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Fibrewise stratification of group representations

David John Benson ∗, Srikanth B. Iyengar , Henning Krause
and Julia Pevtsova

Abstract. Given a finite cocommutative Hopf algebra A over a commutative regular ring R, the
lattice of localising tensor ideals of the stable category of Gorenstein projective A-modules is described
in terms of the corresponding lattices for the fibres of A over the spectrum of R. Under certain natural
conditions on the cohomology of A over R, this yields a stratification of the stable category. These
results apply when A is the group algebra over R of a finite group, and also when A is the exterior
algebra on a finite free R-module.

1. Introduction

Following the seminal work of Hopkins [24] and Neeman [34] in stable homotopy theory
and commutative algebra, much attention has been paid in the past few decades to the
problem of classifying the thick subcategories of finite dimensional representations over
various families of algebras, and also of the localising subcategories of all representations.
In terms of the language and machinery developed in [11, 13], the goal is to prove strati-
fication theorems. For example, in the case of modular representations of a finite group,
the thick tensor ideal subcategories of the small stable module category were classified
in [8], while the tensor ideal localising subcategories of the large stable module category
were classified in [12]. These results were generalised to cover all finite group schemes over
fields in [16].

In this paper we address the problem of change of coefficients, with a focus on represen-
tations of group algebras of finite group schemes, and in particular, of finite groups. Let
A be the group algebra of a finite group scheme over a commutative noetherian ring R; in
other words, A is a cocommutative Hopf algebra that is finitely generated and projective
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98 David John Benson et al.

over R. For example, A could be the group algebra RG of a finite group G. The appro-
priate analogue of the stable category of finite dimensional representations over a finite
group, or group scheme, is the singularity category of A, in the sense of Buchweitz [18] and
Orlov [37]. By a result of Buchweitz, this is equivalent to the stable category of Gorenstein
projective A-modules:

Gproj A ∼−−→ Dsg(A) := Db(mod A)/Dperf(A) .

An A-module is said to be Gorenstein projective if it occurs as a syzygy in an acyclic
complex of projective A-modules. The Gorenstein projective modules in mod A form a
Frobenius category, with projective-injective objects the projective A-modules; Gproj A is
the corresponding stable category. We also have to consider all Gorenstein projectives,
not only the finitely generated ones, and the corresponding stable category GProj A. The
category GProj A is triangulated and compactly generated; the subcategory of compact
objects is equivalent to Gproj A.

From now on assume that R is regular, for example, R = Z. In this case, a finitely
generated A-module is Gorenstein projective precisely when it is projective when viewed
as an R-module. The same holds also for infinitely generated A-modules when in addition
dim R is finite, that is to say, when R has finite global dimension; see Lemma 3.8. Since A
is a Hopf algebra over R, the tensor product over R induces on Gproj A the structure of a
tensor-triangulated category and also on GProj A. Moreover GProj A is rigidly compactly
generated. Our goal is to classify the thick tensor ideals of Gproj A and the localising
tensor ideals of GProj A.

One approach would be to extend methods developed in the case where R is a field to
cover more general coefficient rings. In this work, we take a different tack, by viewing A
as a family of Hopf algebras parameterised by Spec R, the Zariski spectrum of R. The
fibre over each point p in Spec R is the finite dimensional Hopf algebra Ak(p) := A⊗R k(p),
where k(p) is the residue field at p. The results of [16] apply to yield a stratification of
GProj Ak(p) in terms of the projective spectrum of the cohomology ring of Ak(p). Then the
task becomes one of “patching” these local stratifications to obtain a global stratification
of GProj A in terms of the projective spectrum of the cohomology ring of A.

There are two aspects to this task: one representation theoretic and the other purely
cohomological. The former is completely solved by the result below that can be viewed
as a fibrewise criterion for detecting membership in localising tensor ideals. We deduce it
from Theorem 4.5 that deals with the full homotopy category of projective A-modules.

Theorem 1.1. Let R be a regular ring, A a finite cocommutative Hopf R-algebra, and
M, N Gorenstein projective A-modules. The conditions below are equivalent.

(1) M ∈ Loc⊗(N) in GProj A;
(2) Mk(p) ∈ Loc⊗(Nk(p)) in GProj Ak(p) for each p ∈ Spec R.

The cohomological aspect concerns the relationship between the fibres of the cohomology
algebra S := Ext∗

A(R, R) of A and the cohomology algebra of the fibres of the R-algebra
A. Namely, for each p in Spec R there is natural map

κp : S ⊗R k(p) −→ Ext∗
Ak(p)

(k(p), k(p))

of k(p)-algebras. The question is when this map induces a bijection on spectra. Its import
is clear from the next result.
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Theorem 1.2. Let R be a regular ring and A a finite cocommutative Hopf algebra over
R. If the map κp induces a bijection on spectra for each p in Spec R, then the tensor-
triangulated category GProj A is stratified by the action of S, and the support of GProj A
is Proj S.

This result is proved at the end of Section 4, where we recall what it means for a
tensor-triangulated category to be stratified by an action of a ring. For now it suffices to
record that the result above yields the sought after classification of localising tensor ideals
of GProj A and of the thick tensor ideals of Gproj A.

The hypothesis on κp holds for the group algebra A = RG over a finite group.1 This is
a result of Benson and Habegger [10]. The proof there is lacking detail, so we provide a
full proof here in greater generality; see Theorem 5.4, and also the recent work of Lau [33,
§ 7]. Putting this together with Theorem 1.2 yields the following stratification result.

Theorem 1.3. With G a finite group and R a regular ring, the tensor-triangulated cate-
gory GProj RG is stratified by the action of the group cohomology ring H∗(G, R).

In fact we prove this stratification result for the slightly bigger compactly generated
tensor-triangulated category K(Proj RG) consisting of complexes of projective RG-modu-
les up to homotopy. The subcategory of compact objects identifies with the bounded
derived category Db(mod RG). Another case where Theorem 1.2 applies is when A is an
exterior algebra, over a finite free R-module, regarded as a Z/2-graded Hopf algebra; see
Example 4.9.

So far we have focused on Hopf algebras, but in fact an appropriate version of Theo-
rem 1.1 holds for any finite projective R-algebras A; see Theorem 2.1. In such contexts the
natural cohomology ring to consider, vis-à-vis stratification, is the Hochschild cohomology
of A over R. It is plausible that the analogue of the map κp in that context is the key to
patching fibrewise stratification, when available, to get a global stratification result for A.

Related works. For G a finite group and R a regular ring, the classification of thick tensor
ideals of Db(mod RG) (which follows from Theorem 1.3) has been obtained by Lau [33].
Building on Lau’s work in conjunction with developing novel homotopy theoretic methods
Barthel [3, 4] established a classification of localising tensor ideals of RG-modules that
are projective as R-modules, which is closely related to Theorem 1.3 (see Remark 5.8 for
more detail).

Our interest in the subject was propelled by asking a simple minded question: “Can one
deduce the stratification of R-linear representations of G from that of representations over
fields, where it is known?”— which echoes the approach taken by Lau for the bounded
derived category. As already indicated, in this work we argue that such a reduction
is indeed possible and consists of two simple steps. The first is the fibrewise detection
of Theorem 1.1 which works in a very general algebraic setting; and the second is the
behaviour of the cohomological fibres which we handle in the case of finite groups as in
Corollary 5.5 and in the case of exterior algebras.

Hence, for us the main aspects of this work are the general fibrewise criterion Theo-
rem 1.1 and the general stratification Theorem 1.2 with the stratification for finite groups
being an application of these general techniques.

1See the paragraph on subsequent developments further below.
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Subsequent developments. We are happy to report that the conclusion of Theorem 1.2
holds unconditionally. Building on recent work of van der Kallen [39], in joint work with
Barthel [5] we prove that the map κp is always a homeomorphism, and in particular
bijective. One complication that arises is that the tensor-triangulated category in question
is no longer the stable category of Gorenstein projective modules but a suitable category
of lattices, and the arguments needed to deal with this, and other aspects, are rather more
involved.

2. A fibrewise criterion for localising subcategories

Throughout R is a commutative noetherian ring and A a finite projective R-algebra;
that is to say A is an R-algebra that is finitely generated and projective as an R-module.
In particular, as a ring A is noetherian on the left and on the right. Given an A-complex
X and a point p in Spec R, the Zariski spectrum of R, set

Xk(p) := X ⊗R k(p)
viewed as a complex of Ak(p)-modules. The assignment X 7→ Xk(p) is exact on the homo-
topy category of A-complexes, and hence also on any of its subcategories, in particular,
on K(Proj A), the homotopy category of projective A-modules. The latter has a natural
structure of a triangulated category, with arbitrary coproducts. Given an A-complex Y
in K(Proj A) we write Loc(Y ) for the localising subcategory of the homotopy category
generated by Y . The main result in this section is the following fibrewise criterion for
detecting objects in Loc(Y ).

Theorem 2.1. Suppose that R is regular. Let A be a finite projective R-algebra, and let
X, Y be objects in K(Proj A). The following conditions are equivalent.

(1) X ∈ Loc(Y ) in K(Proj A);
(2) Xk(p) ∈ Loc(Yk(p)) in K(Proj Ak(p)) for each p ∈ Spec R.

The ring R is by definition regular if every finitely generated R-module has finite projec-
tive dimension. An equivalent condition is that the ring Rp has finite global dimension for
each p in Spec R. The global dimension of R is then equal to dim R, its Krull dimension.

The statement above is inspired by, and extends, an analogous statement for the derived
category of A, established in [23]. It yields also a statement about the stable category of
Gorenstein projective A-modules; see Theorem 3.5.

The proof of the theorem above takes some preparation and is given towards the end of
this section. We start by recalling some properties of the homotopy category of projective
modules.

The homotopy category of projectives. For the moment, A can be any ring that is
noetherian on both sides; that is to say, A is noetherian as a left and as a right A-module.
For us, A-modules mean left A-modules, and Aop-modules are identified with right A-
modules. When A is an R-algebra for some commutative ring R, then it is convenient
to write for any A-module the R-action on the opposite side. We denote by Mod A the
(abelian) category of A-modules and by mod A its full subcategory consisting of finitely
generated modules. The full subcategory of Mod A consisting of projective modules is
denoted Proj A.

For any additive category A ⊆ Mod A, like the ones in the last paragraph, K(A) will
denote the associated homotopy category, with its natural structure as a triangulated
category. Morphisms in this category are denoted HomK(A)(−, −). An object X in K(A)
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is acyclic if H∗(X) = 0, and the full subcategory of acyclic objects in K(A) is denoted
Kac(A).

Let D(Mod A) denote the derived category of A-modules and Db(mod A) the bounded
derived category of mod A. Let q : K(Mod A) → D(Mod A) be the localisation functor;
its kernel is Kac(Mod A). We write q also for its restriction to the homotopy category of
projective modules. This functor has an adjoint:

K(Proj A) D(Mod A) .
q

p
(2.1)

Our convention is to write the left adjoint above the corresponding right one. In what
follows it is convenient to conflate p with p ◦ q. The image of p, denoted Kproj(A),
consists precisely of the K-projective complexes, namely, those complexes P such that
HomK(A)(P, −) = 0 on acyclic complexes in K(Mod A).

Compact objects. The category K(Proj A) is triangulated, admits arbitrary direct sums,
and is compactly generated. As in any triangulated category with arbitrary direct sums,
an object X in K(Proj A) is compact if HomK(A)(X, −) commutes with direct sums. The
compact objects in K(Proj A) form a thick subcategory, denoted Kc(Proj A). The assign-
ment M 7→ HomAop(pM, A) induces an equivalence

ιA : Db(mod Aop)op ∼−−→ Kc(Proj A). (2.2)
This result is due to Jørgensen [30, Theorem 3.2]; see also [27].

Regular rings. Recall that the ring R is regular if every finitely generated R-module has
finite projective dimension, that is, every complex in Db(mod R) is perfect. We record a
couple of basic facts for later use.

Lemma 2.2. Let R be a commutative noetherian ring.
(1) The ring R is regular if and only if every acyclic complex in K(Proj R) is null-

homotopic.
(2) Suppose that R is regular and local of Krull dimension d with residue field k. Then

RHomR(k, R) ∼−→ Σ−dk.

Proof. (1) The functor p in (2.1) restricted to compact objects embeds the perfect com-
plexes over R into Db(mod R), via (2.2). This embedding is an equivalence if and only
p is an equivalence. Clearly, p is an equivalence if and only if q is an equivalence. See
also [26].

(2) The Koszul complex K on a minimal generating set for the maximal ideal of R
provides a projective resolution K → k. Since HomR(K, R) ∼= Σ−dK, by [17, Proposi-
tion 1.6.10], the stated assertion follows. □

Fibres and the Koszul complex. We return to the context of finite projective algebras
over a commutative ring R and wish to describe the functor − ⊗R k(p) for each prime p
in Spec R via the Koszul complex for p. We reduce to the local case.

Let (R,m, k) be a local ring, with maximal ideal m and residue field k. In this paragraph,
we write Ak instead of Ak(m). Let π be the functor from K(Proj A) to K(Proj Ak) given
by the assignment X 7→ Xk := X ⊗R k. It is clear that π preserves coproducts and so has
a right adjoint by Brown representability, say πr. Thus there is the adjoint pair

K(Proj A) K(Proj Ak) .
π

πr
(2.3)
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The following observation is useful in the sequel.

Lemma 2.3. Consider an adjoint pair of functors

T U
π

πr

between compactly generated triangulated categories. Then πr preserves all coproducts if
and only if π preserves compact objects. In that case the restriction πc : Tc → Uc admits
a right adjoint if and only if πr preserves compact objects.

Proof. The first claim is [36, Theorem 5.1]; the second one is [2, Lemma 2.6(a)]. □

We need to understand the unit id → πrπ and counit ππr → id of the adjunction (2.3).
To that end, consider the Koszul complex, K, on a minimal generating set for the ideal
m. The map R → K of R-complexes induces a natural map

X ∼= X ⊗R R −→ X ⊗R K for X in K(Proj A). (2.4)

On the other hand, the augmentation R → k factors through R → K via a map K → k,
which induces V := K ⊗R k → k ⊗R k ∼−→ k and therefore a natural map

V ⊗k Y −→ k ⊗k Y ∼= Y for Y in K(Proj Ak). (2.5)

The result below is the key to the proof of Theorem 2.1 and also in other computations
that follow.

Lemma 2.4. When R is regular, the following statements hold.
(1) Both π and πr preserve compact objects and arbitrary direct sums.
(2) Restricting the adjunction (2.3) to compact objects gives the adjunction

Db(mod Aop) Db(mod Aop
k )

k⊗L
R−

Σ−dρ

where ρ corresponds to πr and is induced by restriction along the map A → Ak

and d := dim R. The right adjoint k ⊗L
R − corresponds to π.

(3) The maps (2.4) and (2.5) are the unit and the counit, respectively, of the adjunc-
tion (2.3).

(4) For X ∈ K(Proj A) and Y ∈ K(Proj Ak), there are natural isomorphisms

πrπ(X) ∼= X ⊗R K and ππr(Y ) ∼= V ⊗k Y .

In particular, ππr(Y ) is isomorphic to a finite direct sum of shifts of Y .

Proof.
(1) and (2): We have already observed that π preserves arbitrary direct sums. We verify
that π preserves compacts, equivalently that its right adjoint, πr, preserves arbitrary direct
sums. Any compact object in K(Proj A) is of the form ιAM = HomA(pAopM, A) for some
M ∈ Db(mod Aop). A direct computation gives

π HomA (pAopM, A) = HomA (pAopM, A) ⊗R k

∼= HomAk
((pAopM) ⊗R k, Ak)

∼= HomAk

(
pAop

(
k ⊗L

R M
)

, Ak

)
.
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Since R is regular, k is in Thick(R) in D(Mod R) and hence k ⊗L
R M is in Thick(M) in

Db(mod Aop). Therefore the Ak-module H∗(k ⊗L
R M) is finitely generated, that is to say,

k ⊗L
R M is in Db(mod Aop

k ). Thus the complex

HomAk

(
pAop

(
k ⊗L

R M
)

, Ak

)
= ιAk

(
k ⊗L

R M
)

in K(Proj Ak) is compact. This justifies the claim that π preserves compacts. Along the
way we have established that

πιA(M) ∼= ιAk

(
k ⊗L

R M
)

for M in Db(mod Aop). In other words, restricted to compacts π is the functor
k ⊗L

R − : Db(mod Aop) −→ Db(mod Aop
k )

via the identification in (2.2). The functor Σ−dρ is left adjoint to the functor above:

HomD(A)
(
Σ−dρN, M

)
∼= HomD(Ak)

(
Σ−dN, RHomR(k, M)

)
∼= HomD(Ak)

(
Σ−dN, RHomR(k, R) ⊗L

R M
)

∼= HomD(Ak)
(
Σ−dN, Σ−dk ⊗L

R M
)

∼= HomD(Ak)
(
N, k ⊗L

R M
)

The first isomorphism is standard adjunction, the second uses the fact that k is per-
fect as an R-complex, since R is regular, and the third one follows from the fact that
RHomR(k, R) ∼−→ Σ−dk; see Lemma 2.2.

At this point we can apply Lemma 2.3 to deduce that πr also preserves compacts and is
isomorphic to the functor Σ−dρ when restricted to compact objects. This settles both (1)
and (2).

(3) The canonical map K ⊗R k → k ⊗R k ∼−→ k induces the map
X ⊗R K ⊗R k −→ X ⊗R k ,

and this corresponds under the adjunction isomorphism
HomK(Ak) (X ⊗R K ⊗R k, X ⊗R k) ∼= HomK(A) (X ⊗R K, πr(X ⊗R k))

to a natural map
X ⊗R K −→ πrπ(X) . (2.6)

It suffices to prove that this is an isomorphism. We verify this when X is compact; the
general case then follows as π and πr preserve arbitrary direct sums, by (1).

Since K is a finite free R-complex, the assignment M 7→ HomR(K, M) is an endo-
functor on Db(mod Aop). Moreover, it is a simple computation to verify that under the
equivalence (2.2), if X corresponds to M in Db(mod Aop), then X ⊗R K corresponds to
HomR(K, M), and that the map (2.6) corresponds to the map

Σ−d(k ⊗L
R M) −→ HomR(K, M) .

This latter map is obtained by applying − ⊗L
R M to the isomorphism

Σ−dk ∼= RHomR(k, R) ∼= HomR(K, R)
and is hence an isomorphism. Here again we are using the hypothesis that R is regular.
This completes the proof that (2.4) is the unit of the adjunction. The claim about (2.5)
can be verified along the same lines.
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(4) The isomorphisms were verified along the way to verifying (3). The last assertion
holds because V is a finite graded k-vector space with zero differential. □

Local cohomology and support. In the proof of Theorem 2.1, and later on in the
sequel, we require the theory of local cohomology and support from [11], with respect to
the action of the ring R on the homotopy category of projective modules. The analogue
for the homotopy category of injective modules is described in [28, § 7]. One could invoke
that theory, for the two homotopy categories are equivalent, at least under certain minor
additional constraints on A, but to keep this manuscript self-contained we develop the
needed results for K(Proj A) directly.

For any pair of objects X, Y in K(Proj A) there is a natural R-module structure on
HomK(A)(X, Y ), so that K(Proj A) is an R-linear triangulated category, in the sense of [11,
§ 4]. In particular, for each specialisation closed subset V of Spec R there is an exact
triangle

ΓV X −→ X −→ LV X −→ (2.7)
such that the object ΓV X is V -torsion and HomK(A)(−, LV X) = 0 on V -torsion objects.
Here an object Y is by definition V -torsion if for each compact object C in K(Proj A) the
R-module HomK(A)(C, Y ) is V -torsion.

For any ideal I ⊂ R we consider the closed set

V (I) := {p ∈ Spec R | I ⊆ p} .

Lemma 2.5. Let I ⊂ R be an ideal and K the Koszul complex on a finite generating set
for the ideal I. For each X in K(Proj A) one has

Loc
(
ΓV (I)X

)
= Loc (X ⊗R K) .

Proof. If K is the Koszul complex on a single element r in R, the complex X ⊗R K is
isomorphic to the mapping cone of the morphism X

r−→ X; in other words, X ⊗R K is the
complex denoted X//r in [13, § 2.5]. The Koszul complex K on a sequence of elements
r1, . . . , rn generating the ideal I can be constructed as an iterated mapping cone, so X⊗RK
represents X//I. Thus the stated result is a special case of [13, Proposition 2.11(2)]. □

Fix a point p in Spec R and consider the specialisation closed subset

Z(p) := Spec R \ Spec Rp = {q ∈ Spec R | q ̸⊆ p} .

The localisation functor X → LZ(p)X models localisation at p in the sense that for each
compact object C in K(Proj A) the map

HomK(A)(C, X) −→ HomK(A)
(
C, LZ(p)X

)
of R-modules induces an isomorphism of Rp-modules

HomK(A)(C, X)p ∼−−→ HomK(A)
(
C, LZ(p)X

)
.

See [11, Theorem 4.7], and also [13, Proposition 2.3].
The localisation functor LZ(p) admits an alternative description which will be useful.

For a complex X in K(Proj A) set

Xp := X ⊗R Rp
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viewed as a complex of Ap-modules, where Ap denotes the Rp-algebra A ⊗R Rp. The
assignment X 7→ Xp yields an adjoint pair of functors

K(Proj A) K(Proj Ap) .
λ

λr

(2.8)

The right adjoint λr exists as localisation preserves coproducts.

Lemma 2.6. The right adjoint λr preserves coproducts. Moreover, for each X in K(Proj
A), the unit X → λrλ(X) of the adjunction (2.8) is naturally isomorphic to the localisation
X → LZ(p)(X), so that

LZ(p)(X) ∼= λrλ(X) .

Proof. Observe that the functor λ also preserves compact objects, hence its right adjoint
λr preserves coproducts. As to the second claim, it suffices to verify that for any compact
object C in K(Proj A) the map

HomK(A)(C, X) −→ HomK(A) (C, λrλ(X))
induced by the unit is localisation at p. Adjunction gives an isomorphism

HomK(A) (C, λrλ(X)) ∼= HomK(Ap) (λC, λ(X)) = HomK(Ap) (Cp, Xp)
of R-modules, so the module on the left is p-local. Thus one gets an induced map

HomK(A)(C, X)p −→ HomK(A) (C, λrλ(X))
and the desired result is that this is an isomorphism. Since C is compact, and localisation
at p, and the functors λr and λ preserve coproducts, it suffices to verify the map above is
an isomorphism when X is also compact. Consider again the adjunction isomorphism

HomK(A) (C, λrλX) ∼= HomK(Ap) (Cp, Xp) .

Since Cp and Xp are compact in K(Proj Ap), by the description of compact objects in
K(Proj A), the desired result is that for M, N in Db(mod Aop), the map

HomD(Aop)(M, N)p −→ HomD(Aop
p ) (Mp, Np)

is an isomorphism. But this is clear. □

The local cohomology functor at p is the functor Γp on K(Proj A) given by
Γp(X) := ΓV (p)LZ(p)(X) ∼= λrΓV (pRp) (Xp) , (2.9)

where the isomorphism is the one from Lemma 2.6.
The local cohomology functors reduce the description of localising subcategories to a

local problem, because the local-to-global theorem says that
Loc(X) = Loc({ΓpX | p ∈ Spec R}) for X ∈ K(Proj A); (2.10)

see [13, § 3] and also [38, Theorem 6.9].

Proof of Theorem 2.1. The implication (1)⇒(2) is clear since for each p in Spec R the
functor given by X 7→ Xk(p) is exact and preserves all coproducts.

(2)⇒(1) Let X, Y be objects in K(Proj A). By the local-to-global theorem (2.10) it
suffices to verify for each p ∈ Spec R that Xk(p) ∈ Loc(Yk(p)) in K(Proj Ak(p)) implies
ΓpX ∈ Loc(ΓpY ) in K(Proj A).

We denote by K the Koszul complex on a minimal generating set for the maximal ideal
pRp of Rp. We have

Xk(p) = Xp ⊗Rp k (pRp)
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and therefore Xk(p) ∈ Loc(Yk(p)) implies

Xp ⊗Rp K ∈ Loc
(
Yp ⊗Rp K

)
in K(Proj Ap)

by Lemma 2.4. This means

ΓV (pRp)(Xp) ∈ Loc
(
ΓV (pRp)(Yp)

)
in K(Proj Ap)

by Lemma 2.5. It remains to apply the functor λr. Thus
λrΓV (pRp)(Xp) ∈ Loc(λrΓV (pRp)(Yp)) in K(Proj A) . □

Remark 2.7. The derived category D(Mod A) identifies with a localising subcategory of
K(Proj A) via the left adjoint of the canonical functor K(Proj A) → D(Mod A). Thus
Theorem 2.1 implies the analogous description of localising subcategories of D(Mod A)
from [23]. Here is another noteworthy consequence.

Corollary 2.8. Let R be a regular ring, A a finite projective R-algebra, and M, N in
Db(mod A). The following conditions are equivalent.

(1) M ∈ Thick(N) in Db(mod A);
(2) Mk(p) ∈ Thick(Nk(p)) in Db(mod Ak(p)) for each p ∈ Spec R.

Proof. For compact objects X, Y in any compactly generated triangulated category, one
has X ∈ Thick(Y ) if and only if X ∈ Loc(Y ); see, for instance, [35, Lemma 2.2]. Thus the
desired result is an immediate consequence of Theorem 2.1 and equivalence 2.2, applied
to Aop. □

The preceding result applied with N = A implies that M is perfect if and only if it is
fibrewise perfect. Here is a more precise result, for later use.

Lemma 2.9. Let R be a commutative noetherian ring, A a finite projective R-algebra,
and M a finitely generated A-module. When M is projective as an R-module, there is an
equality

proj.dimA M = sup
{

proj.dimAk(p)
Mk(p)

∣∣∣ p ∈ Spec R
}

.

Moreover, it suffices to take the supremum over the maximal ideals in R.

Proof. Even without the hypothesis that M is finite projective over R, one has

proj.dimA M = sup
{

proj.dimAp
Mp

∣∣∣ p ∈ Spec R
}

by [6, Corollary III.6.6]. Thus replacing R, A, and M by their localisations at p we can
assume R is a local ring, say with maximal ideal m and residue field k. Then the desired
result is that

proj.dimA M = proj.dimAk
Mk .

Since A is semi-local, [1, Proposition A.1.5] yields

proj.dimA M = max
1 ≤ j ≤ r

{
i ∈ N

∣∣∣ Exti
A(M, Lj) ̸= 0

}
where L1, . . . , Lr are the simple A-modules. The Lj are modules over Ak := A/mA and
M is projective over R, so adjunction yields isomorphisms

Exti
A(M, Lj) ∼= Exti

Ak
(Mk, Lj) .

Since the Lj are the simple modules over Ak the desired result follows. □
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3. Gorenstein algebras

Let R be a commutative noetherian ring. Following [23, 28], we say A is a Gorenstein
R-algebra when it is a finite projective R-algebra such that for each p in suppR A the
ring Ap has finite injective dimension on the left and on the right; that is to say, it is
Iwanaga–Gorenstein. When this holds Rp is Gorenstein for each p in suppR A. Here is a
characterisation of the Gorenstein property that is in the spirit of this work; see also [23,
Theorem 6.8].

Proposition 3.1. Let R be a commutative Gorenstein ring and A a finite projective R-
algebra. Then A is Gorenstein if and only the finite dimensional algebra Ak(p) is Iwanaga–
Gorenstein for each p in Spec R.

Proof. By [28, Theorem 4.6], the R-algebra A is Gorenstein if and only if the A-bimodule
HomR(A, R) is perfect on both sides. Since the A-module HomR(A, R) is finitely generated
on both sides, it is perfect if and only if the Ak(p)-module

HomR(A, R)k(p)
∼= Homk(p)

(
Ak(p), k(p)

)
is perfect on both sides, for each p in Spec R; this follows from Corollary 2.8 applied
with M := HomR(A, R) and N := A. It remains to observe that this latter condition is
equivalent to Ak(p) being Iwanaga–Gorenstein. □

Remark 3.2. One consequence of the Gorenstein condition is that acyclic complexes in
K(Proj A) are totally acyclic, namely each complex X ∈ Kac(Proj A) satisfies

HomK(A)(X, P ) = 0 for any projective A-module P .
See [28, Theorem 5.6] for a proof. The functors

Kac(Proj A) incl−−→ K(Proj A) q−−→ D(Mod A)
induce a recollement of triangulated categories

Kac(Proj A) K(Proj A) D(Mod A)incl
t

q
p

(3.1)

The functor t, left adjoint to the inclusion of the acyclic complexes of projectives, associates
to each complex its complete resolution.

From [28, Theorem 4.6] one gets an equivalence:
RHomA(−, A) : Db(mod A)op ∼−−→ Db(mod Aop) .

Composing this with the equivalence (2.2) yields a canonical equivalence
Db(mod A) ∼−−→ Kc(Proj A) . (3.2)

Gorenstein projective modules. An A-module M is Gorenstein projective if it occurs
as a syzygy module in an acyclic complex of projective A-modules. Thus, there is some
X ∈ Kac(Proj A) such that M ∼= Coker(d−1

X ). We write GProj A for the full subcategory
of Mod A consisting of the Gorenstein projective modules, and Gproj A for its subcategory
of finitely generated modules. Both these are Frobenius categories, with projective and
injective objects the projective modules in the corresponding categories; see for exam-
ple [32, Proposition 7.2]. The corresponding stable categories are denoted GProj A and
Gproj A, respectively. The first part of the result below was proved by Buchweitz [18,
Theorem 4.4.1] when A is Iwanaga–Gorenstein, but the same argument carries over to
this context.

Ann. Repr. Th. 1 (2024), 1, p. 97–124 https://doi.org/10.5802/art.6

https://doi.org/10.5802/art.6


108 David John Benson et al.

Theorem 3.3. The assignment X 7→ Coker(d−1
X ) induces an equivalence of R-linear tri-

angulated categories Kac(Proj A) ∼−→ GProj A. Moreover, these categories are compactly
generated, and Gproj A identifies with the full subcategory of compact objects of GProj A.

Proof. In the dual setting of Gorenstein injectives the first assertion is [32, Proposition 7.2].
In fact, we have an equivalence K(Inj A) ∼−→ K(Proj A) by [28, Theorem 5.6] and then the
second assertion follows from [28, Theorem 6.5]. □

The Gorenstein projectivity of a module is inherited by its fibres. Without further
restrictions, the converse need not hold.

Lemma 3.4. Let R be a regular ring and A a Gorenstein R-algebra. If an A-module M
is Gorenstein projective, then so is the Ak(p)-module Mk(p) for each p in suppR A.

Proof. Let X be an acyclic complex of projective A-modules in which M is a syzygy. Since
R is regular and X is in Kac(Proj R), it is null-homotopic as an R-complex by Lemma 2.2.
Thus Xk(p) = X ⊗R k(p) is also null-homotopic, and in particular acyclic. It consists of
projective Ak(p)-modules and Mk(p) is a syzygy module in it, so the latter is Gorenstein
projective. □

In view of Theorem 3.3 and the preceding result, one gets an analogue of Theorem 2.1
for Gorenstein projective modules.

Theorem 3.5. Let R be a regular ring and A a Gorenstein R-algebra. For Gorenstein
projective R-modules X, Y we have in GProj A

X ∈ Loc(Y ) ⇐⇒ Xk(p) ∈ Loc
(
Yk(p)

)
for each p ∈ Spec R.

In the remainder of this section, we focus on a class of Gorenstein algebras for which it
is easy to describe the Gorenstein projective modules.

Fibrewise self-injective algebras. The dualising bimodule of a finite projective R-
algebra A is the A-bimodule

ωA/R := HomR(A, R) .

As noted in the proof of Proposition 3.1, when A is a Gorenstein R-algebra, ωA/R is perfect
on either side, though not necessarily as a bimodule. Moreover, this property characterises
the Gorenstein property of A when R is Gorenstein; see [28, Theorem 4.6]. In the sequel,
Gorenstein algebras for which the dualising bimodule is projective on either side play a
prominent role. The result below characterises these algebras in terms of their fibres.

An R-algebra A is fibrewise self-injective if it is a finite projective R-algebra such that
the finite dimensional algebra Ak(p) is self-injective for each p in suppR A. Our primary
example is the group algebra of a finite group scheme over R.

For a module M we denote by add(M) the full subcategory of finite direct sums of
copies of M plus their direct summands.

Lemma 3.6. Let R be a Gorenstein ring and A a finite projective R-algebra. The condi-
tions below are equivalent.

(1) The R-algebra A is fibrewise self-injective;
(2) add(ωA/R) = add(A) and add(ωAop/R) = add(Aop);
(3) The dualising bimodule ωA/R is projective on the left and on the right.
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If they hold the R-algebra A is Gorenstein, and one has an equivalences of categories
ωA/R ⊗A (−) : Proj A ∼−−→ Proj A

with inverse HomA(ωA/R, −), and similarly for Proj Aop.

Proof. In what follows we use the observation that for each p in Spec R one has an iso-
morphism of Ak(p)-bimodules:

ωA/R ⊗R k(p) ∼= ωAk(p)/k(p) .

Hence the A-bimodule ωA/R is projective on either side if and only if the Ak(p)-bimodule
ωAk(p)/k(p) is projective on either side for each p in Spec R; see Lemma 2.9.

(1)⇒(2) It suffices to prove that A is in add(ωA/R), equivalently that the map

ωA/R ⊗A HomA(ωA/R, A) −→ A

given by evaluation, is surjective. Since an R-module M is zero if and only if Mk(p) is zero
for each p in Spec R, it suffices to check the surjectivity of the map on the fibres, that is
to say, the map

ωAk(p)/k(p) ⊗Ak(p) HomAk(p)

(
ωAk(p)/k(p), Ak(p)

)
−→ Ak(p)

is surjective. This holds as the k(p)-algebra Ak(p) is self-injective.
(2)⇒(3) is clear.
(3)⇒(1) Given the isomorphism above, condition (3) yields that the dualising bimodule

of Ak(p) over k(p) is projective, that is to say, Ak(p) is self-injective.
It remains to verify the last part of the statement. The Gorenstein property follows

from Proposition 3.1. The equivalence follows from the fact that ωA/R is projective on
both sides and the isomorphism

A ∼−−→ HomA(ωA/R, ωA/R) .

See also [28, Theorem 4.5]. □

In what follows dimR A denotes the Krull dimension of A viewed as an R-module.

Proposition 3.7. Let R be a Gorenstein ring and A a fibrewise self-injective R-algebra.
Then

inj.dimA A = dimR A = inj.dimAop Aop .

In particular, A is Iwanaga–Gorenstein if and only if dimR A is finite.

Proof. It suffices to verify the equality for A; the one for Aop holds, by symmetry. Since the
injective dimension of A is detected by the vanishing of Exti

A(−, A) on finitely generated
A-modules, it suffices to verify that

inj.dimAp
Ap = dimRp Ap for each p in suppR A.

We can replace R and A by their localisations at p so that R is local, and hence A is
semi-local, and dimR A = dim R. For any simple A-module L one has

Exti
A(L, ωA/R) = Exti

A (L, HomR(A, R)) ∼= Exti
R (A ⊗R L, R) .

Since the ring R is Gorenstein, hence of injective dimension dim R, we deduce that
Exti

A(L, ωA/R) = 0 for i > dim R. Thus Lemma 3.6(3) yields

Exti
A(L, ωA/R) = 0 for i > dim R.
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Hence inj.dimA A ≤ dim R by [18, Lemma B.3.1]. For the converse equality, with k the
residue field of R, one has Extd

R(k, R) ∼= k; see Lemma 2.2. Since A is a non-zero finite
free R-module, one gets

Extd
A (A ⊗R k, A) ∼= Extd

R(k, A) ̸= 0 .

Thus inj.dimA A ≥ dim R. This justifies the stated equalities. □

In the result below, the converse statement need not hold for general Gorenstein alge-
bras, as can be seen by contemplating the case when R is a field.

Lemma 3.8. Let A be a Gorenstein R-algebra and M an A-module. When M is Goren-
stein projective, it is Gorenstein projective also as an R-module. The converse holds when
A is fibrewise self-injective and either M is finitely generated or dimR A is finite.

Proof. Since A is finite projective as an R-module, any projective A-module is also projec-
tive as an R-module, and hence any acyclic complex of projective A-modules is an acyclic
complex of projective R-modules. It follows that any Gorenstein projective A-module is
Gorenstein projective also as an R-module.

Suppose that A is fibrewise self-injective and that M is Gorenstein projective as an R-
module. We verify that Exti

A(M, −) = 0 for i ≥ 1 and on Proj A. Given this, if M is finitely
generated one can apply [28, Lemma 6.3] to conclude that it is Gorenstein projective also
as an A-module. We can draw the same conclusion from [19, Corollary 11.5.3] for a
general M when we also know dimR A is finite, for then A is Iwanaga–Gorenstein, by
Proposition 3.7.

As to the vanishing of Ext, any projective A-module is a direct summand of a free A-
module, and any free A-module is of the form A⊗RF for some free R-module F . Therefore
it suffices to verify that

Exti
A (M, A ⊗R F ) = 0 for i ≥ 1.

Since A is in add(ωA/R), by Lemma 3.6, the A-module A ⊗R F is in additive subcategory
generated by

ωA/R ⊗R F = HomR(A, R) ⊗R F ∼= HomR(A, F ) .

Thus it suffices to verify that Exti
A(M, HomR(A, F )) = 0 for i ≥ 1. This follows from the

adjunction isomorphism

Exti
A (M, HomR(A, F )) ∼= Exti

R(M, F )

and the hypothesis that M is Gorenstein projective as an R-module. □

Remark 3.9. Let R be a regular ring of finite Krull dimension, G a finite group, and
RG the group algebra. As noted earlier the R-algebra RG is fibrewise self-injective. Let
M be an RG-module that is projective as an R-module. It follows from Lemma 3.8 and
Theorem 3.5 that M is projective as an RG-module if and only if for each p in Spec R
the k(p)G-module k(p) ⊗R M is projective. This result appears to be in conflict with
the example constructed by Benson and Goodearl in [9, Section 8]. However there is no
conflict because the claim in [9] that the module k ⊗R M is kG-projective is not correct:
the image of multiplication by 1−g is strictly contained in the kernel of the multiplication
by 1 − g.

Indeed, in the example in question one has R := k[|t|], the ring of power series in the
variable t, over a field k of characteristic two, and G = Z/2. Thus RG ∼= R[x]/(x2), with
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1 + x representing the generator of G. The module M in question can be realised as the
free R-module R[u] ⊕ R ⊕ R[s] with the action of x given by

x · (f(u), r, g(u)) = (0, 0, f(u) + r)

for f(u), g(u) in R[u], and r ∈ R. Evidently the element (1, 1, 0) is in the kernel of
multiplication by x but not in its image.

The fibrewise test for projectivity stated above holds over any noetherian commutative
ring R; see [5, Proposition 3.5].

4. Cocommutative Hopf algebras

Throughout this section R will be a regular commutative noetherian ring and A a finite
cocommutative Hopf algebra over R; this includes the condition that A is projective as
an R-module. Then K(Proj A) has a natural structure of a tensor-triangulated category,
and one has an analogue of the fibrewise criterion from Section 2 that takes into account
this additional structure. With some further assumption on the cohomology of A we
are then able to stratify the tensor-triangulated category K(Proj A) via the action of the
cohomology ring of A.

Tensor structure. Given A-modules X and Y , there is a natural diagonal A-module
structure on X ⊗R Y , obtained by restricting its A ⊗R A-module structure along the
coalgebra map ∆: A → A ⊗R A.

Lemma 4.1. Let P, Q be A-modules. If P is projective over A and Q is projective over
R, then the A-module P ⊗R Q, with the usual diagonal action, is projective.

Proof. This follows from the standard adjunction isomorphism

HomA (P ⊗R Q, −) ∼= HomA (P, HomR(Q, −)) . □

The preceding result implies that − ⊗R − induces a tensor product on K(Proj A).

Lemma 4.2. The triangulated category K(Proj A) is tensor-triangulated, with product
− ⊗R − and unit the A-complex

1 := HomR (pAopR, R) .

Proof. We have already seen that − ⊗R − provides a tensor product on K(Proj A), and it
remains to verify the assertion about the unit. Since Aop is noetherian, one can assume
that for any M in Db(mod Aop), its projective resolution pAopM is finitely generated in
each degree and that (pMop)i = 0 for i ≪ 0. This fact will be used multiple times in what
follows.

The augmentation ε : pAopR → R induces the A-linear map

ε∗ : R −→ HomR (pAopR, R) .

For each X in K(Proj A) this induces the map

X ∼= X ⊗R R
X⊗ε∗

−−−−−→ X ⊗R HomR (pAopR, R)

and the desired result is that this map is an isomorphism.
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Since K(Proj A) is compactly generated, and the functors involved preserves coprod-
ucts, it suffices to verify the claim when X is compact, that is to say, of the form
HomA(pAopM, A) for some M in mod Aop; see (2.2). Consider the diagram

HomA (pAopM, A) HomA (pAopM, A) ⊗R HomR (pAopR, R)

HomA (pAopM ⊗R pAopR, A)
α

HomA(pAop M,A)⊗ε∗

∼=

where the vertical map is the natural one; it is an isomorphism because pAopA and pAopM
are degreewise finitely generated. The map α is the obvious composition. It suffices to
check that α is an isomorphism.

One can verify that the map α is obtained from the map

pAopM ⊗R pAopR
pAop M⊗ε−−−−−−→ pAopM ⊗R R ∼= pAopM

by applying HomA(−, A). Since ε is a quasi-isomorphism so is the map above. Since the
source and target consist of projective Aop-modules, and are bounded to the right, they
are semi-projective complexes over Aop. Thus the map above is a homotopy equivalence
in K(Proj Aop). Therefore applying HomA(−, A) induces an isomorphism in K(Proj A).
This is the desired result. □

Rigidity. The tensor-triangulated category K(Proj A), which is always compactly gen-
erated, is also rigid when R is regular. We recall briefly the notion of rigidity in tensor-
triangulated categories and refer to [25, A.2] for details.

Let T be a compactly generated tensor-triangulated category, with product ⊗ and unit 1.
We assume that 1 is compact and that ⊗ preserves coproducts. Being a compactly gener-
ated tensor-triangulated category, T has an internal function object, Hom(−, −), defined
by the property that

HomT(X ⊗ Y, Z) ∼= HomT(X,Hom(Y, Z))
for X, Y and Z in T. There is a natural map

Hom(X,1) ⊗ Y −→ Hom(X, Y ) (4.1)
and X is rigid if this map is an isomorphism for all Y . Since 1 is compact, every rigid
object is compact, and one says that T is rigidly-compactly generated when the converse
holds: compact objects and rigid objects coincide. It is straightforward to verify that this
property holds if and only if the conditions below hold:

(1) the subcategory of compact objects is closed under ⊗;
(2) (4.1) is an isomorphism when X, Y are compact.

Back to the tensor-triangulated category K(Proj A) with product ⊗R, where A is a
cocommutative Hopf algebra over R. In this case, the internal function object can be
described quite concretely as

Hom(Y, Z) = j HomR(Y, Z)
where j is the right adjoint to the inclusion of K(Proj A) into the homotopy category of
flat A-modules; see [27, Proposition 2.4]. Here is the pertinent result; one can also prove
that K(Proj A) is not rigid when R is not regular.

Lemma 4.3. If R is regular, the tensor-triangulated category K(Proj A) is rigid.
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Proof. As noted above, it suffices to verify that for any X, Y in Kc(Proj A), the complex
X ⊗R Y is also in Kc(Proj A) and that (4.1) is an isomorphism. Given the identifica-
tion (3.2) of compact objects in K(Proj A), this is tantamount to verifying that for M, N
in Db(mod A), the complex M ⊗L

R N is in Db(mod A) and the map

RHomR(M, R) ⊗L
R N −→ RHomR(M, N)

of A-complexes is an isomorphism. Both properties are clear, since R is regular. □

Remark 4.4. The functor π : K(Proj A) → K(Proj Ak) from (2.3) is a tensor functor
which fits – together with its adjoints – into the framework discussed in [2].

Fibrewise criterion. Here is the analogue of the fibrewise criterion for detecting mem-
bership in localising subcategories, Theorem 2.1, in the presence of the tensor product. In
the statement Loc⊗(Y ) denotes the tensor ideal localising subcategory generated by Y .

Theorem 4.5. Let R be a regular ring and A a finite cocommutative Hopf R-algebra. Let
X, Y be objects in K(Proj A). The following conditions are equivalent.

(1) X ∈ Loc⊗(Y ) in K(Proj A);
(2) Xk(p) ∈ Loc⊗(Yk(p)) in K(Proj Ak(p)) for each p ∈ Spec R.

Proof. The argument follows the same lines as that for Theorem 2.1, using in addition
that K(Proj A) is a rigidly generated tensor-triangulated category by Lemma 4.3. Again
it is straightforward to verify (1)⇒(2), once one observes that the functor π from (2.3)
respects the tensor products: For X, Y in K(Proj A), there is a natural isomorphism

π(X ⊗R Y ) ∼= π(X) ⊗k(p) π(Y ) in K(Proj Ak(p)).

For the implication (2)⇒(1) we use the version of the local-to-global theorem (2.10) for
tensor-triangulated categories in [13, Theorem 7.2]. Then the task reduces to proving for
X, Y in K(Proj A) that when (R,m, k) is a local ring and Xk is in Loc⊗(Yk), the complex
πrπ(X) is in Loc⊗(πrπ(Y )). When reducing to the local case, one uses that for each p
in Spec R the category K(Proj Ap) identifies with a localising tensor ideal of K(Proj A)
via (2.8).

Whilst the functor πr need not respect tensor products, the following projection formula
holds. For U in K(Proj A) and V in K(Proj Ak), there is a natural isomorphism

U ⊗R πrV ∼= πr(π(U) ⊗k V ) .

One can verify this directly, but this is a general fact about tensor functors and their
right adjoints between rigidly-compactly generated tensor-triangulated categories; see [2,
Theorem 1.3]. This formula and the fact that, up to direct summands, π is surjective on
objects – see Lemma 2.4 – yield the desired result. □

Finite generation. Let R be a commutative noetherian ring and A a finite cocommuta-
tive Hopf algebra over R. Set

S := Ext∗
A(R, R) .

This is a graded-commutative R-algebra. Van der Kallen [39] has proved that S is finitely
generated as an R-algebra; equivalently, that it is noetherian. This generalises earlier work
of Friedlander and Suslin [22] that dealt with the case where R is a field. The ring S can
be realised as the graded-ring of morphisms

S ∼= Hom∗
K(A)(1,1) .
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Since 1 is the unit of the tensor product on K(Proj A), it has a natural S-linear action
on it. For each p in Spec R one has that Ak(p) is a finite dimensional cocommutative Hopf
algebra over k(p). Set

S(p) := Ext∗
Ak(p)

(k(p), k(p)) . (4.2)

Cohomological support. Let R be a commutative noetherian ring, A a finite cocom-
mutative Hopf algebra over R, and S the cohomology ring introduced above. We write
Spec S for the homogenous prime ideals in S. Following [11, § 5], the action of S on
K(Proj A) gives rise to a notion of support for objects in K(Proj A). Namely for each q in
Spec S there is a local cohomology functor functor Γq, defined akin to (2.9). The support
of an object X ∈ K(Proj A) is by definition the set

suppS X := {q ∈ Spec S | ΓqX ̸= 0} ,

and for any class of objects X we set

suppS X :=
⋃

X ∈X

suppS X .

Support and fibres. Theorem 4.5 yields a stratification – see the discussion further
below – of K(Proj A) in terms of subsets of the space⊔

p∈ Spec R

Spec S(p) ,

where to each X in K(Proj A) we associate the subset⊔
p∈ Spec R

suppS(p) Xk(p) .

The task is to relate this to suppS X, viewed as a subset of Spec S.
To that end consider the structure map η : R → S, which induces a map

ηa : Spec S −→ Spec R .

The fibre of this map over p is
(ηa)−1(p) = Spec (S ⊗R k(p)) ,

which we identify with a subset of Spec S in the usual way.
The functor − ⊗L

R k(p) induces a map of R-algebras
S = Ext∗

A(R, R) −→ Ext∗
Ak(p)

(k(p), k(p)) = S(p) .

This induces the map of graded k(p)-algebras
κp : S ⊗R k(p) −→ S(p) .

Even in the best of cases, one does not expect this to be an isomorphism. Consider the
induced map on spectra:

κa
p : Spec S(p) −→ Spec(S ⊗R k(p)) ⊆ Spec S . (4.3)

The result below tracks the behavior of supports as we pass to the fibres.

Lemma 4.6. Let R be a regular ring and A a finite cocommutative Hopf R-algebra. Fix
p in Spec R and let κa

p be the map in (4.3). For each X in K(Proj A) there is an equality

κa
p

(
suppS(p) Xk(p)

)
= suppS X ∩ (ηa)−1(p) .
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Proof. We can reduce to the case where (R,m, k) is a local ring and p = m, the maximal
ideal of R. Set Sk := S ⊗R k = S/mS. Via the map κm : Sk → S(m) the S(m)-action on
K(Proj Ak) induces an Sk-action. Applying [14, Corollary 7.8(1)] to the identity functor
on K(Proj Ak) yields an equality

κa
m

(
suppS(m) Xk

)
= suppSk

Xk .

It thus suffices to work with the subset on the right.
Consider the adjunction (2.3). For any compact object C in K(Proj A) one has isomor-

phisms of graded Sk-modules
Hom∗

K(Ak)(πC, Xk) = Hom∗
K(Ak)(πC, πX)

∼= Hom∗
K(A)(C, πrπX)

∼= Hom∗
K(A) (C, X ⊗R K)

where the last isomorphism is by Lemma 2.4. Any compact object in K(Proj Ak) is a direct
summand of πC for some compact object C in K(Proj A) by Lemma 2.4. By [11, Theo-
rem 5.2], one can compute suppSk

(Xk) from the support of the Sk-modules Hom∗
K(Ak)(πC,

Xk). This gives the first equality below
suppSk

Xk = suppS (X ⊗R K)
= suppS X ∩ V (mS)
= suppS X ∩ (ηa)−1(m) .

The second one holds because X ⊗R K represents X//mS; see [13, Lemma 2.6]. □

Stratification. Let S be a graded commutative noetherian ring and T a rigidly-compactly
generated tensor-triangulated category. We denote by Tc the full subcategory of compact
objects. We say that T is S-linear to mean that S acts on T via a map of graded rings

S −→ End∗
T(1) ;

see [13, § 7]. In the context above, one says that the tensor-triangulated category T is
stratified by S if for each q in Spec S the category ΓqT, consisting of the q-local and q-
torsion objects in T, is either zero or minimal, in that, it has no proper localising tensor
ideals; see [13, § 7.2]. When this holds one has a bijection

{Localising tensor ideals of T} suppS(−)−−−−−−−→ {Subsets of suppS 1} . (4.4)
When in addition the graded S-module Ext∗

T(X, X) is finitely generated for each X ∈ Tc,
the subset suppS X of Spec S is closed and, by [13, Theorem 6.1], the bijection above
restricts to a bijection{Thick tensor ideals of Tc} suppS(−)−−−−−−−→

{
Specialisation closed
subsets of suppS 1

}
. (4.5)

Here is a slightly different perspective on the stratification property.

Lemma 4.7. Let T be an S-linear tensor-triangulated category as above. Then the tensor-
triangulated category T is stratified by S if and only if for any X, Y in T there are equiv-
alences

suppS X ⊆ suppS Y ⇐⇒ Loc⊗(X) ⊆ Loc⊗(Y )
⇐⇒ X ∈ Loc⊗(Y ) .
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Proof. We use the fact that for each q in Spec S we have
ΓqT = {X ∈ T | suppS X ⊆ {q}}

by [11, Corollary 5.9]. Evidently when the stated property holds the localising tensor ideal
ΓqT of T is minimal for each q in Spec S, so T is stratified by S as a tensor-triangulated
category. The converse is equally clear. □

We focus on the case
T := K(Proj A) with Tc ∼= Db(mod A)

for a cocommutative Hopf algebra A over R, and S its cohomology algebra. Here is one of
the main results of our work. When it applies2, one gets a classification of the localising
tensor ideals of K(Proj A) and also the thick tensor ideals of its subcategory of compact
objects, which identifies with Db(mod A).

Theorem 4.8. Let R be a regular ring and A a finite cocommutative Hopf algebra over
R. Let S denote the finitely generated R-algebra Ext∗

A(R, R). If the map κa
p in (4.3) is

bijective for each p in Spec R, then the tensor-triangulated category K(Proj A) is stratified
by the action of S, and suppS K(Proj A) = Spec S.

Proof. The main task is to verify that when X, Y are objects in K(Proj A) with suppS X ⊆
suppS Y , the complex X is in Loc⊗(Y ); see Lemma 4.7. Since κa

p is a homeomorphism for
each p in Spec R, Lemma 4.6 yields an inclusion

suppS(p) Xk(p) ⊆ suppS(p) Yk(p) .

Since Ak(p) is a finite dimensional cocommutative Hopf algebra over k(p), the triangulated
category K(Proj Ak(p)) is stratified by the action of it cohomology algebra, S(p); this is
the main result of [16]. Thus the inclusion above implies

Xk(p) ∈ Loc⊗
(
Yk(p)

)
.

This holds for each p in Spec R, so we can apply Theorem 4.5 to deduce that X is in
Loc⊗(Y ) as desired.

It remains to observe that suppS 1 = Spec S, as follows, from example, from Lemma 4.6,
for 1k(p) is the unit of K(Proj Ak(p)) and its support is Spec S(p). □

In Section 5 we prove that group algebras of finite groups satisfy the hypotheses of the
preceding result. Here is one more family of examples to which it applies.

Example 4.9. Let R be a regular ring. Set A := ∧RF , the exterior algebra on a finite free
R-module F . We view it as a Z/2-graded Hopf algebra, with coalgebra structure defined
by ∆(x) = x ⊗ 1 + 1 ⊗ x for x ∈ F . In this case Ext∗

A(R, R) is the symmetric algebra on
HomR(F, R). Given this it is clear that the hypotheses of Theorem 4.8 are satisfied in this
case.

Here is another family of examples: Suppose k is field, R a k-algebra, and that the Hopf
algebra A is of the form R ⊗k A′ where A′ is a finite dimensional cocommutative Hopf
algebra over k. Then Ext∗

A(R, R) ∼= R ⊗k ExtA′(k, k) as graded R-algebras. With this, it
is easy to verify that A falls under the purview of Theorem 4.8.

Next we prepare to prove Theorem 1.2 stated in the introduction.
2it always does; see the last paragraph of the introduction.
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Gorenstein projective modules. Let R be a regular ring and A a finite cocommutative
Hopf R-algebra. The fibres Ak(p) are finite dimensional cocommutative Hopf algebras over
k(p), hence self-injective [29, Lemma I.8.7]. Thus the R-algebra A is fibrewise self-injective
and therefore Gorenstein, by Proposition 3.1. As R is regular, Gorenstein projective
R-modules are projective by Lemma 2.2. Hence a Gorenstein projective A-module is
projective as an R-module, and the converse holds if the module is finitely generated or
dim R is finite; see Lemma 3.8.

Lemma 4.10. Let R be a regular ring and A a finite cocommutative Hopf algebra. The
tensor product − ⊗R − with diagonal A-action endows GProj A with a structure of a
rigidly-compactly generated tensor-triangulated category. This structure is compatible with
the equivalence in Theorem 3.3.

Proof. If X is an acyclic complex of projective A-modules and N is a Gorenstein pro-
jective A-module, then the complex X ⊗R N of projective modules is also acyclic, for N
is projective as an R-module. It follows that if M is a Gorenstein projective A-module,
so is M ⊗R N . Thus the category of Gorenstein projective A-modules is closed under
− ⊗R −, and R, viewed as an A-module via the augmentation A → R is the unit of
this product. Observe that as an A-module R is Gorenstein projective, for it is finitely
generated, and projective as an R-module. Since the A-module P ⊗R N is projective
when P is projective, this tensor product induces one on the stable category, GProj A,
making it a tensor-triangulated category, with unit R. The function object on GProj A
is HomR(−, −), and given this it is easy to verify the rigid objects in it are precisely the
compact objects, that is to say, isomorphism classes of the finitely generated Gorenstein
projective modules. In summary, GProj A is rigidly compactly generated.

A straightforward computation shows that the assignment in Theorem 3.3 is compatible
with the tensor structures. □

Let S := Ext∗
A(R, R) be the cohomology algebra as before. We write Proj S for the

projective spectrum of S, namely, those prime ideals in Spec S that do not contain the
ideal S⩾1 of positive degree elements.

Lemma 4.11. With the assumptions from Theorem 4.8, the full subcategory Kac(Proj A)
of K(Proj A) is a localising tensor ideal with support Proj S.

Proof. For each p in Spec R the functor X 7→ Xk(p) maps the recollement (3.1) for A to
the corresponding recollement for Ak(p). To see this, observe that the recollement (3.1) is
determined by functorial exact triangles pX → X → tX → for each X in K(Proj A) such
pX is K-projective and tX is acyclic. These properties are preserved by (−)k(p) since the
functor is exact and preserves all coproducts. For K-projectives this is clear, since they
are generated by perfect complexes which are preserved by (−)k(p). For acyclic complexes,
see Lemma 3.4.

The assertion of the lemma now follows since Kac(Proj Ak(p)) is a localising tensor ideal
of K(Proj Ak(p)) with support Proj S(p); see [16, § 10]. □

We are now ready to prove our stratification result for representations of finite cocom-
mutative Hopf algebras.

Proof of Theorem 1.2. We use the triangle equivalence GProj A ∼−→ Kac(Proj A) from The-
orem 3.3, which preserves the tensor structure and the S-action thanks to Lemma 4.10.
Now the stratification of GProj A via S follows from Theorem 4.8, since Kac(Proj A) is a
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localising tensor ideal of K(Proj A) by Lemma 4.11. In particular, the support of GProj A
is precisely Proj S. □

5. Finite groups

Let G be a finite group. The main result of this section is that for A = RG, the group
algebra of G over any commutative noetherian ring R, the map (4.3) is a homeomorphism
for all primes in the spectrum of R. As a consequence we get a stratification theorem
when R is regular; see Theorem 5.6. In this case the cohomology algebra Ext∗

RG(R, R) is
the group cohomology algebra. This is usually denoted H∗(G, R), and we follow suit.

Cup products. Let R be a commutative ring, not necessarily noetherian, and M an R-
module, both viewed as G-modules with trivial action. The cup product makes H∗(G, R)
an R-algebra and H∗(G, M) a module over H∗(G, R). These are defined as follows: Let
P be a projective resolution of the trivial ZG-module Z and ∆: P → P ⊗Z P a diagonal
approximation. Given classes x ∈ H∗(G, R) and y ∈ H∗(G, M), represented by cocycles
x̃ ∈ HomZG(P, R) and ỹ ∈ HomZG(P, M) the cup product x ∪ y is represented by the class
of the composition of maps

P
∆−−→ P ⊗Z P

x̃⊗ỹ−−−−→ R ⊗Z M −→ M .

If I ⊆ R is an ideal, − ∪ − defines a product on H∗(G, I). It is clear from the definition
that if I is nilpotent of order n, then so is H∗(G, I).

Infinitesimal deformations of coefficients. Let R → R′ be a surjective map of com-
mutative rings whose kernel, say I, satisfies I2 = 0; thus I is an R′-module. One thinks
of R as an infinitesimal deformation of R′. The exact sequence

0 −→ I −→ R −→ R′ −→ 0 (5.1)

induces a connecting homomorphism

δ : H∗(G, R′) → H∗(G, I) .

Since I is an R′-module H∗(G, I) is a module over H∗(G, R′), via the cup product.
The statement of the result below, and its proof, are a variation on [7, Lemma 4.3.3].

Lemma 5.1. In the context above, for x, y ∈ H∗(G, R′) one has

δ(x ∪ y) = δ(x) ∪ y + (−1)|x|x ∪ δ(y) .

Proof. As in the proof of [7, Lemma 4.3.3], let P be the projective resolution of the trivial
ZG-module Z, and ∆: P → P ⊗Z P a diagonal approximation. The exact sequence (5.1)
induces the exact sequence of complexes

0 −→ HomZG(P, I) −→ HomZG(P, R) −→ HomZG(P, R′) −→ 0 .

Represent x and y by cocycles x̃ and ỹ on the right hand side of this sequence. Then x ∪ y
is represented by the composite

x̃ ∪ ỹ : P
∆−−→ P ⊗Z P

x̃⊗ỹ−−−−→ R′ ⊗Z R′ µ−−→ R′

where µ is the multiplication map. To compute the effect of the connecting homomorphism,
we first lift x̃ and ỹ to cochains x̂ and ŷ in HomZG(P, R). Since dx̃ = 0 = dỹ, the elements
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dx̂ and dŷ lie in I. The element x̃ ∪ ỹ lifts to x̂ ∪ ŷ, and
d(x̂ ∪ ŷ) = dx̂ ∪ ŷ + (−1)|x|x̂ ∪ dŷ

= dx̂ ∪ ỹ + (−1)|x|x̃ ∪ dŷ

The second equality holds as dx̂ and dŷ lie in I. This gives the stated equality. □

In what follows, we say that an abelian group M is p-local, for a prime number p, if the
natural map M → M(p) is an isomorphism.

Lemma 5.2. Let p be a prime dividing |G| and π : R → R′ a map of p-local rings, with
Ker(π) nilpotent. Then the map H∗(G, π) has nilpotent kernel, and there exists an integer
n such that for any element x ∈ H⩾1(G, R′), the element xpn is in the image of the map
H∗(G, π).

Proof. Set I := Ker(π). Since this ideal is nilpotent, so is H∗(G, I), under cup products.
The claim about nilpotence is clear because, by the exact sequence in cohomology arising
from (5.1), the kernel of H∗(G, π) is the image of the map

H∗(G, I) −→ H∗(G, R)
which respects cup products.

As to the second part of the statement, it suffices to consider the case where I2 = 0.
Let n be the largest integer such that pn divides |G|. Since |G| annihilates H⩾1(G, R′),
and the ring R′ and hence also H∗(G, R′) is p-local, one gets that

pn · H⩾1(G, R′) = 0 .

If |x| is odd, then 2 · x2 = 0, since H∗(G, R′) is graded-commutative. Thus if also p is odd,
then x2 = 0, since we are in the p-local situation. Thus we can suppose either |x| is even
or p = 2. In either case, a repeated application of Lemma 5.1 yields δ(xi) = ixi−1δ(x)
for each i ≥ 1. In particular δ(xpn) = 0. It then follows from the exact sequence in
group cohomology arising from (5.1) that xpn is in the image of the map H∗(G, R) →
H∗(G, R′). □

Modules with bounded torsion. Let M is an abelian group such that its torsion-
subgroup, denoted tors(M) is bounded; that is to say, there exists an integer n such that
n · tors(M) = 0. Fomin [21] proved that inclusion tors(M) ⊆ M splits; see also [31,
Corollary pp. 134]. This result will be used below.

Lemma 5.3. Let p be a prime dividing |G| and M a p-local abelian group such that
tors(M) is bounded. For all integers s ≫ 0 the map

H⩾1(G, M) −→ H⩾ 1 (G, M/psM)
induced by the surjection M → M/psM , is one-to-one.

Proof. Since M is p-local, the only torsion is p-torsion. Choose s ≫ 0 such that
ps tors(M) = 0 = psH⩾ 1(G, M) .

The equality on the left means that the sequence below, where the map M → psM is
given by m 7→ psm, is exact:

0 −→ tors(M) −→ M −→ psM −→ 0 .

This is split-exact, by Fomin’s result recalled above, so the induced map
H∗(G, M) −→ H∗ (G, psM)
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is surjective. The map M
ps

−→ M factors as M → psM → M where the one on the right
is inclusion. By the choice of ps, the composition of the induced maps

H∗(G, M) −→ H∗ (G, psM) −→ H∗(G, M)
is zero in degrees ≥ 1. Since the map on the left is surjective, it follows that the one on
the right is zero in degrees ≥ 1. Then the cohomology exact sequence arising from the
exact sequence

0 −→ psM −→ M −→ M/psM −→ 0
yields the desired statement. □

Noetherian ring of coefficients. The result below was proved by Benson and Habeg-
ger [10] when R = Z; the argument given here is modeled on their proof. A general result,
allowing non-trivial G-action on R, was proved by Lau [33, § 7].

Recall that a map of rings f : S → T containing a field of positive characteristic p is an
F-isomorphism if ker(f) is nilpotent, and for each t ∈ T there exists an n such that tpn is
in the image of f .

Theorem 5.4. Let G be a finite group and R a commutative noetherian ring. For each
prime number p, the map

H∗(G, R) ⊗R R/pR −→ H∗(G, R/pR)
is an F-isomorphism.

Proof. Set R(p) := Z(p) ⊗Z R. As R/pR is p-local, the map R → R/pR factors through
R(p). As localisation is an exact functor, there are natural isomorphisms

H∗(G, R) ⊗R R/pR ∼= H∗
(
G, R(p)

)
⊗R(p) R/pR

H∗(G, R/pR) ∼= H∗
(
G, R(p)/pR(p)

)
.

Thus replacing R by R(p) we can assume R is p-local.
For any finitely generated R-module M , the (additive) torsion submodule tors(M) is

an R-submodule of M , and hence finitely generated as an R-module, as R is noetherian.
It follows that tors(M) is bounded, so Lemma 5.3 applies.

Choose an integer s large enough that the conclusion of op. cit. applies to the R-modules
R and pR. Consider the commutative diagram of coefficients

0 pR R R/pR 0

0 pR/ps+1R R/ps+1R R/pR 0

θ π

This induces a commutative diagram

H∗(G, R) H∗(G, R/pR) H∗(G, pR)

H∗ (
G, R/ps+1R

)
H∗(G, R/pR) H∗ (

G, pR/ps+1R
)π∗

ι1 δ1

θ∗

ι2 δ2

where δ1 and δ2 are the connecting maps. The choice of s ensures that π∗ and θ∗ are
injective in positive degrees; see Lemma 5.3. Since π⩾ 1 is injective and the kernel of ι2
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is nilpotent, by Lemma 5.2, so is the kernel of ι1 in positive degrees. This map factors
through the map

H∗(G, R) ⊗R R/pR −→ H∗(G, R/pR)
so the latter is one-to-one up to nilpotence.

Fix x ∈ H⩾1(G, R/pR). Applying Lemma 5.2 to the map R/psR → R/pR yields that
for some n ≥ 1 the element xpn is in the image of ι2. So in the diagram above, we have
δ2(xpn) = 0. Since θ⩾ 1 is injective we have δ1(xpn) = 0. It follows from the exactness of
the top row of the diagram that xpn is in the image of ι1. This implies that the map in
the statement of the theorem is F-onto. □

Here is a consequence of the preceding theorem.

Corollary 5.5. Let G be a finite group and R a commutative noetherian ring. For any
map of rings R → k with k a field of positive characteristic, the natural map

H∗(G, R) ⊗R k −→ H∗(G, k)
is an F -isomorphism, and hence the induced map on spectra

Spec H∗(G, k) −→ Spec (H∗(G, R) ⊗R k)
is a homeomorphism.

Proof. Let p be the characteristic of k. The map R → k factors through R/pR. Applying
− ⊗R k to the F-isomorphism in Theorem 5.4 yields the F-isomorphism

H∗(G, R) ⊗R k −→ H∗ (G, R/pR) ⊗R/pR k .

It remains to observe that the right hand side is isomorphic to H∗(G, k). □

Theorem 5.6. With G a finite group and R a regular ring, the tensor-triangulated cate-
gory K(Proj RG) is stratified by the action of H∗(G, R).

Proof. The R-algebra H∗(G, R) is finitely generated by a result of Evens [20] and Venkov
[40]. Thus the result follows from Theorem 4.8 and Corollary 5.5. □

An immediate, and standard, consequence of the stratification is a classification of thick
tensor ideals in the bounded derived category (and also the small stable module category)
of RG-modules. An analogous classification with Proj holds for Gproj.

Corollary 5.7. Let G be a finite group and R be a regular local ring. There is a one-to-one
correspondence between thick tensor ideal subcategories in Db(mod RG) and specialisation
closed subsets in Spec(H∗(G, R)), the spectrum of homogeneous prime ideals in H∗(G, R).

Remark 5.8. Theorem 5.6 yields classifications of thick and localising tensor ideals which
have recent predecessors. Corollary 5.7 is established as a main theorem in Lau’s work [33]
where algebraic techniques similar to ours are used. Lau only works with finitely generated
modules computing the Balmer spectrum of the category of perfect complexes on the
Deligne Mumford stack [(Spec R)/G], that is the derived category of bounded complexes
of G-equivariant finitely generated projective R-modules. In the case of a regular ring R
this is precisely the derived category Db(mod RG). Though Lau stays in the realms of
small categories, he allows for non-trivial action of G on the ring R so his result is more
general in that setting.

In the series of papers [3, 4], Barthel takes a very different approach to the stratifica-
tion of representations of a finite group G over a ring R, by developing powerful homotopy
theory machinery, with an eye towards applications to many other topological situations.
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In particular, in contrast to our fibrewise approach, Quillen’s philosophy of reducing the
question to elementary abelian groups enters into Barthel’s homotopy theoretic methods.
To make a direct comparison of our specific applications, Barthel’s [4, Theorem C], which
classifies localising tensor ideals in the (exact) category of R-linear representations of a fi-
nite group G whose underlying R-module is projective, can be seen as a direct consequence
of Theorem 5.6, under the assumption that R is regular. We arrive to this application
though through entirely different routes.
Remark 5.9. For a group algebra RG there are other possible versions of a stable mod-
ule category. For instance, one can endow the category of RG-modules with the exact
structure given by those short exact sequences which are split exact when restricted to
the trivial subgroup. Then the category mod RG of finitely presented RG-modules is a
Frobenius category, and the corresponding stable category stmod RG is in fact a tensor
triangulated category [15]. For general R this category is different from Gproj RG, as can
be seen from the discussion in [15, § 7] for R = Z.
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