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Bounds for SL2-indecomposables in tensor powers
of the natural representation in characteristic 2

Michael Jeffrey Larsen

Abstract. Let K be an algebraically closed field of characteristic 2, G be the algebraic group SL2
over K, and V be the natural representation of G. Let bG,V

k denote the number of G-indecomposable
factors of V ⊗k, counted with multiplicity, and let δ = 3

2 − log 3
2 log 2 . Then there exists a smooth

multiplicatively periodic function ω(x) such that bG,V
2k = bG,V

2k+1 is asymptotic to ω(k)k−δ4k. We also
prove a lower bound of the form cW k−δ(dim W )k for bG,W

k for any tilting representation W of G.

1. Introduction

Let G = SL2 over an algebraically closed field K of characteristic 2, and let V be the
2-dimensional natural representation of G. Let bG,V

k denote the number of G-indecomposa-
ble factors of V ⊗k, counted with multiplicity. Coulembier, Ostrik, and Tubbenhauer ask
[2, Question 6.1] if there exist c1, c2, δ > 0 such that

c1k
−δ2k ≤ bG,V

k ≤ c2k
−δ2k (1.1)

They give a heuristic argument, due to Etingof, predicting that δ = 3
2 − log 3

2 log 2 . In this
paper, we prove that their prediction is right. Indeed, something stronger is true.

Theorem 1.1. Defining δ as above, there exists a smooth function ω : R → (0,∞) such
that ω(4x) is periodic (mod 1) and

bG,V
2k = bG,V

2k+1 ∼ ω(k)k−δ4k.

We construct the function ψ(x) = ω(x)x−δ explicitly as an infinite convolution of distri-
butions of the form δ0 + φs, where δ0 is the delta function concentrated at 0, and the φs

are rescalings of the theta series associated to the (mod 4) primitive Dirichlet character χ.
This theta series is positive and has rapid decay at both 0 and ∞. These facts follow
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576 Michael Jeffrey Larsen

almost immediately from (4.8), which is essentially the functional equation of the Dirichlet
L-function L(s, χ).

Our proof interprets bG,V
2k as the number of paths of length k, counted with multiplicity,

of the fusion graph of V ⊗2, the directed graph giving the decomposition into indecom-
posable factors of the tensor product of a given indecomposable tilting module with V ⊗2.
In the characteristic zero case, the vertex set of the graph would be N, and the arrows
would connect pairs of consecutive non-negative integers, so we would end up counting
left factors of Dyck paths of length k. In our characteristic 2 case, the graph reflects the
dyadic nature of the representation category of G. See Figure 2.1 below (which shows only
the component of the graph corresponding to even highest weights.)

Classifying paths of length k according to their final endpoint n, we observe two striking
departure from the familiar characteristic zero behavior. Firstly, the number of paths with
given k is roughly inversely proportional to 2 to the power of the number of 1’s in the
binary expansion of n. Second, for fixed k, the number of paths terminating in n falls off
sharply when n is significantly smaller than

√
k as well when n is significantly larger than√

k (this latter case being in line with characteristic zero behavior). This can be regarded
as the discrete analogue of the rapid decay of our theta function at ∞. In proving these
claims, we are helped greatly by the fact that the generating function X2s(t) of paths of
length k terminating in 2s satisfies the recursive formula

X2s+1(t) = X2s(t)2

1 − 2X2s(t)2 . (1.2)

I would like to acknowledge a very helpful correspondence with the authors of [1].
Shortly after answering [2, Question 6.1], I learned that they had independently done so
and had, indeed, extended their result to all positive characteristics. Our methods were
different enough that we agreed it would make sense to write separate papers rather than
combine forces.

An early version of [1] asked whether there exists a continuous function ω as in Theo-
rem 1.1. I realized that my approach would give a direct construction of ω. Their most
recent draft gives a non-constructive answer to the same question.

Their paper also asks for asymptotic formulas for tensor powers of tilting modules other
than V . In the case p = 2, this paper gives a lower bound of the form cWk−δ(dimW )k,
but we do not yet have an upper bound of the same form, let alone an asymptotic formula
as in Theorem 1.1.

I would like to thank the referee for a very careful reading of the manuscript and many
useful corrections and suggestions.

2. Tilting representations and the fusion graph

For every non-negative integer n, let T (n) denote the (unique) indecomposable tilting
module of G with highest weight n. Thus V is isomorphic to T (1). Every tensor product
of tilting modules is again a tilting module [3] and is therefore determined by its formal
character, which we express as an element of Z[t, t−1].

The formal characters of the T (n) are well known. Following [7, Proposition 2.6], if
n+ 1 = 2j + aj−12j−1 + · · · + a0,

with ai ∈ {0, 1}, we define the support of n to consist of all integers m in the set

supp(n) =
{

2j ± aj−12j−1 ± · · · ± a0
}
.
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From [7, Proposition 5.4], the formal character of T (n) is∑
m ∈ supp(n)

tm − t−m

t− t−1 , (2.1)

where m ranges over the support of n. This can be expressed as

χn(t) =

(
t2

j − t−2j
)∏

{i|ai=1}

(
t2

i + t−2i
)

t− t−1 = t2
j − t−2j

t− t−1

∏
{i|ai=1}

(
t2

i + t−2i
)
. (2.2)

From this, it follows immediately that if n+ 1 is even, χ1(t)χn(t) = χn+1(t), so
V ⊗ T (n) ∼= T (n+ 1).

By induction on r ≥ 1,(
t+ t−1

) r−1∏
i=0

(
t2

i + t−2i
)

=
(
t2

r + t−2r
)

+ 2
r∑

i=1

i−1∏
j=1

(
t2

j + t−2j
)

From this it follows that if 2r is the highest power of 2 dividing n+ 1,

V ⊗2 ⊗ T (2n) ∼= T (2n+ 2) ⊕
r+1⊕
i=1

T
(
2n+ 2 − 2i

)⊕2
,

unless n = 2r − 1, in which case we omit the T (0) terms from the above sum:

V ⊗2 ⊗ T (2n) ∼= T (2n+ 2) ⊕
r⊕

i=1
T
(
2n+ 2 − 2i

)⊕2
.

Consider the labelled directed graph on non-negative integers n, where there is an arrow
from n to n+ 1 labelled 1 and arrows labelled 2 from n to n+ 1 − 2i for 0 ≤ i ≤ r, where
r is the number of factors of 2 in n+ 1 except that we omit all arrows leading to 0. The
multiplicity xn,k of T (2n) as an indecomposable factor in V ⊗2k is therefore the sum over
all directed paths of length k from 0 to n of the product of labels.

Let Xn = Xn(t) =
∑

k xn,kt
k denote the generating function of this sum, so bG,V

k is the
sum over n of the tk coefficient of Xn(t). As there are no edges from any vertex to 0, we
have X0(t) = 1. For m ≥ 1,

Xn = t

(
Xn−1 + 2

r∑
i=0

X2i+n−1

)
,

where 2r is now the highest power of 2 dividing n. We rewrite this equation
Xn = tLn(X0, X1, X2, . . .), (2.3)

where we define

Ln(y0, y1, y2, . . .) = yn−1 + 2
r∑

i=0
y2i+n−1.

For n < 2s, Ln is a linear combination of y0, y1, . . . , y2s−1, so the system of equations
yi = tLi(y0, . . . , y2s−1), 1 ≤ i < 2s (2.4)

consists of 2s − 1 equations in 2s variables. The matrix of this system of homogeneous
linear equations has rank 2s − 1 over Q((t)) because its (mod t) reduction has rank 2s − 1.
Therefore, the solution set of (2.4) over Q((t)) is 1-dimensional.

Ann. Repr. Th. 2 (2025), 4, p. 575–598 https://doi.org/10.5802/art.30

https://doi.org/10.5802/art.30


578 Michael Jeffrey Larsen

For 0 < i < 2s,
L2s+i(y0, y1, . . .) = Li(y2s , y2s+1, . . .)

so (X2s , X2s+1, . . . , X2s+1−1) is the scalar multiple of (X0, X1, . . . , X2s−1) by an element
of Q((t)) (which is, in fact, X2s , since X0 = 1.) Therefore,

X2s+i = X2sXi (2.5)

for 0 ≤ i < 2s, which implies the general formula

X2s1 +···+2sq =
q∏

i=1
X2si (2.6)

if s1 > s2 > · · · > sq. The sequence Xn is therefore determined by its subsequence as n
ranges over powers of 2.

Proposition 2.1. Let F (x) = x2 − 2, and let F ◦s(x) denote the s-fold iterate of F . Then

(F ◦s(1/t− 2))X2s(t) = 1.

We remark that the fact that the sequence X−1
2s is obtained by iterating F is equivalent

to (1.2).

Proof. From Figure 2.1,

X1(t) =
∞∑

i=1
2i−1ti = t

1 − 2t , (2.7)

so

X1(t)
(1
t

− 2
)

= 1,

and the proposition holds for s = 0. By (2.3) and (2.5),

X2s = tX2s−1 + 2t
s∑

i=0
X2s+2i−1 = tX2s−1 + 2tX2s

s∑
i=0

X2i−1.

so rearranging terms and dividing by tX2sX2s−1, we obtain

1
X2s

= 1
t
∏s−1

i=0 X2i

− 2
s∑

i=0

1∏s−1
j=i X2j

. (2.8)

Dividing both sides by X2s and subtracting 2,

1
X2

2s

− 2 = 1
t
∏s

i=0X2i

− 2
s∑

i=0

1∏s
j=iX2j

− 2 = 1
X2s+1

,

where the last equality comes from substituting s+1 for s in (2.8). The proposition follows
by induction on s. □

The proposition justifies identifying the power series X2s(t) with the rational function
(F ◦s(1/t− 2))−1.

Proposition 2.2. For all s ≥ 0, we have

X2s(t) = t2
s∏2s

i=1

(
1 −

(
2 + 2 cos (2i−1)π

2s+1

)
t
) . (2.9)
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0 1 2 3 4 5 6 7 8 91 1 1 1 1 1 1 1 1

2 2 2 2

2

2 2 2 2 2 2 2 2 2

Figure 2.1. The fusion graph of V ⊗2

Proof. By induction on s, F ◦s(2 cos θ) = 2 cos 2sθ, so F ◦s(y − 2) = 0 if y is of the form
2 + 2 cos (2i−1)π

2s+1 , i = 0, 1, . . . , 2s − 1. As cos (2i−1)π
2s+1 is strictly decreasing as i ranges from

1 to 2s, this gives 2s distinct values. It must include all roots of F ◦s(y− 2) = 0, since this
is a polynomial equation of degree 2s.

Thus,

1
X2s

(
1
t

) =
2s∏

i=1

(1
t

−
(

2 + 2 cos (2i− 1)π
2s+1

))

=
∏2s

i=1

(
1 −

(
2 + 2 cos (2i−1)π

2s+1

)
t
)

t2s ,

which implies the proposition. □

Lemma 2.3. If P (t) is a monic polynomial with distinct roots r1, . . . , rn, then

1∏n
j=1 (1 − rjt)

=
n∑

j=1

rn−1
j

P ′(rj) (1 − rjt)
.

Proof. Both are rational functions with simple poles at 1/r1, . . . , 1/rn and no other poles,
so it suffices to check that the residues are the same. Indeed, the residue of the left hand
side at the pole 1/ri is

1/ri∏
j ̸= i (1 − rj/ri)

= rn−2
i

P ′(ri)
,

which is the same as that on the right hand side. □

Let

Ps(x) =
2s∏

i=1

(
x−

(
2 + 2 cos (2i− 1)π

2s+1

))
. (2.10)

Lemma 2.4. For any integer j ∈ [1, 2s],

P ′
s

(
2 + 2 cos (2j − 1)π

2s+1

)
= (−1)j+12s

sin (2j−1)π
2s+1

.

Proof. Let ζ = ζ2s+2 = eπi/2s+1 . Then the roots of Ps(x) are β2j−1 = 2 + ζ2j−1 + ζ1−2j as
j ranges from 1 to 2s. For j ≥ 2,

β1 − β2j−1 = ζ
(
1 − ζ2j−2

) (
1 − ζ−2j

)
.
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Since
2s+1−1∏

j=1

(
1 − ζ2j

)
= 2s+1,

we have
2s∏

j=2
(β1 − β2j−1) = ζ2s−1 2s+1

1 − ζ−2 = 2s+1i

ζ − ζ−1 = 2s

sin π/2s+1 ,

which proves the lemma in the j = 1 case. The remaining cases follow by Galois conjuga-
tion. □

Proposition 2.5. For k ≥ 2s, the tk coefficient of X2s(t) is given by

2−s
2s∑

j=1
(−1)j+1 sin (2j − 1)π

2s+1

(
2 + 2 cos (2j − 1)π

2s+1

)k−1
. (2.11)

Proof. Together Proposition 2.2 and Lemmas 2.3 and 2.4 imply that for k ≥ 2s, the tk
coefficient of X2s(t) is given by

2s∑
j=1

aj

(
2 + 2 cos (2j − 1)π

2s+1

)k−2s

,

where

aj =
(−1)j+1 sin (2j−1)π

2s+1

(
2 + 2 cos (2j−1)π

2s+1

)2s−1

2s
.

The proposition follows immediately. □

3. Discrete convolutions

The formula (2.6) can be understood as expressing the sequence of coefficients xn,k of a
general Xn(t) as the convolution of the sequences x2s,k as s ranges over the si. As 4−kbG,V

2k

is the sum over all n of 4−kxn,k, we would like to understand the sum over all finite sets
of s-values of the convolutions of the functions As : Z → R such that As(k) = 0 for k < 0
and As(k) = 4−kx2s,k for k ≥ 0.

In this section, we analyze such sums more generally. We assume each As is non-
negative, supported on the natural numbers, with sum 1/2 and with small differences
between consecutive terms and finally that each As is concentrated at values of k such
that log4 k is close to s. It is not difficult to show that our particular functions As satisfy
these conditions, but we defer this to a later section and work more generally in this
section.

If A : Z → R is any function and d is a positive integer, we denote by ∥A∥a,∞ (resp.
∥A∥a,1) the ℓ∞ norm (resp. ℓ1 norm) of the restriction of A to [a,∞) ∩Z. If d is a positive
integer, we denote by Ad(x) the function A(x+ d) −A(x).

Lemma 3.1. Let A,B : Z → [0,∞) be summable and supported on N. We have

∥A ∗B∥1 = ∥A∥1∥B∥1

and
∥A ∗B∥∞ ≤ min(∥A∥1∥B∥∞, ∥A∥∞∥B∥1).
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Proof. For the first claim,

∥A ∗B∥1 =
∞∑

n=−∞
A ∗B(n) =

∞∑
n=−∞

∑
p+q=n

A(p)B(q)

=
∞∑

p=−∞

∞∑
q=−∞

A(p)B(q) = ∥A∥1∥B∥1.

Moreover, for all n,

A ∗B(n) =
∞∑

p=−∞
A(p)B(n− p) ≤

∞∑
p=−∞

A(p) sup
q
B(q) = ∥A∥1∥B∥∞.

By the symmetry of convolution, this implies the second claim. □

Lemma 3.2. Let A1, . . . , Ar be functions Z → [0,∞) supported on N, a1, . . . , ar be non-
negative integers, and a be an integer greater than or equal to a1 + · · · + ar. If ∥Ai∥1 = 1

2
for i = 1, . . . , r, then

∥A1 ∗ · · · ∗Ar∥a,∞ ≤ 21−r
r∑

i=1
∥Ai∥ai,∞.

Proof. If x0 ≥ a ≥ a1 + · · · + ar, then in any representation of x0 as a sum x1 + · · · + xr

of integers, the condition xi ≥ ai must be satisfied for at least one value of i. It suffices to
prove that

∞∑
xi=ai

∑
x1+···+xi−1+xi+1+···+xr=x0−xi

A1(x1) · · ·Ar(xr) ≤ 21−r∥Ai∥ai,∞.

Since xi ≥ ai, this sum is bounded above by
∥Ai∥ai,∞

∑
x1,··· ,xi−1,xi+1,··· ,xr

A1(x1) · · ·Ai−1(xi−1)Ai+1(xi+1) · · ·Ar(xr), (3.1)

whose ith summand is
∥Ai∥ai,∞∥A1∥1 · · · ∥Ai−1∥1∥Ai+1∥1 · · · ∥Ar∥1 = 21−r∥Ai∥ai,∞. □

The following lemma gives explicit form to the principle that the convolution of a rapidly
decaying sequence with a slowly varying sequence is well approximated by the termwise
product of the second sequence with the sum of the first.

Lemma 3.3. If A,B : Z → [0,∞) are supported on N and a and b are non-negative
integers, then

∥A ∗B − ∥A∥1B∥a+b,∞ ≤ ∥A∥1 sup
0 ≤ d ≤ a

∥Bd∥b,∞ + 2∥A∥a,1∥B∥∞.

Proof. If x0 ≥ a+ b, then

A ∗B(x0) =
a∑

i=0
A(i)

(
−B(x0) +B(x0 − i)

)
+B(x0)

a∑
i=0

A(i) +
∞∑

i=a+1
A(i)B(x0 − i)

= −
a∑

i=0
A(i)Bi(x0 − i) +B(x0)

∥A∥1 −
∞∑

i=a+1
A(i)

+
∞∑

i=a+1
A(i)B(x0 − i).

= −
a∑

i=0
A(i)Bi(x0 − i) + ∥A∥1B(x0) +

∞∑
i=a+1

A(i)
(
B(x0 − i) −B(x0)

)
.
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We have
∑a

i=0A(i) ≤ ∥A∥1, so the lemma follows. □

Henceforth, we suppose A0, A1, . . . are functions Z → [0,∞) which are supported on N.
For each finite set S ⊂ N, we denote by AS the discrete convolution of As over all s ∈ S.
For T a subset of R, we define BT : Z → [0,∞] as the sum of AS over all non-empty finite
subsets S of T ∩ N, where a divergent sum gives the value ∞.

We make the following assumptions.
(I) For all s,

∑
k As(k) = 1/2.

(II) For all r ≥ 0 there exists Cr such that As(k) < Cr4−s(4s/k)r for all k > 0.
(III) There exists C such that for all s, k1, k2,

|As(k1) −As(k2)| < C(|k1 − k2|16−s + 8−s).

Lemma 3.4. For d,m, s ≥ 0 and S ⊂ N a finite, non-empty set, the above assumptions
imply:

(1) ∥As∥∞ = O(4−s).
(2) ∥As∥2m,∞ = O(26s−4m).
(3) ∥As∥2m,1 = O(26s−3m).
(4) ∥AS∥∞ = O(2−|S|2−2 max S).
(5) ∥AS∥2m,∞ = O(2−|S|26 max S−4m).
(6) ∥Ad

S∥∞ = O(2−|S|(2−3 max S + 2−4 max Sd)).

Proof. Parts (1) and (2) follow from assumption (II) in the r = 0 and r = 4 cases respec-
tively.

Part (3) follows from assumption (I) if m ≤ 2s. Otherwise, (2) implies that for r ≥ 0,
2m+r+1−1∑
k=2m+r

As(k) = O
(
26s−3m−3r

)
,

and summing over r, we get (3).
For the remaining parts, let S = {s1, . . . , sr} with s1 > s2 > · · · > sr. By (1),

∥As1∥∞ = O(4−s1). Thus,

∥AS∥∞ ≤ ∥As1∥∞∥As2∥1 · · · ∥Asr ∥1 = 21−r∥As1∥∞,

implying (4).
On the other hand,

r∑
i=1

2m−i < 2m,

so by Lemma 3.2, (2), and the fact that si ≤ 1 + s1 − i, we have

∥AS∥2m,∞ ≤ 21−r
r∑

i=1
∥Asi∥2m−i,∞ = O

(
2−|S|26s1−4m

)
,

implying (5).
For (6),

Ad
S = Ad

s1 ∗As2 ∗ · · · ∗Asr .

By assumption (III), ∥∥∥Ad
s1

∥∥∥
∞

= O(2−3s1 + 2−4s1d).
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Therefore,∥∥∥Ad
S

∥∥∥
∞

≤ O
(
21−r(8−s1 + 16−s1d)

)
= O

(
2−|S|

(
2−3 max S + 2−4 max Sd

))
.

□

Lemma 3.5. If s ∈ N, S is a finite subset of (s,∞) ∩ Z, n ≥ s, and k ∈ [4n, 4n+1), then

A{s} ∪ S(k) − 1
2AS(k) = O

(
2−|S|2−(max(max S+n,2n)+ 3

5 (n−s))) .
Proof. We apply Lemma 3.3 with A = As, B = AS , and a = 2n+s and b = 22n−1 to obtain

A{s} ∪ S(k) − 1
2AS(k) = O

(
sup

d ≤ 2n+s

∥∥∥Ad
S

∥∥∥
22n−1,∞

+
∥∥∥2n+s

∥∥∥
As,1

∥AS∥∞

)
. (3.2)

Suppose maxS ≥ n. Then

3 maxS ≥ maxS + n+ 3
5(n− s)

and

4 maxS − n− s ≥ maxS + n+ 3
5(n− s).

Using ∥Ad
S∥2n+s,∞ ≤ ∥Ad

S∥∞ and applying part (6) of Lemma 3.4,∥∥∥Ad
S

∥∥∥
2n+s,∞

= O
(
2−|S|2−(max(max S+n,2n)+ 3

5 (n−s))) .
As

2 maxS + 3(n− s) ≥ maxS + n+ 3
5(n− s),

by parts (3) and (4) of Lemma 3.4,

∥As∥2n+s,1 ∥AS∥∞ = O
(
2−|S|2−(max(max S+n,2n)+ 3

5 (n−s))) ,
so the lemma follows from (3.2).

Likewise, if n− n−s
10 ≤ maxS ≤ n, then we have

3 maxS, 4 maxS − n− s, 2 maxS + 3(n− s) ≥ 2n+ 3
5(n− s),

and the lemma follows as before.
If, on the other hand, maxS ≤ n− n−s

10 , then since∥∥∥Ad
S

∥∥∥
22n−1,∞

≤ 2∥AS∥22n−1,∞,

by part (5) of Lemma 3.4, we have

∥Ad
S∥22n−1,∞ = O

(
2−|S|2− 3

5 (n−s)2−2n
)
.

As maxS ≥ s,
2 maxS + 3n− 3s ≥ 2n+ 3

5(n− s),

so by parts (3) and (4) of Lemma 3.4,

∥As∥2n+s,1∥AS∥∞ = O
(
2−|S|2− 3

5 (n−s)2−2n
)
,

and again the lemma follows from (3.2). □
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Proposition 3.6. For all ϵ > 0, there exists r > 0 such that if n ≥ r is an integer and
k ∈ [4n, 4n+1), then ∣∣∣∣∣

(3
2

)−n

BR(k) −
(3

2

)−r

B[n−r,n+r](k)
∣∣∣∣∣ < ϵ4−n.

Proof. By part (4) of Lemma 3.4, for S ⊂ [0, s),

A{s} ∪ S(k) = O
(
2−|S|4−s

)
,

so
∞∑

s=n+r+1

∑
S ⊂ [0,s)

A{s} ∪ S(k) = O

 ∞∑
s=n+r+1

4−s
∑

S ⊂ [0,s)
2−|S|


= O

( ∞∑
s=n+r+1

4−s
(3

2

)s
)

= O

((3
8

)n+r
)
.

It follows that (3
2

)−n (
BR(k) −B[0,n+r](k)

)
= O

(
4−n

(3
8

)r)
. (3.3)

By Lemma 3.5 and induction on q, if S ⊂ [n− r, n+ r] and
n− r > s′

1 > · · · > s′
q,

then

AS ∪{s′
1,...,s′

q}(k) − 2−qAS(k) =

O
(
2−|S|−q2− 3

5 r4−n
)

if maxS ≤ n,

O
(
2−|S|−q2− 3

5 r2max S−n4−n
)

if maxS > n

If s ∈ [n− r, n] and S ⊂ [n− r, s), then∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s} ∪ S(k)

)
= O

(
2−|S|

(3
2

)n−r

2− 3
5 r4−n

)
,

so ∑
S ⊂ [n−r,s)

∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s} ∪ S(k)

)
= O

((3
2

)s

2− 3
5 r4−n

)
.

Therefore,(3
2

)−n n∑
s=n−r

∑
S ⊂ [n−r,s)

∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s}∪S(k)

)
= O

(
2− 3

5 r4−n
)
.

(3.4)

If s ∈ (n, n+ r] and S ⊂ [n− r, s), then∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s} ∪ S(k)

)
= O

(
2−|S|

(3
2

)n−r

2− 3
5 r2n−s4−n

)
,

so ∑
S ⊂ [n−r,s)

∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s} ∪ S(k)

)
= O

((3
2

)s

2− 3
5 r2n−s4−n

)
.
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Therefore,(3
2

)−n n∑
s=n−r

∑
S ⊂ [n−r,s)

∑
S′ ⊂ [0,n−r)

(
A{s} ∪ S ∪ S′(k) − 2−|S′|A{s} ∪ S(k)

)
= O

(
2− 3

5 r4−n
)
. (3.5)

By (3.3), (3.4), and (3.5), the sum of all terms in (3/2)−nBR(k) which do not occur in
(3/2)−nB[n−r,n+r](k) can be taken to be an arbitrarily small multiple of 4−n by making r
sufficiently large. □

4. Real convolutions

Let χ denote the unique primitive (mod 4) Dirichlet character, so for every integer r,
χ(4r + 1) = 1 χ(4r − 1) = −1, and χ(2r) = 0. Let

φ(x) =

π
8
∑∞

n=1 χ(n)ne− π2n2
16 x if x > 0,

0 if x ≤ 0.
(4.1)

As (2.11) suggests, the sequence x2s,k determines a step function which, after suitable
rescaling, converges as s → ∞ to φ. See Proposition 5.5 below for the precise statement
and proof. We prove in this section a continuous analogue of Proposition 3.6 which enables
us to define the function ψ(x) of Theorem 1.1 as a limit of sums of convolutions. There
are significant differences between Proposition 3.6 and Proposition 4.6, however. For one
thing, because we want to prove the limit function is essentially multiplicatively periodic,
the index set for the convolutions must be Z rather than N. For another, since we want
to prove the limit is smooth, we must bound derivatives of all orders. Nevertheless, the
proofs are formally very similar.

We begin with some basic facts about convolutions of Schwartz functions over R. The
convolution of any two such functions σ and τ is again a Schwartz function, and the
derivative of σ ∗ τ is σ′ ∗ τ = σ ∗ τ ′ ([6, V, Proposition 1.11]). If σ and τ are non-negative
and supported on [0,∞), the same will be true of σ ∗ τ . We define ∥f∥a,∞ (resp. ∥f∥a,1)
to be the L∞ norm (resp. L1 norm) of the restriction of f to [a,∞).

Exactly as in Section 3, we have the following lemma:

Lemma 4.1. Let σ, τ : R → [0,∞) be Schwartz functions supported on [0,∞). Then the
Schwartz function σ ∗ τ satisfies

∥σ ∗ τ∥1 = ∥σ∥1∥τ∥1

and

∥σ ∗ τ∥∞ ≤ min
(
∥σ∥1∥τ∥∞, ∥σ∥∞∥τ∥1

)
.

Lemma 4.2. Let σ1, . . . , σr : R → [0,∞) be Schwartz functions whose support is contained
in [0,∞), let a1, . . . , ar be non-negative numbers and a ≥ a1 + · · · + ar. If ∥σi∥1 = 1

2 for
i = 1, 2, . . . , r, then

∥σ1 ∗ · · · ∗ σr∥a,∞ ≤ 21−r
r∑

i=1
∥σi∥ai,∞.
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Proof. We proceed by induction on r, the base case being r = 2. In this case, for x0 ≥ a,
we have

σ1 ∗ σ2(x0) =
∫ a1

0
σ1(x)σ2(x0 − x)dx+

∫ x0

a1
σ1(x)σ2(x0 − x)dx.

Since σ2(x0 − x) ≤ ∥σ2∥a2,∞ in the first integral and σ1(x) ≤ ∥σ1∥a1,∞ in the second
integral, we have

∥σ1 ∗ σ2∥a,∞ ≤ ∥σ1∥1∥σ2∥a2,∞ + ∥σ1∥a1,∞∥σ2∥1 = 1
2∥σ2∥a2,∞ + 1

2∥σ1∥a1,∞. (4.2)

The general case now follows by induction. □

Lemma 4.3. If σ and τ are non-negative Schwartz functions supported on [0,∞) and
a, b ≥ 0, then

∥σ ∗ τ − ∥σ∥1τ∥a+b,∞ ≤ a∥σ∥1∥τ ′∥b,∞ + 2∥σ∥a,1∥τ∥∞.

Proof. If x0 ≥ a+ b, then∣∣∣∣σ ∗ τ(x0) − τ(x0)
∫ ∞

0
σ(x)dx

∣∣∣∣ =
∣∣∣∣∫ ∞

0
σ(x)(−τ(x0) + τ(x0 − x))dx

∣∣∣∣
=
∣∣∣∣∫ a

0
σ(x)(−τ(x0) + τ(x0 − x))dx+

∫ ∞

a
σ(x)(−τ(x0) + τ(x0 − x))dx

∣∣∣∣
≤ ∥σ∥1a∥τ ′∥b,∞ + ∥σ∥a,1(2∥τ∥∞)

since for x ≤ a, |τ(x0 − x) − τ(x0)| ≤ a∥τ ′∥b,∞ by the mean value theorem. □

Let ϕ be a non-negative Schwartz function supported on [0,∞) with

∥ϕ∥1 = 1
2 . (4.3)

For all s ∈ Z, we define
ϕs(x) = 4−sϕ(4−sx),

so ∥ϕs∥1 = 1
2 . If p is a non-negative integer, then∥∥∥ϕ(p)

s

∥∥∥
∞

= 4−(p+1)s
∥∥∥ϕ(p)

∥∥∥
∞
. (4.4)

For any finite subset S ⊂ Z, we define ϕS to be the convolution of ϕs over all s ∈ S. If
S = {s1, . . . , sr}, then

ϕ
(p)
S = ϕ(p)

s1 ∗ ϕ{s2,...,sr}.

Lemma 4.4. If p ≥ 0, j > 2p+ 2, m ∈ Z, and S ⊂ Z is finite and non-empty, the above
assumptions imply:

(1)
∥∥∥ϕ(p)

s

∥∥∥
∞

= O
(
2−(2p+2)s

)
.

(2) ∥ϕ(p)
s ∥2m,∞ = O

(
2(2j−2p−2)s−jm

)
.

(3) ∥ϕ(p)
s ∥2m,1 = O

(
2(2j−2p−2)s−(j−1)m

)
.

(4) ∥ϕ(p)
S ∥∞ = O

(
2−|S|2−(2p+2) max S

)
.

(5) ∥ϕ(p)
S ∥2m,∞ = O

(
2−|S|

(
2(2j−2p−2) max S−jm + 2(4j−4p−4) max S−(2j−1)m

))
.
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Proof. As ϕ(p)(x) is bounded, |4(p+1)sϕ
(p)
s (x)| = |ϕ(p)(4−sx)| ≤ C for some constant C,

which gives ∥ϕ(p)
s ∥ ≤ C2−(2p+2)s, implying part (1).

As ϕ(p)(x)xj is bounded, there exists C such that ϕ(p)(x) ≤ Cx−j for all x, so

ϕ(p)
s (x) = 4−(p+1)sϕ(4−sx) ≤ C4−(p+1)s4jsx−j ≤ C2(2j−2p−2)s−jm

if x ≥ 2m. This gives part (2). Furthermore,∫ ∞

2m
ϕ(p)

s (x)dx ≤ C2(2j−2p−2)s
∫ ∞

2m
x−jdx = O

(
2(2j−2p−2)s−(j−1)m

)
,

giving part (3).
Let S = {s1, . . . , sr}, s1 > · · · > sr. Applying (1) for s = s1, part (4) follows from∥∥∥ϕ(p)

S

∥∥∥
∞

≤
∥∥∥ϕ(p)

s1

∥∥∥
∞

∥∥∥ϕ{s2,...,sr}

∥∥∥
1

= 21−r
∥∥∥ϕ(p)

s1

∥∥∥
∞
.

Finally, by (4.2),∥∥∥ϕ(p)
S

∥∥∥
2m,∞

≤ 21−r
∥∥∥ϕ(p)

s1

∥∥∥
2m−1,∞

+
∥∥∥ϕ(p)

s1

∥∥∥
2m−1,1

∥∥∥ϕ{s2,...,sr}

∥∥∥
2m−1,∞

.

By (2), the first summand on the right hand side is O(2−|S|2(2j−2p−2)s1−jm+j). Applying
Lemma 4.2 with σi = ϕsi+1 and ai = 2m−1−i we get that∥∥∥ϕ{s2,...,sr}

∥∥∥
2m−1,∞

= O

(
22−r

r∑
i=1

2(2j−2p−2)si+1−j(m−1−i)
)
,

and as (2j − 2p− 2)si+1 − j(m− i) is strictly decreasing as i increases, this is

O
(
2−r2(2j−2p−2)s2−jm

)
.

By (3), ∥∥∥ϕ(p)
s1

∥∥∥
2m−1,1

= O
(
2(2j−2p−2)s1−(j−1)m

)
.

Together, these estimates give (5). □

Proposition 4.5. If p is a non-negative integer, s is a negative integer, and S is a finite
subset of [s,∞), then on [1, 4],∥∥∥∥ϕ(p)

{s} ∪ S(x) − 1
2ϕ

(p)
S (x)

∥∥∥∥
1,1

= O
(
2−|S|2s

)
.

Proof. We apply Lemma 4.3 with σ = ϕs, τ = ϕ
(p)
S , a = 2s and b = 1

2 to obtain∥∥∥∥ϕ{s} ∪ S(x) − 1
2ϕS(x)

∥∥∥∥
1,1

= O

(
2s
∥∥∥ϕ(p+1)

S

∥∥∥ 1
2 ,∞

+ ∥ϕs∥2s,1
∥∥∥ϕ(p)

S

∥∥∥
∞

)
. (4.5)

Applying part (3) of Lemma 4.4 with j = 4p+ 4, we obtain

∥ϕs∥2s,1 = O
(
2(2p+3)s

)
,

so part (4) implies

∥ϕs∥2s,1
∥∥∥ϕ(p)

S

∥∥∥
∞

= O
(
2(2p+3)s2−|S|2−(2p+2) max S

)
.
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If maxS ≥ 0, we again use (4) to bound ∥ϕ(p+1)
S ∥ 1

2 ,∞ ≤ ∥ϕ(p+1)
S ∥∞, and (4.5) gives∥∥∥∥ϕ{s} ∪ S(x) − 1

2ϕS(x)
∥∥∥∥

1,1
= O

(
2−|S|

(
2s2−(2p+4) max S + 2(2p+3)s2−(2p+2) max S

))
= O

(
2−|S|2s2−(2p+2) max S

)
,

implying the proposition. If maxS ≤ 0, we apply (5) with j = 2p+3 to bound ∥ϕ(p+1)
S ∥ 1

2 ,∞,
so using the fact that maxS ≥ s, (4.5) implies

O
(
2−|S|2s25 max S + 2(2p+3)s2−|S|2−(2p+2) max S

)
= O

(
2−|S|2s

)
,

and the proposition again follows. □

For every subset T ⊂ R, we define ψT to be the sum of ϕS over all non-empty finite
subsets S ⊂ T ∩ Z. When T ∩ Z is finite, ψT + δ0 is the convolution of the distributions
ϕs + δ0, t ∈ T ∩ Z, where δ0 is the delta function concentrated at 0. For r a non-negative
integer, we define

ψr = (3/2)−rψ[−r,r]. (4.6)

Proposition 4.6. Let ϕ : R → R be a non-negative Schwartz function supported on [0,∞)
which satisfies (4.3). There exists a unique smooth function ψ : (0,∞) → [0,∞) such
that the sequence ψ1, ψ2, . . . converges uniformly to ψ on every compact subset of (0,∞).
Moreover,

ψ(4x) = 3
8ψ(x).

Proof. It suffices to prove the existence of ψ. In fact, we prove slightly more, namely for
each fixed p ∈ N, (3/2)−r1ψ

(p)
[−r1,r2] converges uniformly on compact subsets of (0,∞) for

any sequence of pairs (r1, r2) for which both r1 and r2 go to ∞. As

ψ[−r1−1,r2−1](x) = 4ψ[−r1,r2](4x),

it suffices to prove convergence on the interval [1, 4]. Moreover,

ψ(4x) = lim
r1,r2→∞

(3
2

)−r1

ψ[−r1,r2](4x)

= lim
r1,r2→∞

(
3
2

) (
3
2

)−r1−1
ψ[−r1−1,r2−1](x)
4

= 3
8 lim

r1,r2→∞

(3
2

)−r1−1
ψ[−r1−1,r2−1](x)

= 3
8ψ(x).

(4.7)

If p ∈ N and x ∈ [1, 4], by part (4) of Lemma 4.4, we have(3
2

)−r1

ψ
(p)
[−r1,r2+1](x) −

(3
2

)−r1

ψ
(p)
[−r1,r2](x)

=
(3

2

)−r1 ∑
S ⊂ [−r1,r2]

ϕ
(p)
{r2+1} ∪ S(x)
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= O

2−(2p+2)(r2+1)
(3

2

)−r1 ∑
S ⊂ [−r1,r2]

2−|S|


= O

(
2−2(r2+1)

(3
2

)−r1 (3
2

)r1+r2+1
)

= O

((8
3

)−r2
)
.

By Proposition 4.5,(3
2

)−r1−1
ψ

(p)
[−r1−1,r2](x) −

(3
2

)−r1

ψ
(p)
[−r1,r2](x)

=
(3

2

)−r1−1 ∑
S ⊂ [−r1,r2]

(
ϕ

(p)
{−r1−1}∪S(x) − 1

2ϕ
(p)
S (x)

)

= O

(3
2

)−r1−1
2−r1−1 ∑

S ⊂ [−r1,r2]
2−|S|


= O

((3
2

)r2

2−r1−1
)
.

Applying these together, we conclude that |ψ(p)
r+1(x) − ψ

(p)
r (x)| is bounded above on [1, 4]

by an exponentially decaying function of r, and the sequence converges uniformly. □

Proposition 4.7. The function φ(x) in (4.1) satisfies the hypotheses of Proposition 4.6.

Proof. The kth derivative of φ(x) for x > 0 is

π

8

∞∑
n=1

χ(n)
(

−π2n2

16

)k

ne− π2n2
16 x,

which is asymptotic to (−1)kπ2k+1e− π2
16 x

24k+3 at +∞. Therefore, to prove that φ is a Schwartz
function, it suffices to show that it has a kth derivative at 0 for all k, i.e., that

lim
x→0+

∞∑
n=1

χ(n)n2k+1e− π2n2
16 x = 0.

By a theorem of de la Vallée Poussin [5, Theorem 10.6], we have

φ(x) = 8(πx)−3/2φ

( 16
π2x

)
(4.8)

for x > 0. Repeatedly differentiating this identity, we can express φ(n)(x) as a linear com-
bination of terms of the form x−jφ(k)(16/π2x), where j ∈ {k + 3/2, k + 5/2, . . . , 2k + 3/2}
and k ∈ {0, 1, . . . , n}. Each such term has exponential decay at x = 0 since φ(k)(y) has
exponential decay at y = ∞.

The integral of φ(x) over R is the limit as a → 0+ of
∫∞

a φ(x)dx, which can be integrated
termwise. Thus, ∫ ∞

−∞
φ(x)dx = π

8

∞∑
n=1

16nχ(n)
π2n2 = 2L(1, χ)

π
= 1

2 .
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Finally, for the positivity of φ, it suffices by (4.8) to verify it for x ≥ 4/π. This, in turn,
follows from the fact that for m ≥ 0 and x ≥ 4/π,

(4m+ 3)e−π2(4m+3)2x

(4m+ 1)e−π2(4m+1)2x
≤ 9e−8π2x ≤ e−2π < 1. □

The function ω(x) in Theorem 1.1 is defined to be ψ(x)xδ. By (4.7), ω(4x) = ω(x).

5. Convergence to ψ

In this section, we prove the main theorem. We follow the notation of Section 4. In
particular, φ(x) will be defined by (4.1), ψr will be defined as in (4.6) where ϕ is taken
to be φ, and ψ(x) will be the limit of the ψn, as in Proposition 4.6. The key point in the
argument is that As = 4−kx2s,k is well approximated by φs, and the same thing remains
true when we compare convolutions of the sequences As indexed by a finite set S and the
corresponding functions ϕS .

For any function σ : R → R, we write [σ] for the sequence obtained by restricting σ to Z.
We use the same notation ∥ ∥1 and ∥ ∥∞ for norms on R and Z; which norm is meant in
each case should be clear from context.
Lemma 5.1. For any Schwartz function σ : R → R,

∥[σ]∥1 ≤ ∥σ∥1 + ∥σ′∥1.

Proof. By the mean value theorem,
|σ(x) − σ(⌊x⌋)| ≤ ∥σ′∥∞.

Therefore, for every integer n,∫ n+1

n

∣∣σ(x) − σ(⌊x⌋)
∣∣dx ≤

∫ n+1

n
|σ′(x)|dx,

so summing over n,∣∣∣∣∣
∫ ∞

−∞
σ(x)dx−

∞∑
−∞

σ(⌊x⌋)dx
∣∣∣∣∣ ≤

∞∑
n=−∞

∫ n+1

n

∣∣σ(x) − σ(⌊x⌋)
∣∣dx

≤
∞∑

n=−∞

∫ n+1

n

∣∣σ′(x)
∣∣ dx =

∥∥σ′∥∥
1 . □

Lemma 5.2. For any non-negative Schwartz functions σ and τ ,∥∥[σ ∗ τ ] − [σ] ∗ [τ ]
∥∥

∞ ≤
(
∥σ∥1 + ∥σ′∥1

)
∥τ ′∥∞ + ∥σ′∥∞

(
∥τ∥1 + ∥τ ′∥1

)
.

Proof. If m and n are integers and x ∈ [0, 1], then∣∣σ(n)τ(m− n) − σ(n+ x)τ(m− n− x)
∣∣

≤ σ(n)
∣∣τ(m− n) − τ(m− n+ x)

∣∣+ τ(m− n+ x)|σ(n) − σ(n− x)|

≤ σ(n)
∫ m−n+1

m−n

∣∣τ ′(t)
∣∣ dt+ τ(m− n)

∫ n

n−1

∣∣σ′(t)
∣∣ dt.

Integrating x over [0, 1] and then summing n over Z, we get∣∣∣∣∣
∞∑

n=−∞
σ(n)τ(m− n) − σ ∗ τ(m)

∣∣∣∣∣ ≤
∞∑

n=−∞
σ(n)

∥∥τ ′∥∥
∞ +

∞∑
n=−∞

τ(m− n)
∥∥σ′∥∥

∞ ,

from which the desired inequality follows by Lemma 5.1. □
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Lemma 5.3. If σ1, . . . , σr are non-negative Schwartz functions with ∥σi∥1 + ∥σ′
i∥1 ≤ 3

4 ,
and ∥σ′

i∥∞ ≤ ϵ, then ∥∥[σ1 ∗ · · · ∗ σr] − [σ1] ∗ · · · ∗ [σr]
∥∥

∞ < 3ϵ.

Proof. We prove the upper bound (2r− 2)(3/4)r−1ϵ for r ≥ 2 by induction on r, and that
implies the claim. The case r = 2 follows from Lemma 5.2. If r ≥ 3, then∥∥[σ1 ∗ · · · ∗ σr] − [σ1] ∗ · · · ∗ [σr]

∥∥
∞ ≤

∥∥[σ1 ∗ · · · ∗ σr] − [σ1] ∗ [σ2 ∗ · · · ∗ σr]
∥∥

∞
+
∥∥[σ1] ∗ ([σ2 ∗ · · · ∗ σr] − [σ2] ∗ · · · ∗ [σr])

∥∥
∞

≤
∥∥[σ1 ∗ · · · ∗ σr] − [σ1] ∗ [σ2 ∗ · · · ∗ σr]

∥∥
∞

+ ∥[σ1]∥1
∥∥([σ2 ∗ · · · ∗ σr] − [σ2] ∗ · · · ∗ [σr])

∥∥
∞.

We have

∥σ2 ∗ · · · ∗ σr∥1 +
∥∥(σ2 ∗ · · · ∗ σr)′∥∥

1 ≤
∥∥(σ2 + σ′

2)
∥∥

1 ∥σ3∥1 · · · ∥σr∥1 ≤
(3

4

)r−1

and ∥∥(σ2 ∗ · · · ∗ σr)′∥∥
∞ ≤ ∥σ′

2∥∞∥σ3∥1 · · · ∥σr∥1 ≤
(3

4

)r−2
ϵ.

Applying Lemma 5.2 to σ1 and σ2∗· · ·∗σr and using the induction hypothesis for σ2, . . . , σr,

∥[σ1 ∗ · · · ∗ σr] − [σ1] ∗ · · · ∗ [σr]∥∞ ≤ 2
(3

4

)r−1
ϵ+ (2r − 4)

(3
4

)r−1
ϵ. □

Lemma 5.4. Let A1, . . . , Ar and A′
1, . . . , A

′
r are summable functions Z → R, then∥∥A1 ∗ · · · ∗Ar −A′

1 ∗ · · · ∗A′
r

∥∥
∞ ≤

r∑
i=1

∥Ai −A′
i∥∞

∏
j ̸=i

max
(
∥Aj∥1, ∥A′

j∥1
)
.

Proof. By the triangle inequality,∥∥A1 ∗ · · · ∗Ar −A′
1 ∗ · · · ∗A′

r

∥∥
∞ ≤

r∑
i=1

∥∥A1 ∗ · · · ∗Ai−1 ∗ (Ai −A′
i) ∗A′

i+1 ∗ · · · ∗A′
r

∥∥
∞

≤
r∑

i=1

∥∥A1 ∗ · · · ∗Ai−1 ∗A′
i+1 ∗ · · · ∗A′

r

∥∥
1∥Ai −A′

i∥∞.

For each i, ∥∥A1 ∗ · · · ∗Ai−1 ∗A′
i+1 ∗ · · · ∗A′

r

∥∥
1 ≤

i−1∏
j=1

∥Aj∥1

r∏
j=i+1

∥∥A′
j

∥∥
1

≤
∏
j ̸=i

max
(
∥Aj∥1,

∥∥A′
j

∥∥
1
)
. □

Proposition 5.5. For all k ≥ 0, we have
4−kx2s,k = φs(k − 1) +O(8−s).

Proof. Suppose k ≥ 23s/2. For a > b > 0, the maximum of e−bx − e−ax on [0,∞) depends
only on a/b, so we may consider the case b = 1. The maximum value is achieved at log a

a−1 ,
and by l’Hôpital’s rule, this value divided by a− 1 approaches 1/e as a → 1. As

log
(1 + cosx

2

)
= −x2

4 +O(x4),
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for j ≤ 2s/4, 1 + cos (2j−1)π
2s+1

2

k−1

− exp
(

−(2j − 1)2π2

4 · 4s+1 (k − 1)
)

= O(8−s).

Moreover,

2−s sin (2j − 1)π
2s+1 = (2j − 1)2−2s−1π +O

(
j32−4s

)
.

Therefore,

2−s
∑

j≤2m/2

∣∣∣∣∣∣∣sin
(2j − 1)π

2s+1

1 + cos (2j−1)π
2s+1

2

k−1

−(2j − 1)π
2s+1 exp

(
−(2j − 1)2π2

4 · 4s+1 (k − 1)
)∣∣∣∣∣ = O(8−s).

Moreover, for m sufficiently large, the sums

2−s
∑

2m/2 < j ≤ 2s

sin (2j − 1)π
2s+1

1 + cos (2j−1)π
2s+1

2

k−1

and ∑
j > 2m/2

(2j − 1)π
2s+1 exp

(
−(2j − 1)2π2

4 · 4s+1 (k − 1)
)

both have the properties that each term is less than half of the previous term, and the
initial term is o(8−s). The proposition follows for k ≥ 23s/2.

We may therefore assume 3 ≤ 2s ≤ k < 23s/2. As φ(x) is Schwartz and identically 0 for
x < 0, it follows that φ(x) = o(x6) as x → 0, so φ((k − 1)4−s−2) is o(8−s).

To prove that 4−kx2s,k is also o(8−s), it suffices to show that X2s(1/4 − 1/4k) is o(8−s).
For this, we observe

X1

(1
4 − 1

4k

)−1
= 2 + 4

k − 1 .

By induction on i,

X2i+1

(1
4 − 1

4k

)−1
= X2i

(1
4 − 1

4k

)−2
− 2 ≥

(
2 + 4i

k − 1

)2

− 2 > 2 + 4i+1

k − 1

for 0 ≤ i ≤ s−1. If r is the smallest integer such that 4r ≥ 4(k−1), then r = m/4+O(1),
and

X2r

(1
4 − 1

4k

)−1
> 6.

By induction on i, we have

X2i

(1
4 − 1

4k

)−1
≥ 42i−r + 2

for all i ≥ r, since it holds for i = r, and

X2i+1

(1
4 − 1

4k

)−1
= X2i

(1
4 − 1

4k

)−2
− 2 ≥

(
42i−r + 2

)2
− 2 > 42i+1−r + 2.
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for i ≥ r. Applying this for i = s, we get a much stronger upper bound than is needed. □

We now define As(k) = 4−kx2s,k and A′
s = [φs]. As usual, we define BT (k) to be the

sum of AS(k) over all finite subsets S ⊂ T ∩ N. Thus,

BR(k) = 4−kbG,V
2k .

Proposition 5.6. Defining As(k) = 4−kx2s,k, the sequence A0, A1, A2, . . . satisfies prop-
erties (I)–(III) of Section 2.

Proof. We have
∞∑

k=0
As(k)tk = X2s(t/4).

By (2.7), X1(1/4) = 1/2. Using (1.2) and induction on n, we deduce that X2s(1/4) = 1/2
for all s ≥ 0. This implies (I).

By Proposition 5.5, (II) follows from the fact that φ(x) = O(x−r) as x → ∞, and (III)
follows from the fact that |φ′(x)| is bounded on R. □

We can now prove Theorem 1.1.

Proof. As φs(k− 1) −φs(k) = O(16−s). By Proposition 5.5, |As(k) −A′
s(k)| = O(8−s), so

Lemma 5.4 implies that for fixed r, for s ≥ 4r, and for S = {s1, s2, . . . , sm} ⊂ [s− r, r+s],∥∥AS − [φs1 ] ∗ [φ2] ∗ · · · ∗ [φsm ]
∥∥

∞ = O(8−s).

Applying Lemma 5.3 in the case m = r and σi = φsi , we obtain

∥AS − [φS ]∥∞ = O(8−s),

and summing over S ⊂ [s− r, s+ r], we get∥∥B[s−r,s+r] − [ψ[s−r,s+r]]
∥∥∞ = O

(
2−5s/2

)
.

By Proposition 3.6, for all ϵ > 0, if r is large enough in terms of ϵ, then for all k ∈ [4s, 4s+1),∣∣∣∣∣
(3

2

)−s

BR(k) −
(3

2

)−r

ψ[s−r,s+r](k)
∣∣∣∣∣ ≤ ϵ

24−s.

As ψr converges to ψ on [1, 4], for r sufficiently large∣∣ψr
(
4−sk

)
− ψ

(
4−sk

)∣∣ ≤ ϵ

2 ,

so by (4.7), ∣∣∣∣∣
(3

2

)−r

4sψ[s−r,s+r](k) −
(8

3

)s

ψ(k)
∣∣∣∣∣ ≤ ϵ

2 .

Therefore, ∣∣∣∣∣
(3

2

)−r

ψ[s−r,s+r](k) −
(2

3

)s

ψ(k)
∣∣∣∣∣ ≤ ϵ

24−s,

which implies

|BR(k) − ψ(k)| ≤ ϵ

(8
3

)−s

.
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As k < 4s+1, and ω(x) = ψ(x)xδ = ψ(x)xlog4(8/3) is bounded away from zero,

ψ(k)
(8

3

)−s

≥ 3
8ω(k)

implies
ψ(k)−1BR(k) → 1

as k → ∞. □

6. A lower bound for powers of any tilting representation

We conclude by proving that a lower bound of the type predicted in [2] exists for all
tilting representations of SL2 in characteristic 2.

Theorem 6.1. If G = SL2 over an algebraically closed field of characteristic 2 and W is
any tilting representation of G, then there exists cW > 0 such that for all k ≥ 1,

bG,W
k ≥ cWk−δ(dimW )k.

The rest of the section is devoted to a proof of this result. We begin by observing
that the map Q(x) 7→ Q(V ) defines an isomorphism from Z[x] to Tilt(G), the ring of
virtual tilting representations of G. Indeed, the formal character identifies Tilt(G) with
Z-linear combinations of χn(t) as computed in (2.2). The Z-linear combinations of the
χn(Z) comprise the ring of Z/2Z-invariant Laurent polynomials in t with coefficients in
Z, where the non-trivial element of the Weyl group Z/2Z of SL2 maps t 7→ t−1. It is clear
that

Q(x) 7→ Q(χ1(t)) = Q
(
t+ t−1

)
gives an isomorphism Z[x] → Z[t, t−1]Z/2Z.

Lemma 6.2. If Q(x) ∈ Z[x] is such that W = Q(V ) is a non-trivial effective representa-
tion, then

(1) Q(2) = dimW ,
(2) Q′(2) > 0
(3) |Q(x)| < dimW for all x ∈ (−2, 2)
(4) |Q(−2)| = dimW if and only if W purely even or purely odd, i.e., is a direct sum

of tilting representations whose highest weights are all even or are all odd.

Proof. The dimension of W is obtained by substituting t = 1 in the formal character
Q(t+ t−1) of W , so it is Q(2).

By the chain rule and l’Hôpital’s rule,

Q′(2) = lim
θ→0

d
dθQ

(
eiθ + e−iθ

)
d
dθ (eiθ + e−iθ)

=
d2

dθ2Q
(
eiθ + e−iθ

)
−2 cos θ

∣∣∣∣∣∣
θ=0

= I2(W )
2 ,

where I2(W ) denotes Dynkin’s representation index, which, for an SL2 representation with
formal character

∑
ant

n is
∑

n a
2
n [4, (2.4)]. This implies (2).

Since W is non-trivial, Q(t+ t−1) − χn(t) has non-negative coefficients for some n ≥ 1,
so by (2.1), either the 1 and t2 coefficients of Q(t + t−1) are both positive, or the t and
t−1 coefficients are both positive. Either way,∣∣∣Q (eiθ + e−iθ

)∣∣∣ < Q(2)

for 0 < θ < π, implying (3).
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Finally, when θ = π, |Q(−2)| ≤ Q(2) with equality if and only if all the m for which
the tm-coefficient of Q(t + t−1) is positive have the same parity. By (2.1), this occurs if
and only if all the highest weights have the same parity. □

For each k, the multiplicity of T (2n) as a (virtual) factor of P (V ) determines an additive
map µn : Z[x] → Z. By definition, µn(x2k) = xn,k and µn(x2k+1) = 0.

Let n = 2s1 + · · · + 2sr with s1 > s2 > · · · > sr. For each integer s ≥ −2 and integer j,
let

βs,j = ζj
2s+2 + 2 + ζ−j

2s+2 ,

with the convention that βs,j = 4 for s < −2 so that

(βs,j − 2)2 = βs−1,j

for all s, j ∈ Z. By Proposition 2.1 and (2.9), it follows that

Ps′(βs,j) = βs−s′,j − 2, (6.1)

where Ps′ is defined as in (2.10).
Let

Rs =
{
βs,1, βs,3, βs,5, . . . , βs,2s+1−1

}
,

so Rs is the set of roots of Ps(x).
By (2.6) and Proposition 2.2, xn,k is the tk-coefficient of

tn∏r
i=1

∏
β ∈ Rsi

(1 − βt) .

If P (n) denotes the product of the Psi , then its roots are contained in the set {βs1,j | j ∈ Z}.
By Lemma 2.3,

Xn(t) =
∞∑

i=0

∑
{β | P (n)(β)=0}

βi+n−1ti+n

(P (n))′(β)
.

Therefore,

µn

(
x2k
)

=
∑

{β | P (n)(β)=0}

βk−1

(P (n))′(β)
.

It follows that if Q(x) is a linear combination of even powers of x, then

µn(Q(x)) =
∑

{β | P (n)(β)=0}

Q(β1/2)
β(P (n))′(β)

. (6.2)

Since µn vanishes on odd powers of x, for general Q, we have

µn(Q(x)) = 1
2

∑
{β | P (n)(β)=0}

Q
(
β1/2

)
+Q

(
−β1/2

)
β
(
P (n))′ (β)

. (6.3)

Lemma 6.3. If n = 2s1 + · · · + 2sr and βs1,j is a root of P (n), then∣∣∣∣(P (n)
)′

(βs1,j)
∣∣∣∣ > 2−(log2 j)2

4j2

∣∣∣∣(P (n)
)′

(βs1,1)
∣∣∣∣ .
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Proof. If j ≤ 2s−s′ , then by (6.1),

Ps′(βs,j) = 2 cos 2πj
2s+2−s′ = 2 sin

2π
(
2s−s′ − j

)
2s+2−s′ ≥ 2

(
1 − j2s′−s

)
as sin x ≥ 2x

π on [0, π/2]. For all s′ ̸= s and j odd, Ps′(βs,j) is not zero and is twice the
sine of an integer multiple of 2π

2s+2−s′ , so it is at least 21+s′−s in absolute value. For a given
j, there are ⌊log2 j⌋ choices of s′ < s for which j ≥ 2s−s′ , and the lower bounds they give
are 2−0, 2−1, . . . , 21−⌊log2 j⌋. From these observations, we see that

2r−1 ≥
∏

{i | Psi (βs1,j )̸=0}
|Psi(βs1,j)| ≥ 2r−12−(log2 j)2

∞∏
l=1

(
1 − 2−l

)
≥ 2r−32−(log2 j)2

.

On the other hand, by Lemma 2.4, if βs,j is a root of Ps′(x), then

∣∣P ′
s′(βs,j)

∣∣ = 2s′

sin jπ
2s+1

.

Combining these facts, we see that if βs1,j is a root of Psi(x), then

2si

sin jπ
2s1+1

2r−1 ≥
∣∣∣(P (n))′(βs1,j)

∣∣∣ ≥ 2si

sin jπ
2s1+1

2r−32−(log2 j)2
. (6.4)

If βs1,j is a root of Psi , then j is divisible by 2s1−si , so 2si−s1 ≥ j−1, and

∣∣∣∣(P (n)
)′

(βs1,j)
∣∣∣∣∣∣∣(P (n))′ (βs1,1)
∣∣∣ ≥ 2−(log2 j)2

4j2 . (6.5)
□

We can now prove Theorem 6.1.

Proof of Theorem 6.1. Let W = Q(V ). We assume first that W is neither purely even nor
purely odd. In this case, by Lemma 6.2, there exist ϵ, c1 > 0 such that for all v ∈ [4 − ϵ, 4]
and all u < v, we have

Q(
√
v) −Q(

√
u) ≥ c1(v − u).

We claim that W determines a positive integer h such that for all sufficiently large s, all
n ∈ [2s, 2s+1), all k ∈ [4s+h, 4s+h+1), and all j ∈ [1, 2s),

Q
(
β

1/2
s,j

)k∣∣βs,j(P (n))′(βs,j)
∣∣ ≤ 41−j

Q
(
β

1/2
s,1

)k∣∣βs,1(P (n))′(βs,1)
∣∣ . (6.6)
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Indeed for s sufficiently large, βs,1 ∈ [4 − ϵ, 4], so

Q
(
β

1/2
s,1

)k

Q
(
β

1/2
s,j

)k
≥
(

1 + c1(βs,1 − βs,j)
Q(2)

)k

≥ (1 + c2(βs,1 − βs,j))4s+h

=
(

1 + c2

(
4 sin (j + 1)π

2s+2 sin (j − 1)π
2s+2

))4s+h

≥
(

1 + c2
j2 − 1

4s

)4s+h

≥ exp
(
c3
(
j2 − 1

)
4h
)

for some c2 > c3 > 0 which do not depend on j or h. For j < 2s, also βs,j ≥ 2, so
βs, j

βs,1
≥ 1

2 .

Thus (6.6) follows easily from (6.5) when h is sufficiently large. It implies that the absolute
value of the sum of all terms

Q
(
β

1/2
s,j

)k∣∣∣βs,j
(
P (n))′ (βs,j)

∣∣∣ , 2 ≤ j < 2s

is less than 1
4 + 1

16 + · · · = 1
3 times

Q
(
β

1/2
s,1

)k∣∣∣βs,1
(
P (n))′ (βs,1)

∣∣∣ . (6.7)

By part (3) of Lemma 6.2, the terms Q(β1/2
s,j )k for j ≥ 2s and Q(−β1/2

s,j )k for any j are
bounded above by ((1 − c4) dimW )k for some c4 > 0 which does not depend on s, j, or k.
Therefore,

Q
(
±β1/2

s,j

)k
∣∣∣∣βs,1

(
P (n)

)′
(βs,1)

∣∣∣∣
Q
(
β

1/2
s,1

)k ∣∣∣βs,j
(
P (n))′ (βs,j)

∣∣∣
is bounded above by a term of the form (1 − c5)4s+h for some c5 > 0.

When s and h are sufficiently large, therefore, the expression for µn(Q(x)k) in (6.3)
consists of a dominant term which is half the value (6.7), and a sum of other terms, whose
total absolute values is less than half as large as the dominant term. Therefore,

µn(Qk) ≥ 1
4

Q
(
β

1/2
s,1

)k

βs,1
(
P (n))′ (βs,1)

.

As βs,1 < 4, (6.4) implies

µn

(
Qk
)
>

1
16

Q
(
β

1/2
s,1

)k

(
P (n))′ (βs,1)

≥ 21−r−s sin π

2s+1Q
(
β

1/2
s,1

)k

≥ 2−3−r−2sQ
(
β

1/2
s,1

)k
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for k ∈ [4s+h, 4s+h+1). Summing over all n ∈ [2s, 2s+1), we get

bG,W
k ≥

2s+1−1∑
n=2s

µn(Qk) ≥
(3

2

)s

2−2s−4Q
(
β

1/2
s,1

)k
= 1

16

(3
8

)s

Q
(
β

1/2
s,1

)k
.

As Q′(2) > 0, there exists c6 > 0 such that Q(β1/2
s,1 ) > dimW − c6(4−s), so for fixed h and

k < 4s+h, we can bound 4−kQ(β1/2
s,1 )k away from 0.

Finally we consider the cases that W is purely even or purely odd. In the purely even
case (i.e., when Q(x) is an even function) we use (6.2) instead of (6.3), so we sum only
over the non-negative square roots of the βs,j . Since part (3) of Lemma 6.2 still holds, it
remains true that the terms Q(β1/2

s,j )k for j ≥ 2s are bounded above by ((1 − c4) dimW )k

for some c4 > 0. For W purely odd and for even k, Qk is an even function, and we proceed
as in the purely even case. Finally, for W odd and k odd, we use the fact, true for all
groups and all representations, that bG,W

k+1 ≥ bG,W
k . □
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