 appears in yy L.a with coefficient
A

zero. Hence, f4 appears in thAtA with nonzero coefficient only if u étf, so A A Shape(u)

AT

if u # ty. This proves the base case of our induction. If s,t € Std(\) then

VAN A * A A *
wst - wdgibtftflﬁdg - I/stA ftftf + Z aufuu 1/1th-

A
uAtA
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Hence, the result follows by Proposition 4A.10 and induction on A. 0
By Corollary 4A.12, this implies that {13} and {5} are both bases of R} (K[zF]).

4B. Cellular algebras. Konig and Xi [42] introduced affine cellular algebras, generalising
results of Graham and Lehrer [21]. Following [24], this subsection incorporates a grading
into this framework and at the same time allows the ground ring K to have a non-trivial
grading. The next subsection shows that the £ and 1)*-bases induce K-cellular structures
on the algebras RA(K[z*]) and RA(K[z]).

Definition 4B.1 (cf. Graham and Lehrer, Konig and Xi [21, 24, 42]). Let K be a graded
commutative domain with 1 and suppose that A is a graded K-algebra that is K-free
and of finite rank as a K-module. A graded K-cell datum for A is an ordered tuple
(P,T,a,deg), where (P,>) is the weight poset, T =[] c p T is a finite set,

a: H T\ x T\— A; (s,t) — agt,
AEP
is an injective map and deg: T'— Z is a degree function such that:
(Co) If s,t € T then ag is homogeneous of degree deg(as;) = deg(s) + deg(t).
(C1) The set {ag |s,t € Ty for A € P} is a K-basis of A.
(Cq) Let h € A be homogeneous and fix s,t € T), for A € P. There exist (homogeneous)
scalars 74, (h) € K, which do not depend on ¢, such that

has = Y rus(h)ay (mod AN,
u €Ty
where A>? is the K-submodule of A spanned by {ayy |1 > A and v,w € T(u)}.
(C3) The K-linear map *: A — A determined by (as)* = ats, for all A € P and

s,t € T, is an anti-isomorphism of A.
A graded K -cellular algebra is an algebra that has a graded K-cell datum. A K-cellular
algebra is an algebra that has a graded K-cell datum such that deg(t) = 0 for all t € T'.
A (graded) cellular algebra is an algebra that has a (graded) K-cell datum when K = K|
is concentrated in degree 0.

Remark 4B.2. If K = Kj is concentrated in degree 0 then a graded K-cellular algebra
is a graded cellular algebra in the sense of [24]. If K = K and deg(t) =0 for all t € T we
recover the cellular algebras of Graham and Lehrer [21]. A K-cellular algebra is a graded
analogue of the affine cellular algebras of Konig and Xi [42] in the special case where their
affine commutative algebra B is K considered as a Ky-algebra.

If L is a K-algebra, define A(L) = L®g A. Then A(L) is a (graded) L-cellular algebra.

Let A = A(K) be a graded K-cellular algebra with graded K-cell datum (P, T, ¢, deg).
As in (Cy), for A € P let AZ*(K) be the K-submodule of A spanned by {as|s,t €
T(u) for > A}. By (Cq) and (C3), AZAK) and A>NK) = B ,>\ AZF(K) are two-sided
ideals of A. Set A\(K) = AZNK)/A>MNK).

For A € P, the cell module Sx(K) is the free K-module with basis {as | s € T'(\)}, where
as is homogeneous of degree deg(s), and where the A-action on S)(K) is given by

has = Z Tus(R)ay, for h € Aand s € T(\),
u €T (N)

where 7,5(h) € K is the scalar from (Cp). If t € T(\) then ¢8!S\ (K) is isomorphic to
the A-submodule of Ay(K) with basis {as + A>*(K)|s € T(\)}.
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If L is a (graded) K-module set Sx(L) = S\(K) @k L. For example, if K = K[z] and
L = ¢°K, which is the K[z]-module concentrated in degree d on which x acts as 0, then
SA(L) = ¢?Sx(K).
By (C2) and (Cs), there is a unique symmetric bilinear form (, )x: Sy\(L) x Sx(L) — L
such that
(as, at)\ay = aysay for s,t,u € T(A). (4B.3)

Moreover, ( , ) is homogeneous and (ax,y)) = (x,a*y),, for all a € A and x,y € S\(L).
In particular, if L is concentrated in degree zero then ( , )\ is homogeneous of degree zero.
Furthermore,

rad S\(L) = {z € Sx(L) | (z,y) =0 for all y € S\(L)}

is a graded A-module of S)(L), so that Dy(L) = S\(L)/rad Sy(L) is a graded A-module.

Suppose that K = @, K, is a graded commutative ring such that Ky is a field. Then
K, is a finite dimensional Ky-vector space. Let Irr(K) be a complete set of irreducible
graded K-modules, up to isomorphism. Recall from subsection 2A that ¢ is the grading
shift functor.

Lemma 4B.4. Suppose that K = K[z]. Then Irr(K[z]) = {¢?K | d € Z}.

Proof. Any irreducible graded K[z]-module is a K-vector space on which each x € z acts
as multiplication by 0. (Compare Remark 2A.2.)

O

Example 4B.5. Suppose that K is a field and z is an indeterminate over K. Then K|x]
is a graded field and ¢?K[z*] = K[zF], for d € Z, since x has degree 1. Hence, K[z¥]
is the unique irreducible graded K[z*]-module. In contrast, if degy = 2 the Irr(K[yT] =
{K[y*], ¢K[y*]}. (This is why we define each indeterminate = € x to have degree 1.)

Now consider K[z*, y*], where y be a second indeterminate over K. Then L = K[z%]
becomes an irreducible graded K[zT,y*]-module by letting = act as multiplication by
c1z and y act as multiplication by csz, for nonzero scalars c1,cy € K*. Equivalently,the
module L = K[xT, y]/(cox — c1y) is uniquely determined by the fact that 2 — cyactson L
as multiplication by 0. Hence, this makes L into an irreducible graded K[z*,y*]-module
for each ¢ € K*.

Assume that Ky is a field. If L € Irr(K) set Po(L) = {\ € P|Dy(L) # 0}.

Theorem 4B.6. Let K be a graded commutative domain such that K is a field. Suppose
that A be a graded K-cellular algebra. Then

{Dx(L)| X € Py(L) and L € Irr(K)}

is a complete set of pairwise non-isomorphic irreducible graded A-modules. Moreover,
Dy (L) is self-dual as an A-module if and only if L € Irr(K) is self-dual as a K-module.

Proof. By Lemma 4B.4, up to shift the irreducible graded A-modules are irreducible A(M)-
modules. The result now follows by repeating the standard arguments for classifying the
simple modules of cellular algebras; see [42, Theorem 3.12], [21, Theorem 3.4], or [49,
Theorem 2.16]. O

Example 4B.7. Suppose that A is a graded K[z]-cellular algebra, where K is a field.
Define Py as above. By Lemma 4B.4, Irr(K[z]) = {¢?K | ¢ € Z}. So

{DA(L)[A € Py and L € n(K[z])} = {¢"DA(K) [ A € By and d € Z}
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is a complete set of pairwise non-isomorphic irreducible graded A-modules. Let A(K[z7F])
= K[z7] ®k[z) A be the corresponding graded K[zT]-cellular algebra over K[z*]. Then

{Dy(K[z*]) | A € Py} is a complete set of pairwise non-isomorphic irreducible graded
A(K[z*])-modules.

Definition 4B.8. Suppose that K = K[z] and let A be a graded K[z]-cellular algebra. Let
A€ Pand p e Py = Py(K) and set Sy = S\(K) and D,, = D,(K). Then D = ([Sy : D,],)
is the graded decomposition matriz of A, where

[Sy: Dy =Y [Sr:d*Du) ¢ eNJg.q7!,
kez

and [S) : quu] is the multiplicity of qu,L as a composition factor of Sy.
Standard arguments from the theory of cellular algebras now prove the following:

Corollary 4B.9. Suppose that A is a graded K[z]-cellular algebra. Then
(a) If A€ P and p € Py then [S, : D,]g =1 and [Sy : D,]q # 0 only if X > p.
(b) The Cartan matrix of A is DTD.

4C. Cellular bases for R}(K[z*]). This subsection applies the results of the last two
subsections to show that R2 (K[z*]) is a K[z*]-cellular algebra. We have to wait until sub-
section 4F to prove that R2(k[z]) is a K[z]-cellular algebra.

We have most of the data we need to define graded K[z*]-cell data for R2(K[z%]): we
have posets (P%,<) and (P%,>) and sets of standard tableaux Std(P!) = [Ix e pe Std(A).
Moreover, by the results of subsection 4A, we have bases {f3}, {5} {fa} and {¥%},

which we view as being given by injective maps
FO= R (K], ¢ = Ry (Klz™]), /7 = Ry (Ke™])  and ¢ = Ry (Klz*)),

which send (s, t) to fg, V&, fa and ¥, respectively. We still need to define corresponding
degree functions on Std(7P%).

For t € Std(P), recall the homogeneous scalars 77, 75 € K[zT] from Corollary 4A.13. As
K[zT] is a graded ring, both of these scalars have a degree in Z. Recall that deg: K[z*] — Z
is the degree function on K[z*] and that deg(z) = 1, for all 2 € 2. By Lemma 4A.16,
the scalars v and 7% depend on the content function ¢ and are polynomials in 2% and, in
particular, have even degree.

Definition 4C.1. Let t € Std(P%). Define degree functions,
deg®: Std(PY)—Z  and deg”: Std(P%)—2Z,
with respect to the posets (P%,<) and (P%, ), respectively, by

1 1
deg(t) = 3 deg~{ and deg”(t) = 3 degy, for t € Std(P!).

When (c,r) is a graded content system both of these degree functions already exist in
the literature. In type Agl_)l, Brundan, Kleshchev and Wang [13] call deg” the degree of a

tableau and deg” its codegree. In type C’CQI Ariki, Park and Speyer [8] use deg” to define
the degrees of the basis elements of their candidates for homogeneous Specht modules.
Using Definition 4C.1 it is not clear that these degree functions coincide with those given
in [8, 13], however, this is immediate from the next result.

Recall from subsection 2B that D = diag(d;|¢ € I) is the symmetriser of the Cartan
matrix of I'.
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Lemma 4C.2. Suppose that t € Std(P%). Then

deg(t Z dy,. () (# Addy, (t) — # Remy, (1))
and
deg”(t) = > dp, (o (# Add},(t) — # Rem), (1)).
m=1
Proof. Apply Lemma 4A.16, using the fact that 77 # 0 and degc,,(t) = 2d,,, (1), which
follows from Definition 3A.1(c) because (c,r) is a graded content system. O
We can now show that R (K[z*]) is a (graded) K[z*]-cellular algebra.

Theorem 4C.3. Suppose that (c,r) is a graded content system for R?(k[z]). Then the
algebra RA(K[z%]) is a K[zF]-cellular algebra with cellular bases:

]
(a) {fdl(s:t) € Std*(P
(b) {f&](s,t) € Std*(P
(c) {vs(s,t) € Std*(P
(d) {v&|(s,1) € Std*(P

Proof. Let & € {«,»}. By Corollary 4A.12, {f3} is a K[z*]-basis of RA(K[z*]) and
by Proposition 4A.10 the f“-basis satisfies (Cz). Recall that * is unique anti-isomorphism
of RA(K[z*]) that fixes each of its generators. By construction, (& )* = fe and F* = Fy,
so (f&)* = f& for (s,t) € Std?(PY). Hence, {fe} is a K[z*]-cellular basis of RA(K[zF]).

Next, consider {14 }. This is a basis of R (K[zF]) by Proposition 4A.17, so (Cy) is sat-
isfied. We have already seen that (1% )* = s, verifying (C3), so it remains to check (Cy).
By Proposition 4A.17,

Vs = Toa 2 nuf e (mod (R
uls

for some 7, € K[z¥] and where (RQ)A’\ is the two-sided ideal of RA(K[zT]) spanned by
{f&} where Shape(u) = Shape(v) & A. By Proposition 4A.17, (R})#* is also spanned
by {%}. Multiplying the last displayed equation on the left by a € RA(K[z%]), and
using Proposition 4A.10 and Proposition 4A.17,

o = " 0] = A § ( A AyAX
awStﬁ = (fStf + ZA: aufutﬁ) B Z bxfxtﬁ Cxthﬁ mod (R;))=7,
u S

x € Std(A) x € Std(A)

)} with weight poset (P, <) and degree function deg®.
)} with weight poset (P%,>) and degree function deg”.
)} with weight poset (P%, <) and degree function deg®.
)} with weight poset (P%,>) and degree function deg”.

:N:N

for some homogeneous scalars ay, by, tx € K[z¥]. Multiplying on the right by ¢2A shows
t

that 1% satisfies (Cg). Hence, {¢%} is a K[z*]-cellular basis of R} (K[zF]).

It remains to show that each of these bases is a graded K[zT]-cellular basis of R (K[zT])
when (c,r) is a graded content system. By Definition 4A.5, ¥% is homogeneous, for
(s,t) € Std?(PL). By Definition 3C.1, F}; is homogeneous of degree 0, and fi = Fupg Fr.
Hence, f& is homogeneous and deg f& = degs. Therefore, it is enough to show that
deg f& = deg”(s) + deg®(t). Further, since  is homogeneous, deg f& = deg fs.
using Lemma 4A.14,

deg f = §deg (f2 fia) = S deg (3 fia) = S deg (774" Fi ) = deg(s) + deg(t),

as we wanted to show. This completes the proof. ]
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Proving that R2(K[z1]) is a K[z*]-cellular algebra is nice but it does not directly help
us in constructing a cellular basis for the KLR algebras #/ (k) and R2(k[z]). We prove
that R2 (k[z]) is K[z]-cellular in the next subsection. As a prelude to doing this, for A € P/
define S5 (K[z*]) and S5 (K[z*]) to be the graded cell modules for R} (K[z*])-determined by
the seminormal bases {fg} and {f§}, respectively. Let A € {«,>}. By Proposition 4A.10,
Sy (K[z*]) has basis {f2} and there is an isomorphism

g1 B 5E (K t]) = (Rﬁ (KIz™]) Fe + <R2>“) SRS £ o f20 + (RD)

For s € Std(X), let 48 wdaf be the element of Sy (K[zF]) that is sent to 1/1 o+ (RM2A

under this isomorphism. In V1eW of Corollary 3C.10 and Proposition 4A.17, we have:

Lemma 4C.4. Let A € P.. As K[zF]-modules,

SSKz*) = D Kalvd and SK(Ka®) = P Kz*vg
seStd(N) seStd(A)

By Lemma 4A.7, if 6: S5 (K[zF]) — S (K[z*]) is an isomorphism then 6(fS) = af?,
for some a € K[ii]. Comparing degrees, a is homogeneous of degree deg”(s) — deg”(s).
In particular, such an isomorphism and its inverse are defined over K[z] if and only if
deg“(s) = deg”(s) for all s € Std(A).

Let Sy(K[z]) = @ K[z]vs and S} (K[z]) = @, K[z]vs, where in both sums s € Std(A).
By definition, S§(k[z]) and S5 (K[z]) are free k[z]-modules and Sy (K[z*]) = K[zF] OKa]
Sy (K[z]) by Lemma 4C.4. In fact, S§(K[z]) and S5(K[z]) are both R2(k[z])-modules.

Proposition 4C.5. Suppose that s € Std(\), for A € P, Then:
(a) If 1 <k < n then ¢pys € S5(K[z]) and 9l € S5 (K[z]).
(b) If 1 < m < n then y,¢5 € S§(k[z]) and ym,¢% € S5 (K[z]).
(c) If op, ...op, is a reduced expression for dS* then

S =y € KIS and  wE — . € Kalun

uds ubs
Proof. Let & € {«,>}. To prove the proposition we argue by induction on the length
L(d?) of the permutation d2. To start the induction, suppose that s = tf, so that
thA = 1. Then (c) is vacuously true and,
A

Yntin = Ymfia = cm(s)fa
A A A
by Proposition 4A.10, so (b) holds. To prove (a), applying Proposition 4A.10 shows that
if u=oxty € Std(N),

A A qu :"%
Vit = Vrlie = {o if opty ¢ Std(A).

Hence, the proposition is true when s = tf.

Now suppose that tf A's. First, consider (c). Let d = oy, ...0, be the preferred
reduced expression for d2* that we fixed after Lemma 4A.3. If oy, ... oy, is a second reduced
expression for d2 then, by Matsumoto’s theorem (see, for example, [49, Theorem 1.8]),
we can convert the reduced expression o, ...04, into our preferred reduced expression
Op, -.-0p, using only the braid relations of &,. The 1) satisfy the commuting braid
relations and by (KLR8) they satisfy the braid relations of length 3 plus or minus an
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“error term” of the form 5%%”@%%“%“(%, Ykt1, Yk+1)%u, where u is smaller than d&

in the Bruhat order and so, in particular, L(u) < L(d%). Hence, by induction, part (c)
holds for 9.

Now consider ¥x1e as in (a). If L(opds) < L(dS) then df has a reduced expression of
the form o0y, . ..0,,. Therefore, using (c), which we have already proved,

Pete = Y (%%Z walw + ) g ) ,  for some r, € k[z],

uls

= ¢Iz¢a2 . ¢al¢ + Z Tu¢k¢u

uls

(yk’ yk-&-l)l/}ag . ﬂ’aﬂﬁ + Z 7"u7/1k7!1u .

uls

=,
By induction, all of these terms belong to Sy (K[z]), showing that ¢2 satisfies (a).

Finally, consider y,12. Let v € Std(A) be the unique standard tableau such that
s = oy,v. Then L(d$) = L(d}) + 1, so by part (¢) and induction,

¢VA = Qz)az . ¢azw + Z ruwu )

ulv

for some r, € K[z] (these scalars are different from those in the last paragraph). Therefore,

?Jm¢sA = Ym¥r, (wvA - Z Tu@bf) .

uldv

Applying (KLR6) and induction now completes the proof of Proposition 4C.5. O

4D. Defect polynomials. The algebra R} (K[z%]) is a split semisimple graded algebra,
so it is naturally a symmetric algebra with symmetrising form given by taking the matrix
trace on the regular representation. This form does not restrict to give a trace on R2(K[z]),
so the aim of this subsection is to show how to use this trace form to give an “integral”
trace form” on R2(K[z]). In later subsections, these results will be used to understand the
duals of some R2(K[z])-modules.

We continue to assume that (c,r) is a graded content system for R2(K[z]) with values
in k[z]. The following innocuous lemma is the key to constructing our trace form and to
understanding the defect of the blocks of RA(k[z]).

Lemma 4D.1. Suppose that A € P.. Then 7% = 74P for all s,t € Std().

Proof. 1t is enough to consider the case when s>t = oys, for some 1 < k < n. In this
case we have that 7§ = Qr(s)7% and ¢ = Qr(t)y; by Lemma 4A.15. By (3B.5) and the
symmetry of Rouquier’s @-polynomials, Qr(s) = Qx(t). Hence,

Qr(t)
e = 0uls) Y =N

as required. n

Definition 4D.2. Let A € P.. The A-defect polynomial is vy = v{A%, for any t € Std(X).

By Lemma 4D.1, the defect polynomial 75 depends only on X, and not on the choice
of t € Std(A). We will show in Corollary 4D.7 that the degree of the defect polynomial
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is a block invariant. That is, if A, € P4 then degys® = deg 7,; - To prove this, and to
explain why we call this the defect polynomial we need some more notation.

For i € I and XA € P! let Add;(A) and Rem;(X) be the sets of addable and remov-
able i-nodes of A, respectively. Recall from subsection 2B that {d;|i € I} is the set of
symmetrisers of I'.

Definition 4D.3. Let o € Q.

(a) For a € @} let PL ={A € Pl |ax=a}.

(b) The A-defect of a € Q;} is def(a) = (Ala) — 3(a]a).
(c) The X-positive Toot is ax = > 4cx u(a) € Q.

(d

The A-defect of X € P’ is def(A\) = def(ay).
(e) Motivated by (4A.4), given an addable or removable i-node A of A define

dS(A) = d; x (#{B € Add;(\) | B < A} — #{B € Rem;(A) | B < A}),
FL(A) = di X (#{B € Add;(A)| B> A} — #{B € Rem;(A) | B > A}),

~ — \/\/

By definition, def(a) € Z. We show in Corollary 6E.21 that, in fact, def(«) € N.
Generalising [13, Lemma 3.11], we give some standard facts about defect.

Lemma 4D.4. Let A = p + A, where A € Add;(p) for i € I. Then ay = oy + a; and

dl(A) = dz(ﬂ) —2d; = dj‘()\) + di‘()\) + d; (4.32&)
dl(A) = (A — Oé)\‘Oéi) (4.32b)
def(A) = def(p) + d;(A) +d; = def(p) + d3(A) + d3(A). (4.32¢)

Proof. (4.32a) is just a rephrasing of Definition 4D.3 (e).
To prove (4.32b) we argue by induction on n. If n = 0 then A = 0y, ax = 0 and
(Aley) = d;i(A) is the number of addable i-nodes of 0,. If n > 0 then

(A — axlei) = (A — aplag) — (@ilew) = di(p) — 2d; = di(N),

where the second equality follows by induction and the third equality from (a). This
proves (4.32b).
Now consider (4.32c). As X has a removable i-node, a, = ax — a; € Q7 and

def(X) = def(ay + i) = (Alay) + (Alai) — ((au|au) + 2(aplai) + (ailey))
= def(p) + (A — o)) — dy, by induction,
= def(p) + di(p) — di, by (4.32b),
= def(p) + di(A) + d,

where the last equality follows by (4.32a). The second equality in (4.32¢) follows by a
second application of (4.32a). O

Corollary 4D.6. Suppose that t € Std(\), for A € P.. Then deg?(t) 4 deg”(t) = def(X).

Proof. This follows by induction on n. If n = 0 then deg”(t) = deg”(t) = def(X) = 0, so
the result holds. Suppose that n > 0 and let A = t~!(n). Set s = t;(,_1), p = Shape(s)
and i = r,(t) = r(A). Then,
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deg(t) + deg”(t) = deg“(s) + d4(A) + deg”(s) + d4(A) by Lemma 4C.2,
= def(p) + d%(A) + d4(N) by induction,
= def(A),
with the last equality coming from Equation 4.32c. g

We can now explain the origin of the name defect polynomial. In view of Corollary 6E.21
below, this shows that 75> € K[z], for A € P.. It would be interesting to determine these
polynomials explicitly; compare [15].

Corollary 4D.7. Let A € P.. Then 75 is a homogeneous polynomial of degree 2 def(X).

Proof. If t € Std(A) then, by Definition 4C.1 and Corollary 4D.6, the defect polynomial
vy is homogeneous of degree deg~y + degry = 2(deg®(t) + deg”(t)) = 2def(N). O

Although we do not need this, we note that the defect polynomial, or more cor-
rectly Lemma 4D.1, allows us to describe the transition matrix between the f<-basis and
the f"-basis, generalising Corollary 4A.13.

Proposition 4D.8. Let s,t € Std(\), for A € P.. Then f3 = 71%} 15 in RA(K[zH]).

Proof. By Lemma 4D.1, /7% = 7¢/7%, so the statement of the proposition is equivalent
<1

to the equivalent claims that 'Y fst fa= > . Since f& = (f5)*, it is enough to show

that

<

<
o= B
t5t > Jt5t
A ’Yt A

by Lemma 4A.14. We show this by arguing by induction on L(df), the length of the
permutation di. When t = t§ the result follows from Corollary 4A.13. If t # t5 then
we can write t = ogv with v<t and L(d]) = L(d{) — 1. Hence, by two applications
of Proposition 4A.10, and induction,

po = o (g - oo Y 0% (0 @nnw ) _08 e o0
BT IRy Chr1(v) — ci(v) Ny Y (V) — cx(v) g T .

This completes the proof of the inductive step, and the proposition, since 75 = Qi (V)¢
by Lemma 4A.15. O

By the proposition, fg = > o« = ,> ft jytb «- In particular, the four terms in this

equation have the same degree ‘which i 1s easily checked using Corollary 4D.6.

4E. A symmetrising form. This subsection uses the defect polynomials to define a
symmetrising form on the algebra R (k[z]) = @,, cot RA(K[z]), and hence shows that it is
a graded symmetric algebra. This symmetrising form specialises to give a non-degenerate
symmetrising form on the cyclotomic KLR algebra 222 (k).

This subsection is partly inspired by [50], where similar results were obtained for the
Ariki-Koike algebras. The arguments given here are much shorter than those in [50],
which is surprising both because the results here are stronger and because we need to
prove everything from the ground up.
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Definition 4E.1. Let a € Q. For A € P! let x be the character of the irreducible
RA(K[z*])-module Vi (K[z*]). The a-trace form is the map 7,: R2(K[z*]) — K[z*] given
by

1
To = Z XA
xeps A

By Corollary 4D.7, the trace form 7, is homogeneous of degree —2def(a) and takes
values in K[zF].

We use the characters of Vy(K[z¥]), for A € P, in this definition to emphasise that 7,
does not depend on a choice of basis. Note that if A € P4 then S (K[z*]) & Sy(K[z*]) =
S% (K[zF]) by Corollary 3C.10.

Example 4E.2. Let s,t € Std(X), where A € P and o € Q. Using Lemma 4A.14,
5st 6st

and 7, (fo) = —.
% R

1
To(Ft) = T (fs) =

To study R (k[z]), we use 7, to define an “integral” bilinear form. If f(z) € K[z*] is a
homogeneous polynomial let fy € k be the constant term of f(z).

Definition 4E.3. Let o € Q;f. Let (, )o: RA(K[z]) x RA(K[z]) — Kk be the homogeneous
bilinear form on RA(K[z]) of degree —2 def(a) given by (a,b)q = Ta(ab)o.

We leave the proof of the following easy facts about 7, and (, ), to the reader.

Lemma 4E.4. Suppose that a,b € R2(K[z]), for a € Q;f. Then
(a) Let a,b, € RA(K[z]). Then 74(ab) = To(ba), Ta(a) = 7o(a*), and {(a,b)s = (b, a)qa.
(b) If a,b, c € RA(K[z]) then (ab,c)s = (a,bc)q.
We want to show that (, ), is a homogeneous non-degenerate bilinear form on R (K[z]).

The next results pave the way to proving this. The first result is similar in spirit to [24,
Lemma 4.11].

Lemma 4E.5. Suppose that A € P.. Then there exist 7, s; € K[zT] such that

wfg‘ti = ft%\tj\ + th;]c and w'lc}t‘f\ = ftD‘;ti + Stf:t'
taty t>t

Proof. Let & € {<,>}. By definition and Corollary 3E.10,

1 1
Vhe =Wl =i X zR= > = I (@ -c)R
r teswd(iy) Tt resed(id) 1t AecAdds (i)
Suppose that t € Std(iy) and that t 4 ty. Let 1 < k < n be minimal such that t;; & tiik
and ty (1) A tﬁi(kﬂ)' Let A=t"'(k+1)and B = (ty)~!(k + 1). Abusing notation
slightly, BA A, s0o A € Addlf (tf). That is, A € AddA(tf) appears in the product above,

contributing the factor cxy1(t) — c(A) = 0. Hence, fi = V%Ft appears in thAtA only if
t A A

t A ty, where dominance holds because r(t) = iy . O

The next result strengthens Proposition 4A.17. Recall from subsection 4A that (s,t) <
(u,v)ifs<Suand t Jv.
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Lemma 4E.6. Let s,t € Std(X), for A € P.. Then

w:t = f; + Z aquc:]v wsbt = f:t + Z buv 5v
(u,v) € Std?(P%) (u,v) € Std?(P%)
(u,v)<(s,t) (u,v)>(s,t)
fs<1]; = ¢:t + Z Cuv¢jv f:t = fsl,>t + Z duvwiva
(u,v) € Std2(PE) (u,v) € Std2?(PL)

(u,v)<(s,t) (u,v)>(s,t)
for some scalars ayy, buy, Cuv, duv € K[Qi].

Proof. Let & € {<,>}. We argue by induction on the dominance order A on P.. Let X be
maximal with respect to A. Then A = (0]...|0[1") if A =<and XA = (n|0]...|0) if A =p.
In this case, ftAAtA = zptitm so the result holds.

A A A A
Now suppose that A is not maximal. By Lemma 4E.5 the proposition holds for ftAAt A SO,
AT
by induction, the result holds for wtﬁtﬁ . Now suppose that (ty,ty)A(s,t), fors, t € Std(\).
AT

We can assume that s # tf by applying *, if necessary. Pick k such that y = ops A s.
By Proposition 4C.5(c¢) and induction,

¢5At = @Z)kwyAt =Yg (fﬁ + Z 7ﬁuvfﬁ,) = fs? + Z ruvd’kflﬁn
(uv)A(y,t) (uv)A(y:t)
for some 7y, € K[zF]. Consider a term vy f4 on the right-hand side and let w = oju. If
L(dy) = L(dg) + 1 then dy, is a subexpression of dg since u Ay and L(dS') = L(dy') + 1,
sow As. If L(d5) = L(d2) + 1 then w A u &y A's. Therefore, 1% can be written in the
required form by Proposition 4A.10. Inverting this equation, f& can also be written in the
required form. This completes the proof of the inductive step and hence the lemma. [

Corollary 4E.7. Let (s,t),(u,v) € Std*(P%). Then ¥3¢f, # 0 only if t > u, and
P s # 0 only if s > v. Moreover, ¥g1t = fafte and Y5 = fofs are homogeneous of
degree 2def(A).

Proof. Consider the first statement. Using Lemma 4E.6,

¢:t¢5v = f; + Z Qwx fv<\]/x fI.IJ>V + Z byzf)lfz
(w,x) € Std2(PY) (v,2) € Std*(Pf)
(w,x) < (s,t) (y,z) > (u,v)
>

= Z Z aWbeZ fv<\]/x yz»

(wx) € Std*(Pf) (y,2) € Std*(Py)
(wx) D (s;t) (¥,2) = (u,v)
where we set asy = 1 = byy. Therefore, Y54y, # 0 only if £, f7 # 0 for some (w,x), (y,z) €
Std?(P!) with w <'s, x < t, y > u and z > v. By Lemma 4A.7, faxfyz. # 0 only if
X =y, so this forces t > x =y > u, as required. Since Y )g = (Vs¥h)”, this implies
that if Yiyb, # 0 then s > v. When u = t and v = s the last displayed equation
shows that Y35 = f3f%. By definition, 9315, is a homogeneous element of R} (k[z]) of
degree 2def(\). Similarly, ¥5v5 = fiefs is homogeneous of defect 2 def(X). O

Definition 4E.8. For A € P! set 2§ = wfiti w'%‘t; and 2§ = wlt}ti z/;f;t; .
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By Lemma 4A.3 we can also write 23§ = wfiti wlt}t;‘\ and 25§ = @D‘t}ti @Z)fiti . We will not
need this, but it is not difficult to show that 2§ = wfisw‘gti and 25 = wﬁisw;‘ti, for any
s € Std(A).

In the classical representation theory of the symmetric groups, elements very similar
to 23 and 2z} are often used as distinguished generators for the semisimple Specht mod-

ules. The extra structure provided by the grading shows that these elements are “almost”
canonical.

Proposition 4E.9. Let A € P, for a € Q*. Then 2\ = fyj‘thf\l and 25§ = fythi.

Consequently, V%zj‘\ and «/%Zi are (nonzero) primitive idempotents in R} (K[z*]) and
A A

Ta(23)0 = 1 = 70 (25)o-

Proof. We give the proof only for z3, with the result for 25 following by symmetry. Since
zy = Fy ZiFti by Lemma 4A.7, it follows that 23 is a scalar multiple of Fy = Vt% ftqitf\
A

by Corollary 4A.13. Then, there exist scalars awx, by, € K[zT] such that
(23)° = Prses Yiaes Urses Vi by Definition 4A.5,

=Yg | Sl + D awefox | | fideg D befyy | Yiseg, by Lemma 4E.6,

(ew)>(t5,t5) (v,2)a(ts.t5)
= ¢§§t§ ftbit;" ftq;t;%btbj\tia by Lemma 4A.7,
= w’fj\tj‘\ '7‘t>§th‘\ "Yfith ‘W%{ti’ by Corollary 4A.13,
=YX Zxs by Lemma 4A.7.
Hence, %zf‘ = Fyg is a primitive idempotent in RA(K[z*]). Finally, 74(25)0 = 1 by Ex-
ample 4E.2. O

Although we do not need this, it is not hard to show that @Z),fi s %ﬁ(k[@])@bﬁi g = K[z]zy is

a free K[z]-module of rank 1, giving another way to prove that Sy(K[z*]) is an irreducible
RA (K[z*])-module.
We have reached the main results of this subsection.

Theorem 4E.10. Suppose that (s, t), (u,v) € Std?(P%), for o € Q. Then
1 (s,0) = (vu),
<w:t’ Ev)a = .
0 if (s,t) ¥ (v,u).

Proof. By definition and Lemma 4E.4, (Y%, Y0, )a = Ta(¥$¥5,) = Ta(¥h,0s). Hence,
(Vs Yoy)a = 0 unless t > u and s &> v by Corollary 4E.7. Now suppose that u = t and
v = s and consider the inner product (¢, ¥5%)a = Ta(Vg1%). Using Lemma 4E .4,

(Vs Vo) o = Ta (V5¥i)g = Ta (%g?ﬁfgﬁ/}d'gwtbis) .

=Tu (1/Jt<'§t§ wj; Swdg)o =Tu (¢f§t§ Pt tj\)o , by two applications of Lemma 4A.3,

=Ta (23)g = IX Ta (Ft§>0 , by Proposition 4E.9,
= 1’
where the last equality follows from Example 4E.2. O
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4F. Cellular bases for R2(k[z]). We can now prove that RA(K[z]) is a K[z]-cellular
algebra. In particular, this proves a stronger form of Theorem A, our first main result
from the introduction.

Theorem 4F.1. Suppose that (c,r) is a graded content system with values in k[z]. Then
RA(K[z]) is a graded K[z]-cellular algebra with K[z]-cellular bases:

(a) {93 ](s,t) € Std?(PL)} with weight poset (P%, <) and degree function deg®.

(b) {¥% | (s,t) € Std?(PL)} with weight poset (P%,>) and degree function deg”.

Proof. By Proposition 2C.6, R2 (k[z]) is free as a K[z]-module, so R2 (k[z]) naturally embeds
into the K[zt]-algebra RQ(KL ]) = K[z*] Oka] RA(K[z]). In particular, the K[z]-rank of
RA(K[z]) is equal to the K[zT]-rank of RA(K[zT]).

We only show that {¢3} is a K[z]-cellular basis of R2(K[z]), as the K[z]-cellularity of
{4y} follows by symmetry. Since RA(K[z]) = D cor RA(K[z]), it is enough to show that

{43 (s,t) € Std*(P%)} is a K[z]-cellular basis of RA( [z]), for @ € Q;}. By Theorem 4C.3,
{3 (s,t) € PL} is a K[zF]-cellular basis of RA(K[z*]). Therefore, to prove the theorem
it is enough to show that {3 (s,t) € P4} spans RA(K[z]) and that the structure constants
for this basis belong to K[z].

Let (s,t) € Std*(P!). Using Theorem 4E.10 and Gaussian elimination to argue by
induction on dominance, there exist homogeneous elements 77, € RA(K[z]) such that
W, Mn)a = d(s,t)(v,u) and no, = Uo, + Z(X ¥) 5 (u) exywxy, for homogeneous scalars exy €
K[z]. Therefore, if h € RA(K[z]) then

h = Z <h7n5v>a Sv'
(u,v) € Std?(P4)
In particular, the set {¢%|(s,t) € Std*(P%)} spans RA(K[z]) as a K[z]-module. Hence,
{4y} is a basis of R2(K[z }) by Theorem 4C.3. Moreover, if h € RA3(K[z]) then hid
€ RAM(K[z]), so (hS, m5y)a € K[z], for (u,v) €] Std?(P%). Therefore,

hdﬁt = Z <h¢st7 77uv> <]v

(s,t) €Std?(PL)

showing that the structure constants of {¢ | (s,t) € P} belong to K[z].
Hence, {3 | (s,t) € PL} is a K[z]-cellular basis of R2 (k[z]) by Theorem 4C.3. O

The strategy used to prove Theorem 4F'.1 is quite general. For example, an easy modi-
fications this argument gives a streamlined proof of the fact that the Murphy basis of [19,
Theorem 3.26] is a cellular basis of the cyclotomic Hecke algebras of type A [19, Theo-
rem 3.26].

Remark 4F.2. In type Ag )1, even in the ungraded world, pairs of dual bases for the
algebras R2(K[z]) are not known. It seems hard to explicitly describe the basis {15} that
is dual to {¢g}. Similarly, it is hard to describe the basis {ng} that is dual to {¢%}. On
the other hand, using Theorem 4F.1, it is straightforward to check that {n%} and {ng}

are K[z]-cellular bases of R (K[z]).

As noted in Example 3A.2, content systems (c, r) do not always exist in positive charac-
teristic. Nonetheless, by base-change, Theorem 4F.1 gives cellular bases over other rings.
Indeed, since Example 3A.2 gives content systems with values in Z[x| for quivers of types

Agljl and C( )1 we obtain cellular bases over K[z] for arbitrary rings K.
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Corollary 4F.3. Suppose that (c,r) is a graded content system with values in K[z] and
let K be commutative domain with 1 that is a K[z]-algebra. Then R}(K) is a graded
K-cellular algebra with cellular bases:

(a) {¥3|(s,t) € Std%(PL)} with weight poset (P%, <) and degree function deg®.

(b) {¥% | (s,t) € Std?(PL)} with weight poset (P%,>) and degree function deg”.
Proof. This is immediate from Theorem 4F.1 since RA(K) = K ®Klz] RA(K[z]). O

Essentially as an important special case, this implies that the (standard) cyclotomic
KLR algebras Z2(K) of type Ag )1 or C, (1 )1 are cellular over any ring K.

Corollary 4F.4. Let K be commutative domain with 1 and suppose that Z2(K) is a

cyclotomic KLR algebra of type Agl_)l, Aco, C’(l)1 or Cso. Then #2(K) is a graded cellular
algebra with cellular bases:

(a) {93 ](s,t) € Std?(PL)} with weight poset (P%, <) and degree function deg®.

(b) {¥% | (s,t) € Std?(PL)} with weight poset (P%,>) and degree function deg”.

Proof. For quivers of type Agl_)l of C (1)1, by Lemma 3A.3 there exist graded content system

(c,r) with values in Z[z] for a deformed cyclotomic KLR algebra R2(]Z[xz]). Therefore,
FZMNK) 2 K ®Z[x] RA(Z[z]) as K-algebras, where K is considered as a Z[z]-algebra by
letting x act as multiplication by 0, so the result follows by Theorem 4F.1. For quivers
of type Ay of Cu, by taking e sufficiently large, this implies that the cyclotomic KLR
algebras of type A and Cy are cellular; compare with [26, Corollary 2.10]. O

Remark 4F.5. For the cyclotomic KLR algebras of type A(ei)l Corollary 4F.4 recovers,
with considerably less effort, the main theorem of Li [45], which generalises [24] to give an
integral basis of Z2(Z). The papers [9, 56] use Websters’ diagrammatic KLRW algebras to

construct different cellular bases for the cyclotomic KLR algebras of types AS)I and Céi)l,
(1)

e—1»

shown that the transition matrix between the 1”-basis of 22 (k) and the “asymptotic

which depend on a choice of “loading”. In type A Bowman [9, Proposition 7.3] has

Webster diagram basis” is unitriangular. In type C, (1 )1, we do not know the relationship
between the cellular bases considered in this paper and those in [56], although it seems
likely that Bowman’s arguments generalise to show that the transition matrices between
these bases is unitriangular in the “asymptotic case”.

Remark 4F.6. The cellular bases in Theorem 4F.1 give graded Specht modules for the

cyclotomic KLR algebras %2 (k). In type Agl_)l this recovers the results of [13, 24]. Ariki,
Park and Speyer [8] have given a conjectural construction of graded Specht modules in

type C( )1 using analogues of the homogeneous Garnir relations from [40], and they have
proved these conjectures in type Cs. As shown in [55], it is easy to prove the conjectures
of [8] using Theorem 4F.1.

It is very difficult to do calculations with the cyclotomic KLR algebras %Z2. In contrast,
it is very easy to calculate with the 1-bases of R2(K[z]) because the transition matrices
to the corresponding seminormal bases are unitriangular by Proposition 4A.17 and the
action of R} (k[z]) on the seminormal bases is completely described by Proposition 4A.10.
The rest of this paper can be viewed as theoretical applications of this observation. In a
different direction, this observation is used in [17, 54] to implement the cyclotomic KLR

algebras of types AS) and C; . )1 in SAGEMATH [66].
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An R-algebra A is a graded symmetric algebra algebra if there is a non-degenerate ho-
mogeneous bilinear form (, ): A x A— R of degree d such that (ab,c) = (a, be), for all
a,b,c € A; compare [18, Definition 66.1]. Hence, combining Theorem 4E.10 and Theo-
rem 4F.1 yields:

Corollary 4F.7. Let a € Q;. Then RA(K[z]) is a graded symmetric algebra with homo-
geneous trace form of degree —2 def(a).

The bilinear form ( , ), is defined over k. So, in view of Lemma 3A.3, we obtain the
corresponding results for the cyclotomic KLR algebras %g(Z)

Corollary 4F.8. Let a € Q. Then #2(Z) is a graded symmetric algebra with homo-
geneous trace form of degree —2def(«). In particular, the cyclotomic Hecke algebras of

type A( )1 and C (_)1 are graded symmetric algebras over any ring.

For the cyclotomic KLR algebras of type Ag]l, Corollary 4F.8 was first proved as [24,

Corollary 6.18]. Later, Kashiwara [35] and Webster [69, Remark 3.19] used categorical
and diagrammatic arguments, respectively, to show that cyclotomic KLR algebras of sym-
metrisable type are graded symmetric algebras.

As our first application of the trace form on R2(k[z]) we show that the graded Specht
modules S5 (K[z]) and S5(K[z]) are dual to each other, up to shift.

Proposition 4F.9. Suppose that K is a K[z]-module and let A € P%, for a € Q;f. Then
SNE) = ¢V (K)® and - S{(EK) = ¢TIV S{(K)”
as RA(K[z])-modules.

Proof. The two isomorphisms are equivalent so we prove only the first one. For s € Std(\)
let 65 € gdef(X) S5 (K)® be the unique K-linear map such that

0,(UF) = (Ve Ug) > for € Std(N),
Define a homomorphism O: S5 (K)— S5 (K)® by O(¢d) = 6s, for s € Std(A). By Corol-

lary 4D.6, deg®(t3) + deg”(t}) = def(X), so © is a homogeneous map of degree zero into

qdefx )(SD( ))®. In view of Lemma 4E.4, © is an R}(K)-module homomorphism and,
by Theorem 4E.10, it is an isomorphism of K-modules. O

In particular, the specialisation of 2 to 0, which corresponds to taking K = K, shows
that
S3(k) = ¢t f NS (K)®  and  SK(K) = ¢V ST (k)®
as %2 (k)-modules. In view of Lemma 3A.3, and base change, k can be an arbitrary ring.

In type Agl_)l, this recovers [24, Proposition 6.19].
As the last result in this subsection, we note that combining Lemma 4E.6 and Theo-
rem 4F.1 gives the following useful strengthening of Proposition 4C.5(b).

Corollary 4F.10. Suppose that 1 <m < n and s,t € Std(X), for A € P.. Then
YmWs = cm(s)VG + Z cuviy and YmWg = cm(s)¥g + Z duw gy
(u,v) < (s,t) (u,v) > (st)
for some ¢y, dyy € K[z] such that
e ¢y # 0 only if r(u) =r(s), r(v) = r(t) and either p< X, or p = A, v=tand u<s,
e dy # 0 only if r(u) = r(s), r(v) = r(t) and either >\, or g = A, v=tand ups.
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Notice, in particular, that the coefficients of the leading term 1% are zero in the standard
KLR algebras Z2 (K) since c,,(s) is a polynomial in K[z] with zero constant term by the
degree requirements of Definition 3A.1. Hence, it follows that y'Std( M, = 0in RA(K)
>~ %7 (K), generalising [26, Corollary 4.31].

5. GRADED SPECHT AND SIMPLE MODULES

This section uses the cellular bases of Theorem 4F.1 to construct complete sets of
graded simple modules for R2(K[z]). We prove some identities relating the decomposition
matrices associated to the different bases and over different fields. Some of these results
will be instrumental in the next section when we show than the algebra @, - o RA(K[z])
categorifies the integral highest weight module L(A) of the corresponding Kac-Moody
algebra.

In this section we slightly weaken the assumptions of the last two sections and assume
that (T', QF, W7) is a k[z]-deformation of a standard cyclotomic KLR datum (T, Qr, W)
and (c,r) is a (graded) content system with values in K[z]. Assume that K is a field that
is a k-algebra, so that R}(K[z]) is a graded K[z]-cellular algebra by Corollary 4F.3. As
explained below, the results in this section apply to the standard cyclotomic KLR algebras
of type Agl_)l, Ao C’(l)1 and Cy since the graded irreducible R2(K[z])-modules and the

graded irreducible 5?3( )-modules coincide.

5A. Irreducible modules. This subsection describes the irreducible graded Rﬁ-modules7
both as subquotients and as submodules of R}. Recall that K is a field that is a k-algebra.

Let L be a K[z]-module. Fix A € P. Via (4B.3), the K[z]-cellular algebra framework
equips the Specht modules S5(L) and S5(L) with homogeneous symmetric associative
bilinear forms that are characterised by

(W& U vl = viewd and (U5, U0)S Ul = Yoy, (5A.1)
for s, tu € Std(X). The radicals of the graded Specht modules are the submodules:

rad SY(L) = {a € Sy(L) | {(a,b)5 =0 for all b € S5(L)}

rad S} (L) = {a € SX(L) | (a,b)5 =0 for all b € SX(L)}.
Note that these definitions make sense for any (graded) K[z]-module L.
Definition 5A.2. Let u € P., for @ € Q;f. Let L be a k[z]-module and define

Dy, (L) = S,(L)/rad S,(L) and Dy (L) = S,,(L)/rad S}, (L)
If K = K[z] then D},(K) and D;(K) are RA(K[z])-modules. Set
Ki={wePl|DiK)£0}  and K5 ={mePL|DL(K)#0}.

Let K5, = U, c g+ K& and K7 = U, ¢ o+ Ko

When the choice of L is clear (usually, L = K), then we write D}, and Dy,

As K-vector spaces, with respect to the z-grading, D;(K) is the degree zero component
of Dy, (K[z]) and Df(K) is the degree zero component of Dy, (K[z]). The modules Dy, (K[z])
and D'>( [z]) are free K[z]-modules, and so infinite dimensional K-vector spaces if z # 0,
whereas Dj;(K) and Dy, (K) are finite dimensional K-vector spaces upon which each = € z
acts as multiplication by 0.
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Even though our notation does not reflect this, the sets K and K. depend on p and, a
priori, on the field K. In type A( )1 the sets I and K? have already been determined [2, 11].
(1)

In Theorem 6F.14 below we give a uniform characterisation of K and K in types A,

and C (1 )1 In particular, this result shows that the sets ;) and K} do not depend on the
choice of field K.

Combining Theorem 4C.3 and Theorem 4B.6 we obtain:

Theorem 5A.3. Let & € {<,>} and suppose that K = Kz]. Then {¢*Dy;(K)|pn €
K& and z € Z} is a complete set of pairwise non-isomorphic irreducible graded RA(K[z])-
modules. Moreover, D;; (K) is a graded self-dual RA (K[z])-module, for g € K2.

By Corollary 4F.4 and Example 4B.7, the set of isomorphism classes of irreducible
graded % (K)-module coincides with the set of isomorphism classes of irreducible R (K[z])-
modules. The point is that if L is a K[z]-module and some = € z does not act on L as
multiplication by zero then D/ (L) is not irreducible.

We next show how to realise the graded simple modules of RA(K[z]) as submodules of
RA(K[z]), up to shift. To do this we first need a similar description of the Specht modules,
for which we use the elements 23 and z§ from Definition 4E.8. Extending the definition
of zy, for s € Std(X) set

25 = Yagzy = ¢St< wlt><‘t<’ and 7 =Yg 2y = wit;wf;t;-
Lemma 5A.4. Let A € P.. Then there are R2(K[z])-module isomorphisms
RA (K[z]) 25 & glefV)+dee” t5 g3 and RA (K[z]) 25, = gaefV)+des” & g8
Moreover, these modules have bases {z3 |s € Std(A)} and {z5 |s € Std(\)}, respectively.

Proof. Let {A,v} = {q,>}. By Corollary 4FE.7, there is a well-defined, homogeneous,
R2 (k[z])-module homomorphism 7y : glefV)+deg” Y Sy —RA(K[z])zy given by

™ (wftA + (Rﬁ)“) = 2% 0 =22, fors e Std(N).
A A A A

By Theorem 4C.3, wf is homogeneous of degree zero. The set {22 |s € Std(A)} is a basis
for the image of 7* since multiplying by the idempotents F;, for t € Std(\), shows that

these elements are linearly independent. Hence, R2(K[z])zy = im 7 in view of Proposi-
tion 4E.9. The result follows. O

By Definition 4E.8, ¢f§t§z§\ = ziib‘;iti and wfiti 25 = zj“w%\t;, for A € PL. Apply-
ing Lemma 4A.3,

Prae 2x = Vise - Ve Ui = Vi Wi - Urss = Al (BA.5)
and, similarly, wt%tq Z5 = ziwt%tq The next result, which has its origins in the work of
James [29, §11], shows that these elements generate the simple R2 (K[z])-modules.
Theorem 5A.6. Suppose p € K and v € K, for a € QF. As RA(K[z])-modules,

qzdef(”HdegqtinL(K) = RQ(K)Zfﬂﬁfgtz and qzdef( v)+deg® t*DD(K) n(K)Zﬂ/Jt,D,tg
In particular, D}, (K) # 0 if and only if zjq/;fﬁtz # 0 and Dy, (K) # 0 if and only if 254 4
0 in RA(K[a]).
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Proof. We prove only the first isomorphism as the second isomorphism follows by symme-
try. We first prove some related results over K[z]. As in the proof of Proposition 4F.9, de-
fine 6, € S (K[z])® by 0:(¢) = To(Yieg Yise), for t,u € Std(p). Using (5A.5), Lemma 5A.4

and Proposition 4F.9, there are homogeneous R2 (k[z])-module homomorphisms (the reader
is welcome to determine the degrees of these maps),

S(K(z]) L RA(Kla))z > R (K[a]) 2, - S5(Kla))®,

given by f(¢5) = 2§ = Yaszy, g(a) = a¢tgt; and h(zy) = 6, for tableaux s,t € Std(u)
and a € RA(K[z])). By Lemma 5A.4 and the proof of Proposition 4F.9, f and h are

isomorphisms. Let 8 = ho g o f be the composition of these three maps. To determine 8,
for s € Std(p) write

N 4> >
Zs = wstﬁwtﬂtﬁ = Z Ay for ay, € L.
(u,v) € Std?(P4)

By (C2) and Theorem 4F.1, ay, # 0 only if Shape(v) < p, with equality only if v = t}.
Therefore,

0(65) = h (508, ) = h ( > awwﬁvwf;tz)
(u,v) € Std2(PE)
= Z autjh <¢itﬁ¢§ﬂtz> = Z autﬂ‘gu:
u € Std(p) u € Std(p)

where we have used Corollary 4E.7, for the third equality, and Lemma 4A.3 for the last
equality together with the identity 2] = ut> Z[)tt> t, ¢Et§¢fﬂ £, Consequently, since 7, is
a trace form,

W = Y aupbu(@) = Y gt (Vi vi)

u € Std(p) u € Std(p)
— > <
= Ta Z autﬁ¢utﬂ¢tjt
u € Std(p)

= Ta ( Z auvwi\,¢fﬁ t) , by Corollary 4E.7,
(u,v)

€ Std2(PY)
= Ta (ZS Vi t) =Ta (wita e tgwtqjt) = Ta (Wtil ra s t¢:t<7>
= (5 U o (Warg Vg ) = (W8 ¥R Ta(23) = (W8, Y3,

where the first equality on the last line uses Corollary 4E.7, and the definition of the inner
product on S} (K[z])), and the last equality follows by Proposition 4E.9. Hence, ignoring
the degree shift, § is the natural K[z]-linear map from S5 (k[z])) — S5 (K[z]))® induced by
the bilinear form (, )§ on S;(K[z])).

Finally, to identify D7 (K), consider K as a K[z]-module by letting each z € z act as
zero. Tensoring with K, the calculations above show that, for the induced maps after base
change, 6 # 0 if and only if Dj,(K) # 0. By construction, the maps f and h are both
isomorphisms, so Dy, (K) # 0 if and only if g # 0, which is if and only if zﬁwfﬁtz # 0.
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Further, if Dj;(K) # 0 then quZ(K) = im(go f) = Rﬁ(K)zjz/Jfﬁtz, for some d € Z.
Inspection of the maps, using (4.32a), shows that d = 2def(\) + deg”t5. O

Remark 5A.7. If u € K3 then the simple module Rﬁ(K)z:‘L@bfﬂtZ is the socle of a projective
cover of D}, (K), up to shift. The module RA(K) zjwfﬂ w, 18 spanned by {z&/;fﬁ e, |s € Std(w)}.

5B. Graded decomposition numbers. This subsection introduces graded decomposi-
tion matrices together with the key result that these matrices are unitriangular. This will
be used in the next section to construct bases in the Grothendieck groups of RA(K[z]),
which we use to prove Theorem C from the introduction.

If M is an R} (K[z])-module and D is an irreducible R2(K[z])-module then the graded
decomposition multiplicity of D in M is the Laurent polynomial

(M:Dl,=3" [M:¢"'D| ¢* eN[a,q],
keZ
where [M : ¢®*D] € N is equal to the number of composition factors of M that are
isomorphic to ¢*D.
The graded decomposition numbers of R2(K[z]) are the decomposition multiplicities

da(0) = [SEK0: DEMO]  and diE(e) = [S5(K): DE(K)), (5B.1)

for X € PL, € K and v € K5. The graded decomposition matrices of R (K[z]) are the
matrices

DK — (di(@)  and DI = (dS(0).

The most important result that we need about the decomposition matrices of R (K[z]) is
the following.

Theorem 5B.2. Suppose that K is a field and that A € PE.
(a) If p € IC;, then dﬁi(q) =1 and d§;(q) # 0 only if X < p and ay = ay.
(b) If v € K% then d¥%(¢) = 1 and d§>(q) # 0 only if A > v and ay = .

Proof. Let & € {a,p}, XA € Pf; and p € K2. The theory of graded cellular algebras,
via Theorem 4B.6, shows that the decomposition matrix DX is unitriangular when the
rows and columns are ordered with respect to any total order that refines A-dominance.
Hence, dﬁﬁ(q) =1 and d§ﬁ (¢) # 0 only if AAp. The remaining claim follows because
the cellular bases of Theorem 4F.1 give the decomposition R (K) = @, cor RA(K[z]) of

RA(K) into a direct sum of two-sided ideals. O

For p € K, let Y, be the projective cover of Dy, as an RA(K)-module. Similarly, let Y,
be the projective cover of D as an R2(K)-module, for v € K.

Proposition 5B.3. Let K be a field.

(a) Let pp € K5. Then Y has a filtration Y, = Y}y D Yy D --- DY, such that

there exist (-partitions Aj, ..., A, € P with You/ Y & d§f\k(q) X, and k >1
whenever A < A;.

(b) Let p € K. Then Y;; has a filtration Y7 = Y7, D Y7, D -+ DY, such that
there exist (-partitions Aj, ..., X, € P! with Yoe/ Y & d&ik(q) X, and k >1

whenever Ap > ;.
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Proof. This comes from the general theory of (graded) cellular algebras; see [21, Theo-
rem 3.7] or [24, Lemma 2.25]. O

Define graded Cartan matrices CK< = (C§Z(q)) and CK” = (K (q)) by

Kn(@) = [vi: D] and (o) =7 D3

If M is matrix let M7 be its transpose.
Standard arguments now show that the K[z]-cellular algebra R2(K[z]) enjoys the fol-
lowing graded analogue of Brauer-Humphreys reciprocity; compare [24, Theorem 2.17].

Corollary 5B.4. Suppose that Kis a field. Then CK< = (DK9)T DK< and CK> = (DK*)T DK,

5C. Adjustment matrices. Following Lemma 3A.3, in this subsection we assume that
k = Z, so the content system (c,r) is defined over Z[z]. By assumption, K is a field that
is a k-algebra, which means that we are assuming that K is a field. Then the algebra
RA(K[z]) = Klz] ®z}y R (Z[z]) is a graded K[z]-cellular algebra by Theorem 4F.1. The
main result of this subsection compares the decomposition matrices of the two algebras
RA(Qlz]) and R (K[z]).

Let A[I"] be the free A-module generated by I"™. The g-character of a finite dimensional
RA(K[z])-module M is

ch M = > (dimg M;)i € A[I"],

ieln
where M; = 1;M, for i € I". For example, ch Sy (K[z]) = Ztesw()‘)q g (t)r(t).
The bar involution is the Z-linear involution on A given by setting f(q) = f(q )
f(g) € Z. Extend the bar involution to an automorphism of A[I"] by declaring that i = i,

for i € I". It is easy to see that ch(M®) = ch M.

The following result is well-known and is easily proved by induction of the height of
a € Q. This result is stated as [36, Theorem 3.17], with the reader being invited to
repeat the proof of [39, Theorem 3.3.1].

Theorem 5C.1. Let K be a field. Then the character map ch: [Rep R} (K[z])] — A[I"]
is injective.

The definition of the modules Dj,(L) and Dy, (L), and the radicals of the Specht modules,
makes sense for any Z[z]-module L. For p € K and v € K, define

EL(L) = L&zp) Dp(Zlz])  and  EJ(L) = L @z Ey(Z[z]).-
For A € P!, let
= (twe.v)3)

be the Gram matrix of the bilinear form (5A.1) on the Specht module Sf. By considering

s,teStd(A)
the Smith normal form of Gf, it is straightforward to prove the following. (Compare
with [52, Theorem 3.7.4].)

Lemma 5C.2. Let p € P, and & € {<,>}. Then Ep(Z[z]) is a Z[z]-free RA(Z[z])-
module. Moreover, D;; (Q) = E(Q).

The following polynomials define a map between the Grothendieck groups of R2(Q[z])
and R (K[z]).
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Definition 5C.3. Let K be a field, & € {<,>} and p, v € K. Define Laurent polynomials
agp (@) by
ake (@) = > [B2 Q) 1 ¢" DR (K)] ¢ € N[g,47"].
qe”Z

The matrix AK® = (a Kﬁ (q)) is the graded adjustment matriz of R} (K[z]).

Theorem 5C.4. Suppose that K is a field and let A € {«,>}.
(a) If p,v € K. then aKA( ) # 0 only if pAv and o, = a,. Moreover, akp (q) =
ay (9).
(b) As matrices, DK® = DR2AKA That is, if A € P{ and p € K2 then

A2 () = 3 d¥(9)ak5 (a).

ueKﬁ

Proof. Every composition factor of E;(K) is a composition factor of S;; (K), so the first
statement in (a) follows from Theorem 5B.2. By Lemma 5C.2, the adjustment matrix
induces a well-defined map of Grothendieck groups AK* : [Rep RA(Q[ 1)] — [Rep RA(K[z])]

given by
A ([D2Q]) = [E2 ()] = X alse(a) DR (K)]
;LEIC
Taking g-characters, ch D;;(Q) = ,,aw( ) ch DA(K). Applying ® to both sides, the

KA

self-duality of the simple modules now implies that a,,“ 0 (q) = avy,

proof of part (a). To prove (b), observe that

Y d5;(q) ch D (K) = ch 53 (K) = ch S5 (Q)
ueK

(q), which completes the

= Y d¥(g)ch DS (Q)

VEICA

= Y d}(g)ch ES(K)
VEKA

= Y d¥ (@) Y akh(q)ch DS (K).
veks peks

Comparing the coefficient of ch Dﬁ(K) on both sides using Theorem 5C.1 proves part (b).
O

We prove in Theorem 6F.14 below that K5 (K) = K5 (Q) for any field K, which implies
that AK® is a square unitriangular matrix.

5D. A Mullineux-like involution. Theorem 5A.3 gives two descriptions of the simple
RA(K)-modules {*D;(K)} and {¢*Dy(K)}. The aim of this subsection is set up the

machinery for comparing these different constructions of the simple R (K)-modules. We
start with a definition.

Definition 5D.1. Let m: K7 — K}, be the unique bijection such that D} (K) = Dbm(u)(K),
for p € IC5.
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If p € K5, and v € K7, then, by Theorem 5A.3, the modules ¢* Dy, (K) and ¢¥ D (K) are
self-dual if and only if 2 = 0 and y = 0, respectively. Hence, the map m of Definition 5D.1
is well-defined.

Like the sets IC5 and K}, priori, the map m depends on A, p, and the field K. We give
an explicit description of m in Corollary 6F.15 below, which shows that m is independent
of K. In the next subsection we show that m is closely related to the sign isomorphism.
In particular, in the special case of the symmetric groups, the map p — m(u)" is the
Mullineux map [59].

Recall from subsection 5B that YMA is the projective cover of Dﬁ, for p € K. Hence,
we have:

Lemma 5D.2. Let p € K. Then Y, = Ynﬁ(“).

Using m we can give the precise relationship between the graded decomposition numbers
d§2 (q) and d¥>(q). In particular, this shows that the graded decomposition matrices DK<

and DK> encode equivalent information.
Recall from the last subsection that the bar involution is the Z-linear automorphism of

Agiven by f(q) = f(¢™).
Proposition 5D.3. Suppose that K is a field.

(a) If X € PL and p € K then d§2(q) = qdef}‘dffn(u)(q).
(b) If XA € PL and p € K then d§2(q) # 0 only if m(p) <A

dp.
(c) If A € P! and v € K% then d¥>(q) # 0 only if m~1(v) > A >

Proof. Using formal characters and Proposition 4F.9, we have

> d5ii(g) ch D;i(K) = ch S5(K) = ¢ ¢h S5(K)® = ¢?'Veh S5 (K)
pneKy

g' ™ 3N di (q)ch Dy (K)

vekKy

def \) Z dK|> ChDD( )
vekKkh

def )\) Z d ChDD( )(K)
pneKy

where the second last equality follows because D% (K) is self-dual by Theorem 5A.3.
Part (a) follows by comparing the coefficient of ch D7, (K) on both sides using Theorem 6F.8.

For (b), if dﬁq( ) # 0 then XA < p by Theorem 5B.2. Moreover, dk> ( ) # 0 by (a),
so A > m(p) by Theorem 5B.2. The proof of (c) is similar. O

Recalling the adjustment matrices of subsection 5C, we obtain:

Corollary 5D.4. Let K be a field and p, v € K. Then aKfL(q) ak” (q).
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Proof. Using Theorem 5C.4 (b), twice, and Proposition 4F.9,
> dR(@afi(a) ch Dy(K) = ch S3(K) = ¢*Veh SF(K)

v,u €Ky
gt 3 d (g) 3Kz (g) ch D% (K)
o, TELy
Q<1 JK
Z Z d ml>(1/ m(p,)( )ChDE,(K)’
peIveks

where the last equality uses Proposition 5D.3(a), where we set & = m(v) and 7 = m(u).
The result follows by Theorem 5C.1. U

Part (a) and Theorem 5B.2 imply that if p € IC then dﬁq(ﬂ)u(q) = qdef) = dLKL‘fn(u) (q)-

Example 5D.5. Suppose that I' is a quiver of type Cél), A = Ap and n = 6. Direct
calculation shows that the graded decomposition numbers of RQO(K[Q]) are:

—~ Al — o —~ R
—~ —~ [aN] - <f — o -
— [a\] — (&N — — - — [a\]
6)] 1 (1% [ 1
5, 1) | ¢ 1 2,1M ¢ 1
(42| ¢ ¢ 1 (22,1) | ¢ ¢* 1
(4,12) | . . 1 (2% | ¢® q
)| . g (3,1%) 1
(3,2,1) 1 (3,2,1) . . 1
(3,1%) .q B3Hlege . & .
(2°) | ¢ 7 413 . . . q
22,1 | ¢* ¢ ¢ 42 |é¢ ¢ ¢
(2, 12) qz ¢ (5,1) qz 7
(1°) | ¢ 6) | q

Klz]«

Graded decomposition matrix Dy

Klz]>

Graded decomposition matrix Dy

In particular, these decomposition matrices are independent of the characteristic and, in
this example, the map m sends a partition to its conjugate, as defined in subsection 4A.

Remark 5D.6. If K is a field of characteristic zero, and if R (K [7]) is an algebra of type
AE, )1, then Proposition 5D.3 implies that if X # p then 0 < degd ( ) < def(p), with
equality if and only if A = m(p); see [52, Corollary 3.6.7]. This result follows because

in this case d§A( ) € dap + gN[g] by Corollary 6E.17 below. In positive characteristic,

and in type C( )1, this is no longer true. Even in type Ag )1, combining Proposition 5D.3

and [20, Corollary 5] (and [52, Example 3.7.13]), shows that the degrees of the graded
decomposition numbers are not bounded by the defect in positive characteristic.

5E. The sign isomorphism. A sign isomorphism of the KLLR algebras of type Aél_)l was

introduced in [40, (3.14)]. This subsection generalises this map to include the quivers of

(1)
()

type A,;, many of the results in this subsection are graded analogues of results in [27,

§3).

type C,_; and it describes its effect on the Specht modules and simple modules of RA In

2, p.193-297
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Definition 5E.1. The sign automorphism of I' is quiver automorphism ¢: I' —IT" given

by
‘ e —i (mod e) for type Agl_)l,
=)= {e —1—1 for type C’él_)l,
fori € I. Ifi= (i1, ..., in) € I" let i = (c(i1), ..., £(in)) € I™

It is straightforward to check that c;; = c.(;)e(;), for all 4,5 € I, showing that ¢ is a
quiver automorphism of I'. The sign automorphism of I' induces automorphisms of the
lattices Pt and Q™, given by A — A® and a — of, that are uniquely determined by

(o |A%) = (0‘::/(7;) A) and (a}/ ’ of) = (a;/(j) ’a) , fori,jel,

respectively.

By definition, the algebra RA(k[z]) depends on the families polynomials W7 and Q7
from Notation 2C.7. Define polynomials W7° = (W (u)); e r and Q7° = (ij’6 (u,v))ijer
by

W (u) = Wf(i)(—u) and fo(u,v) = Qf(i)a(j)(—u, —v), fori,jel. (5E.2)

7

Set *RA = RAZ(Q5, W3). If (c,r) is a (graded) content system for R then (—c,cor) is a
graded content system with values in K[z] for °R2.

If p= (K1, ..., ke) is an ¢-charge for A then p* = (—ky, ..., —k1) is the corresponding
signed charge.

Proposition 5E.3. Let A € PT and a € Q*. Then there is a unique graded algebra
isomorphism ¢: R2 (k[z]) — *RA(K[z]) such that

5(1i) = 1, e(Yr) = —g and e(Ym) = —Ym,
foriel", 1<k<nand1l<m<n.

Proof. Checking the relations in Definition 2C.2 shows that there is a well-defined surjec-
tive homomorphism isomorphism e: R2(K[z]) — *R2(K[z]) of graded algebras. By sym-
metry, there is also a well-defined surjective graded algebra homomorphism &’: € RQ — Rg.
By definition, e o’ and €’ o¢ are identity maps, so the result follows. (Hereafter, we abuse
notation and use ¢ for both of these isomorphisms.) O

The isomorphism ¢: R2 (k[z]) — *RA (K[z]) of Proposition 5E.3 is the sign isomorphism.
This generalises the sign automorphism of the group algebra of the symmetric group, which

corresponds to the special case when A = Ag in type Agl_)l for 22 (K), when K is a field.

By base change, Proposition 5E.3 induces isomorphisms RA (L) =+ ¢RA(L) for any K[z]-
algebra L. Setting 2 = 0 we obtain an analogous isomorphism &: %2 (k) — %2 (K).

If M is an *RA-module let M¢ be the e-twisted R2(K[z])-module that is equal to M
as a K[z]-module and where the R2-action is twisted by ¢, so that a - m = e(a)m, for
a € RA(K[z]) and m € M. By Proposition 5E.3, this induces an equivalence of categories
Rep R2(K[z]) — Rep RA(K[z]) given by M + Me. In the special case of the symmetric
groups, this is the equivalence of categories induced by tensoring with the sign represen-
tation. This follows because if K is a field then there is an isomorphism Z20(K) = K&,
by the main result of [10] and in this case e induces an auto-equivalence of Rep Z2°(K).
More generally, ¢ induces an auto-equivalence of Rep RA (K[z]) whenever A = A®.
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Most of our notation so far implicitly depends on A and sometimes « and p. To avoid
ambiguity, we decorate our notation with ¢ whenever it is applied to objects associated
with the algebra R2(K[z]), and we continue to use our existing notation for the alge-
bras R2(K[z]). In particular, Sy and Df;¢ are the graded Specht and simple RA (K[z])-
modules. The main results of this subsection explore the twisted modules (Sf‘e)E and
(De)s, for X e Pt and p € K5

We need “sign adapted” combinatorics for the KLR algebras. As suggested by the ter-
minology, in the representation theory of the symmetric groups this is given by conjugate
partitions and tableaux, as defined in subsection 4A.

Extending the definition of the conjugate of an L-partition from subsection 4A, the
conjugate of the node A = (m,r,c) is the node A" = (¢ — m + 1,¢,r). In particular, if
X € P! then its conjugate is X = {A’| A € A} and the conjugate of t € Std()) is the
tableau t' € Std(\’) given by t'(A) = t(4’), for A € X. If A is a node then (A’) = A, so
conjugation is an involution on the sets of ¢-partitions and standard tableaux.

A straightforward walk through the definitions reveals that the following identities hold.

Lemma 5E.4. Let A € P, for a € Q. If A € X then
di(N) =dy(X),  di(XN)=dy (),
d; (X') = dz(3)(N) and def®(X") = def().
Moreover, if s € Std(A) then r(s’) = r(s)?, degl(s') = deg”(s) and degZ(s') = deg(s).
Proposition 5E.5. Suppose that s,t € Std(\), for A € P. Then
e(¥5) = Thgv and e(¥g) = Y5
Proof. This is a straightforward exercise in the definitions. Observe that t3 = t37 and
t3 = t37. Consequently, if u € Std(\) then dif = d7, and dj° = dj,. By Definition 4A.5
and (5E.2), y37 = £y and 57 = £y3, implying the result. g
For the Specht modules of the symmetric groups, James [29, Theorem 8.15] proved the

famous result that S = sgn ® S, where S is a Specht module for the symmetric group
G, and sgn is its sign representation. This next result generalises James’ theorem.

Corollary 5E.6. Suppose that A € P, for o« € Q. Then S5 = (S55)° and S5 = (S5)°.

Proof. By Proposition 5E.5, (Rg)ﬂ)‘ = ((ERQ)EA/)E and (RQ)E)‘ = ((ERQ)@‘/)E, implying

the result. O
This allows us to identify the twisted simple *RA-modules as R2-modules. The result
says that these modules are isomorphic once you conjugate the ¢-partitions and interchange

the <-simple modules and the >-simple modules. The simple modules are defined over the
field K.

Corollary 5E.7. Let p € K and v € K7,. Then Dy, = (D}7)° and Dy, = (Dy7)°.

Proof. Let head(M) be the head of M, which is its maximal semisimple quotient. Then,
using Corollary 5E.6, Dj; = head(Sy;) & (head Sj7)° = (D}7)°. The second isomorphism
is proved in exactly the same way. ]

Recall from Definition 5D.1 that m: K, — K7, is the map given by Dj, = D‘fn(u), for

p € K5 In the special case of the symmetric groups the next result says that the map
p— m(p) is the Mullineux map.
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Corollary 5E.8. Let pu € K. Then
Dy, = Dy )5, Dy = (D)7, Y= (Yo, ))E and Yy, = (YEF)E,

In particular, {D;f " € K7} and {D7 [v' € K} are both complete sets of pairwise
non-isomorphic self-dual irreducible graded RA-modules.

Proof. Using Corollary 5E.7, Dj, = D;(u) = (Dﬁf(“),)6 . The proof of the second isomor-
phism is similar and the remaining isomorphisms follow by the uniqueness of projective
covers. 0

If M is an Rﬁ-module then its socle, soc M, is its maximal semisimple submodule.
Dually, the head of M, head M, is the maximal semisimple subquotient of M.

Corollary 5E.9. Let p € K3 and v € K,. Then
3 15
soc S, = gt (D;E(u)’) and soc S5 = gdef(®) (Dif(,/)/) :
Proof. Using Proposition 4F.9,
~ def ®) a2 gdef o gdef o qdef e
soc S, = soc( (n )SD ) (#) head <S>> ( )DD () (qu( y ) :

where the last isomorphism follows from Corollary 5E.8. The second isomorphism is
similar. O

The last result in this subsection can be viewed as a generalisation of [43, Theorem 7.2].

Corollary 5E.10. Let A € P} and p € K and v € K. Then

ST D], = a sy ] and SR D3] = 0S5 D)

Proof. We prove only the second identity. Using Corollary 5E.6 and Corollary 5E.7,

[siazpzﬂq: [(5;6)6:(0;%)1qz [ ;:pg} = ™[5, : D ()]q

where the last equality follows from Proposition 5D.3 (a) and Lemma 5E.4. U

6. CATEGORIFICATION

This section brings together all of our previous work to prove that the algebras R2 (K[z])
categorify the integrable highest weight modules of the corresponding Kac—Moody alge-
bras, which is Theorem B from the introduction. As applications, we classify the simple
RA(K[z])-modules (Theorem C), and prove their modular branching rules (Theorem D).
To do this we first use the algebras R2(k[z%]) to prove the branching rules for the graded
Specht modules of R2(K[x]), which leads almost directly to our categorification theorem.
We then use the representation theory of RA(K[z]) to describe the canonical bases of the
highest weight modules, which gives us a way of studying the simple modules of R} (K[z]).

Throughout this section we continue to assume that (c,r) is a (graded) content system
with values in K[z] for a cyclotomic KLR algebra R2(k[z]), and K is a field that is a k-
algebra so that R2(K[z]) is a graded K[z]-cellular algebra by Corollary 4F.3. In particular,
as discussed in the last section, Corollary 4F.4 implies that the results in this section apply

to the standard cyclotomic KLR algebras of types AL Ao, C( )1 and Cq

e—1»
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6A. Branching rules. This subsection proves analogues of the classical branching rules
of the symmetric groups for the R2-Specht modules. That is, we describe the modules
obtained by inducing and restricting the graded Specht modules. The strategy is to first
prove the branching rules for the algebras R?(k[z*]) and then to use this result to prove
the branching rules for R2 (K[z]), after which the branching rules for R} and %2 follow by
specialisation. In the next subsection we use these results to show that R} categorifies the
integral highest weight modules of U,(gr).

Before we can begin, we need to define the categories that we are going to work in.
Fix a € QF. Let RepRA(K[z]) be the category of finitely generated graded R2(K[z])-
modules, and similarly define Rep R2(K[xz]). Let Repk R2(K[z]) be the full subcategory of
Rep RA(K[x]) consisting of graded R2 (K[x])-modules that are finite dimensional as K-vector
spaces. Let Proj R2(k[z]) and Projk R2(K[z]) be the additive subcategories of graded pro-
jective modules in Rep R2 (k[z]) and Repg RA(K[z]), respectively. Similarly, let Rep %2 (k)
and Proj %2 (k) Rep R2(K) and Proj RA(K) be the corresponding subcategories of graded
2% (k)-module. and graded R2(K)-modules, respectively.

Set Rep R2(k[z]) = @, cor Rep RA(K[z]), and similarly for the other categories defined
above.

Ultimately, we are most interested in the category Repg R2(K[z]), which is quite differ-
ent to Rep RA(K[z]). For example, the graded Specht module Sy (K[z]) does not belong
to Rep RA(K[x]) but it does belong to Rep RA(K[z]). The categories Repk RA(K[z]) and
Rep L%’,/}(K) are also not equivalent but they have isomorphic Grothendieck groups by the
remarks after Theorem 5A.3.

Let i € T and o € Q;}. Set 15, = > jere lji. Define i-restriction and i-induction
functors:

E®: RepRY, K[z]) — RepRE(K[2]); M+ 1R, (K[z]) ®ga M,

oy a+to; ooy

F{: Rep R (K[z]) — Rep R, (K[z]); M = RY,, (K[z]) 1o ®ra kjag) M-

atao; ata;

Abusing notation, we also write E*: RepRY,; — RepR% and F*: RepRY — RepR% 4
for the corresponding induced functors on these module categories. These functors can
be defined as the direct sum of the functors defined above or they can be defined directly
by replacing each occurrence of 1, ; in the definitions above with 1,; =3 _ . oFf 1o We

further abuse notation and use EZA and FiA for the induced functors on all of the categories
defined above.

Proposition 6A.1. Let ¢ € I. There is a (non-unital) embedding of graded algebras
tni: RY — R7/)+1 such that

L= 1, ¥rlyeply and yply = yml,
forjeI", 1 <r <nand1l<m <n. Moreover, if M € Rep R7/)+1 then Ef\(M) =1,,M
and if N € RepR% then FA(N) =R, 11,;N, so B} and F* are exact functors.

Proof. The relations Definition 2C.2, together with Theorem 4F.1, imply that there is a
unique non-unital algebra embedding ta,q,: RS < RA,  such that

=15, ¥rlje—ply and  ymly = ymls,
forje I 1 <r <nand1l <m < n. In particular, EZA is an exact functor. Kashiwara [35,
Corollary 3.3] proves that F/* is exact. O
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The aim of this subsection is to describe the modules EASY and F/SY, for A € P,
We start with the easier case of restriction, following [53]. If A € {<,>} then Proposi-
tion 4A.17, Sy (K[z*]) has an f“-basis and a 1)*-basis, for which the transition matrices
are unitriangular. Note that S5 (K[z¥]) 2 S5 (K[z*]) in view of Corollary 3C.10 and Propo-
sition 3C.2.

If t € Std(A) let t| = t;(,—1). Let K’ be the field of fractions of k.

Lemma 6A.2. Suppose that A € P, . Then, as RA(K’[azi})—modules,

EM (S5 (K'[2%]) 2 @P Sx_p (K [2%]). and  E} (S5 (K [25]) 2 P S5_5 (K [2%]).
B € Rem;(A) B € Rem;(A)

Proof. This follows from Lemma 3E.1 but to understand how the Specht modules restrict
over K[z] we need to describe the isomorphism explicitly. Let & € {<,>}. By Theo-
rem 4C.3, EM(Sy (K'[z%]) has basis {2 |s € Std(X) and r,,(t) = 4}, which is in bijection
with the set of tableaux |z Std(A—B) where B € Rem;(A). Define a K'[zF]-linear map

0: BN () (K [2*))— D SLpK ) f& - fy,  forse SN,
B € Rem;(A)
(6A.3)
By Proposition 4A.10 this is an isomorphism of R (K'[z*])-modules. O

There are no grading shifts in Lemma 6A.2 because K'[z*] & ¢?K'[zF] as a Z-graded
ring, for d € Z. The analogue of this result over K[z| requires grading shifts that are given
by the integers d5(A) and d% () from Definition 4D.3.

Proposition 6A.4. Suppose that X € P£+ai and let A; > --- > A, be the removable
i-nodes of X. Then there exist R2(K[z])-module filtrations

E} (SA(K[z])) = S5, (K[2]) D S5 ._1(K[z]) D -+ D S5 5(K[2]) D 31 (K[z]) D0
EN(S3(K[a])) = 851 (K[2]) D S5 5(K[z]) D -+ 5 S5,y (K[a]) D 85 (K[z]) 0
with
S5 (K2)) /S5 4 (Klz]) = g™ PS5 (K[a))
and
S5 (K] /S5 (Klz]) 2 ¢V S5y (Kla]), for 1<k <z
Proof. Consider EX(SY). As in Lemma 6A.2, the module EX(Sy (K[])) has basis

{¢d]s € Std(A) and r,(s) =i} = U {¢d sy € Std(A — Ag)}.
k=1

For 1 < k < z, define S5, (K[z]) = (5 | sy € Std(A — A;) for 1 < s < k). Then
EMSK(K[z])) = Sy Kz]) D - D S5 (K[z]) D 0 is an RA (k[z])-module filtration of
EX(S5(K[z])) by Proposition 4C.5 and Corollary 4F.10. In view of Proposition 4A.17,

it follows easily by induction on dominance that the R}(K[z*])-module isomorphism 6
defined in (6A.3) induces R2 (k[z])-module isomorphisms

O Sk (Kla]) /SR o (Kla]) — g AN S5y, (K[2)) 05 = 05,
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This completes the proof for EA(S5(K[z])). The filtration of EX(S%(K[z])) can be con-
structed in exactly the same way. Alternatively, it can be deduced from the filtration of
EX(S5(K[z])) using Proposition 4F.9 and (4.32a). O

By base change, we obtain the corresponding result over any ring L that is a K[z]-

module.

Corollary 6A.5. Suppose that L is a K[z]-module, A € Perai and let A} >--- > A, be
the removable i-nodes of A. Then there exist R2(L)-module filtrations
E}(S(L)) = S3.(L) D S5.-1(L) D --- D 852(L) D S51(L) D0
E}N(SX(L)) = S34(L) 2 8R2(L) D+ 5 85 .1(L) 5 $5.(L) 50
such that
o~ 4% (A
SRD)/ SR 1 (L) = ¢V 83y, (L)
and
k(L) SKpir (L) = g VK4 (L), forl <k <z
In view of Proposition 2C.8, a special case of Corollary 6A.5 gives Specht filtrations of
the Specht modules Sy (L) for the standard cyclotomic algebras %2 (L), for & € {<,>}.

In type A(el_)l this recovers [13, Theorem 4.11] when L is a field and [53, §5] for general L.
Next we consider the induced modules F/*(S5) and F/*(S}) using ideas that go back to
Ryom-Hansen [64]. First, some notation. Let A € {<,>} and suppose A € Add;(\). Let
ti 4 € Std(A+A) be the unique standard tableau such that (ti 1)1 = ty. Note that this
forces tiA(A) =n-+1.
The following example is suggestive of how the graded induction formulas are proved
for the Specht modules are proved over K[z].

Example 6A.6. Let A = (32,2) and consider the quivers Aél) and Cél). The residues in

A are:
0]1]2]A;s 0]1]2]4;
AW [2]0]1 ciV (1o
2 |A4s 211149
A1 Al

In type Agl), take i = 0 so that Add;(A) = {Ai, A, A3} where, as above, A; = (4,1),
Az = (3,2) and A3 = (1,4). The standard tableaux t3 4 and t3 , are:

123
T le 112]3 1239

t[;uAlz 7 8 tl;‘:AQZ 4 5 6 t?\,ASZ 4 5 6
5 7189 718
14 7 719

< 2]5]8 < “

B TS, tha, =[2]5]8 thas =[2]5]8
5 9 36

In type C’él), take ¢ = 1 so that Add;(X) = {41, A3z}
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Lemma 6A.7. Suppose that A € P%, for o € Q. Then, as R, (K'[z*])-modules,

atao;
EMSK 7)) = @D Siea (K [27]).
A€ Add;(N)
and
FMSBE K )= D SKa (K [27]).
A€Add;(N)
Proof. Let & € {a,>}. By Lemma 5A.4, Sy = RA(K'[z%])zy. Hence, it is enough to
describe
FA (R (K [54]) 28) = RA, (€' [o]) 22
Let ta,: RA(K'[2%]) — R4, (K'[2%]) be the embedding of Proposition 6A.1. Now zj) =
vx F,a by Proposition 4E.9, so
A

1

A

tai(2x) = WEalis, =X Fa Y. Sk
tesud(ili) It

1 20\ (6A.8)
=% > k= Y 2Fe,
testd(idi 1t Aeaddi(ed) 2,

ty=ty
where the second equality follows from Lemma 3B.4 and Proposition 4A.10. Note that the
coefficients in the last equation are homogeneous and, hence, invertible in K'[z*]. There-
fore, by Lemma 4A.7, the induced module F/(Sy (K'[z%])) is spanned by the elements
{fsffA |s € Std(A+A) and A € Add;(A)}. Corollary 4A.11 now implies the result. O

The second last line of the proof of Lemma 6A.7 is the reason why we are working over
the polynomial rings K[z] and K'[z*] in this subsection rather than over the multivariate
polynomials rings K[z] and K'[z*].

Proposition 6A.9. Suppose that A € P, and let A; > --- > A, be the addable i-nodes
of X. Then there exist RA, , (k[z])-module filtrations
FH(S3(Klz])) = 53,1 (K[2]) D 85 2(k[z]) D - 2 S5 .1 (K[z]) D 55 .(K[z]) D0
F(S5(Klz])) = S5..(K[z]) D 85 .y (Klz]) > -+ D S5 5 (K[2]) D 851 (K[z]) D0

) o 4% (A

with S5 (K[e]) /55 41 (Kla]) 2 ¢ V55, (Kla]) and

W & (A
S3r(K[e])/ S5 51 (Klo)) = ¢S5y, (Kla).

forl1 <k<z.
Proof. Tf Add;(X\) = () then FA(S5(K[z])) = 0 by Lemma 6A.7, so we can assume Add; () #
0. We only consider FA(S§(K[z])). Set Zg, = g~ 9fM=dee®CIRA, 4, i(2]). Then
FA(SS(K[z])) = Z34, by Lemma 5A.4, so, it is enough to show that Z3; has the required
filtration. To do this we first construct a basis for Z%,.

By Theorem 4F.1, ani(w,'%\]t;) = E(s,t)eStd2(7’£+1)a5t¢[s>t7 for ast € K[z]. Therefore, if
h € RA,; (K[z]) then

tni(h2}) = Z asthy§1i§i¢[s>t
(s.t) €Std?(PL, )
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By (6A.8), we may assume that ast # 0 only if t =t 4, for 1 < k < z. Further,
by Corollary 4F.10, if s # t3 4, then yj‘\lii % can be written as a linear combination of
more dominant terms, so we can assume that s = t. That is,

tn,i(hzy) = Zakhy)‘ll silis e for ay, € K[z].

AAL I 4
By Corollary 4E.7, the product wuthiA i, # 0 only if t§ 4, = V. Since we also need
A A AE ’
r(v) =r(t3 4,); the term ¢SV¢5§,Akt§,A is nonzero only if v=t§ 4 for 1 <1 <k.

For 1 <k <zletng :t§\+Ak(Ak) e{l,....n}, Ypn, =Un... Yy, if np <n+1and
set ¥p. pn, = 1 if ny =n + 1. Observe that ti,Ak = wn,.nktj\‘+Ak. Therefore, in Rﬁﬂ(k[x]),

dAk()\ N di‘k A) < <
Yn+1 Yn.nglng (wtjtj‘\) = Ynt1 ¢n..nky)\1i§i = Unt 4, 1i§‘i7/’n..nk ¢tA+A ™Ay,
14 —
For s € Std(Py, 4,) set 25 = st<1 1/15‘ At . Then we have shown that
Ak(}‘ . q
yn+1 ¢n nkan (thqtq) ¢tAA )\A Zaﬂ/}stq ¢tAA )\A - a’ksta

where the equality follows from Corollary 4E.7. In particular, akij € FiASj‘\, whenever
s€ Std(A+ Ag) and 1 < k < z.

Let M be the free k[z]-module spanned by {zg |s € Std(A + Ay) and 1 <k < z}. We
claim that M = Z3, = FiAS’f\(k), which is equivalent to claiming that a; € kK*, for 1 < k <
z. If z divides some aj, then the K'-dimension of Z3; @y, K’ is strictly smaller than the

K'[z%]-rank of F/AS§(K'[z*]) by Lemma 6A.7, which is a contradiction. Therefore, a € k
for 1 <k < z. An easy argument using Nakayama’s lemma (cf. [25, Proposition 4.6]), now
shows that M = Z3,. In particular, this shows that {2, |s € Std(A+ Ax) and 1 <k < z}
is a basis of Z3;.

We can construct the promised filtration of Z;]\T' Define

Sxe(Klz]) = <z§¢ s € Std(A+A4,,) for 1 <m < k>, for 0 <k <z

Then Z3, = S5;(K[z]) D S3o(K[z]) D --- D S5, 1(K[z]) D S5.(K[z]) D 0 and each
S (K[z]) is an RA(k[x])-submodule of Z3; by Theorem 4F.1. By Corollary 4E.7, for
1 < k < z define homogeneous R2 (k[x])-module homomorphisms

e g NS5 (Kla)) — % (K[]) /S5y (K[2))

by

A+A
T (w + (RA(K[z])) " “) =g, Vi, s, T Sk (Kle)) = 25+ S5 (Kla)),

for s € Std(A+Ayg). By construction, these maps are surjective and hence bijective in view
of Lemma 6A.7. To complete the proof we need to check that the map 7 is homogeneous
of degree 0. Now, deg™(t5 4) = deg™(t) + d4(A) and deg”(t3 4) = deg™(t3) + d3(A).
Recalling the degree shifts in the definition of Z;T,

W

deg 1, = deg (Q/)tiMz & Az) + deg* (tj‘"AJ — (def(X) + deg™(t})) — d3i, (A) =0,
where we have once again used Corollary 4D.6. O
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Corollary 6A.10. Suppose that L is a K[z]-module, A € P and let A; > --- > A, be
the addable i-nodes of A. Then there exist R2,  (L)-module filtrations

ata;

FiA (Sx(L)) = Si,l(L) 2 S;]\,Q(L) DD S;,zfl(L) ) Siz(L) 50
FP(SK(L) = 85.(L) D S5, 1(L) D -+ D S5,(L) D 85,(L) D0
such that

~ o dS (A
S5 (D)/S5 1 (D) = ¢ V55, (1)
and
S5 (D)) S5t (D) = g™ N g5y (1), for 1 <k < 2.

In particular, this result includes filtrations of the induced Specht modules for the
cyclotomic KLR algebras Z2 (k). In type Aél,)l, this includes the main theorem of [25,

Theorem 4.11], which describes Specht filtrations of the %97 (L)-modules F/(Sy (L))
for & € {q,p}.

Finally, we note that we obtain the graded branching rules for the Specht modules of
RA(K[z]) by taking L = K, or L = K[z], in Corollary 6A.5 and Corollary 6A.10.

6B. Two dualities. As in subsection 6A, we continue to assume that (c,r) is a content
system with values in K[z] and let K be a field that is a k-algebra. In this subsection we
work in the categories Repg R2 (K[z]) and Projk R2 (K[z]) of graded R (K[x])-modules that
are finite dimensional as K-vector spaces.

Recall from (2C.4) that ® defines a graded duality on R} (K[z])-modules. Similarly,
define # to be the graded functor given by

M# = HOMga i) (M, RA(K[z])),  for M € Repy R} (K[z]), (6B.1)

with the natural action of RA(K[z]) on M#. Consider ® and # as endofunctors of
Repg RA(K[z]) and Projg R (K[z]). As noted in [11, Remark 4.7], Theorem 4E.10 im-
plies that these two functors agree up to shift.

Lemma 6B.2. Let o € Q. Then # = ¢?31(®) o ® as endofunctors of Repy RA (K[z]).
Proof. By Theorem 4E.10, RA (K[z]) 2 ¢29°1(®)(RA(K[z]))®. If M € Repy RA(K[z]) then
M# = HOMgy i) (M, R (K[]) ) = HOMgy (M, gPder(@ (RQ(KM))@)

=~ HOMg,y (M, ¢**(®) HOM,) (RA(K[]), K[z]) )

12

1 HOMyyy (M 9 ey RE(K[a]), K]
2 def(a) M®

12

q

)

where the third isomorphism is the standard hom-tensor adjointness. All of these isomor-
phisms are functorial, so the lemma follows. O

As M is a finite dimensional K-vector space, (M®)® = M for all M € Repk RA(K[z]).
Hence, (M#)# = M by Lemma 6B.2. Therefore, ® and # define self-dual equivalences
on the module categories Repy RA(K[z]) and Projkx RA(K[z]).
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Proposition 6B.3. Suppose that ¢ € I. Then there are functorial isomorphisms
®o EM = B o®: Repy RA, ; (K[z]) — Repy R (K[z]),
# 0 F* = F o #: Projg R (K[z]) — Projg R£+1(K[~T])-

Proof. The isomorphism ® o E} = Ei/\ o ® is immediate from the definitions. For the
second isomorphism, recall that if P € Projk R}(K[z]) then

HOMga k[a)) (P M) = HOMRga k[a)) (M, RQ(KM)) ORA (Kz)) M
for any R2(K[z])-module M. Now,

(Rﬁﬂ(K[%])ln,i)# = HOMRQHK[x]) (RQH(K[x])ln,h R§L\+1(K[~T])) = RQH(K[x])ln,i,

where the last isomorphism follows because 17*171- = 1,,;. Therefore,
Fp (P#> = HOMRQ(K[m])<Pa RQ(KM)) ©ra (kfa]) R 1 (K2]) 1
= HOMRa (k[a)) (P, R£+1(K[$])1n,i>
= HOMRa (k[a)) (R HOMRa | (k[a) <1n,z‘Rﬁ+1(K[w]), Rﬁﬂ(K[ﬂC])))
= HOMRQH(KM)(P Ora (k(a)) Rt (K[2) i, RQH(K[?U]))
= (FZAP)# )
where the second last isomorphism is the usual tensor-hom adjointness. O

It follows from Proposition 6B.3 and Lemma 6B.2 that the functors ® and FZ»A, and #
and EiA, commute up to shift.

6C. Grothendieck groups and the Cartan pairing. We are now ready to prove the
categorification theorems from the introduction, which will allow us to classify the simple
RA(K[z])-modules and prove our modular branching rules. As in the last two subsections
we continue to assume that R2(K[z]) is defined using a graded content system with values
in K[z], and where the field K is a k-algebra. In particular, this means that the graded
branching rules for the Specht modules for R2(K[z]) are given by the results in subsec-
tion 6A.

Recall that ¢ is an indeterminate over Z and that A = Z[g,¢!]. Let [Repk R2(K[z])],
[Projk RA(K[z])], be the Grothendieck groups of the corresponding categories of graded
R (K[z])-modules, which are categories of finite dimensional K-vector spaces. We consider
each of these Grothendieck groups as A-modules, where g acts by grading shift. If M is a
module in one of these categories, let [M] be its image in the corresponding Grothendieck
group. Since ¢ is the grading shift functor, which is exact, [¢M] = ¢[M].

Rather than considering the Grothendieck groups in isolation it is advantageous to
consider all of them together. Define

[Rep RE(K[])] = @) [Rep RA(K[a])
n>0
and

[Proj R (K[a])| = €D [Projx R (K[
n>0
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These Grothendieck groups are independent of the choice of cellular basis in Theorem 4F'.1,
however, we give parallel categorification results for the two v-bases of RA(K[z]).

By Proposition 6A.1, the induction and restriction functors FZ-A and EZA are exact and
send projectives to projectives. Therefore they induce A-linear automorphisms of the
Grothendieck groups [Repk RS (K[z])] and [Projk RS (K[z])], which are given by

FMM) = [FAM|  and  BMM] = |EMM|

for all modules M and i € I.

Let M and N be free A-modules. A semilinear map of A-modules is a Z-linear map
0: M —s N such that 6(¢?m) = ¢~%(m) = ¢@(m), for all d € Z and m € M. A
sesquilinear map f: M x N — A is a function that is semilinear in the first variable and
linear in the second.

Let (, ): [Projx RY(K[z])] x [Repk RY(K[z])] — A be the Cartan pairing, which is
determined by

([P], [M]) = Oy dimg HOMRga (k[2)) (P, M), (6C.1)

for P € Projx RA (K[z]) and M € Repg RA(K[z]). The Cartan pairing is sesquilinear
because

—k ~ k ~ k
HOMRga (k[ (q P, M) = HOMRa (kju)) (Rq M) = ¢" HOMga (k[ (P> M),
for any k € Z. The Cartan pairing is characterised by either of the two properties:
(VRLDE) = or ([Y2).1D5) = duo (6C.2)
for A, u € K3 or v,0 € K, respectively.
Remark 6C.3. By the remarks after Theorem 5A.3, as abelian groups,
[RepK Rﬁ(K[aﬁ])} = {Rep%ﬁ(K)} and [ProjK Rﬁ(K[m])} ~ {Proj %ﬁ(K)} .
In what follows, we could work with the Grothendieck groups

{Rep%ﬁ(K)} and [Proj%’ﬁ(K)}.

6D. Fock spaces. This subsection proves that [Projx R2(K[z])] and [Repk RS (K[z])] cat-
egorify the integral form and its dual, respectively, of an irreducible integrable highest
weight module of the quantised Kac-Moody algebra U,(gr). We start by recalling the
results and definitions that we need from the Kac—-Moody universe. The arguments in this
subsection are mostly standard, and follow (and correct) [52]. Our approach is similar
to [11] except that we use the representation theory of the KLR algebras to construct the
canonical bases, rather than vice versa. What is non-standard is that these arguments
apply simultaneously in types AS)I and Céi)l.

Recall A = Z[g,¢']. Set A= Q(q). Fori € I and k € Zlet [k]; = (¢ —¢; ") /(¢i —q; 1),
where ¢; = ¢%. If k > 0 set [k];! = [1):[2); ... [k];- For non-commuting indeterminates u
and v and 7 € I set

C
c .
(adqi u) (v) = Z(—l)d%uc_dvud.
d=0
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Definition 6D.1. The quantum group U,(gr) is the A-algebra with generators E;, Fj,
Kii, for ¢ € I, and relations:

_ Ki—K 1
K,K; = K;K;, K;K; ' = 1,[E;, Fj] = 6,

qi—q{Zl ’
KE;K; ' = ¢ E;, K;F;K; ' = ¢ i Fj,
(ady E;)' "% (E;) = 0= (ady )~ (Fy),  for i # j.

The quantum group U,(gr) is a Hopf algebra with coproduct determined by
AK) =K ®K,A(F)=FoK +1®E and A(F)=F®1+K 'oF,
fori e 1.

We will only need basic facts about highest weight theory and canonical bases for Uy (gr).
Detailed accounts of the representation theory of gr and U, (gr) can be found in [3, 30, 47].

Definition 6D.2. Let A € PT™. The combinatorial Fock spaces 3‘:/4\4 and fiﬁ” are the free
A-modules with basis the sets of symbols {s§ | A € P} and {s | A € PL}, respectively.
Set g/_j\\q =A®4y g;ﬁq and fpj\\b :A@Aﬁﬁb_

By definition, fiﬁq and ffﬁ” are infinite dimensional A-vector spaces. For A € {«,>},
identify sy with 1o ®4 sy, for A € P%. Then {sy | X € PL} is an A-basis 9’1}5

Let 0, = (0]...]0) € P! be the empty f-partition. Recall the integers d$(\), & (X),
and d;(A) from Definition 4D.3. Note that these definitions depend on (A, p).

Theorem 6D.3 (Hayashi [23], Misra-Miwa [58], Premat [61]). Let A € PT.

(a) The Fock space #4 is an integrable U, (gr)-module with U, (gr)-action determined
by

—d> <
Ei-si= Y ¢Vl 5 Fesi= > ¢iWsi,y,
B € Rem;(\) A€ Add;(\)

and K; -s5 = ¢~ %MNsg, for i € I and X € PL.
(b) The Fock space Z4” is an integrable U, (gr)-module with U,(gr)-action determined
by

—d3 >
E;-si = Z q dB(A)Si—& Fi-sy = Z qu(/\)sl;\-i-A?
B € Rem; () A€ Add;(N)

and Kj; - sy = q_di()‘)si, fori € I and A € PL.

Proof. To prove (a) and (b) it is enough to verify that these actions respect the relations
of Uy(gr). Recall the sign automorphism of subsection 5E. In particular, by Lemma 5E.4,
dy(A) = & (X'), where if A € Add(A) URem(A) then d5(\) is computed with respect
to (A, p) and d%; () is computed with respect to (A%, p°). Hence, parts (a) and (b) are
equivalent and it suffices to prove (b).

If I' is a quiver of type Agl_)l then (b) is due to Hayashi [23] in level 1, with the result in
higher levels following by applying the coproduct, as was observed by Misra and Miwa [58].

For quivers of type Céi)l, this was proved by Premat [61, Theorem 3.1] in level 1 (see
also Kim and Shin [37]), with the result in higher levels again following by applying the
coproduct, as noted already in [8, §1]. O
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Theorem 6D.3 does not give the Uj,(gr)-actions on the Fock spaces that we want be-
cause this action does not commute with the bar involution on L(A), which is introduced
in subsection 6E below. Let 7: Uy(gr) — Uy(gr) be anti-linear anti-automorphism given
by

T(K) =K', 7(E)=q¢"FK ' and 7(F)=q¢%K,E;, foriel
This map is not an involution but it is invertible. Twisting the U,(gr)-action from Theo-
rem 6D.3 by 7 gives the Ug,(gr)-action on the Fock space that we need.

Corollary 6D.4. Suppose that A € PT.
(a) The Fock space #4 is an integrable U, (gr)-module with U, (gr)-action determined
by

Eisy= Y, ¢2 Vs g, Fisy = > g aWVs3 4,
B € Rem; () A€ Add;(N)
and K;s3 = qdio‘)si, for i € I and X\ € PL.
(b) The Fock space .Z4" is an integrable Uq (gr)-module with Uy (gr)-action determined
by

Esi= Y, ¢V g, Fisy = > g aNs3
B € Rem; () A€Add;(N)

and K;s5 = ¢%Ms3, for i € T and A € PL.

Proof. We consider only (a) and leave part (b) to the reader since this is similar. Us-
ing Theorem 6D.3, and the fact that 7 is an anti-isomorphism of U,(gr), we can define a
new action of Uy(gr) on .F4% by Ejs§ = 7(F)-s3, Fis§ = 7(E;) -s5 and K;s5 = 7(K;) - s3,
for i € I and X € PL. Therefore,

Eisy = 7(Fy) -sy = ¢ Y% KE; - s = > it EN=dpNgg
BeRem;(\)
= > dBWVsiy,
B € Rem;(A)
where the last equality follows from (4.32a). The other identities are similar. O

In what follows we always use the U, (gr)-action on the Fock spaces Z4¢ and 74"
from Corollary 6D.4. We work with both Fock spaces because they are closely intertwined
and by using both Fock spaces we will be able to determine the labelling of the simple
RA(K[z])-modules and the map m from Definition 5D.1. As our notation suggests, the Fock
spaces & ff‘ and % 2” can be naturally associated with the ¢ and >-bases of RA(K[z]),
respectively. To make this connection precise we need a little more notation.

A vector v in a Uy(gr)-module has weight wt(v) = 0 if K;v = ¢y, for all i € 1.
Corollary 6D.4, and (4.32b), imply that if A € P, then

wi(sy) = A —a=wt(s}), forall X e P (6D.5)

In particular, and F# ﬁ” are both integrable highest weight modules for U,(gr) and
53[ and SEZ are highest weight vectors of weight A.

" Let L(A)a be the irreducible integrable highest weight module for U,(gr) with highest
weight A. Then L(A)a = Uy(gr)va, where vy is a highest weight vector of weight A.

Corollary 6D.6. Let A € P*. Then Uq(ar)sg, = L(A)a = Ug(gr)sg, as Ug(gr)-modules.

a A<
F4
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Proof. By Corollary 6D.4 and (6D.5), the vectors saé € 49 and SEZ € 4> are both
highest weight vectors of weight A. Therefore, Uq(gp)saz = L(A)a = q(GF)SEZ required.
O

To make use of this result, recall from subsection 6C that [Repy R2 (K[z])] and
[Projk R (K[x])] are the direct sums of Grothendieck groups of graded R2(K[z])-modules
and graded projective R (K[z])-modules, respectively, for n > 0. In particular,
[Repk R (K[z])] and [Projk RS (K[z])] are free an .A-modules.

Let P! =U,>o P Ké = U, K2 and K5 = U,,» oK. By Theorem 5A.3 and Theo-
rem 5B.2, [Repy R2(K[z])] comes equipped with four distinguished bases:

{[Dal [ e K3} {1Sal[w e K3 A{[Dyl|v e K3}, and {[Sp]|pe KT} (6D.7)

Here, D;, = D},(K), Sx = S:(K), D}, = D;(K) and S;, = S;(K) are finite dimensional
K-modules. In contrast, the projective Grothendieck group [Projy R (K[z])] has only two
natural bases:

Vil lneks) and  {(¥7]|ve ki), (6D.8)

where, as in subsection 5B, Y = Y/(K) and Y;J = Y7 (K) are the projective covers of Dj,

and Dy, respectively. Define elements {y;, | € K3} and {y}, |v € K7} of A and 74,
respectively, by setting
Vu= > dwlosy  and  yp= ) di()sk (6D.9)
AePf AePL
Set
[Repi RY(K[])], =A@ [Repy RE (K[z])]
and

[Proji R} (Kla])], = A [Repc R (K[a])]

Proposition 6D.10. Suppose that A € PT. Identify E; and EZA, and F; and FiAoqdiKi_l,
for i € I. Then there are Uy(gr)-module embeddings

di: [Proj R (K[a])|, — ZAS V] = vi dis [Proju RY(K[a]) |, — ZA% V0]~ vi
and U, (gr)-module surjections

d°: ZA?— [Repk RE(K[al)| 53— [S5] s ZR— [Repe RIK[a])| 35— IS5
Consequently, [Projx RY (K[z])]a & L(A) = [Repk R2 (K[z])]a as U, (gr)-modules.

Proof. Let {2, v} = {«,>}. By Theorem 5B.2 and Proposition 5B.3, there are well-defined
A-linear maps d? and d®, with d:% injective and d* surjective. It remains to check that
these maps are homomorphisms of Uy (gr)-modules.

Let ¢ € I. By Proposition 6A.1, the functors EZA and FZ-A are exact, and send pro-
jective modules to projective modules, so they both induce A-linear endomorphisms of
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the Grothendieck groups [Projx R2(K[z])] and [Repk RY(K[z])]. Taking L = K in Corol-
lary 6A.5 and Corollary 6A.10,

lst)-[mist]- T )
B € Rem; ()
F sy =[Frogdkiisy] = 3 qa@Wrdmd [gp
A€ Add;(N)
- Z q*dZ(A) |:S§+A:| :
A€ Add;(\)

where the last equality uses (4.32a). Therefore, by identifying E; with the functor E},
and F; with the functor F o qdinl, the linear maps d} and d¥ become well-defined
U,(gr)-module homomorphisms by Corollary 6D.4. As U,(gr)-modules, [Repg R (K[z])]
and [Projkx R2(K[z])] are both cyclic because they are both generated by [Yoi] = [SOA@ | =

[DOAZ J. By definition, d7.([Yg,]) = s§, and d*(sg,) = [S5,], so the proposition follows since

Uq(ar)sg, = L(A) = Uy(gr)sg, is an irreducible Uy (gr)-module. O

Since Kisf = qdio‘)sf, for X € P!, we view K; as a grading shift functor on
Repg RA(K[z]), for i € I. Hereafter, for i € I we identify F; and E®, and F; and F o
q%K; ', as functors on Repy RY(K[z]) and Projg RM(K[z]).

Remark 6D.11. Let A € {<,>}. Then Proposition 6D.10 can be interpreted as saying
that there is a commutative diagram of Uj(gr)-modules:

dy

[Projy RS (K[a])] .

g Jdﬁ

The map ¢ : [Projk R) (K[z])]a — [Repyx R2 (K[z])] , is given by the Cartan matrix, which
is the natural embedding of [Projk RY (K[z])]a into [Repk R2(K[z])]a. Of course, d* is the
decomposition map and d:% is its transpose. Hence, Corollary 5B.4 categorifies Proposi-
tion 6D.10.

Remark 6D.12. Let € be the sign automorphism of I" from Definition 5E.1. Abusing
notation slightly, the quiver automorphism e induces a unique automorphism of U,(gr)
such that

€(El) = Ee(i)v €(E) = Fs(z) and E(Kz) = Ke(i)v forallie I

Let Z4°9 = (sFIX € P)a and F4™ = ($§F|A € PL) 4 be the Fock spaces with U4(gr)-
action defined using the functions df (A) and d2¢(A) from subsection 5E. Then Lemma 5E.4
implies that there are U,(gr)-module isomorphisms t5: 42 4™ and t5: F4> = F4°<
given by t5(sy) = s57 and tgﬁ(si) = s}, for A € 735. Equivalently, there are Uq(gp)—modusle
isomorphisms F41 = (F4™)° and F4> = (F47), where the Uy(gr) actions on .4 <
and % ffb are twisted by €. These results should be compared with Corollary 5E.6.
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We need to prove an “integral” version of the Uj,(gr)-module isomorphisms in Proposi-
tion 6D.10 over A. To do this recall that Lusztig’s A-form of U,(gr) is the A-subalgebra

Ua(gr) of Uy(gr) that generated by the quantised divided powers EZ-(k) = EF/[k]! and Fi(k)
= FF/[K]!, for i € I and k > 0. For any A-module A set Ua(gr) = A ®4 Ua(gr).

Corollary 6D.4 implies that U4(gr) acts on the A-submodule .# im of fém; compare
with [49, Lemma 6.15] and [43, Lemma 6.2]. Set

ZA(A) = Ualgr)sg, and  ZZ(A) = Ual(gr)sg,- (6D.13)

Then Proposition 6D.10 implies that A ® 4 Z3{(A) = L(A) = A4 L5(A), as Uy(gr)-
modules, and that:

Corollary 6D.14. Suppose that A € P*. Then Z3§(A) = [Projx R2(K[z])] = L5(A) as
U 4(gr)-modules.

The analogue of this result for [Repy RY(K[z])] requires some Lie theory. Define sym-
metric bilinear forms (, )?: F4Ix FAI—Aand (, )>: FL* x FL>— Aby

(sj‘\, 52)4 = 5}\quef)\ and (Siv SZ)D = 5Auqdef>‘ for X\, pu € PL, (6D.15)

and extending linearly. By definition, both of these bilinear forms are non-degenerate. By
restriction, we consider (, ) and (, )” as (possibly degenerate) bilinear forms on .Z3(A)
and £ (A), respectively.

Lemma 6D.16. Let A € {<,>}. The bilinear form (, )* on .4 (A) is characterised by
the properties:

(SQAZ,SQAL})A =1, (Em,v)A = (u,Fiv)A and (Fu, U)A = (u, Eiv)A,
for all i € I and u,v € Z4 (A).

Proof. By definition, (SQAz’SQAe) = 1. Let ¢ € I. To show that E; and F; are biadjoint
with respect to (, ) it is enough to consider the cases when u = sﬁ and v = sf, for

A, p € Pt By Corollary 6D.4, (]_’Tisﬁ,sf)A =0 = (sﬁ,Eisf)A unless A = u + A for

some A € Add;(A). Moreover, if A € Add;(p) and A = p + A then using Corollary 6D.4
and Lemma 4D .4,

A A
(Fisﬁ, sﬁ) — qeEN)—d{ (1) — defN)—di(w)Fdid () — pdef(u)+d5 (1) — (537 Eﬁf)

Similarly, (Eisf,sﬁ)A = (s}, Fisy )2, forall A, pu € PL. As SQAZ is the highest weight vector
of weight A in the irreducible module A ® 4 jfﬁ (A), it follows by induction on weight that
these three properties uniquely determine the bilinear form (, )* on Z4 (A). O

As the next result shows, the pairings (, )¥ and (, )” are closely related to the Cartan
pairing defined in (6C.1). Recall the functor # from (6B.1).

Lemma 6D.17. Suppose that u € [Projx R) (K[z])] and v € F47 with wt(v) = 3. Then

(d}] (u#> ,v)q = ¢1f®) (y, d(v)) and (d‘} (u#) ,U)D = ¢%f®) (y, & (v))
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Proof. Let & € {<,>}. It is enough to check this when z = ¢*[Y;*’] and v = sy, for a € Z,
A € K2 and XA € PL. As (, ) is sesquilinear, and (, ) is bilinear,

G (g [1,2] 2 (s5)) = g0 S ke ) (2] . [DE])

vek,

A
:qdef( )— adKA _qfa Z d ( )
veks
—a & a # 2
=0 (o () 0)" = (o (o] ") 52)
The last equality follows because [anﬂA]# = q_a[YMA], by (6B.1), since YMA is projective.
]

We can now show that the Cartan pairing is biadjoint with respect to FZ-A and E{\, for
iel.

Theorem 6D.18. Let u € [Projx R2(K[z])], v € [Repk R2(K[z])],and i € I. Then
<FiAu,v> = <u,EZAv> and <EZ~AU,U> = <u,Fl~Av>.

Proof. Let A € {<,>}. Since DK is surjective, we can write v = d*(¢) where © € L 4(A)
and wt(0) = A — a. Then (EMu,v) = 0 unless wt(u) = A — a + «;, in which case we

compute
<E1Au,v> <Eu d*(v) >
— g~ def(@) (d% ((Elu)#) ’@)A by Lemma 6D.17,
gdef(@) Eid:% (u®) 7@) “ 7 by Lemma 6B.2 and Proposition 6B.3,

A

.@) , by Lemma 6D.16,
N

—q def(a)—2def(a—ay) (d? (u#> ’FZ.Q)) , by Lemma 6B.2,

— g def (a—ay) (u, Fyv), by Lemma 6D.17,

where the last equality uses (4.32c) and the identifications of F; and F} o ¢ %K !
from Proposition 6D.10. A similar calculation shows that (u, E*v) = (Flu,v). O

Remark 6D.19. Working over a positively graded ring, Kashiwara [35, Theorem 3.5]
shows that (E}, FM) is a biadjoint pair, which implies Theorem 6D.18. Lemma 6D.17
can be interpreted as saying that the Cartan pairing categorifies the Shapovalov form;
compare [11, Lemma 3.1 and Theorem 4.18(4)].

The modules Z§(A) and £ (A) are standard A-forms of the irreducible Uy (gr)-module
L(A). The corresponding costandard A-forms of L(A) are the dual lattices:

LN ={ve Zi(A)]| (u,v) € Aforall ue LI(A)}
LAN)* ={ve LN | (u,v) € Afor all v e L3(AN)}
By Lemma 6D.17, £ (A)* = {v € A®4 L3 (A) | (u,v)® € A for all u € L5 (A)}.
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We can now prove the main result of this subsection. Categorical analogues of this
result have been obtained by Brundan and Kleshchev [11, Theorem 4.18] in type AW and

e—1
Kang and Kashiwara [31, Theorem 6.2] for all symmetrisable Kac-Moody algebras. The
following theorem provides an explicit bridge between the graded representation theory of
RA(K[x]) and the representation theory of U (gr), which will be exploited in the following

subsections.

Theorem 6D.20 (Cyclotomic categorification). Suppose that A € Q. Then, as U4(gr)-
modules,

ZA(N) = [Proj RMKe])| = 25(0)  and  Z(A)" = [Repe RI(K[a])| = Z5(A)".

Proof. The two isomorphisms for [Projx R2(K[xz])] were already noted in Corollary 6D.14.
Let & € {q,>}. Using the fact that £ (A) = [Projg R} (K[z])], together with (6C.1)
and Theorem 6D.18, shows that £ (A)* 2 [Repk Ry (K[z])] as Ua(gr)-modules. O

In particular, note that Theorem 6D.20 implies that the sets Ky and K, are independent
of the field K. (In fact, this already follows from Proposition 6D.10.) We will soon give
recursive descriptions of these sets.

6E. Canonical bases. A key feature of integrable highest weight modules is that they
come equipped with the closely related canonical bases and crystal bases. This subsection
connects the natural bases of [Projx R2(K[z])] and [Repk R2(K[z])] with canonical bases
of L4(A) and La(A)*.

Lemma 6E.1. Let ¢ € I. Then F;o0® = ®o E; and F; o ® = ® o F; as functors on
Repy Ry (K(z]).

Proof. By Proposition 6B.3, EZA commutes with ® as functors on Repg R (K[z]). There-
fore, it is enough to show that Fj o ® = @ o F; as functors on Repyg RA(K[z]), for a € Q7.
As in Proposition 6D.10, identify F; with the functor FiA o qdiK;1 = ¢ %Ko FiA on
Repg RA(K[z]). Then there are isomorphisms

Fio®x ¢ FAK T o g 2defay by Lemma 6B.2,
o gdi—di(e)=2defaph o 4 where d;(a) = (A — alay),
 gdi—di(@)—2defory FA by Proposition 6B.3,
o g~ 2def(atai) g o pdil@)—di FiA by Lemma 4D .4,
~@oq YK, FN > ®o F, by Lemma 6B.2.

So, E; and F; commute with ® when acting on Repy R2(K[z]) (and as functors on
Projy R (K[z])). .

In contrast, F; and F; do not commute with # — and nor do the functors FZ-A and ®.
The functors # and ® of Equations (6B.1) and (2C.4), respectively, induce semilinear
automorphisms of [Projx R2(K[z])] and [Repk RY (K[z])], which are given by:
[PI* =[PF],  and  [M]®=[M"]
for M € Repk RA(K[z]) and P € Projk RA(K[z]). Lemma 6B.2 shows that these auto-

morphisms are closely related. By restriction, we consider ® as a semilinear automorphism
of [Projy RA(K[z])]

Ann. Repr. Th. 1 (2024), 2, p. 193-297 https://doi.org/10.5802/art.8


https://doi.org/10.5802/art.8

272 Anton Evseev € Andrew Mathas

The bar involution on : Uy(gr) — Uy(gr) is the unique semilinear involution such that
E; = FE;, F, = F, and E:Ki_l, for all i € I.

Recall that A € P* is a dominant weight and that L(A) = U,(gr)va is an integrable
highest weight module, where vy a highest weight vector of weight A. The bar involution

of Uy(gr) induces a unique semilinear bar involution — on L(A) such that Tp = vj and
av =av, for all a € Uy(gr) and v € L(A).

Corollary 6E.2. Let u € Z3(A), v € £5(A) and p € [Projg RY(K[z])]. Then

d'(w)® =d'@), &"@)°=d"@), die*) =" "Vdip), dGe*) =G p).
Proof. Let & € {«,>}. Since % = SQAZ = SQA; is the highest Weigilt vector in .Z5 (A),
arguing by induction on weight using Lemma 6E.1, it follows that d® (f) = (d(f))®, for all
f € Z5(A). As [Proj RY(K[z])] embeds into [Repy RS (K[z])], d7 (p®) = d2 (p), for all p €
[Projk RY (K[z])]. Hence, d7 (p?) = ¢29°f*d%: (p) since # = ¢*>4*!(@o® by Lemma 6B.2. O

That is, ® categorifies the bar involution on the Fock space.

Remark 6E.3. The Fock spaces .% 34\4 and % f}b are both integrable highest weight mod-
ules. Hence, both Fock spaces come equipped with bar involutions that are unique
up to a choice of scalars, corresponding to the choice of highest weight vectors. Mo-
tivated by Proposition 4F.9, let t: % 24 — F A}D be the unique linear map such that
t(sy) = qdef)‘s'f\, for A € Pt. Then Corollary 6D.4, Proposition 6D.10 and Lemma 4D.4
imply that t is a Uy (gr)-module isomorphism and that t o™ = o t. Similarly, the map
t': F ﬁ” — F f4\<‘, which sends s to qdef Ag for X € P, is a U,(gr)-module isomorphism
and t' o~ = ~ot’. Moreover, t ot’ and t’ ot are both identity maps. We will not
use these observations in what follows, except implicitly in the sense that, as this remark
suggests, working with the two Fock spaces, .73 A and F ﬁb, serves as a replacement for
giving an explicit description of the bar involutlon on either Fock space.

Lemma 6E.4. Suppose that P € Proj #Z)(F) and M € Rep Z™(F). Then
([P, [M]®) = ([P]#, [M]).

Proof. This is a standard tensor-hom adjointness argument; see, for example, [11, Lem-
ma 2.5]. O

By (6C.1), with respect to the Cartan pairing, the bases {[Y,]]| u € K3} and {[Y]|v €
K3} of [Proj R} (K[z])] are dual to the bases {[Dj]|p € K} and {[D}]|v € K3} of
[Repk R (K[z])], respectively. The projective Grothendieck group [Projy R (K[z])] comes
equipped with only one natural basis {[Y,;']|p € K2}, In contrast, the Grothendieck
group [Repy R (K[z])] has two quite different bases, {[Dp]|p € K&} and {[S5]|p €
K&}, given by the simple modules and the Specht modules. To define a second basis of
[Projk RA (K[z])], which turns out to be dual to the dual Specht modules, define the inverse

graded decomposition numbers to be the Laurent polynomials eAu( q), eﬁ‘;(—q) € A given
by

—1 -1
(K5(-0)) = (d5a(@) and (e (~q)) = (d(a)) (6E.5)
where A\, p € K3, v,0 € K. and the rows and columns of these matrices are ordered

using the lexicographic orders <jex and >ie, respectively. These polynomials are well-
defined because these submatrices of the decomposition matrices of R2(K[x]) are lower
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unitriangular square matrices by Theorem 5B.2. For p € Ky and v € K define virtual
projective modules by

Xp=2 (=g [x]  and X =) egh(—aq) [V, (6E.6)

A<l o>v

where A € K5 and o € K. in the sums. As the matrices in (6E.5) are invertible,
UnsofXi I € K3} and U, 5 o{X} |v € K%} are both A-bases of [Projk R} (K[z])]. The

definition of the X“-bases suggests that these elements depend on K but the next result
shows that these elements are independent of K.

Lemma 6E.7. Suppose that p,A € K} and v,o € K}. Then (Xj, [S5]®) = 0au and
(X5 [95]%) = bvo-

Proof. Tt is enough to prove the first statement as the second follows by symmetry. By
the definitions,

(X5, [850%) = < > en(—a) ¥R, [s;]®> = Y Ki(—a) (11, 15]%)

Adp Adp
= > - < Y3, Y d&i(a) (D] >
A<l T>Oo
= > di5(0) e (o) (Y31, [D7])
[
= Z d e)\y, )7
o<dAdpu

where the last equality follows by (6C.2). Note that in these sums, X, 7 € K5 . The result
now follows by (6E.5). O

Applying the two bar involutions # and ® shows that if A € {<,>} then
al# A a)® A A
[YN ] = [YM ] and {DN} = [D#} . for pek?, (6E.8)

with the #-identities following because Y and Y;; are projective and the ®-identities
coming from Theorem 5A.3. It is less clear what these involutions do to the other bases
of [Projk R2(K[z])] and [Repg Ry (K[])].

Lemma 6E.9. Let p € K and v € K. Then

#
(%) =X+ > a3u(@X5, [sa]" = [s5] + 3 spala) 1S5
Adp Adp
X =X5 + 3 %, (0)X5, (019 =[S0+ > by (a) [S5]
obv obv

for Laurent polynomials z3,,(q), $3,,(9): 2., (0); Sg.(¢) € A with X € K7, and o € K7,
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Proof. Let o € K. Using Theorem 5B.2 and (6E.5),

[s3]" = (Z da(a) [Dz]) = > da(a) [Dg]

adp adp
= > dale) > eha(—a) [S3]
adp A<

=[5+ | T dE@esa-a) e | 85,

Adap | aeky

Adadp
where the last equality follows because dlKLfL(q) =1= eEZ(—q) by Theorem 5B.2. This
proves the result for [S;‘]@, which this implies that XE# has the required expansion
by Lemma 6E.7 and Lemma 6E.4. The remaining claims are similar. O

Theorem 6E.10. Let pp € K}, and v € K. Then there exist bases {Y}, |p € K} and
{Y>|v € K2} of [Projk R2(K[z])], and {Djlpn € K5} and {D} |v € K]} of [Repk R
z|)|, that are uniquely determined by the conditions:
K h ly d d by th d
#
(Y5)" =Y; and Y5 =X+ > d3,.(0)X3
Adp
(Vo) " =¥5 and Y5, =X5 + 3 di, (0)X5
A>v
®
(D;)” =Dj and Dj =I[Si]+ > eja(=q)[S5]
Adp
(D;)" =D; and Dj =[S+ > e (-0)[S5)-
Ay
for polynomials d3,(q),e;\(—q) € dxu + ¢Z[g] and d5,(q),€5,(—q) € v + ¢Z[g], for

p € K5 and v € K7. In particular, the basis elements Y},, Y7, D, and D7, and these
polynomials, are independent of the field K.

Proof. Given Lemma 6E.9, this result is a consequence of Lusztig’s Lemma [47, Lem-
ma 24.2.1], which is easily proved by induction on dominance using Gaussian elimination
and Lemma 6E.9. See [52, Proposition 3.5.6] for a proof that uses very similar language
to that used here. O

A key point in Theorem 6E.10 is that the coefficients appearing in Lemma 6E.9 belong
to A. As the notation suggests, the polynomials dfu(q) are related to the decomposition
matrices of R} (K[z]) and the polynomials eﬁ)‘(—q) are related to the inverse decomposition
matrices. See Theorem 6E.16 below for a precise statement.

By Theorem 6E.10, {Y}, | p € K3} and {Y}, [v € K(} are bases of [Projk RA(K[z])] and
{D; |1 € KJ} and {Dj, [v € K3} are bases of [Repk RM(K[z])].

Definition 6E.11.

(a) The ®-canonical bases of [Repg R2(K[x]] are the two bases {Dplp € K3} and
(05w € K3).

(b) The #-canonical bases of [Proj R} (K[z])] are the two bases {Y|p € KJ} and
¥ v e K3},

Ann. Repr. Th. 1 (2024), 2, p. 193-297 https://doi.org/10.5802/art.8


https://doi.org/10.5802/art.8

Content systems and deformations of cyclotomic KLR algebras of type A and C 275

We frequently call these four bases canonical bases of [Repy RY(K[z])] and [Projg R
(K[z])]. In Theorem 6F.14 below we show that, up to scaling, these bases coincide with
Lusztig’s (dual) canonical bases [46, §14.4] and Kashiwara’s (upper and lower) global
bases [33] of L(A).

For now we note that Theorem 6E.10 and Lemma 6B.2 imply:

Corollary 6E.12. Suppose that p € K5 and v € K. Then
(Y<1) q72 def LLY<1 (YD) q72 def I/YD
(DZ) — q2def“DfL and (Di) _ defvpy

The next result shows that these bases of [Projk R2(K[z])] and [Repk RA (K[z])] are dual
with respect to the Cartan pairing. The matrix identities in the next result should be
compared with (6E.5).

Corollary 6E.13. Suppose that A, u € K, and v,0 € K7. Then (Y3,D},) = d, and
(Y>,D%) = dye. Equivalently, the two matrix identities hold

(u(-0) = (@) and  (€,(-0) = (W, (a) "

Proof. Let & € {4,>}. Let o, 3 € K. Direct calculation reveals that

(va.5) = (|va]. [ogm (X s, X als)

oceks reks
= > dbala)es (o) (X5, [581%)
oreks
= Y eg,(—9)dsala),
a'GICﬁ

where the last equality follows by Lemma 6E.7. Therefore, (Y5, Dg) € dap +q1Z[g7Y).
However, by Lemma 6E.4,

(Ya,05) = (Y&#,05%) = (Y&,D5 ) € dag + aZ[q)

Hence, (Y5, D§> = 0ap- The calculation in the first displayed equation shows that this is
equivalent to the matrix identity in the statement of the corollary. g

In particular, this shows that the #-canonical bases of [Projk R}(K[z])] and the ®-
canonical bases of [Repk RY (K[z])] encode equivalent information.

Lemma 6E.14. Let A, p € K and o,v € K. Then
Su@) = (Y5 1S3]) dh(a) = (Y3, [S5]), efia(—a) = (X3, D), eba(—q) = (X5,D5).
Proof. Let & € {<,b} and p € K5 and A € PY. Using Lemma 6D.17 and Theorem 6E.10,

(i [53]) = (i [58]) = (v [58]) = 2 o (e [5]) = ot

where the last equality comes from Lemma 6E.7. The proof of the other identities are
similar. ]
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For p € K, v € K and A, € P!, define Laurent polynomials

Su(@ = (Y [S3)  and 5, (q) = (Y3, [S5)). (6E.15)

By Lemma 6E.14, if A\, u € K2 then diu(q) coincides with the polynomial defined in The-
orem 6E.10. In particular, if X\ € K5 then dﬁu(q) € 0xu + ¢Z[g] by Theorem 6E.10. We
will show in Corollary 6F.16 below that this is still true when XA € P4\ 4. Moreover, we

show that dfu(q) € dap + gN[g] in type Agl_)l.

Theorem 6E.16. For u,\ € K and v,o € K., there exist bar invariant polynomials
a%(q), 3% (q), b%:i (q), bl (g) € A such that

Vi =Y+ 3 i@, Y=Y 3 e (a)Y,
Adp o>V

(D3] = Dji + 3 iR (@)D3. D5 = D+ 7 b5 (g)D5
Abp o<V

Moreover, for o, A € P!, the following matrix identities hold:
1 1

(655.(0) = (K5(0) (0%0(0) = (@)
(d5i(@) = (d3.(0) (aa(@)) (do (@) = (d5,(0)) (a(a)) -
Proof. Let & € {q,>}. By (6E.8), [Y,;'] is a #-invariant element of [Projk RA(K[z])] and

[D;;] is a @-invariant element of [Repy RAM(K[z])]. Hence, the first four identities fol-
low by (6E.5) and Lemma 6E.9. (These four identities describe the transition matrices
between the {[Y,;*]} and {[Y;;]} bases and between the {[D;]} and {[D;]} bases.) Since
(Y2, [D2]) = 0w, by (6C.1), these transition matrices are inverse to each other by Corol-
lary 6E.13. Finally, if A € P! and p € K2 then

o = (2] 58] - (| & st s3] = 3 o (v 1)

veky vekh

= Y dy(9)a (9),

VEKS

where the third equality follows because akp (¢) = aﬁﬁ (q) is bar invariant. This gives the
required factorisation of the decomposition matrices d*. O

As a consequence, we recover the Ariki-Brundan—Kleshchev categorification theorem.

Corollary 6E.17 (Brundan and Kleshchev [11, Theorem 5.3 and Corollary 5.15]). Let I’
be a quiver of type Agl_)l and suppose that K is a field of characteristic 0. Then
Yil=Y. [Wl=Y,, [Di=D; and  [Dj]=Dj.
for all pu € K2 and all v € K. Consequently, if A € P4, pu € K2 and v € K then
din(a) = (Y [S3])  and  d55(a) = (Y5, [SK])

In particular, d§2(q) =d3,(q) € oxu +gN[g] if A € K and dk>(q) = d%,(q) € dxu + gNJ[q]
if A e K.
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Proof. Let & € {<,>}. The algebras Z2(K) = R}(K) are cellular by Corollary 4F.4, so
every field is a splitting field for RA(K), so we can assume that K = C. In type Agl_)l, Brun-
dan and Kleshchev [10] proved that the cyclotomic KLR algebra %2 (C) is isomorphic to
a (degenerate) Ariki-Koike algebra .#2(C). Ariki [1, Theorem 4.4 (2)], and Brundan and
Kleshchev [12, Theorem 3.10] in the degenerate case, proved that the dual canonical basis
of [Repe R2(C[x])] at ¢ = 1 coincides with the basis of [Rep #?] = @,,~ o[Rep 77 (C)]
given by the images of the irreducible .#*-modules. Therefore, D, = [Dy], for p € K7,
since the simple module Dﬁ is self-dual by Theorem 4B.6. The remaining claims now
follow in view of Theorem 6E.10 and Lemma 6E.7. u

Example 6E.18. Given Corollary 6E.17, in type C’él_)l it is natural to ask if the ®-
canonical bases of L 4(A)* coincide with the bases of simple modules, and the #-canonical
bases with the bases of principal indecomposable RT/}(K)—modules when K is a field of
characteristic zero. It is shown in [17] that this first fails for the principal block of R§(C)
when I' is a quiver of type C’él). Several other examples are given where the canonical
bases do not coincide with the natural bases of these Grothendieck groups in type C,
including an example when n = 13 that shows that the graded decomposition numbers of
RA(K[z]) are not necessarily polynomials, even in characteristic zero.

The transition matrices (a§2(q)), ENA)E (b§fL(q)) and (b¥>(g)) in Theorem 6E.16
are analogues of the adjustment matrices of Definition 5C.3. These matrices express the
decomposition matrices of R2(K[z]) in terms of the canonical bases and dual canonical
bases. By taking inverses, similar “adjustment matrix” identities hold for the inverse
decomposition matrices.

Recall the Mullineux involution m: I — Kb from Definition 5D.1. The next result
should be compared with Proposition 5D.3.

Proposition 6E.19. Let p € K7. Then Y = Y[ and D, = D[ .
A€ Pf; then df\#(q) = qdef)‘dim(u)(q).

Proof. By Definition 5D.1, [Dy] = [D;(M)] and [V)]] = [Y;(u)]‘ Hence, Y;, = Y;(u) and

DZ = D;( ) by Theorem 6E.16 and the uniqueness of the canonical basis elements estab-

Moreover, if

lished in Theorem 6E.10. To prove the remaining claim, if u € K and A € P! then

5 (@) = (Y3, [S5]) = 0™ (Yo, [SR17) = M2 (Y5 0 [SR]) = 0™, )5 (@),
where we have used Proposition 4F.9 and Lemma 6E.4. U
Combining Theorem 6E.10 and Proposition 6E.19, we obtain.
Corollary 6E.20. Let p € K5}, v € K5, and A, 0 € K5 UK.
(a) Ifd3,(q) # 0 then p I X < m(p) and ax = ay. Moreover, dj;,(q) = 1, d:]n(u)u(q> =
g # and if m(p) <A < p then 0 < degdy,,(q) < def p.
(b) If d3,(¢) # O then p > X > m(p) and ax = au. Moreover, d7, ,(q) = 1,
d;,l(u)u(q) = g4 # and if m~(p) > A> p then 0 < degd3,, (q) < def p.
Proof. If A, p € K5, then d5,(¢) € dxn + gZ[g] by Theorem 6E.10. Hence, the only claim
in (a) that is not immediate from Proposition 6E.19 is that 0 < degd§,(¢) < def o when

A€ K7 and A ¢ {p, m(p)}. In this case, d5; ,1(q) € dam(u) +¢Z[q], so 0 < degdy,(q) <
def p by Proposition 6E.19. This proves (a). The proof of (b) is similar. O
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Later, we will show that this result is true for A\, o € PfL. There are similar identities
for the polynomials e}, (—¢) and €} (—¢), which we leave for the reader.

Corollary 6E.21. Let A € P’, for a € Q. Then def a = def A > 0.

Proof. This is implicit in Corollary 6E.20 since d},,(¢) and d}, (¢) are polynomials. O

6F. Crystal bases of Fock spaces. The categorification results of the last few sections
imply that the number of self-dual graded simple modules is independent of the char-
acteristic, but we have not yet determined the sets K and K that index the simple
R2(K[z])-modules. To do this we now describe the crystal graphs of Z3(A) and £5(A).
We start by recalling Kashiwara’s theory of global and crystal bases and Lusztig’s theory
of canonical bases.

Suppose that V' be an integrable highest weight module for Uy(gr). If i € I then E;
and F; act on V as locally nilpotent linear operators. Therefore, by [47, 16.1.4], each
weight vector v € V' can be written uniquely in the form

v = Z FZ-(T)U,«

r>0

such that Eu, = 0 and K;u, = ¢Wtwr)ei)trdiy, - for » > (0. For i € I, the Kashiwara
operators e; and f; are the linear endomorphisms of V' defined by

e;v = Z Fi(r_l)vr and fiv= Z Fi(rﬂ)fur. (6F.1)
r>1 r>0

Forie I"set ej=¢;, .. . €i5€44 and fi = fin R fizfi1~

Let Ag be the subring of rational functions A = Q(g) that are regular at zero and let
A be the rational function that are regular at infinity. To allow us to work with these
two rings simultaneously, if w € {0,000} set

{q ifw=0,
quw = -1 -
q if w=oo0.

Definition 6F.2 (Kashiwara [33, Definition 2.3.1]). Let V' be an integrable U,(gr)-
module. Fix w € {0,00}. A w-crystal base of V' is a pair (L, B,,) such that:

(a) The module L, is a free A,-submodule of V' such that V=2 A®a, L, and L, is a
direct sum of Ug,(gr)-weight spaces and it is invariant under the actions of e; and
fi, fori e I.

(b) The set B, is a basis of the Q-vector space L, /q, L. = (Bw)q-

(c) The elements of B, are images of weight vectors under the map £, — L,/q,Le.

(d) If i € I then e;B, C B, U{0} and f;B, C B, U {0}.

(e) If b,b’ € B, and i € I then e;b =V if and only if f;0' = b.

This section describes the O-crystal base (Lo, Bp) and the oco-crystal base (Loo, Boo)
of L(A).

If V.= Ugy(gr)va is an integrable highest weight module with highest weight vector v
then, as in subsection 6E, the bar involution on V' is defined to be the unique semilinear
automorphism such that oy = v and av = aw, for all v € V and a € Uy(gr).
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Theorem 6F.3 (Lusztig [47, §14.4], Kashiwara [33]). Let V' be an integrable U,(gr)-
module. Fix w € {0,00} and suppose that (L, B,,) is an w-crystal basis for V. Then
there exists a unique A-basis By (A) = {Gup |b € B,(A)} of V4(A) such that Gy p = Gy
and G, p = b (mod q,L,(A)), for b € B,(A).

The basis By(A) of V(A) is Lusztig’s dual canonical basis, or Kashiwara’s lower global
basis and the basis Boo(A) is Lusztig’s canonical basis, or Kashiwara’s upper global basis.
To apply these results to the combinatorial Fock spaces .Zj(A) and £ (A), and the
Grothendieck groups [Projx R2(K[z])] and [Repk R: (K[z])], we first generalise the integers

d3(A) and () from Definition 4D.3. If A, € PLand i € T write A —— pif |p| = |A|+r
and p = AU{Ay, ..., A}, where {A;, ..., A} € Add;(N), and define

di(A) = d; ZT:(#{B € Add;(n) | B < A} — #{B € Rem;(A) | B < 4,}),
s=1

&,(N) = d; i(#{B € Addi(N) | B > As} — #{B € Rem;(A) | B> A,}).
s=1

By definition, if g = AU {A}, for A € Add;(A), then dj,(X) = d§(A) and dj,(A) = dy ().
Lemma 6F.4. Let A\ € PfL and 7 € I. Then, for r > 0,
Fz-(r)si _ Z q—d';(A)SZ and Fi(r)si _ Z q—dj(A)sZ
Ai—km Aim

Proof. This follows easily by induction on r using the fact that Fi(r+1) = [r+ 1]FZ-(T);
see [49, Lemma 6.15] for a similar argument. The base case for the induction is given
by Corollary 6D.4. O

Definition 6F.5 (Normal and good nodes). Let A € P¢ and i € I.

(a) A removable i-node A € Rem;(A) is <-normal if d5(A) < 0 and d§(X) < dj(A)
if B < A, for B € Rem;(\).

(b) A normal i-node A is <-good if A < B whenever B is a <-normal i-node. Equiva-
lently, A is a <good i-node if d5(A) < di(A) for all B € Rem;(A) with equality
only if A < B.

(c) A removable j-node A € Rem;(A) is >-normal if d(X) < 0 and d%(X) < di(N)
if B> A, for B € Rem;(A).

(d) A normal j-node A is >-good if A > B whenever B is a b-normal j-node. Equiv-
alently, A is a good i-node if d%(A) < di(A) for all B € Rem;(A) with equality
only if A > B.

If p = A+ A write A o p if A is a <-good i-node of p and write A Sos v if A is an >-good
j-node of v. More generally, if u,v € P! and i,j € I™, write 0, s p and 0, s v if

there exist /-partitions pq, ..., p,, = p and vy, ...,v, = v such that
11 12< in< J1b> Job Inb
Qp ww> [Ly W w1 = L and Q) w V| M L we Uy =,
respectively.

There is a dual definition for conormal and cogood nodes.

Definition 6F.6 (Conormal and cogood nodes). Let A € P and i € I.
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(a) An addable i-node A € Add;(A) is <-conormal if d§(A) > 0 and da(X) > dp(A) if
A < B, for B € Add;(\).

(b) A normal i-node A is <-cogood if A > B whenever B is a <-normal i-node.

(c) An addable j-node A € Add;(A) is >-conormal if d7(X) > 0 and da(X) > dp(A) if
A > B, for B € Add;(\).

(d) A normal j-node A is >-cogood if A < B whenever B is a b-normal j-node.

In particular, if 4 = AU A then A is a good i-node of p if and only if A is a cogood
i-node of A.

Normal and conormal nodes are often defined by listing the addable and removable i-
nodes for A lexicographically and then recursively deleting all adjacent addable-removable
pairs for <-normal nodes, and removable-addable pairs for >-normal nodes. After all such
pairs have been removed, the normal nodes are the removable nodes that remain and the
conormal nodes are the addable nodes. It is slightly tedious, but straightforward, to check
that these descriptions of normal and conormal nodes are equivalent to the two definitions
above; compare with [3, Lemma 11.2].

Example 6F.7. Consider the partition A = (4,3,1) for the algebra RQO(K[.Z‘]) of type
C(l) The type Cél) residues in A are given by the diagram:

01121
1(01
2
Then
0« 1<

0, ww (1) ww (2) (2 1) (22) (3 2) (3 2, 1) (4 2, 1) (4 3,1).
It follows from Theorem 6F.14 below that D<’4 3.1) # 0. In contrast,

(3) wor (3,1) o (3,2) o (32) s (4,3) o (4,3,1).
The partition (3) does not have any >-normal nodes, so D( 431) = 0 by Theorem 6F.14.

Analogues of the next result are well-known. Given its importance to the main results
of this paper we give the proof, following [49, Theorem 6.17]. Perhaps unexpectedly, the
result mixes up the dominance and reverse dominance partial orders.

Theorem 6F.8. Let A\, € P and i € I.
(a) If A dpes not have a >-good j-node then e;sy € qilﬁ,i\;.

(b) If A oo p then ejsy, = s (mod qil,?,ﬁ\;) and f;s} =s;, (mod qilﬁ‘x\;‘) .

)
(c) If X does not have a >-good i-node then e;s5 € q*1§A>
)

(d) If A o p then e;s), = s5 (mod q_lﬁﬁi) and f;s = s, (mod q_lfﬁi) :

Proof. We prove only parts (a) and (b) as the proofs of (c) and (d) follow by symmetry.
First suppose that A does not have a >-good i-node. If A € Rem;(A) then d(X) > 0,
so there are at least as many addable i-nodes below A as there are removable i-nodes.
Let A be the highest addable i-node of X such that A < A and d5(A) = di(A) +1. As
d%(A) > 0 the node A always exists and if A, B € Rem;(\) then A = B if and only if
A= B. If M C Rem;(\) let Ay = A—M+M, where M = {A| A € M}. That is, Xy is
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the f-partition obtained from A by removing the i-nodes in M from A and then adding on
the nodes in M. In particular, [Ap;| = |A|. Now set

A= Y (o Vs e spe
M CRem;(X)
By Corollary 6D.4, s3 appears in E;(s3) only if Rem;(v) = M U N where Rem;(A) =
M LN U {A} (disjoint union). Now, sj appears in Ejsj —and in Eisj‘\Mu{A}, and its
coefficient in E;§2;(sy) is

)~ IMIE ) 4 (— —IM|=1+d§ (Ao ay) — 0,

(—q q)
where the last equality follows because d5(An) = d5(A) = d3(X) +1 = d5(Anr), which
is the key identity underpinning this theorem. Hence, E;€;(s3) = 0 and, consequently,
€i%(s3) = 0 by (6F.1). Therefore,

eiss = eidi(sy) =0 (mod qilﬁ,ﬁ\;) ,

proving (a).
To prove (b) we continue to assume that A has no >-normal i-nodes and compute f/'s3,
for r > 0. Using the notation above, set

Ni(A) = {A € Add;(\) | A # B for any B € Add;(A\)} = {4; > --- > A,}.

Observe that z = #N;(A) = d;(A) and that s = d%_(A), for 1 < s < 2. So, Nj(A) is the
set of >-conormal ¢-nodes of A.

For K C Add;(v) let v+ K be the ¢-partition v U K. Using Equation 6F.1 for the first
congruence, and Lemma 6F .4 for the following equality,

755 = FV(s3)  (mod ¢ #Y)

- (—g M 3 q—dimK(*)(Am)simK
M C Rem;(A) K C Add;(An)
|K|=r
= (_q)7|M| Z q_d§A4+K()\)()\M)S§1\]M+K
M C Rem; () K C Add;(A)\M, |K|=r
IM|=d5, (A
= > > (-9 IMIZdSercl )S§M+K
K C Add;(A) M C Rem;(\)
| K|=r MNK=0
_ sj‘\Jr{Al’._.’AT} ifl1<r<g,
10 otherwise,
where the last equation, which is modulo ¢~ .%, Aoj, follows because if K # {Aj, ..., A}
or M # ) then |[M| — d5_ ;(A) > 0. To complete the proof of (b) it remains to observe
that A, is the p-good i-node of A+{A4y, ..., A,_1}. O

Definition 6F.9. Suppose that A € PT. Define

B“(A):{u‘uepﬁandgzx»uforsomeielnandnzo}
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and

:{V’VEP andOZwuforbomeJEI” andn>0}
and set

) ={ss a7 g () |ve B ()]
and

)= {s+a" L. (V) | p e B}

By definition, % (A) is contained in Z3 (A)/q 'Z5 (M) and, similarly, %5 (A) is
contained in £y _(A)/q~ 'L _(A).
Corollary 6F.10. Let A € P*. Then (5 _(A), %% (A)) and (Zx_(A), B,(A)) are
oo-crystal bases of L(A).

Proof. We only prove the result for (Zx (A), Z5,(A)). The only condition in Defini-
tion 6F.2 that is not clear from Theorem 6F.8 is that %25 (A) is a Q-basis of

Ln (M) /a7 L5 (N).
Since £y _(A) is a highest weight module,

L3N /g LR (N = (fisg, + a7 LR (M) i€ " forn>0)

le'o]

Hence, it is enough to show that {fsg, + q "2y _(A)]i€ I} is spanned by
— 14
{sz +q LR _(A) ‘ pe B (A) NP, forn > O} :
We argue by induction on n. If n = 0 there is nothing to prove since sag is a highest weight
vector in £y (A). By way of induction, suppose that the claim is true for n and consider

the statement for n+ 1. Fix p € B®(A) and i € I"™ such that 0, > p. By Theorem 6F.8,
fisy € q_lquoo (A) if and only if g has no >-conormal i-nodes and, moreover, if A is the
>-cogood i-node then fis;, = STHA (mod q_lquoo(A)). This completes the proof of the

inductive step and hence proves the corollary. O
For i,j € I and X € P! define functions ¢, p§: BY(A) — Z and 7, ¢5: B°(A)—Z by
£ #{A € Add;(p) | A is <-normal}
€'> #{A € Add;(v) | A is >-normal}
: _ (6F.11)
: ( = #{A € Rem;(p) | A is <-conormal }
¢ (v) = #{A € Rem;(v) | A is >-conormal }

for p € BY(A) and v € BD(A). Let 4,j € I. These definitions readily imply that if i € I
then for p € BY(A) and v € B¥(A).

di(p) = ¢i'(p) —€j(p) and di(v) = ¢} (v) — & (v), (6F.12)
Abusing notation, if A, u € BY(A) and A o p we write e;pu = X and f;A = p. Similarly,

if o,v € B°(A), write ;v = o and fjo =vifo Fowr v, Tf e (A) = 0 set e;A = 0 and if
07 (A) =0set fix=0.
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By Corollary 6F.10, if m is a non-negative integer and A € B®(A) then e # 0 if
and only if m < aiA (A) and f"A # 0 if and only if m < cpf (A). Therefore, follow-
ing [34, §7.2], the datum (B9(A), e;, fi, €Y, ¢, wt) uniquely determines Kashiwara’s upper
crystal graph of .Z%(A), where wt is the weight function of (6D.5). Similarly, the datum
(B>(A), e, fi, €7, ", wt) determines the upper crystal graph of Z3(A).

Using Theorem 6F.3, the crystal bases A3 (A) and %A% (A) lift to canonical bases

{Gf)o’,/ ’ ve BD(A)} and {quu ‘ B e BQ(A)}
of Z{(A)* and £ (A)*, respectively, that are uniquely determined by the properties:

Gy, =G, and GI ,=s, (mod q LR (A))
1 (6F.13)
Glo = Goo and Goop = S (mod L, (A)) .

for v € B*(A) and p € BY(A).

When combined with Theorem 5A.3, the next result proves Theorem C from the in-
troduction. As remarked at the start of section 6, this result applies to all (standard)
cyclotomic KLR algebras of types AW A, C’él_)l and Cy.

e—1»
Theorem 6F.14. Let A € P™. Then K; = BY(A) and K = B”(A). Moreover, if p € K}
then
— def — def
di (67 1Y5) = Glomy and d7 (a7 HTY¥R ) = Gl

Proof. By working with .Z§(A) we prove that B*(A) = K} and that d7.(q” def”Y:‘L) =
Gjovm( ) for p € K. The remaining results are proved in exactly the same way and are
left as an exercise for the reader. By Corollary 6E.2 and Lemma 6E.1, the functor ®
categorifies the bar involution on .Z§(A), so {g~ 4! #Y5 | € K3} is the oo-canonical basis
of [Projk R} (K[z])]. By Theorem 6F.3, the oo-canonical basis is uniquely determined by

the choice of highest weight vector, and dj. sends Yaz to sal. Hence, if p € K5 then
dd.(¢ def“Y;‘L) = G5, ,, for some v € B”(A). To determine the ¢-partition v, we compute

. oo,V
in Zx _(A):
d% (qi dequ2>
_ q—Qdefu Z (d%(YZ),sf\)qu‘\ by (6D.15) and Proposition 6D.10,
AePt
— g defn Z <Yf“ [S§]> 53 by Lemma 6D.17,
AePL
—q def p Z diu(Q)si by Lemma 6E.14,
AePL
=5l + Z@ & (@S5 (mod q—lgf@) by Proposition 6E.19
AePL

= ), —1 A
=Spu + Zdj’\m(ﬂ)(q)si (mod q 19}3\;‘) :
AEPIN(KIUKD)
where the last equality comes from Corollary 6E.20. Therefore, Theorem 6F.8 and Equa-

tion (6F.13) force v = m(p) and d;\‘m(”)(q) = q*def”dj‘\“(q) € Oam(w) + a4 " Z[q7 1], for
X € P.. That is,
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dy (q*def“YfL) =Gmp and v=m(u)eKLy.
In particular, this shows that B*(A) = {m(p) | p € K} = K, where the last equality
is Definition 5D.1. This completes the proof. O

Theorem 6F.14 completes the classification of the simple R2 (K[z])-modules from Theo-
rem 5A.3 by giving a description of the sets K and K. . The crystal graphs of L(A) allow
us to strengthen this characterisation of Iy and .

Corollary 6F.15. Let K be a field and suppose that u € P-.

(a) The RA(K[z])-module Dy (F) # 0 if and only if p € K5.

(b) The R} (K[z])-module D}, (F) # 0 if and only if p € 7.

(c) The ¢-partition p € K if and only if 0, wlfvl» p for some i € I".
(d)
(e) If peIC; and i € I™ then 0, ww p if and only if 0, > m(p).

The ¢-partition p € KV if and only if 0, s u for some iel™

Proof. By invoking Theorem 6F.14 and Theorem 5A.3, parts (a)—(d) are restatements of

the identities K3 = BY(A) and K% = B*(A). For part (e), if g € K then 0, wew g if
and only if the sequence i labels a path in the crystal graph of Zj(A) from 0, to p.
By Theorem 6D.20, the U,(gr)-modules Z3(A)* and Z5(A)* have isomorphic crystal

graphs. Any crystal isomorphism preserves the labels on the paths, so 0, - uis a
path in the crystal graph of .Z§(A) if and only if 0, w1 1S a path in the crystal graph
of Z%(A), for some v € K},. Applying Theorem 6F.14 twice,
Glomi = 97 (47 *MY;) and G\, =d7 (a7 Vi)
By Proposition 6E.19, Y}, = YE( ) SO the map d% o (d5.) ™! induces a crystal isomorphism
(LA (M), BL (M) = (LR (M), B (N)
which sends GZ )+ g LR _(A) to G5, + ¢ ' ZE _(A). Hence, part (e) follows. O

We have now proved a strong form of Theorem C from the introduction.

Notice that Corollary 6F.15 gives a description of the map B m(p), form: 3 — K.
Explicitly, if g € Ky then we can find i € I™ such that 0, - p is a path in the crystal
graph of Z3(A)* from sy, to s;. Then m(p) € K7 is the unique (-partition such that
0, e m(p) in the crystal graph of £ (A)*. In view of Corollary 5E.7, if I' is a quiver of
type A( )1 and A = Ag, this gives a variation on Kleshchev’s description of the Mullineux
map of the symmetric group, which is the function g +— m(u)’, for p € ;.

The proof of Theorem 6F.14 gives the following strengthening of Corollary 6E.20.
Corollary 6F.16. Let p € K, v € K and X\, € P’.

(a) 1fd3,(¢) # 0 then p <A I m(p) and ax = ay. Moreover, d;;,(¢) = 1, dfn(”)u(q) =

» Sup\d
gt # and if m(p) 9 X <ap then 0 < degdy,,(¢) < def p.
(b) If d3,(¢) # O then p > X > m(p) and ax = au. Moreover, dj,,(q) = 1,
d;_l(u)u(q) = q4°'# and if m~(p) > A> p then 0 < degd3,, (q) < def p.
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By Corollary 6E.17, df‘#(q) = [Sf : Dﬁ]q in type Aél)l when K is a field of characteristic

Zero, So dfu(q) € 0ap + gN[g] in this case. In type C’( )1, we can only say that d3 . () €
dxap + qZ[q], and that these polynomials approximate the graded decomposition numbers
in the sense of Theorem 6E.16.

The final results in this section describe the O-canonical bases of Z§(A) and Z5(A).
To do this we retrace our steps and prove a variation of Theorem 6F.8.

Theorem 6F.17. Let A\, € P. and i € I.

(a) If A does not have a <-good i-node then e;s3 € ¢.% qu

o‘\A<1) O“A<1)

(b) If X ww o then e;sy, = sy (mod ¢.7 and f;s3 =s;, (mod ¢.7

)
(c) It A does not have a >-good j-node then e;s5 € ¢.% fAD
)

5\A|>> J‘AD)

(d) If X e p then ejsy, = s§ (mod ¢.7 and f;s§ = s, (mod ¢.7

Proof. The proof is almost identical to the proof of Theorem 6F.8. For (a), suppose that A
does not have a <-good i-node. For A € Rem;(A) define A to be the lowest addable i-node
of A such that A > A and d3(A) = dj3(A) + 1. If M C Rem;(X) set Apyy = A= M + M,
where M = {A|A € M}, and define

UK = Y (o

>\M
M CRem;(A)
Exactly we before, it now follows that e;s3 € ¢.7, ,ﬁ\“ proving (a) with (b) following similarly.
We leave the details to the reader. OJ

As before, set BF(A) = {sg + ¢ ' LA _(A)|v € B*(A)} and ZG(A) = {s}, + ¢ " Zx_(A)
| € BY(A)}. The argument of Corollary 6F.10 now yields:

Corollary 6F.18. Let A € P*. Then (Zx (A), 5 (A)) and (ZR,(A), B5(A)) are O-crystal
bases of L(A).

By Theorem 6F.3, the crystal bases % (A) and %4 (A) lift to canonical bases {Gg , | u €
BI(AN)} of LH(A), and {Gf,, |v € HG(A)} of L7 (A), that are uniquely determined by the
properties:

Gy, = Gau and S = st (mod ¢.Zx (A))
ov=Go,  and 0 =5, (mod ¢.Z5,(A)) .
for p € Z5(A) and v € ZG(A). Now set BG(A) = {s;, + ¢Zx, (A) |v € K} and H5(A) =
{sp. +aZa, (M) [ € K3}
Theorem 6F.20. Suppose that o,u € K and A,v € K. Then d%(G§,) = Dy,
dD( B,u) = Dlz>/7
< >
( 00,7 GO u) = 5)\m(p,) and (Gzo o) V0 u) = 5m(0')l/'

Proof. By Theorem 6F.14, BY(A) = K. Therefore, by Lemma 6D.17 and the uniqueness
of canonical bases from [33, Theorem 5], if v € K}, then we can write d*(Gg,) = Dj,, for
some p € K. By Theorem 6E.10, if g € K then

(DZ)® =D, and D, = [SZ} (mod q {RepK R[,\(K[:L’])D .

(6F.19)
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Hence, d¥(Gg ,) = Dj;. Similarly, d”(Gg ,,) = D;,. Using Theorem 6F.14 and Lemma 6D.17,
if T € K, then

( So,m(r)’ S’M)q _ (d<T1 (qfdefTY;,)j au)q
= gdef™ <(q_defTYf_)# 7 DZ> = <Yf_7 DZ> = Orp,

where the last equality follows by Theorem 6E.16 and (6C.2). Setting A = m(7) gives
the first inner product in the displayed equation. The inner product (G3, ,,Gg,)"” can be
computed in the same way. O

6G. Modular branching rules. This section uses the results of the last section, and The-
orem 2D.1, to prove precise forms of the modular branching theorem, which is Theorem D
from the introduction. That is, we prove that the modular branching rules for R2(K[z])
categorify the crystal graph of L(A). In principle, this result has already been proved by
Lauda and Vazirani [44], however, their theorem does not imply our result because it is not
clear how to relate their labelling of the irreducible R (K[z])-modules to Corollary 6F.15.
On the other hand, our results do imply those of [44] for the cyclotomic KLR algebras of
types Agl_)l and Cél_)l. Moreover, our approach to the modular branching rules is consid-
erably shorter than the other routes in the literature because we have already established
the link between the representation theory of R2(K[z]) and the crystal graph of L(A).
Suppose that M is an RA(K[z])-module. Recall from subsection 5E that head M and
soc M are the head of socle of M, respectively. For ¢ € I and k > 0 inductively define
RA(K[z])-modules é¥M and f¥M by setting e?M = M = fOM and if k > 0 define

€f+1M = soc (EZ (éfM)) and ﬂ““M = head (E (]?Z“M)) .
Using these operators attach the following non-negative integers to M:

ei(M) = max{k >0

ng;éO} and goi(M):max{kZO‘ffM#O}.

The key result that we need is the following, which lifts some of the easy preliminary
results from Grojnowski’s approach to the modular branching rules into our setting.

Proposition 6G.1. Let p € K, v € K}, and 4,5 € I and assume that ¢;(Dj;) > 0 and
gj(Dy) > 0.

(a) AsRA_ (K[z])-modules, E;(Dy,) is self-dual and ¢; Dy, is irreducible with e;(&; D},) =
ei(Dy,) — 1. Moreover, if [E; Dy, : L] > 0 and L % qbginL as RY_-modules, then
81'(L) < 61(51D2)

(b) As RA_, (K[z])-modules, E;(D%) is self-dual and €; D% is irreducible with e;(¢;D%)
= £;(D%) — 1. Moreover, if [E; D5, : L] > 0 and L % ¢°¢; D%, as RA_|-modules, then
ej(L) <e;j(Dy).

(c) Let M be an irreducible R (K[z])-module. Then y, acts nilpotently on F;M with
nilpotency index g;(M).

Proof. The modules E;(Dj,) and E;(Dy,) are self-dual by Proposition 6B.3. The remaining

claims in (a) follow from [16, 36]. In more detail, by construction any irreducible R (K[z])-

module is an irreducible Ry, (K[z])-module. Hence, &D,; = soc(E;D,;) is an irreducible

RA | (K[z])-module by [36, Corollary 3.12], which also shows that ei(€iDy) = ei(Dyy) — 1.
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The remaining statements follow from [36, Lemma 3.9]. (The paper [36] assumes that the
quiver I' is simply-laced but the arguments apply without change in type C’e(l_)l.)

Parts (b) now follows by symmetry.

Now consider (c). Since y,, has positive degree, it is a nilpotent element of R2(K[z]), so
the real claim here is that y,, has nilpotency index €;(M) when acting on E;M. This can
be proved by repeating the argument of [39, Theorem 3.5.1] using [36, Lemma 2.1 and

Lemma 3.7]. O

Corollary 6G.2. Suppose that A, u € KJ and o,v € K} and fix i,j € [ and a,b € Z.
(a) If soc(E;D};) = q* Dy, then head(F;Dy) = ghi—diA )_“DZ
(b) If soc(E;D%) = ¢° D%, then head(F;D5) = gdi—di@)=b D>

Proof. Let & € {<,>} and suppose that X\, u € K2 and i € I. By tensor-hom adjointness,
HomR%(K[m]) (an;ADf, Dﬁ) at HomR2_1(K[xD (anf, E{\Dﬁ) .

By assumption, the right-hand hom-space is nonzero if and only if soc(EiDﬁ) = anf.
On the other hand, FAD qdi—di (A)FD and FDf is self- dual by Proposition 6B.3.
Therefore, the left-hand hom—space is nonzero if and only if ¢%i—%)- “D,f is a quotient
of F;D5. Moreover, since soc(E;Dj;) is irreducible by Proposition 6G.1, it follows that

head(Fin) is irreducible, so this completes the proof. O

By Proposition 6G.1, if L is a composition factor of E;D;; then e;(L) < £(¢;Dy;), so we
also obtain:

Corollary 6G.3. Suppose that 4,j € I and let p € K and v € K. Then
ei(D},) = max{k‘ >0 ‘ EfoL # O} and ¢;(D)) = max {k >0 ’ EFD> + 0} .

Recall the definition of the quantum integers [k]; and quantum factorials [k];! from sub-
section 6D.

Kashiwara’s theory of global crystal bases, combined with Corollary 6F.18 and Theo-
rem 6F.17, gives:

Lemma 6G.4 (Kashiwara [34, Lemma 12.1]). Suppose that i,j € I and let p € K and

v € K. Then
EZD:]L = [Sf(“)]z D:iu + Z a)\“ 3\]’ E]DIDJ = {6[;(’/)} .Di]-u Z EZD;
Aekd ! oeky
ef(A) <ef (n)—ds % (o) <ef(v)—d;
FDp = [p{(w)], D}, + > bD%,  EDL = |¢fw } D}, + . biD.
AEKS oeky
©f (A) <¢il(n)—d; (o) <¢h(v)—d;

>, i <]7,7 Dv]
for bar invariant Laurent polynomials a)\u, Ay DX by, € A.

Similar to Corollary 6G.3, we can use Lemma 6G.4 to argue by induction to determine
the crystal data statistics & (u) and ¢ (@) from (6F.11), for p € K2:

e (@) = max {k > O‘EfDﬁ # 0} and ¢} (u) = max{k‘ > O‘FikDﬁ # 0}, (6G.5)

Using the last two results we can prove the “modular restriction rules” for the simple
R2(K[z])-modules. By Proposition 6G.1, we already know that &;D,, is irreducible so the
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next result precisely identifies which irreducible it is. We remind the reader that this result
applies to any cyclotomic KLR algebra of type Agl_)l, Aco, C’e(l_)1 or Cs by Corollary 4F 4.

For A € {q,>} define w% to be the minimal element of Pf; with respect to the partial
order A. That is, w2 = (n|0]...]|0) when A =<, and wEZ = (0]...]0|/1") when w® =b.

Theorem 6G.6. Suppose that i,j € I, p € K and v € K7. Then g;(D;},) = ;(p) and
g;(Dy) =€ (v). If gi(p) # 0 and g;(v) # 0, respectively, then as RA | (K[z])-modules,
aDy =W ps - and gD =g EOUDE

Proof. 1t is enough to consider case 'éinL, because the result for e; D}, is then implied
by symmetry. We argue, first, by induction on n and then on the <-dominance order
to show that Ei(Dﬁ) = ¢f(p) and that, up to shift, e;D;; = Df ,. First, suppose that
p = we = (n|0]...|0), which is the maximal element of K under dominance. Then
Dy, is the one dimensional trivial module of RA(K[z]) and [D},] = Dj, by Theorem 6E.16.
Hence, &;(Dy},) = &i(p) and ¢, D, = D, , if €;(Dy;) # 0, which is if and only if i = r, (),
Ciwe = el = w%fl and &;(pu) = 1. Therefore, the theorem holds when p = wt.

Now suppose that g # w2 is not maximal with respect to dominance in KI. By
induction we can assume that, up to shift, ;D3 = D{ . whenever o € K5 and o > p.

e;o
Set e = &;(D};). By Corollary 6G.3 and Proposition 6G.1, there exists v € K;;__. and a

n—e
polynomial f(g) € Nlg,¢™'] such that E{[D3] = f(¢)[Dg]. We will show that v = ¢ p.
By Theorem 6E.16, we can write
D] =D+ Y aksi(a)Ds.

o> u

Let &' = max{ej (o) |afy(q) # 0}. If ¢’ > ¢ then, by Lemma 6G.4,

B Dil= > A
o)t

In particular, E(EI)[DZ] # 0 is a contradiction. Similarly, if &/ < ¢ then EZ(E/)[DZ] =0,

(2
giving a second contradiction. Hence, ¢’ = ¢ and we have

J@ D) =B Dl = Y. alf(a)D%,.
ol pu
ef(o)=¢
If gi(pn) < e = &i(D};) then v = efo, for some o > p. Applying Corollary 6G.2 and

induction, it follows that D}, = feD2 = D2, up to shift. This is a contradiction since
o > p. Therefore, ¢;(un) = &;(D},) and ¢;D;, = D, ,, up to shift, completing the proof of
the inductive step.

We have now shown that e;(Dy};) = & (p) and if &;(pt) > 0 then €;D}; = qujm, for some
d € Z, and it remains to show that d = d;(e;'(p) — 1). To complete the proof, observe that
because ¢;(D},) = &;(p), Kashiwara’s Lemma 6G.4 implies that [E; Dy, : DZ, ], = [&] (p)]:-
By (KLR3), y, commutes with R} | (K[z]), so multiplication by ¥, defines an R}, (K[z])-
module endomorphism of EinL. By Proposition 6G.1(c), the nilpotency index of y,, acting

on E; Dy, is 7 (p). Therefore,
[yﬁDE/yTliHDZ : Djm}q #0, for 0 < k < gi(p). (6G.7)
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Moreover, every composition factor of E; D<‘ isomorphic to D, .u» up to shift, arises uniquely
in this way by the remarks above. The module E; Dy, is self-dual by Proposition 6G.1 (a).

Consequently, head(E Dy) = dDj y» for some d € Z. Moreover, ¢; Dy, = soc(E;D};) =

g2 W - p D, by (6G.7). Hence, using self-duality again, d = —d;(&(n) — 1), so
e Dy, = qdi(sf(“)_l)D;’m as claimed. O
Corollary 6G.8. Let i,j € I, p € K and v € K. Then ¢;(D};) = ¢;(n), p;(D5) =

¢%(v) and

fiDZ o qdi( @2 (1) < fzu and J?jDi ~ qdj(l—wf('/))D?jV

as R, (K[z])-modules.
Proof. Let & € {<,>}. By (6F.12), di(p) = ¢ (1) — € (1), s0
7 A~ di(1—p? A
fiD5 = ¢ (1—¢; (u))va

7

by Theorem 6G.6 and Corollary 6G.2. In turn, this implies that ¢;(D};) = 02 (). O

Since 5i(Dﬁ) = ¢/ (u) by Theorem 6G.6, and goi(Dﬁ) = ¢ (1) by Corollary 6G.8,
Lemma 6G.4 now implies:

Corollary 6G.9. Let i,j € I, p € K, and v € K. Then

E[Dj] = [P+ > exulDAl,
AeK?

n—1

Ef(A) <ef(p)—d;

BDY = 0L+ Y diins,

oekb

n—1

ED (o)< ED (v)—d

FiDp) = o] (W)ilDf) + D dy,

AERS

P (A) <pi(pn)—d;
FD}) =[5 (w)];[DF )+ Y. dyillDs].

>
ocEK?

% (o) <% (v)—d;
for bar invariant Laurent polynomials cii, c;;, i’i, dI>J € N[q,q71].

Many people have observed that the last result implies that the dimension of Dﬁ is at
least the number of paths in the A-crystal graph from 0, to p, but we can do much better.

If o € K5 and 0, o 1 is a good node sequence, define the bar invariant polynomial
1] € N[g, ¢7!] recursively by setting

[&@H:{fmwmAamn,izzgmmV=uhnw%4»

1

Given two characters x, x’ € N[g, ¢ ][I"] write x > X" if x — X’ € N[g, ¢ 1][I"].
Corollary 6G.10. Let p € K, and v € K. Then
chD5 > Y [(g))i  and chDp > Y [gjb(q)} J-

i j>
QZW/,L Qv
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Proof. This follows easily from Corollary 6G.10 by induction on n. 0

This result is rarely sharp. When %2 (F) is semisimple and Sy = Dy is concentrated
in degree zero, then the A-good residue sequences are in bijection with the standard A-
tableaux and [¢; (¢)] = 1 (cf. [52, Proposition 2.4.6]). It follows that the right-hand side
is the graded character of the Specht module, which is concentrated in degree zero in the
semisimple case, so in this case Dﬁ =S5 lf and both bounds in corollary are sharp.

Corollary 6G.11. Let i,j € I, p € K and v € K. Then
ENDgs () (BAD}) = Flyn]/ (i ) and  ENDga ) (BADS) 2= Flyn]/ (5™).
n—1 n1

as Z-graded algebras.

Proof. Let A € {<,>}. As observed in the proof of Theorem 6G.6, multiplication by
yn defines an Rﬁz\fl(F )-module homomorphism of E,-Dﬁ = E;-/\Dﬁ and y, acts on Eile
as a nilpotent operator of index 5? (p). Hence, the image of y, in the endomorphism
ring ENDga_ r)(EiDy;) generates a subalgebra isomorphic to F[yy] /(yf;(”)). By (6G.7),
the image of the endomorphism given by multiplication by y* has head isomorphic to
qdi(2k+1—€f(“))DeAm, for 0 < k < & (n). On the other hand, if ¢ is a (homogeneous)
RA | (K[z])-module endomorphism of E;D}; then ¢ then head(im ) = ¢"*D? ,, for some

e’
keZ As[EDj : e (w)]g = [ ()]s, it follows that ¢(m) = yFm, for some k. O

1
We are missing a description of the endomorphism rings
A < A <
ENDga (p (F'Dji) and  ENDga ) (F'Dj).,
for p € Ky, v € K, and 4,5 € I. Naively, we might expect that
A ~ @3 (1)
ENDry, vy (FD3) 2 Flennl/ (3")
and
~ ©5(v)
ENDRQ«H(F) (FZADIE) = F[Cn+1]/ <an|—1 ) ’
where ch41 = y1 +y2 + - + Yny1. In type Agljl, this result was proved by Brundan

and Kleshchev [11, Theorem 4.9]. Unfortunately, in type Cél_)l, the element ¢, is rarely
homogeneous, so this statement needs to be modified. In any case, we do not see how to
obtain a description of these endomorphism rings using the results of this paper.

INDEX OF NOTATION

This index of notation gives a brief description of the main notation used in the paper,
together with the section and page where the notation is first introduced.

§  Symbol Description Page

2A k A commutative integral domain with 1, concentrated in 199
degree 0

K A field that is a k-algebra, again in degree 0 199

z A family of indeterminates over the ground ring, which 199

is normally k
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§  Symbol Description Page
k[z] The positively graded polynomial ring K[z], with x € z = 199
in degree 1
Klz™F] The Z-graded Laurent polynomial ring K[z, 2] 199
A The ring A = Z[q, ¢~ !], where ¢ is an indeterminate 199
A The ring Q(q) of rational functions in ¢ 199
‘M The graded module obtained by shifting the grading on 199
M by d
Homy4 (M, N) The homogeneous A-module maps M — N of degree 0 199
HOM 4 (M, N) All homogeneous A-module maps M — N 199
End4 (M) The homogeneous A-module endomorphisms of M of de- 199
gree
END 4 (M) All homogeneous A-module endomorphisms of M 199
2B N The set of non-negative integers Z>q 200
r A symmetrisable quiver, usually of type Agl_)l or C’él_)l 200
I The vertex set {0,1,...,e —1} of T’ 200
C = (cij) Cartan matrix of I' 200
d; D = diag(do, . ..,de—1) is the symmetriser of C 200
o Simple root, for i € I 200
A; Fundamental weight, for ¢ € I 200
Pt Dominant weight lattice 200
Q" Positive root lattice 200
G, Symmetric group on {1,2,...,n} 200
op Simple reflection o, = (k,k+1) € S, for 1 <k <n 200
L(w) Coxeter length of w € &,, 200
AS)I Affine quiver of type A with vertex set [ 201
Céi)l Affine quiver of type C with vertex set I 201
Qs Family Q; = (Qi;j(u,v))ijer of Rouquier’s Q- 201
polynomials
2C Wy Family W = (W;(u));e 1 of weight polynomials, for i € 202
I
A The dominant weight in P* determined by W7 202
I The orbit {i€ I"|a =a;, + -+, } fora € QT 202
RN, D A (standard) cyclotomic KLR algebra 202
Ry Ko, A (standard) KLR algebra 202
1; An idempotent in, and generator of, R} or 2, fori € I~ 202
Yy YUn Generators of R or 22 202
Y1y ey Upq Generators of R or 22 202
deg Degree function on Z2, RA, graded rings, and tableaux 202
* The unique anti-isomorphism of R2, or %2, that fixes 202
each generator
M® Graded dual M® = HOM (M, K) of M 202
T Family (Q%’j (u,v))ijer of deformed Q@Q-polynomials 203

defining R}
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§  Symbol Description Page
W7 Family (W(u))ies; of deformed weight polynomials 203
defining R
RA Deformed cyclotomic KLR algebra determined by 204
x X
(T, Q7, W)
RA Block of cyclotomic KLR algebra R} 204
2D 1y, Element of R,’} or %fz\ defined by a fixed reduced expres- 204
sion for w € G,
Pw Element of R} or % indexed by w € &, 205
3A  (c,r) A content system for R} 205
3B Pf; The poset of ¢-partitions of n 210
<, > Reverse dominance and dominance orders on P 210
A, Throughout, A € {4,>} and {A&, v} = {<,>} 210
(k,r c) The node in component k, row r and column ¢ 210
<,> Lexicographic orders on the set of nodes {(k,,¢)} 210
Std(A) Standard tableau of shape A € P! 210
Std*(P) Pairs of standard tableaux [Jyep Std(A) x Std(A), for 210
P C Pt
Std(i) Set of standard tableaux with residue sequence i 211
c(k,r,c) Content c(k,c —r) of the node (k,r,c) 211
r(k,r c) Residue r(k,c — r) of the node (k,r, c) 211
c(t) Content sequence c(t) = (ci(t),...,c,(t)) of the tableau 211
t
r(t) Residue sequence r(t) = (ri(t),...,rn(t)) of the tableau 211
t
Q) Qs (Em(©): st (8) = G/ (Cmin () = 212
en(1)?
3C F Semisimple idempotent in R2(K[zF]), for t € Std(P%) 212
3F St Universal level £ semisimple algebra for content system 221
U Basis elements of S5 (K) 222
4A s, Restriction of the tableau s to {1,...,m} 226
s<u dominance on standard tableaux 226
(s,t) < (u,v) Dominance on pairs of tableaux: s <u and t<v 226
b Conjugate (-partition X' = (A@’] ... |A(D) 226
t/ Conjugate tableau: t'(k,r,c) =t({ —k+1,¢,7) 226
t3, th Initial tableau with respect to < and 226
dy, dy Permutations: dit] =t = &t5, for t € Std(P) 226
i, 1% Residue sequences: i = r(t3) and i} = r(t}) 227
Y3, UX Polynomials vy, v5 € Ky1, ..., Yn] 227
Vs, V% The basis elements lbdgy;]‘lii w;tq and Y yilii w:;.t> 227
fa fa The basis elements fg = FsgFt and fg = Fsyg Fy, for 227
s,t € Std(A)
Pk (t) The difference cg41(s) — ci(s) € K[z] 228
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§  Symbol Description Page
Y Ve Important monomials in K[zF], for t € Std(P%) 229
4C  deg”, deg” Degree functions for the 1< and * bases 234
Sy, S5 Graded Specht modules for the 1 and ¥* bases 236
4Dy The defect polynomial of A € P! 237
ay The positive root 3 gcx ar(a) € QF 238
Pt The set of (-partitions {\ € P’ |ay = a} 238
def(A) The A-defect of X, which is def(ax) = (A, ax)—3(ax, an) 238
dy(N), d5%(X) Number of addable minus removal i-nodes below/above 238
A
d;(N) Number of addable minus removable i-nodes of A 238
4E () Non-degenerate symmetric bilinear form on R2 (K[z]) 240
25, 2% Distinguished generators for Specht submodules 241
A0 CA
5A (L% (L% Bilinear forms on S and S§ 246
Dy, Dy, Simple RA-modules defined by the ¥g and % bases 246
s, Kkr Indexing sets for simple R2-modules 246
5B d§;(q), dk> (q) Graded decomposition numbers for RA 249
Y., Yy Projective covers of D}, and Dy, respectively 249
5C chM Formal character in A[I"], for the R}-module M 250
- The bar involution on A + Z[q,q" '] given by f(q¢) = 250
fla™)
5D m(p) Bijection m: K, — K7, such that D}, = D 251
5E ¢ Sign automorphism of T' and associated maps on R}, 254
Uslar). ...
soc M The socle of M 256
head M The head of M 256
6A  Repk RA(K[z]) Category of graded R2-modules, which are finite dimen- 257
sional over K
Projyk RA(K[z]) Full subcategory of Repy RA(K[z]) of projective modules 257
E) The i-restriction functor Repk R to Repk RA 257
EA The i-induction functor Repg R2 — Repy RA ta 257
6B M* The projective dual: M# = Homga ) (M, R} (K[z])) 262
6C [Repk RA(K[z])]  Grothendieck group of Repy RA(K]z]) 263
[Projk R2(K[z])] ~ Grothendieck group of Proj, RA(K[z]) 263
Repy RA(K[z])]  @,20[Repk R(K[z])] 263
[Proje RMNK[)]  @noolProjy RA(K[]) 263
(,) Cartan pairing [Projk R2(K[z])] x [Repx R} (K[z])] — A 264
6D ¢ Forie I, ¢; = q% 264
[

For k € Z, [k]; is the quantum integer (g;

g ') eA

") /(g — 264
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§  Symbol Description Page
[k]:! For k > 0, [k];! is the quantum factorial [1];...[k]; € A 264
U,(gr) Quantum group of the Kac-Moody algebra gr 264
E; F;, KZjE Generators of U, (gr) 264
ﬂﬁq, 3{{}” Uy(gr)-Fock spaces associated to the < and ¢ bases 265
s, S Basis elements of the Fock spaces % ﬁq and .F ﬁ” 265
wt(v) Weight of an element in a Fock space 266
L(A) Irreducible integrable highest weight module for Uy(gr) 266

of weight A
P The set U, > PL 267
Ke, Ky The sets U, > ¢ K5, and U, > o K7, 267
Y Yo Images of [Y;] and [Y] in & Adand F4° 267
d<, d” Surjective  decomposition maps d°: ﬁﬁA — 267
[Repk Ry (K[z])]
ds., d. Injective decomposition maps df: [Projk R (K[z])] — 267
Fi°
Zi(N), L5 (A) Highest weight modules as submodules of #4< and #4> 269
(,)%50, )" Semilinear pairings on .F4< and F4> 269
ZLA(N)*, Z5(A)*  Dual highest weight modules as submodules of Z4%and 270
s
6E v Bar involution applied to an element v of an integrable 272
Uy(gr)-module
e§2(—q), eX>(—q) Entries of the inverse graded decomposition matrices 272
X X Fake projective modules, which give bases of 273
[Projy R (K[z))]
Y, Y5 #-canonical basis vectors in [Projg RS (K[z])] 274
a(9): 95, (9) Transition matrices between the {[X;]} and {Y;} bases 274
Dy, Dy, ®-canonical basis vectors in [Repy RY(K[z])] 274
ey (—q), e ( Transition matrices between the {[Sy]} and {D;;} bases 274
aks(q),as> (9) Transition matrices between the {[Y;;]} and {Y,;*} bases 276
b\ (a), bs> (g) Transition matrices between the {[D;;]} and {D;;} bases 276

6F e, f; Kashiwara’s crystal operators, for i € I 278
Ag Ring of rational functions regular at 0 278
A Ring of rational functions regular at oo 278
Qw Shorthand notation with ¢y = ¢ and ¢oo = ¢ ' 278
0, s A A-good node sequence from 0, to p 279
B(A), B"(A) The sets {p € PL| 0, wwo p} 281
el(p), €7 () The number of A-normal i-nodes, for i € T 282
o (), &5 (1) The number of A-conormal ¢-nodes, for ¢ € T 282

6G w= The minimal ¢-partition (0]...|0]1") in (P%,>) 288
w? The minimal (-partition (n|0]...|0) in (P%, <) 288
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