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In memory of a friend and an inspiration, Vladimir Rittenberg 1934–2018.

Abstract. The two boundary Temperley–Lieb algebra T Lk is a quotient of the type Ck affine Hecke
algebra Hk. The algebra Hk has a diagrammatic presentation by braids with k strands and two poles
and T Lk has a presentation via non-crossing diagrams with boundaries. The algebra T Lk plays a
role in the analysis of Heisenberg spin chains with boundaries. A calibrated representation of T Lk

is a T Lk-module for which all the Murphy elements (integrals) are simultaneously diagonalizable. In
this paper we give a combinatorial classification and construction of all irreducible calibrated T Lk-
modules and explain how these modules also arise from a Schur–Weyl duality with the quantum
group Uqgl2.

1. Introduction

The paper [3] studied the calibrated representations of affine Hecke algebras of type C
with unequal parameters and developed their combinatorics and their role in Schur–Weyl
duality. This paper applies that information to the study of two boundary Temperley–
Lieb algebras. The two boundary Temperley–Lieb algebras appear in statistical mechanics
for analysis of spin chains with generalized boundary conditions [5, 6]. Knowledge of
the representation theory of the two boundary Temperley–Lieb algebras is useful for the
determination of the spectrum of the Hamiltonian for these spin chains with boundaries. In
fact, the need to understand the representation theory of the two boundary Temperley–
Lieb algebra better was a primary motivation for our preceding papers [2, 3] on two
boundary Hecke algebras.

In Section 2 we review the definition and structure of the two boundary Hecke algebra
Hk (the affine Hecke algebra of type C with unequal parameters). Then we carefully
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analyze certain idempotents which, as we prove in Theorem 3.1, generate the ideal that
one must quotient by to obtain the two boundary Temperley–Lieb algebra TLk from the
two boundary Hecke algebra Hk. It is the expression of these idempotents in terms of the
intertwiner presentation of Hk that eventually provides understanding of the weights that
can appear in TLk-modules.

In Section 3 we define the two boundary Temperley–Lieb algebra TLk and the symplec-
tic blob algebra TLk(b) following [4, 8, 9, 10, 12, 15, 16] and review the diagram algebra
calculus for these algebras. Part of our contribution is to extend this calculus to make its
connection to the diagrammatic calculus of the Hecke algebra Hk via braids.

Comparing (3.8) and Corollary 3.3 gives that the symplectic blob algebras TLk(b) for
b ∈ C and the two boundary Temperley–Lieb algebra TLk produce the same irreducible
representations. The symplectic blob algebras function as quotients of the two boundary
Temperley–Lieb algebra TLk by a central character. The key computation appears in
Theorem 3.2 where we use the diagrammatics to give a proof of a result of [4] that provides
an expansion of a certain central element of Hk inside TLk. Using the Hecke algebra point
of view, this result enables us to understand that the center of TLk is a polynomial ring in
one variable Z(TLk) = C[Z], and that TLk is of finite rank over this center. In retrospect,
the algebra Hk has a similar structure and so perhaps this should not be surprising but,
nonetheless, it is pleasant to see it come out in such a vivid and explicit form. Let us
clarify that, although the realisation that Z(TLk) = C[Z] is visible from Theorem 3.2
and the indexing of irreducible representations by central character that one gets from the
Hecke algebra, we have not written a proper proof of this statement in this paper.

We have used a different normalization of the parameters of the two boundary Hecke
and Temperley–Lieb algebra from those used in [4, 9]. Our normalization will be helpful,
for example, for future applications of these algebras to the theory of Macdonald poly-
nomials and to the study of the exotic nilpotent cone. In both of these cases the affine
Hecke algebra of type Cn plays an important role: the Koornwinder polynomials are the
Macdonald polynomials for type (C∨

n , Cn) [14], and the K-theory of the Steinberg variety
of the exotic nilpotent cone provides a geometric construction of the representations of
the two boundary Hecke and Temperley–Lieb algebras at unequal parameters (see [11]).

The calibrated representations are the irreducible representations of the two boundary
Hecke algebra for which a large family of commuting operators (integrals, or Murphy
elements) have a simple (joint) spectrum. This property makes these representations
particularly attractive, and the detailed combinatorics of these representations has been
worked out in [3]. In Section 4 we use the detailed analysis of the idempotents done
in Section 2 to determine exactly which calibrated irreducible representations of the two
boundary Hecke algebra are representations of the two boundary Temperley–Lieb algebra
(Theorem 4.1). In consequence, we obtain a full classification of the calibrated irreducible
representations of the two boundary Temperley–Lieb algebras. Theorem 4.1 proves that
the calibrated irreducible representations are classified by triples (z, c, J) which convert
(via the conversion in [3, § 3.1]) to a (possibly marked) skew shape with ≤ 2 rows. By [3,
Theorem 3.5], the dimension and structure of the representation indexed by (z, c, J) is
the same for many different choices of z and c; it depends only on three sets Z(c), P (c)
and J .

As explained in [3], there is a Schur–Weyl type duality between the two boundary
Hecke algebra and the quantum group Uqgln. The classical Schur–Weyl duality between
Uqgln and the finite Hecke algebra of type A becomes a Schur–Weyl duality for the finite
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Temperley–Lieb algebra when n = 2. In Theorem 5.1 we show that at n = 2 the Schur–
Weyl duality of [3] gives a Schur–Weyl duality for the two boundary Temperley–Lieb
algebra. This method (coming from R-matrices for the quantum group Uqgl2) provides
calibrated representations of the two boundary Temperley–Lieb algebra TLk. Using our
results from Section 4, we determine exactly which irreducible calibrated representations of
TLk occur in the Schur–Weyl duality context. A consequence of the result of Theorem 5.1
is that (for tk ̸= t0 and tk ̸= t0t±1 and tk ̸= t±2 and t2 is not a root of unity) a representative
of each of the possible structures of calibrated irreducible TLk representations (determined
by the skew local region (c, J)) does appear in the Schur–Weyl duality context.

2. The two boundary Hecke algebra Hk

The two boundary Hecke algebra is sometimes called the affine Hecke algebra of type
(C∨, C). In this section we shall follow our previous paper [3] for the extended affine Hecke
algebra Hext

k of type Ck and define idempotents

p
(13)
i , p

(∅,12)
0 , p

(12,∅)
0 , p

(∅,12)
0∨ , p

(12,∅)
0∨ ,

which we will need to quotient by in order to obtain the two boundary Temperley–Lieb
algebra. We derive expressions of these elements in terms of the different choices of gener-
ators: the braid generators Ti, the cap/cup generators ei, and the intertwiner generators
τi and Wj .

The affine Hecke algebra of type C with unequal parameters Hk is the subalgebra of
Hext

k generated by T0, . . . , Tk which satisfy braid relations for the affine Dynkin diagram
of type C and the quadratic relations(

T0 − t
1
2
0

)(
T0 + t

− 1
2

0

)
= 0,

(
Ti − t

1
2
) (

Ti + t− 1
2
)

= 0,(
Tk − t

1
2
k

)(
Tk + t

− 1
2

k

)
= 0,

(2.1)

for i ∈ {1, . . . , k − 1}. The larger algebra Hext
k also contains an element W0 and Murphy

elements for Hext
k given by

W1 = T −1
1 T −1

2 · · ·T −1
k−1TkTk−1 · · ·T2T1T0 and Wj = Tj−1Wj−1Tj−1,

for j ∈ {2, . . . , k}. These elements W0, W1, . . . , Wk commute with each other and satisfy
relations with the T0, . . . , Tk as in [3, Theorem 2.2]. The intertwining operators for Hext

k
are

τ0 = T0 −

(
t

1
2
0 − t

− 1
2

0

)
+
(

t
1
2
k − t

− 1
2

k

)
W −1

1

1−W −2
1

, and τi = Ti −
t

1
2 − t− 1

2

1−WiW
−1
i+1

, (2.2)

for i ∈ {1, . . . , k − 1}, and satisfy

τ0W1 = W −1
1 τ0 and τ0Wj = Wjτ0 for j ̸= 1; (2.3)

for i = 1, . . . , k − 1,
τiWi = Wi+1τi and τiWi+1 = Wiτi for i > 0,

and τiWj = Wjτi for j ̸= i, i + 1; (2.4)

(see [3, Proposition 2.5]).
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Let a, a0, ak ∈ C× and define

a0e0 = T0 − t
1
2
0 , aei = Ti − t

1
2 , akek = Tk − t

1
2
k , (2.5)

for i ∈ {1, . . . , k − 1}. The relations in (2.1) are equivalent to

T0e0 = −t
− 1

2
0 e0, Tiei = −t− 1

2 ei, Tkek = −t
− 1

2
k ek, (2.6)

and to

e2
0 =
−
(

t
1
2
0 + t

− 1
2

0

)
a0

e0, e2
i =
−
(
t

1
2 + t− 1

2
)

a
ei, e2

k =
−
(

t
1
2
k + t

− 1
2

k

)
ak

ek, (2.7)

for i ∈ {1, . . . , k − 1}.

Remark 2.1. The coefficients a, a0, and ak are chosen somewhat differently across the
literature on Temperley–Lieb algebras, and we keep them general here to match to any
given convention. Some favorite choices for a, a0, and ak can traced to the following
computations.

For i ∈ {1, . . . , k − 2}, using Ti = aei + t
1
2 to expand TiTi+1Ti and Ti+1TiTi+1 in terms

of the ei shows that in the presence of the relations (2.1),
TiTi+1Ti = Ti+1TiTi+1 is equivalent to a3eiei+1ei − aei = a3ei+1eiei+1 − aei+1.

Similarly, T0T1T0T1 = T1T0T1T0 is equivalent to

a2
0a2e0e1e0e1 − a0a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e0e1 = a2

0a2e1e0e1e0 − a0a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e1e0.

In the case that a2
0a2 = a0a(t− 1

2
0 t

1
2 + t

1
2
0 t− 1

2 ) then
T0T1T0T1 = T1T0T1T0 is equivalent to e0e1e0e1 − e0e1 = e1e0e1e0 − e1e0.

In the case that a3 = a then
TiTi+1Ti = Ti+1TiTi+1 is equivalent to eiei+1ei − ei = ei+1eiei+1 − ei+1.

This is the explanation for why conventions often fix a, a0 and ak to satisfy

a = ±1, a0a = t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2 =
[[
t0t−1

]]
and aka = t

− 1
2

k t
1
2 + t

1
2
k t− 1

2 =
[[
tkt−1

]]
,

where we use the notation

[x] = t
x
2 − t− x

2

t
1
2 − t− 1

2
and [[ts]] =

(
t

s
2 + t− s

2
)

=
(

ts − t−s

t
1
2 − t− 1

2

)(
t

1
2 − t− 1

2

t
s
2 − t− s

2

)
= [2s]

[s] . (2.8)

In order to make the statement of Proposition 2.2 (below) more manageable, we invoke
the notation associated to the type C root system appearing in [3, § 3] and let

f2εi = 1−W −2
i ,

fεi−r2 =
(

1− t
1
2
0 t

1
2
k W −1

i

)
, fεi−r1 =

(
1 + t

1
2
0 t

− 1
2

k W −1
i

)
,

f−εi−r2 =
(

1− t
1
2
0 t

1
2
k Wi

)
, f−εi−r1 =

(
1 + t

1
2
0 t

− 1
2

k Wi

)
,

fεi−εj = 1−WiW
−1
j , fεi−εj+1 = 1− tWiW

−1
j ,

f−εi−εj = 1−W −1
i W −1

j , f−εi−εj+1 = 1− tW −1
i W −1

j ,

(2.9)
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for i, j ∈ {1, . . . , k}. Then

a0e0 = τ0 − t
− 1

2
0

fε1−r1fε1−r2

f2ε1
and aiei = τi − t− 1

2
fεi−εi+1+1
fεi−εi+1

, (2.10)

and equations (2.42) and (2.43) from [3, Proposition 2.5] become

τ2
0 = W −2

1 t−1
0

fε1−r1f−ε1−r1fε1−r2f−ε1−r2

f2
2ε1

, and τ2
i = t−1 fεi−εi+1+1fεi+1−εi+1

fεi−εi+1fεi+1−εi

,

for i = 1, . . . , k − 1.

2.1. The idempotents p
(13)
i , p

(∅,12)
0 and p

(12,∅)
0 . Fix i ∈ {1, . . . , k − 2}. Let

HS
(i)
3 be the subalgebra of Hext

k generated by Ti and Ti+1, and let
HB2 be the subalgebra of Hext

k generated by T0 and T1.

Define elements p
(13)
i ∈ HS

(i)
3 and p

(∅,12)
0 , p

(12,∅)
0 ∈ HB2 by(

p
(13)
i

)2
= p

(13)
i ,

(
p
(∅,12)
0

)2
= p

(∅,12)
0

(
p
(12,∅)
0

)2
= p

(12,∅)
0 , (2.11)

and

Tip
(13)
i = −t− 1

2 p
(13)
i , Ti+1p

(13)
i = −t− 1

2 p
(13)
i ,

T0p
(∅,12)
0 = −t

− 1
2

0 p
(∅,12)
0 T1p

(∅,12)
0 = −t− 1

2 p
(∅,12)
0 ,

T0p
(12,∅)
0 = t

1
2
0 p

(12,∅)
0 , T1p

(12,∅)
0 = −t− 1

2 p
(12,∅)
0 .

(2.12)

The idempotent p
(13)
i projects onto the irreducible HS

(i)
3 -module indexed by the partition

(13) = (1, 1, 1) and the idempotents p
(∅,12)
0 and p

(12,∅)
0 in HB2 project onto the irreducible

HS
(i)
3 -modules indexed by (∅, 12) and (12, ∅), respectively. The conditions in (2.12) are

equivalent to

aeip
(13)
i = −

(
t

1
2 + t− 1

2
)

p
(13)
i , aei+1p

(13)
i = −

(
t

1
2 + t− 1

2
)

p
(13)
i ,

a0e0p
(∅,12)
0 = −

(
t

1
2
0 + t

− 1
2

0

)
p
(∅,12)
0 , ae1p

(∅,12)
0 = −

(
t

1
2 + t− 1

2
)

p
(∅,12)
0 ,

a0e0p
(12,∅)
0 = 0, ae1p

(12,∅)
0 = −

(
t

1
2 + t− 1

2
)

p
(12,∅)
0 .

(2.13)

The following proposition gives an expansion of these projection operators in terms
of three important families of generators of Hext

k : the braid Ti generators, the cup/cap
ei generators and the intertwining operators τi. As we will see in Section 3.1, the two
boundary Temperley–Lieb algebra is precisely a quotient of Hext

k by the ideal generated
by these idempotents.

Proposition 2.2. Let p
(13)
i , p

(∅,12)
0 and p

(12,∅)
0 be as defined in (2.11) and (2.12) and let

N = t− 1
2 (1 + t)

(
1 + t + t2

)
and N0 = t−1

0 t−1(1 + t0)(1 + t)(1 + t0t).
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Then the expansions of these idempotents in terms of the three favored generating sets is
given by

Np
(13)
i = TiTi+1Ti − t

1
2 TiTi+1 − t

1
2 Ti+1Ti + tTi + tTi+1 − t

3
2

= a3eiei+1ei − aei = a3ei+1eiei+1 − aei+1

= τiτi+1τi − t− 1
2 τi+1τi

fεi+1−εi+2+1
fεi+1−εi+2

− t− 1
2 τiτi+1

fεi+1−εi+1
fεi+1−εi

+ t−1τi
fεi+1−εi+2+1fεi+2−εi+1

fεi+1−εi+2fεi+2−εi

+ t−1τi+1
fεi+2−εi+1fεi+1−εi+1

fεi+2−εifεi+1−εi

− t− 3
2

fεi+1−εi+2+1fεi+2−εi+1fεi+1−εi+1
fεi+1−εi+2fεi+2−εifεi+1−εi+1

,

N0p
(∅,12)
0 = T0T1T0T1 − t

1
2
0 T1T0T1 − t

1
2 T0T1T0

+ t
1
2
0 t

1
2 T0T1 + t

1
2
0 t

1
2 T1T0 − t0t

1
2 T1 − t

1
2
0 tT0 + t0t

= a2
0a2e0e1e0e1 − a0a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e0e1

= a2
0a2e1e0e1e0 − a0a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e1e0

= τ0τ1τ0τ1 − t
1
2
0 τ1τ0τ1

fε1−r2fε1−r1

f2ε1
− t− 1

2 τ0τ1τ0
fε2−ε1+1
fε2−ε1

+ t
1
2
0 t− 1

2 τ0τ1
f−ε2−ε1+1
f−ε2−ε1

fε1−r2fε1−r1

f2ε1
− t

1
2
0 t− 1

2 τ1τ0
fε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

− t0t− 1
2 τ1

fε2−r2fε2−r1

f2ε2

f−ε2−ε1+1
f−ε2−ε1

fε1−r2fε1−r1

f2ε1

− t
1
2
0 t−1τ0

f−ε2−ε1+1
f−ε2−ε1

fε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t0t−1 fε1−r2fε1−r1

f2ε1

f−ε2−ε1+1
f−ε2−ε1

fε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

,

and

N0p
(12,∅)
0 = T0T1T0T1 + t

− 1
2

0 T1T0T1 − t
1
2 T0T1T0

− t
− 1

2
0 t

1
2 T0T1 − t

− 1
2

0 t
1
2 T1T0 − t0t

1
2 T1 + t

− 1
2

0 tT0 + t0t

=
(

a2
0a2e0e1e0e1 − a0a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e0e1

)
−
(

a0a2e1e0e1 − a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e1

)
= τ0τ1τ0τ1 − t

1
2
0 τ1τ0τ1W −2

1
f−ε1−r2f−ε1−r1

f2ε1
− t− 1

2 τ0τ1τ0
fε2−ε1+1
fε2−ε1

+ t
1
2
0 t− 1

2 τ0τ1W −2
1

f−ε2−ε1+1
f−ε2−ε1

f−ε1−r2f−ε1−r1

f2ε1

+ t
1
2
0 t− 1

2 τ1τ0W −2
2

f−ε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1
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− t0t− 1
2 τ1W −2

1 W −2
2

f−ε2−r2f−ε2−r1

f2ε2

f−ε2−ε1+1
f−ε2−ε1

f−ε1−r2f−ε1−r1

f2ε1

− t
1
2
0 t−1τ0W −2

2
f−ε2−ε1+1
f−ε2−ε1

f−ε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t0t−1W −2
1 W −2

2
f−ε1−r2f−ε1−r1

f2ε1

f−ε2−ε1+1
f−ε2−ε1

f−ε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

.

Proof. The expressions in terms of Ti are proved by using the relations T 2
i = (t

1
2−t− 1

2 )Ti+1
and T 2

0 = (t
1
2
0 − t

− 1
2

0 )T0 + 1 to show that the equations in (2.12) are satisfied. In view of
the conditions (2.11), using the equations (2.12) to compute the product of the expansion
in terms of the Ti with each element p

(13)
i , p

(∅,12)
0 and p

(12,∅)
0 respectively, determines the

normalizing constants

N = −t− 3
2 − t− 1

2 − t− 1
2 − t

1
2 − t

1
2 − t

3
2 = t− 1

2 (1 + t)
(
1 + t + t2

)
,

and

N0 = t−1
0 t−1 + t−1 + t−1

0 + 1 + 1 + t0 + t + t0t = t−1
0 t−1(1 + t0)(1 + t)(1 + t0t).

Checking the conditions (2.13) verifies that the expressions in terms of the ei for the
elements Np

(13)
i , N0p

(∅,12)
0 and N0p

(12,∅)
0 are correct. Similarly, using the expressions for

a0e0 and aei in terms of τi given in (2.10) to check these same conditions verifies that
the expressions for the elements Np

(13)
i , N0p

(∅,12)
0 and N0p

(12,∅)
0 in terms of the τi are

correct. □

2.2. The idempotents p
(∅,12)
0∨ and p

(12,∅)
0∨ . In Section 2.1 we produced idempotents p

(∅,12)
0

and p
(12,∅)
0 in the subalgebra of Hext

k generated by T0 and T1. To take advantage of the
symmetry of the type C situation, we need to have available the corresponding idempotents
p

(∅,12)
0∨ and p

(12,∅)
0∨ coming from the subalgebra of Hext

k generated by Tk and Tk−1. These
are produced as follows.

Let wA be the longest element of WAk = ⟨s1, . . . , sk−1⟩. Let Let

T0∨ = T −1
wA

TkTwA = a
− 1

2
1 (−a2)− 1

2 = a
− 1

2
1 (−a2)− 1

2

= W1T −1
0 ,

and note that T −1
wA

Tk−1TwA = T1. Then(
T0∨ − t

1
2
k

)(
T0∨ + t

− 1
2

k

)
= 0 and T0∨T1T0∨T1 = T1T0∨T1T0∨ .
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Let HB∨
2 be the subalgebra of Hext

k generated by T0∨ and T1 and define idempotents p
(∅,12)
0∨

and p
(12,∅)
0∨ in HB∨

2 by the equations(
p
(∅,12)
0∨

)2
= p

(∅,12)
0∨ ,

(
p
(12,∅)
0∨

)2
= p

(12,∅)
0∨ ; (2.14)

and
T0∨p

(∅,12)
0∨ = −t

− 1
2

k p
(∅,12)
0∨ , T1p

(∅,12)
0∨ = −t− 1

2 p
(∅,12)
0∨ ,

T0∨p
(12,∅)
0∨ = t

1
2
k p

(12,∅)
0∨ , and T1p

(12,∅)
0∨ = −t− 1

2 p
(12,∅)
0∨ .

(2.15)

In effect, the conjugation by TwA replaces Tk and Tk−1 by T0∨ and T1, respectively.
Let ak ∈ C× and define

ake0∨ = T0∨ − t
1
2
k , so that e0∨ = T −1

wA
ekTwA and e1 = T −1

wA
ek−1TwA . (2.16)

The conditions in (2.15) are equivalent to

ake0∨p
(∅,12)
0∨ = −

(
t

1
2
k + t

− 1
2

k

)
p
(∅,12)
0∨ , ae1p

(∅,12)
0∨ = −

(
t

1
2 + t− 1

2
)

p
(∅,12)
0∨ ,

ake0∨p
(12,∅)
0∨ = 0, and ae1p

(12,∅)
0∨ = −

(
t

1
2 + t− 1

2
)

p
(12,∅)
0∨ .

(2.17)

Using ake0∨ = W1T −1
0 −t

1
2
k = W1(T0−(t

1
2
0 −t

− 1
2

0 ))−t
1
2
k = W1(τ0 +t

1
2
0 −cα0−(t

1
2
0 −t

− 1
2

0 ))−t
1
2
k ,

a short computation gives

ake0∨ = τ0W −1
1 − t

− 1
2

0 W −1
1

fε1−r2f−ε1−r1

f2ε1
.

Letting Nk = t−1
k t−1(1 + tk)(1 + t)(1 + tkt), then

Nkp
(∅,12)
0∨ = a2

ka2e0∨e1e0∨e1 − aka

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
e0∨e1

= a2
ka2e1e0∨e1e0∨ − aka

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
e1e0∨

= τ0τ1τ0τ1(W1W2)−1 − t
− 1

2
0 τ1τ0τ1(W1W2)−1 fε1−r2f−ε1−r1

f2ε1

+ t− 1
2 τ0τ1τ0(W1W2)−1 fε2−ε1+1

fε2−ε1

− t
− 1

2
0 t− 1

2 τ0τ1(W1W2)−1 f−ε2−ε1+1
f−ε2−ε1

fε1−r2f−ε1−r1

f2ε1

− t
− 1

2
0 t− 1

2 τ1τ0(W1W2)−1 fε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t−1
0 t− 1

2 τ1(W1W2)−1 fε2−r2f−ε2−r1

f2ε2

f−ε2−ε1+1
f−ε2−ε1

fε1−r2f−ε1−r1

f2ε1

− t
− 1

2
0 t−1τ0(W1W2)−1 f−ε2−ε1+1

f−ε2−ε1

fε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t−1
0 t−1(W1W2)−1 fε1−r2f−ε1−r1

f2ε1

f−ε2−ε1+1
f−ε2−ε1

fε2−r2f−ε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

,
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and

Nkp
(12,∅)
0∨ =

(
a2

ka2e0∨e1e0∨e1 − aka

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
e0∨e1

)
−
(

aka2e1e0∨e1 − a

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
e1

)
= τ0τ1τ0τ1(W1W2)−1 − t

− 1
2

0 τ1τ0τ1(W1W2)−1 f−ε1−r2fε1−r1

f2ε1

+ t− 1
2 τ0τ1τ0(W1W2)−1 fε2−ε1+1

fε2−ε1

− t
− 1

2
0 t− 1

2 τ0τ1(W1W2)−1 f−ε2−ε1+1
f−ε2−ε1

f−ε1−r2fε1−r1

f2ε1

− t
− 1

2
0 t− 1

2 τ1τ0(W1W2)−1 f−ε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t−1
0 t− 1

2 τ1(W1W2)−1 f−ε2−r2fε2−r1

f2ε2

f−ε2−ε1+1
f−ε2−ε1

f−ε1−r2fε1−r1

f2ε1

− t
− 1

2
0 t−1τ0

(
W −1

1 W2
)−1 f−ε2−ε1+1

f−ε2−ε1

f−ε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

+ t−1
0 t−1(W1W2)−1 f−ε1−r2fε1−r1

f2ε1

f−ε2−ε1+1
f−ε2−ε1

f−ε2−r2fε2−r1

f2ε2

fε2−ε1+1
fε2−ε1

,

in analogy with (and with the same proof as) Proposition 2.2.

3. The two boundary Temperley–Lieb algebra TLk

In this section we define the two boundary Temperley–Lieb algebra TLk and review its
diagrammatic calculus. The algebra TLk is closely related to the symplectic blob algebras
TLk(b), see (3.8)) and [8, 9, 10, 12, 15, 16]. We extend the diagrammatic calculus to
make clear the relationship to the two boundary Hecke algebra and to set the stage for
the proof of Theorem 3.2. Although Theorem 3.2 takes the form of a computation, it is a
computation that has amazing consequences as it determines the relationship between the
center of Hext

k and the center of TLk. The center of Hext
k is a ring of symmetric functions

(see [3, Theorem 2.3]) and the center of TLk turns out to be a polynomial ring C[Z] in
a single variable Z. In the same way that Hext

k is finite rank over its center, the algebra
TLk is finite rank over C[Z]. The algebra Hext

k has rank (2kk!)2 over its center. A closed
form formula for these ranks, in terms of sums of products of blobbed Catalan numbers,
is given in [1, Theorem 4.2, Theorem 6.1 and Theorem 7.12]. These ranks coincide with
the dimensions of the symplectic blob algebras TLk(b) defined in Section 3.6.

3.1. The extended two boundary Temperley–Lieb algebra TLext
k . Let Hext

k be the
extended two boundary Hecke algebra as defined in (2.1). The extended two boundary
Temperley–Lieb algebra TLext

k is the quotient of Hext
k by the relations

p
(∅,12)
0∨ = p

(12,∅)
0∨ = 0, p

(∅,12)
0 = p

(12,∅)
0 = 0 and p

(13)
i = 0 for i ∈ {1, . . . , k − 2}.

Theorem 3.1. Assume that N , N0 and Nk are invertible. The algebra TLext
k is the

quotient of Hext
k by the relations

aka2ek−1ekek−1 − a

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
ek−1 = 0, a0a2e1e0e1 − a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e1 = 0,

Ann. Repr. Th. 2 (2025), 3, p. 405–438 https://doi.org/10.5802/art.26

https://doi.org/10.5802/art.26


414 Zajj Daugherty & Arun Ram

and
a3eiei+1ei − aei = a3ei+1eiei+1 − aei+1 = 0 for i ∈ {1, . . . , k − 2}.

Proof. Let Fi = a3eiei+1ei − aei = a3ei+1eiei+1 − aei+1 for i ∈ {1, . . . , k − 2},

Fk = aka2ek−1ekek−1 − a

(
t
− 1

2
k t

1
2 + t

1
2
k t− 1

2

)
ek−1,

and

F0 = a0a2e1e0e1 − a

(
t
− 1

2
0 t

1
2 + t

1
2
0 t− 1

2

)
e1.

By Proposition 2.2,

N0p
(∅,12)
0 = a0e0F0, N0p

(12,∅)
0 = (a0e0 − 1)F0,

F0 = N0

(
p
(∅,12)
0 − p

(12,∅)
0

)
, and Np

(13)
i = Fi;

and, by (2.16),

TwAFkT −1
wA

= N0

(
p
(∅,12)
0∨ − p

(12,∅)
0∨

)
, T −1

wA
p
(∅,12)
0∨ TwA = akekFk,

and

T −1
wA

p
(12,∅)
0∨ TwA = (akek − 1)Fk.

Thus, provided N , N0 and Nk are invertible, the ideal Hext
k FkHext

k is the same as the ideal
generated by p

(12,∅)
0∨ and p

(∅,12)
0∨ ; the ideal Hext

k F0Hext
k is the same as the ideal generated

by p
(12,∅)
0 and p

(∅,12)
0 ; and Hext

k p
(13)
i Hext

k = Hext
k FiH

ext
k . □

3.2. The two boundary Temperley–Lieb algebra TLk. The two boundary Temper-
ley–Lieb algebra TLk is the subalgebra of TLext

k generated by a0e0, ae1, . . . , aek−1, akek (as
defined in (2.5)). As in [3, Theorem 2.4], where Hext

k = Hk ⊗ C[W ±1
0 ], the extended two

boundary Temperley–Lieb algebra is

TLext
k = TLk ⊗ C

[
W ±1

0

]
, as algebras, where W0 = PW1 · · ·Wk.

This structure guarantees that Z(TLext
k ) = C[W ±1

0 ] ⊗ Z(TLk) and that every finite di-
mensional irreducible representation of TLext

k is a tensor product L⊗ V of an irreducible
representation L of TLk and an irreducible representation V of C[W ±1

0 ]. Since C[W ±1
0 ]

is the group algebra of the group D then V must be one dimensional, determined by the
action of W0 on the one-dimensional vector space V . The constant by which W0 acts on
V is the constant z appearing in Section 4.1.

3.3. Diagrammatic calculus for TLk. Pictorially, identify

T0 = , Ti =

i

i

i+1

i+1

, Tk = ,

e0 = . . . , aei = . . . . . .

i

i

, and ek = . . . ,
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for i ∈ {1, . . . , k − 1}. Recall the notation

[[x]] = x
1
2 + x− 1

2

from (2.8). With i ∈ {1, . . . , k − 1}, the relations (2.5), (2.6) and (2.7) are

T0 = a0e0 + t
1
2
0 , Ti = aei + t

1
2 , Tk = akek + t

1
2
k ,

= a0 + t
1/2
0 = + t1/2 = ak + t

1/2
k

T0e0 = −t
− 1

2
0 e0, Ti(aei) = −t− 1

2 (aei), Tkek = −t
− 1

2
k ek,

= = −t
−1/2
0 = = −t−1/2 = = −t

−1/2
k

T −1
0 e0 = −t

1
2
0 e0, T −1

i (aei) = −t
1
2 (aei), T −1

k ek = −t
1
2
k ek,

= = −t
1/2
0 = = −t1/2 = = −t

1/2
k

e2
0 = −[[t0]]

a0
e0, (aei)2 = −[[t]](aei), and e2

k = −[[tk]]
ak

ek.

= −[[t0]]
a0

= −[[t]] = −[[tk]]
ak

In the quotient by (aei)(aei+1)(aei) = aei, we have

aeiTi+1Ti = aTi+1Tiei+1 = t
1
2 a2eiei+1,

aeiT
−1
i+1T −1

i = aT −1
i+1T −1

i ei+1 = t− 1
2 a2eiei+1,

aei+1TiTi+1 = aTiTi+1ei = t
1
2 a2ei+1ei,

aei+1T −1
i T −1

i+1 = aT −1
i T −1

i+1ei = t− 1
2 a2ei+1ei,

(3.1)

= = t1/2 = = t−1/2

= = t1/2 = = t−1/2

which are proved by using T ±1
i = aei + t± 1

2 to expand both sides in terms of ei.
When a0(ae1)e0(ae1) − [[t0t−1]](ae1) = 0 and ak(aek−1)ek(aek−1) − [[tkt−1]]aek−1 = 0,

then
(ae1)T0T1 = t

1
2 (ae1)T −1

0 , T1T0(ae1) = t
1
2 T −1

0 (ae1),

(aek−1)TkTk−1 = t
1
2 (aek−1)T −1

k , Tk−1Tk(aek−1) = t
1
2 T −1

k (aek−1),
(3.2)

= t1/2 = t1/2 = t1/2 = t1/2

(ae2)T1T0T1T2 = t
3
2 (ae2)T −1

1 T −1
0 T −1

1 , (3.3)
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= t3/2

(ae1)T0(ae1) = −t
1
2

(
t

1
2
0 − t

− 1
2

0

)
(ae1),

(aek−1)Tk(aek−1) = −t
1
2

(
t

1
2
k − t

− 1
2

k

)
(aek−1), (3.4)

= −t
1
2

(
t

1
2
0 − t

− 1
2

0

)
= −t

1
2

(
t

1
2
k − t

− 1
2

k

)

and

e0T −1
1 T −1

0 T −1
1 e0 = −t− 1

2 [[t0]]e0(ae1)e0 − t−1t
1
2
0 e2

0.

= −t− 1
2 [[t0]] − t−1t

1
2
0

3.4. TLk as a diagram algebra. The algebra TLk is generated by e0, e1, . . . , ek, which
are represented pictorially by diagrams as in Seciton 3.3. Using the pictorial notation,
the algebra TLk has a basis (see [9, Theorem 3.4] and [4, Definition 3.4]) of non-crossing
diagrams with k dots in the top row, k dots in the bottom row, edges connecting a dot to
a dot or connecting a dot to either the left or the right boundary, an even number of left
boundary to right boundary edges, and

(−1)#{left boundary edges} = 1 and (−1)#{right boundary edges} = 1.

For example,

d1 = and d2 =

are both basis elements of TLk. Multiplication of basis elements can be computed picto-
rially by vertical concatenation, with self-connected loops and strands with both ends on
the left or on the right replaced by constant coefficients according to the following local
rules (applied simultaneously, not iteratively):

= −[[t]],
if even #

connections

= [[t0t−1]]
a0

,
if even #

connections

= [[tkt−1]]
ak

,

if odd #
connections

= −[[t0]]
a0

, and
if odd #

connections

= −[[tk]]
ak

.
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For example with d1 and d2 as above,

d1d2 = = = (−[[t]])
(−[[tk]]

ak

)( [[tkt−1]]
ak

)

(where the dashed strand is removed with a coefficient of [[tkt−1]]
ak

, and the thick strand is
removed with a coefficient of −[[tk]]

ak
).

3.5. The through-strand filtration of TLk. A through-strand is an edge that connects
a top vertex to a bottom vertex. Define the ideals

TL
(≤ j)
k = C-span{diagrams with ≤ j through-strands}.

Then the algebra TLk is filtered by ideals as

TLk = TL
(≤ k)
k ⊇ TL

(≤ k−1)
k ⊇ · · · ⊇ TL

(≤ 1)
k ⊇ TL

(≤ 0)
k ⊇ 0. (3.5)

If

TL
(j)
k = TL

(≤ j)
k

TL
(≤ j−1)
k

, then dim
(
TL

(j)
k

)
<∞, for j ≥ 1, and dim

(
TL

(≤ 0)
k

)
=∞,

as there can be an arbitrarily large number of edges which connect the left and right sides
in diagrams with no through strands:

... .

3.6. The elements I1 and I2. As in [4, § 3.2], define

I1 =
{

(ae1)(ae3) · · · (aek−1), if k is even,
(ae1)(ae3) · · · (aek−2)ek, if k is odd,

=


· · · if k is even,

· · · if k is odd,

(3.6)

and

I2 =
{

e0(ae2) · · · (aek−2)ek, if k is even,
e0(ae2) · · · (aek−1), if k is odd.

=


· · · if k is even,

· · · if k is odd.

(3.7)

Ann. Repr. Th. 2 (2025), 3, p. 405–438 https://doi.org/10.5802/art.26

https://doi.org/10.5802/art.26


418 Zajj Daugherty & Arun Ram

Up to a constant multiple the elements I1 and I2 are idempotents (provided [2] ̸= 0) and

I1I2I1 =


· · ·
· · ·

if k is even,

· · ·
· · ·

if k is odd,

and

I2I1I2 =


· · ·
· · ·

if k is even,

· · ·
· · ·

if k is odd.

Corollary 3.3 below gives another striking formula for the elements I1I2I1 and I2I1I2.
For a constant b ∈ C the symplectic blob algebra TLk(b), or double quotient of TLk,

(see [1, Definition 2.7] and [4, Definition 3.7]) is the quotient of TLk by the relations

I1I2I1 = bI1 and I2I1I2 = bI2. (3.8)

These quotients, as b varies, capture all of the irreducible representations of TLk. There
is an easy conceptual explanation for this. The center of TLk is a polynomial ring in one
variable C[Z], the value b corresponds to the choice of a central character, and the algebra
TLk(b) is the quotient of TLk by the central character so that the irreducible representa-
tions of TLk(b) are exactly those irreducible representations of TLk on which the central
element Z acts by a specific value (determied from b by the formulas in Corollary 3.3).

3.7. The element ZI1 in TLk. Conceptually, the diagram

F = · · · would be a central element of Hk

if it represented a true element of the algebra Hk. Though the diagram F does not
naturally represent an element of Hk, the diagrams

Deven = I1
(
T −1

0 (ae2)(ae4) · · · (aek−2)Tk

)
I1 = · · · ,

and

Dodd = I2
(
T −1

1 T −1
0 T −1

1 (ae3)(ae5) · · · (aek−2)Tk

)
I2 = · · ·

do appear in the algebra TLk and play an important role in the proof of the following
theorem. See also [4, Theorem 4.1], using Remark 3.4 below as a guide to the differences
in notations.

It is proved in [3, Theorem 2.3] that the element

Z = W1 + W −1
1 + W2 + W −1

2 + · · ·+ Wk + W −1
k is central in Hext

k . (3.9)

Since Z does not include W0 (and hence the element P is not needed in the definition of
Z) then Z is actually an element of Hk, and its image in the Temperley–Lieb quotient is
an element of TLk.
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Theorem 3.2. As elements of TLk,

if k is even, then Deven = a0akI1I2I1 +
[[
t0tkt−1]]I1 and ZI1 = [k]Deven, and

if k is odd, then

Dodd = t− 1
2

(−[[t0]]
a0

)(
a0akI2I1I2 −

[[
t0t−1

k

]]
I2
)

and t− 1
2

(−[[t0]]
a0

)
ZI2 = [k]Dodd.

Proof. Case 1. k even.Let

Leven = I1
(
(ae2)(ae4) · · · (aek−2)ek

)
I1 =

· · ·

· · ·
=
([[

tkt−1]]
ak

)
I1,

M even = I1
(
e0(ae2)(ae4) · · · (aek−2)

)
I1 =

· · ·

· · ·
=
([[

t0t−1]]
a0

)
I1,

and

P even = I1
(
(ae2)(ae4) · · · (aek−2)

)
I1 =

· · ·

· · ·
= −[[t]]I1.

Using T −1
0 = a0e0 + t

− 1
2

0 for the left pole and Tk = akek + t
1
2
k for the right pole,

Deven = a0akI1I2I1 + a0t
1
2
k M even + akt

− 1
2

0 Leven + t
1
2
0 t

1
2
k P even

= a0akI1I2I1 +
(

t
1
2
k

[[
t0t−1]]+ t

− 1
2

0
[[
tkt−1]]− t

− 1
2

0 t
1
2
k [[t]]

)
I1

= a0akI1I2I1 +
[[
t0tkt−1]]I1,

which completes the proof of the first statement.
Using (ae1)T −1

1 = (−t
1
2 )(ae1) and (ae1)T1T0(ae1) = t

1
2 (ae1)T −1

0 (ae1) gives

Reven = I1
(
T −1

1 (ae2)(ae4) · · · (aek−2)TkT1T0
)

I1

= =
(
−t

1
2
)

t
1
2 Deven,

and using Tk−1(aek−1) = (−t− 1
2 )(aek−1) and T −1

k−1T −1
k (aek−1) = t− 1

2 Tk(aek−1) gives

Seven = I1
(
T0(ae2)(ae4) · · · (aek−2)T −1

k−1T −1
k Tk−1

)
I1

= =
(
−t− 1

2
)

t− 1
2 Deven.

Pictorially,

Wj =

j

j

for j ∈ {1, . . . , k}.
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Thus, pictorially,

I1W1+2iI1 = , I1W2+2iI1 = ,

I1W −1
1+2iI1 = , and I1W −1

2+2iI1 = .

Working left to right removing loops,

I1W1+2iI1 =
(
t

1
2 t

1
2 (−[[t]])

)i (
t− 1

2 t
1
2 (−[[t]])

) k
2 −1−i

Reven = (−[[t]])
k
2 −1ti+ 1

2
(
−t

1
2
)

Deven,

I1W −1
1+2iI1 =

(
t− 1

2 t− 1
2 (−[[t]])

)i (
t− 1

2 t
1
2 (−[[t]])

) k
2 −1−i

S = (−[[t]])
k
2 −1t−(i+ 1

2 ) (−t− 1
2
)

Deven,

for i ∈ {0, . . . , k
2 − 1}. Since I1W1+2iI1 and I1W2+2iI1 only differ by two twists (similarly

I1W −1
1+2iI1 and I1W −1

2+2iI1 only differ by two twists) the relations T ±1
i (aei) = (aei)T ±1

i =
(−t∓ 1

2 )(aei) give

I1W2+2iI1 =
(
−t− 1

2
) (
−t− 1

2
)

t−1I1W1+2iI1 = (−[[t]])
k
2 −1ti+ 1

2
(
−t− 1

2
)

Deven

and

I1W −1
2+2iI1 =

(
−t

1
2
) (
−t− 1

2
)

I1W −1
1+2iI1 = (−[[t]])

k
2 −1t−(i+ 1

2 ) (−t
1
2
)

Deven,

for i ∈ {0, . . . , k
2 − 1}. Thus

(−[[t]])
k
2 ZI1 = ZI2

1 = I1ZI1 =
k
2 −1∑
i=0

I1
(
W1+2i + W2+2i + W −1

1+2i + W −1
2+2i

)
I1

= −(−[[t]])
k
2 −1Deven

k
2 −1∑
i=0

(
ti+ 1

2
(
t

1
2 + t− 1

2
)

+ t−(i+ 1
2 ) (t

1
2 + t− 1

2
))

= (−[[t]])
k
2 Deven

(
t

k
2 − t− k

2

t
1
2 − t− 1

2

)
= (−[[t]])

k
2 [k]Deven.

Case 2. k odd. Let

Lodd = I2
(
(ae3)(ae5) · · · (aek−2)ek

)
I2 =

· · ·

· · ·
=
(−[[t0]]

a0

)([[
tkt−1]]

ak

)
I2,

Modd = I2
(
(ae1)(ae3) · · · (aek−2)

)
I2 =

· · ·

· · ·
=
(−[[t0]]

a0

)
I2, and

P odd = I2
(
(ae3)(ae5) · · · (aek−2)

)
I2 =

· · ·

· · ·
=
(−[[t0]]

a0

)
(−[[t]])I2.
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Using e0T −1
1 T −1

0 T −1
1 e0 = −t− 1

2 [[t0]]e0(ae1)e0 − t−1t
1
2
0 e2

0 and Tk = akek + t
1
2
k gives

Dodd = −t− 1
2 [[t0]]akI2I1I2 − t−1t

1
2
0 akLodd − t− 1

2 [[t0]]t
1
2
k Modd − t−1t

1
2
0 t

1
2
k P odd

= t− 1
2

(−[[t0]]
a0

)(
a0akI2I1I2 +

(
−t− 1

2 t
1
2
0
[[
tkt−1]]− t

1
2
k [[t0]] + t− 1

2 t
1
2
0 t

1
2
k [[t]]

)
I2

)
= t− 1

2

(−[[t0]]
a0

)(
a0akI2I1I2 −

[[
t0t−1

k

]]
I2
)

,

which completes the proof of the first statement.
Using (ae2)T −1

2 = −t
1
2 (ae2) and T2T1T0T1(ae2) = t

3
2 T −1

1 T −1
0 T −1

1 (ae2),

Reven = I1
(
T −1

1 (ae2)(ae4) · · · (aek−2)TkT1T0
)

I1 = =
(
−t

1
2
)

t
1
2 Deven,

Using Tk−1(aek−1) = −t− 1
2 (aek−1) and T −1

k−1T −1
k (aek−1) = t− 1

2 Tk(aek−1) gives

Sodd = I2
(
T −1

1 T −1
0 T −1

1 (ae3)(ae5) · · · (aek−2)T −1
k−1T −1

k Tk−1
)

I2

= · · · =
(
−t− 1

2
)

t− 1
2 Dodd.

Pictorially,

I2W1+2iI2 = , I2W2+2iI2 = ,

I2W −1
1+2iI2 = , and I2W −1

2+2iI2 = .

Working left to right removing loops,

I2W2+2iI2 =
(
t

1
2 t

1
2 (−[[t]])

)i (
t− 1

2 t
1
2 (−[[t]])

) k−1
2 −1−i

Rodd = (−[[t]])
k−3

2 ti+1(−t)Dodd,

I2W −1
2+2iI2 =

(
t− 1

2 t− 1
2 (−[[t]])

)i (
t− 1

2 t
1
2 (−[[t]])

) k−1
2 −1−i

Sodd = (−[[t]])
k−3

2 t−(i+1)(−1)Dodd,

for i ∈ {0, . . . , k−1
2 − 1}. Since I2W2+2iI2 and I2W3+2iI2 only differ by two twists (simi-

larly I2W −1
2+2iI2 and I2W −1

3+2iI2 only differ by two twists) the relations T ±1
i ei = eiT

±1
i =

(−t∓ 1
2 )ei give

I2W3+2iI2 =
(
−t− 1

2
) (
−t− 1

2
)

I2W2+2iI2 = (−[[t]])
k−3

2 ti+1(−1)Dodd,

and

I2W −1
3+2iI2 =

(
−t

1
2
) (
−t

1
2
)

I2W −1
2+2iI2 = (−[[t]])

k−3
2 t−(i+1)(−t)Dodd,
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for i ∈ {0, . . . , k−1
2 − 1}. Next,

I2W1I2 = · · · =
(
−t

− 1
2

0

)
(−[[t]])

k−1
2 I2((ae1)(ae3) · · · (aek−2)Tk)I2,

and

I2W −1
1 I2 = · · · =

(
−t

1
2
0

)
(−[[t]])

k−1
2 I2

(
(ae1)(ae3) · · · (aek−2)T −1

k

)
I2.

Using −t
− 1

2
0 Tk − t

1
2
0 T −1

k = −t
− 1

2
0 (akek + t

1
2
k )− t

1
2
0 (akek + t

− 1
2

k ) = −[[t0]]akek − [[tot−1
k ]],

I2
(
W1 + W −1

1

)
I2

= (−[[t]])
k−1

2
(
−[[t0]]akI2I1I2 −

[[
t0t−1

k

]]
Modd

)
= (−[[t]])

k−1
2

(
−[[t0]]akI2I1I2 −

[[
t0t−1

k

]] (−[[t0]]
a0

)
I2

)
= (−[[t]])

k−1
2

(−[[t0]]
a0

)(
a0akI2I1I2 −

[[
t0t−1

k

]]
I2
)

= −(t + 1)(−[[t]])
k−3

2 Dodd.

Thus(−[[t0]]
a0

)
(−[[t]])

k−1
2 ZI2 = ZI2

2 = I2ZI2

= I2
(
W1 + W −1

1

)
I2 +

k−1
2 −1∑
i=0

I2
(
W2+2i + W3+2i + W −1

2+2i + W −1
3+2i

)
I2

= −(t + 1)(−[[t]])
k−3

2 t
1
2 Dodd + (−[[t]])

k−3
2


k−3

2∑
i=0

(
ti+1 − t−(i+1)

)
(−t− 1)Dodd


= −(−[[t]])

k−3
2 (t + 1)Dodd

1 +
k−3

2∑
i=0

(
ti+1 − t−(i+1)

) = (−[[t]])
k−1

2 t
1
2 Dodd[k]. □

The following corollary explains how the defining relations for the symplectic blob al-
gebra TLk(b) come from relations that hold in the algebra TLk.

Corollary 3.3. Let Z = W1 + W −1
1 + · · · + Wk + W −1

k and let I1 and I2 be as defined
in (3.6) and (3.7). If k is even, then

a0akI1I2I1 =
( 1

[k]Z −
[[
t0tkt−1]]) I1 and a0akI2I1I2 =

( 1
[k]Z −

[[
t0tkt−1]]) I2.

If k is odd, then

a0akI1I2I1 =
( 1

[k]Z +
[[
t0t−1

k

]])
I1 and a0akI2I1I2 =

( 1
[k]Z +

[[
t0t−1

k

]])
I2.
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Proof. As observed in the proof of Theorem 3.2, the products I1ZI1 and I2Z2 reduce to
computation of the diagram with a single string going around all the poles (Deven or Dodd).
These diagrammatics give that there are constants C, C1, C2 and D, D1, D2 such that

I2
1 = CI1, I1I2I1 = (C1Z + C2)I1, I2

2 = DI2, I2I1I2 = (D1Z + D2)I2.

Then, computing (I1I2I1)2 in two different ways, we have
I1I2I1I1I2I1 = CI1I2I1I2I1 = C(D1Z + D2)I1I2I1,

and
I1I2I1I1I2I1 = (C1Z + C2)I1I1I2I1 = C(C1Z + C2)I1I2I1,

which indicates that C1Z + C2 = D1Z + D2.
Theorem 3.2 gives that, if k is even, then

a0akI1I2I1 = Deven −
[[
t0tkt−1]]I1 = 1

[k]ZI1 −
[[
t0tkt−1]]I1,

and if k is odd, then

a0akI2I1I2 = t
1
2

(
a0
−[[t0]]

)
Dodd + [[t0t−1

k ]]I2 = 1
[k]ZI2 + [[t0t−1

k ]]I2. □

Remark 3.4 (Comparison to de Gier–Nichols.). Let us explain how to relate the constants
in Corollary 3.3 and Proposition 4.2 to the values which appear in [4]. Let

t
1
2
0 = −iqω1 , t

1
2 = q−1, t

1
2
k = −iqω2 ,

T0 = −ig0, Ti = −gi, Tk = −igk,

e0 = e0, ei = ei, ek = ek.

Then
(g0 − qω1)(g0 − q−ω1) = 0, (gi + q−1)(gi − q) = 0, (gk − qω1)(g−q−ω1) = 0,

as in [4, Definitions 2.4, 2.6, and 2.8], and

g0 = qω1 −
(
q1+ω1 − q−(1+ω1)

)
e0, gi = ei − q−1, gk = qω2 −

(
q1+ω2 − q−(1+ω2)

)
ek,

as in [4, (5)]. Following [4, Definitions 2.8 and (9)],

J (C)
0 = g−1

1 · · · g−1
k−1gkgk−1 · · · g2g1g0

= (−1)k−1(−i)(−i)(−1)k−1T −1
1 · · ·T −1

k−1TkTk−1 · · ·T1T0 = −W1,

J (C)
i = giJ

(C)
i−1 gi = (−1)2Ti(−Wi)Ti = −Wi+1 for i ∈ {1, . . . , k − 1}, and

Zk =
k−1∑
i=0

(
J

(C)
i +

(
J

(C)
i

)−1
)

= −
(
W1 + W −1

1 + · · ·+ Wk + W −1
k

)
= −Z.

Use the notation [x] = t
x
2 −t− x

2

t
1
2 −t− 1

2
= qx−q−x

q−q−1 as in (2.8), and let a0, a and ak take the favorite
values from Remark 2.1 so that

a = −1, a0 = −
[[
t0t−1]], and ak = −

[[
tkt−1]],

and set

θ = c + k − 1
2 and z =

[[
tθ]][k],
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as in Proposition 4.2. Following [4, Theorem 4.1] and remembering that Zk = −Z, let

Θ = θ + 1
log q

iπ so that

−[k][[tθ]] = −[k]
(
t

θ
2 + t− θ

2
)

= [k]
(
−q−θ − qθ

)
= [k]

(
q

−
(

θ+ 1
log q

iπ
)

+ q
θ+ 1

log q
iπ
)

= [k]
(
q−Θ + qΘ

)
= [k] [2Θ]

[Θ] .

Note that

a0ak =
[[
t0t−1]][[tkt−1]] =

(
t

1
2
0 t− 1

2 + t
− 1

2
0 t

1
2

)(
t

1
2
k t− 1

2 + t
− 1

2
k t

1
2

)
=
(
−iq−ω1−1 + iqω1+1

) (
−iq−ω2−1 + iqω2+1

)
= −[ω1 + 1][ω2 + 1]

(
q − q−1

)2
.

Then the constant b that appears in [4, Definition 3.6 and Theorem 4.1] to make I1I2I1 =
bI1 and I2I1I2 = bI2 as operators on a simple TLk-module is computed from Corollary 3.3
as follows:

b =
1

[k]z −
[[
t0tkt−1]]

a0ak
=

1
[k] [k]

[[
tθ
]]
−
[[
t0tkt−1]][[

t0t−1]][[tkt−1]] =
[[
tθ
]]
−
[[
t0tkt−1]][[

t0t−1]][[tkt−1]]
= −

(
qΘ + q−Θ

)
+ (−iqω1) (−iqω2) q + (iq−ω1) (iq−ω2) q−1

−[ω1 + 1][ω2 + 1] (q − q−1)2

= qΘ + q−Θ − qω1+ω2+1 − q−(ω1+ω2+1)

[ω1 + 1][ω2 + 1] (q − q−1)2

=

(
(qω1+ω2+1+Θ)

1
2 − (qω1+ω2+1+Θ)− 1

2
) (

(qω1+ω2+1−Θ)
1
2 − (qω1+ω2+1−Θ)− 1

2
)

[ω1 + 1][ω2 + 1](q − q−1)2

=

[
1
2(ω1 + ω2 + 1 + Θ)

] [
1
2(ω1 + ω2 + 1−Θ)

]
[ω1 + 1][ω2 + 1] when k is even, and

b =
1

[k]z +
[[
t0t−1

k

]]
a0ak

=
1

[k] [k]
[[
tθ
]]

+
[[
t0t−1

k

]][[
t0t−1]][[tkt−1]] =

[[
tθ
]]

+
[[
t0t−1

k

]][[
t0t−1]][[tkt−1]]

=
−
(
qΘ + q−Θ

)
+ (−iqω1)(iq−ω2) + (iq−ω1)(−iqω2)

−[ω1 + 1][ω2 + 1](q − q−1)2

= −qΘ − q−Θ + qω1−ω2 + q−(ω1−ω2)

−[ω1 + 1][ω2 + 1](q − q−1)2

= −

(
(qω1−ω2−Θ)

1
2 − (qω1−ω2−Θ)− 1

2
) (

(qω1−ω2+Θ)
1
2 − (qω1−ω2+Θ)− 1

2
)

[ω1 + 1][ω2 + 1](q − q−1)2

= −
[1
2(ω1 − ω2 −Θ)][1

2(ω1 − ω2 + Θ)]
[ω1 + 1][ω2 + 1] when k is odd.

4. Calibrated representations of Hext
k and TLext

k

In this section we classify and construct all irreducible calibrated representations of
the extended two boundary Temperley–Lieb algebras TLext

k . This is done by using the
classification of irreducible calibrated Hext

k -modules from [3]. Using the formulas for the
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elements p
(13)
i , p

(∅,12)
0 , p

(12,∅)
0 , p

(∅,12)
0∨ , and p

(12,∅)
0∨ that one quotients Hext

k by to obtain TLext
k ,

we determine exactly which irreducible calibrated representations of Hext
k factor through

the quotient, thus providing a full classification of irreducible calibrated representations
of TLext

k .

4.1. Calibrated representations of Hext
k . A calibrated Hext

k -module is an Hext
k -module

M such that W0, W1, . . . , Wk are simultaneously diagonalizable as operators on M .
In [3, Theorem 3.5] we showed that the irreducible calibrated Hext

k -modules can be
classified by combinatorial data called skew local regions so that the map

C× × {skew local regions (c, J)} ←→
{
irreducible calibrated Hext

k -modules
}

(z, c, J) 7−→ H
(z,c,J)
k

is a bijection. Furthermore, [3, Theorem 3.5] gives an explicit construction of the irre-
ducible representation H

(z,c,J)
k from the combinatorial data in the skew local region (c, J)

and the parameter z ∈ C×.
The data of a skew local region (c, J) is equivalent to a configuration of boxes κ, where

the boxes in κ satisfy the conditions (κ1)–(κ4) of [3, § 3.1].
The dimension of the irreducible representation H

(z,c,J)
k is the cardinality of the set

F (c,J) defined in [3, (3.8)] and the map

F (c,J) −→ {standard fillings S of the boxes of κ}
w 7−→ Sw

is a bijection

(see [3, Proposition 3.2]). The effect is that the standard fillings S of the boxes of κ provide
a powerful tool for viewing the combinatorial structure of the representation H

(z,c,J)
k .

4.2. Calibrated representations of TLext
k . The following theorem determines which

calibrated irreducible representations of Hext
k are TLext

k -modules. In Theorem 4.1 the
answer is stated in terms of the configuration of boxes κ. By (κ1)–(κ4) of [3, § 3.1], the
local region (c, J) is determined by κ. See Theorem 5.1 for the explicit conversion from
κ to (c, J) for the irreducible calibrated TLk-modules. The form of the skew shapes that
appear in (4.2) forces that

c = (c, c + 1, . . . , c + k − 1) with c ∈ C, (4.1)

for any Hext
k -module H

(z,c,J)
k which is a TLext

k -module (i.e. which factors through the
quotient that defines TLext

k ).

Theorem 4.1. Assume that if r1, r2 ∈ Z or r1, r2 ∈ Z + 1
2 , then r2 > r1 + 1. Let κ

be the configuration of boxes corresponding to a skew local region (c, J) with c ∈ Zk or
c ∈ (Z + 1

2)k. The irreducible calibrated Hext
k -module H

(z,c,J)
k is a TLext

k -module if and
only if κ is a 180◦ rotationally symmetric skew shape with two rows of k boxes each (with
or without markings),

or . (4.2)

Proof. Let P = {p(∅,12)
0 , p

(12,∅)
0 , p

(∅,12)
0∨ , p

(12,∅)
0∨ , p

(13)
1 , p

(13)
2 , . . . , p

(13)
k−2} so that TLk is the quo-

tient of Hk by the ideal generated by the set P . For w ∈ F (c,J) let Sw be the standard
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tableau of shape κ corresponding to w as given in [3, Proposition 3.2]. For j ∈ {−k, . . . ,−1,
1, . . . , k},

(wc)j is the diagonal number of Sw(j),
where Sw(j) is the box containing j in Sw.

Step 1. Rewriting of the conditions for pvw = 0 for p ∈ P . By the construction of H
(z,c,J)
k

in [3, Theorem 3.5], the module H
(z,c,J)
k has basis {vw | w ∈ F (c,J)} and, if w ∈ F (c,J)

then
τivw = 0 if and only if (wc)i+1 = (wc)i ± 1,

fεi−r2vw = 0 if and only if (wc)i = r2, and
fεi−εj+1vw = 0 if and only if (wc)i = (wc)j − 1.

Let i ∈ {1, . . . , k−2}. Using the expansion of p
(13)
i in terms of the τi from Proposition 2.2,

p
(13)
i vw = τiτi+1τivw − t− 1

2 τi+1τi
fεi+1−εi+2+1
fεi+1−εi+2

vw − t− 1
2 τiτi+1

fεi+1−εi+1
fεi+1−εi

vw

+ t−1τi
fεi+1−εi+2+1fεi+2−εi+1

fεi+1−εi+2fεi+2−εi

vw + t−1τi+1
fεi+2−εi+1fεi+1−εi+1

fεi+2−εifεi+1−εi

vw

− t− 3
2

fεi+1−εi+2+1fεi+2−εi+1fεi+1−εi+1
fεi+1−εi+2fεi+2−εifεi+1−εi+1

vw,

we consider the condition p
(13)
i vw = 0 term-by-term. First, τiτi+1τivw = 0 exactly when

(wc)i+1 = (wc)i ± 1 or (siwc)i+2 = (siwc)i+1 ± 1 or (si+1siw)i+1 = (si+1siw)i = ±1, i.e.
when

(wc)i+1 = (wc)i ± 1 or (wc)i+2 = (wc)i ± 1 or (wc)i+2 = (wc)i+1 ± 1.

Next, −t− 3
2

fεi+1−εi+2+1fεi+2−εi+1fεi+1−εi+1
fεi+1−εi+2 fεi+2−εi fεi+1−εi+1

vw = 0 exactly when

(wc)i+1 = (wc)i + 1 or (wc)i+2 = (wc)i + 1 or (wc)i+1 = (wc)i+2 + 1.

Thus −t− 3
2

fεi+1−εi+2+1fεi+2−εi+1fεi+1−εi+1
fεi+1−εi+2 fεi+2−εi fεi+1−εi+1

vw = 0 already implies τiτi+1τivw = 0, and sim-

ilarly for the other terms in the expansion of p
(13)
i vw = 0. Thus p

(13)
i vw = 0 if and only

if
(wc)i = (wc)i+1 − 1 or (wc)i = (wc)i+2 − 1 or (wc)i+1 = (wc)i+2 − 1. (4.3)

Similarly, p
(∅,12)
0 vw = 0 if and only if

(wc)1 ∈ {r1, r2} or (wc)2 ∈ {r1, r2}
or (wc)2 = (wc)1 + 1 or (wc)2 = (wc)−1 + 1;

(4.4)

p
(12,∅)
0 vw = 0 if and only if

(wc)1 ∈ {−r1,−r2} or (wc)2 ∈ {−r1,−r2}
or (wc)2 = (wc)1 + 1 or (wc)2 = (wc)−1 + 1;

(4.5)

p
(∅,12)
0∨ vw = 0 if and only if

(wc)1 ∈ {−r1, r2} or (wc)2 ∈ {−r1, r2}
or(wc)2 = (wc)1 + 1 or (wc)2 = (wc)−1 + 1;

(4.6)

Ann. Repr. Th. 2 (2025), 3, p. 405–438 https://doi.org/10.5802/art.26

https://doi.org/10.5802/art.26


Two boundary Temperley–Lieb algebras 427

and p
(12,∅)
0∨ vw = 0 if and only if

(wc)1 ∈ {r1,−r2} or (wc)2 ∈ {r1,−r2}
or (wc)2 = (wc)1 + 1 or (wc)2 = (wc)−1 + 1.

(4.7)

Step 2. If κ is as in (4.2) and w ∈ F (c,J) and p ∈ P then pvw = 0. Assume κ has the form
given in (4.2) and let w ∈ F (c,J). Since κ has only two rows the positions of (−2,−1, 1, 2)
in Sw take one of the following forms:

(wc)−1

(wc)1

91 2
92 1

(wc)1

(wc)−1

1 2
92 91

9 1
2

1
2

92 91
1 2

0 1
91

91 2
92 1

(wc)1 < −1
2 , (wc)1 > 1

2 , (wc)1 = −1
2 , (wc)1 = 0.

In each of these cases, the conditions in (4.4)–(4.7) give that p
(∅,12)
0 vw = 0, p

(12,∅)
0 vw = 0,

p
(∅,12)
0∨ vw = 0 and p

(12,∅)
0∨ vw = 0. Next, let i ∈ {1, . . . , k − 2}. Since κ has only two rows,

then either i or i + 1 are in the same row
(wc)i

(wc)i+1

i i+1

(wc)i

(wc)i+2

i i+2

or i and i + 2 are in the same row. Thus, by (4.3), pivw = 0. This completes the proof
that if κ is of the form (4.2) then H

(z,c,J)
k is a TLext

k -module.

Step 3. If κ is not as in (4.2) then there exists w ∈ F (c,J) and p ∈ P such that pvw ̸= 0.
Let 2k be the number of boxes in κ. The proof is by induction on k.

First, if k = 2, then the condition (4.3) does not apply. If c = (r1, r2) then there are
8 possibilities for wc: (r1, r2), (−r1, r2), (r1,−r2), (−r1,−r2), (r2, r1), (−r2, r1), (r2,−r1)
and (−r2,−r1). None of these satisfy all of the conditions (4.4)–(4.7). If c = (c1, c1 + 1),
then s1c = (c1 + 1, c1) does not satisfy (4.4) and s0s1s0s1c = (−c,−c − 1) does not
satisfy (4.7). Thus only the darker blue shaded local regions in Figure 4.1 can have
pvw = 0 for all p ∈ P and all w ∈ F (c,J). For all of these, κ is as in (4.2).

Next, assume k > 2 and proceed inductively. If H
(z,c,J)
k is a calibrated TLext

k -module
then

ResT Lext
k

T Lext
k−1

(
H

(z,c,J)
k

)
is calibrated TLext

k−1-module. This means that if Sw is a standard tableau of shape κ and
S′

w is Sw except with the boxes Sw(k) and Sw(−k) removed and κ′ is the shape of S′
w,

then κ′ must be as in (4.2) and have only two rows. The box Sw(k) is in a SE corner of κ
and the box Sw(−k) is in a NW corner of κ.

c

c + k − 2
−c

−c − k + 2

or

c

c + k − 2
−c

−c − k + 2

.
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Given that κ′ has only two rows and κ is obtained from κ′ by adding boxes that could
contain k and −k in a standard tableau, the following are possibilities that we discard
for κ:

k

9k

k92

k91
,

k

9k k92

k91
, and

k

9k

k92

k91
.

Namely, in each case there is a standard tableaux that has k− 2, k− 1 and k in positions
that do not satisfy the conditions in (4.3). Thus, in these cases, there exists an Sw of
shape κ for which p

(13)
k−2vw ̸= 0. In the remaining case

k

9k k92

k91
,

the shape κ does not satisfy the (wc)k−2 ̸= (wc)k from [3, (3.10)] and the module H
(z,c,J)
k

is not calibrated. In summary, unless κ is of the form given in (4.2)

k

9k

or
k

9k
,

then either H
(z,c,J)
k is not calibrated or there exists an Sw of shape κ for which p

(13)
k−2vw ̸= 0.

□

The following proposition determines the action of the central element Z on each of
the irreducible calibrated TLext

k -modules. As noted in (4.1), if an irreducible Hext
k -module

H
(z,c,J)
k is a TLext

k -module c = (c, c + 1, . . . , c + k − 1) for some c ∈ C.

Proposition 4.2. Let Z = W1 + W −1
1 + · · ·+ Wk + W −1

k be the central element of TLext
k

studied in Theorem 3.2. Assume that c = (c, c + 1, . . . , c + k − 1) and H
(z,c,J)
k is an

irreducible calibrated TLext
k as in Theorem 4.1. If v ∈ H

(z,c,J)
k then

Zv =
[[
tθ]][k]v, where θ = c + k − 1

2 ,
[[
tθ]] = t

θ
2 + t− θ

2 and [k] = t
k
2 − t− k

2

t
1
2 − t− 1

2
.
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c1 = 0 c1 = c2

c2 = 0

c2 = c1 + 1

c2 = −c1 + 1

c2 = r1

c2 = r2

c1 = r1 c1 = r2

Figure 4.1. Calibrated representations of H2 have regular central charac-
ter. For each (c, J) the corresponding configuration of boxes κ is displayed
in the local region of chambers corresponding to the elements of F (c,J);
only the boxes on positive diagonals are shown, since they determine κ
when c is regular. The local regions marked in blue are those that factor
through the Temperley–Lieb quotient.

Proof. Let v ∈ H
(z,c,J)
k be such that Wiv = qc+i−1 for i ∈ {1, . . . , k}. Then Zvw = zvw

where

z = t−(c+k−1) + · · ·+ t−(c+1) + t−c + tc + tc+1 + · · ·+ tc+k−1

=
(
tc+ k−1

2 + t−(c+ k−1
2 )) (t− k−1

2 + · · ·+ t
k−1

2
)

=
(
t

θ
2 + t− θ

2
) t

k
2 − t− k

2

t
1
2 − t− 1

2
=
[[
tθ]][k].

Since Z is a central element of Hext
k and H

(z,c,J)
k is a simple Hext

k -module, Schur’s lemma
implies that if v ∈ H

(z,c,J)
k then Zv = zv. □
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5. Schur–Weyl duality between TLext
k and Uqgl2

In this section we show that the Schur–Weyl duality studied in [3] provides calibrated
irreducible representations of the two boundary Temperley–Lieb algebra. We classify
these representations using the combinatorial classification of irreducible calibrated TLext

k
modules obtained in Theorem 4.1. We follow the combinatorics of [2, § 4] and [3, § 5].
Similar constructions hold for replacing gl2 with sl2.

The irreducible finite dimensional representations L(λ) of Uq(gl2) are indexed by λ =
(λ1, λ2) ∈ Z2 with λ1 ≥ λ2. The dimension of L(λ1, λ2) = λ1 − λ2 + 1. By the Clebsch–
Gordan formula or the Littlewood–Richardson rule (see [13, (5.16)])

L(a, 0)⊗ L(b, 0) = L(a + b, 0)⊕ L(a + b− 1, 1)⊕ · · · ⊕ L(a + 1, b− 1)⊕ L(a, b),
and

L(λ1, λ2)⊗ L(1, 0) =
{

L(λ1 + 1, λ2)⊕ L(λ1, λ2 + 1), if λ1 > λ2,

L(λ1 + 1, λ2), if λ1 = λ2,

for a, b ∈ Z≥ 0 with a ≥ b and (λ1, λ2) ∈ Z2 with λ1 ≥ λ2.
Now, fix a, b ∈ Z≥ 0 with a ≥ b and fix the simple Uqgl2-modules

M = L(a, 0), N = L(b, 0) V = L(1, 0). (5.1)
We identify (λ1, λ2) ∈ Z2 with a left-justified arrangement of boxes with λi boxes in the
ith row. As in [3, (5.28)], with a and b fixed as in (5.1), the shifted content of a box in
row i and column j of (λ1, λ2) as

c̃(box) = j − i− 1
2(a + b− 2) (5.2)

i.e. the shifted content is its diagonal number, where the box in the upper left corner has
shifted content −1

2(a + b− 2).
For j ∈ Z≥−1 let P(j) be an index set for the irreducible Uqgl2-modules that appear in

M ⊗N ⊗ V ⊗j . Following [3, § 5.4], the associated Bratteli diagram is the (ranked) graph
with

(v) vertices on level j labeled by the partitions in P(j), where

P(−1) = (a, 0), and P(0) = {(a + b− j, j) | j = 0, 1, . . . , b}
and

P(j) =
{

(a + b + j − ℓ, ℓ)
∣∣∣ 0 ≤ ℓ ≤ 1

2(j + a + b)
}

, for j ≥ 1;

(e) an edge (a, 0) −→ µ for each µ ∈ P(0); and for each j ≥ 0, µ ∈ P(j) and λ ∈ P(j+1),
there is

an edge µ→ λ if λ is obtained from µ by adding a box.
The case when a = 6 and b = 3 is illustrated in Figure 5.1.

Assume q ∈ C× and a > b + 2 so that the generality condition (a + 1) − (b + 1) ̸∈
{0,±1,±2} of [3, Theorem 5.5] is satisfied. Define

r1 = 1
2(a− b) and r2 = 1

2(a + b + 2), (5.3)

and let Hext
k be the extended two boundary Hecke algebra with parameters t

1
2
0 , t

1
2
k , and t

1
2

given by

t
1
2 = q, t0 = −tr2−r1 = −q(b+1), and tk = −tr2+r1 = −q2(a+1), (5.4)
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so that −t
1
2
k t

− 1
2

0 = −tr1 and t
1
2
k t

1
2
0 = −tr2 as in [3, (3.5), (5.21)]. By [3, Theorem 5.4 and

(5.21)] there are commuting actions of Uqgl2 and Hext
k on M ⊗N ⊗ V ⊗k, where the Hext

k
action is given via R-matrices for the quantum group Uqgl2.

It might seem that the conditions in (5.3) and (5.4) are restrictive. However, from the
point of view of obtaining irreducible calibrated TLk-modules by Schur–Weyl duality this
does not pose any restriction. By the construction of irreducible calibrated Hk-modeules
in [3, Theorem 3.5], the structure of the irreducible module depends only on the skew local
region (c, J). Theorem 4.1 determines which of these are TLk-modules. The following
theorem shows that each of the possibilities (the various choices of J) does appear as one
of the modules B(a+b+k−ℓ,ℓ) of the following theorem. The conditions (5.3) and (5.4) only
specify which quantum group one should use to produce the desired TLk-module. The
conditions on the TLk-parameters that are required for Theorem 5.1 are equivalent to
t0, tk, t are invertible and tk ̸= t0 and tk ̸= t0t±1 and tk ̸= t±2 and t2 is not a root of unity.
Theorem 5.1. Let a, b ∈ Z≥ 0 with a > b + 2. Let q ∈ C× not a root of unity and let
Hext

k be the two boundary Hecke algebra with parameters t
1
2
0 , t

1
2
k and t

1
2 as in (5.4). Let

Uqgl2 be the Drinfeld-Jimbo quantum group corresponding to gl2 and let M , N and V be
the simple Uqgl2-modules given in (5.1). Then the Hext

k action factors through TLext
k and,

as (Uqgl2, TLext
k )-bimodules (taking both commuting actions as left actions),

M ⊗N ⊗ V ⊗k ∼=
⊕

λ ∈ P(k)

L(λ)⊗Bλ
k with B

(a+b+k−ℓ,ℓ)
k

∼= H(z,c,J),

where z = (−1)kq(a+b−ℓ)(a+b−ℓ−1)+ℓ(ℓ−3)−a(a−1)−b(b−1)−k(a+b−2) and (c, J) is the local
region corresponding to the configuration κ of 2k boxes

r2 − ℓ

ℓ + 1 − r2 − k

r2 − 1 + k − ℓ

ℓ − r2

(5.5)

that has k boxes in each row, the shifted content of the leftmost box in the first row is r2−ℓ,
the shifted content of the leftmost box in the second row is ℓ+1−r2−k. Between the rows
there are blue markers in diagonals with shifted content ±r1 and there are red markers
in diagonals with shifted content ±r2, as pictured. (These markers are the same as in [3,
Examples 5.7 and 5.8], with colors red and blue used to highlight which of diagonals ±r1
and ±r2 they mark.) Explicitly, c = (c1, c2, . . . , ck) is the sequence of

absolute values of c, c + 1, · · · , c + k − 1, where c = 1
2(a + b)− ℓ + 1,

arranged in increasing order; and J is the union of

J1 =


∅, if a ≥ b ≥ ℓ,
{εℓ−b}, if a ≥ ℓ > b,
{εa−b}, if ℓ > a > b,

and

J2 =


∅, if 1

2(a + b + 2) > ℓ,
{ε2 − ε1, ε4 − ε3, . . . , ε2ℓ−a−b − ε2ℓ−a−b−1}, if ℓ ≥ 1

2(a + b + 2) and a + b even,
{ε3 − ε2, ε5 − ε4, . . . , ε2ℓ−a−b − ε2ℓ−a−b−1}, if ℓ ≥ 1

2(a + b + 2) and a + b odd.
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Proof. Fix λ = (a + b + k − ℓ, ℓ) ∈ P(k). The sum of the contents of the boxes in λ is∑
box ∈ λ

c(box) = (0 + 1 + . . . + (a + b + k − ℓ− 1)) + (−1 + 0 + · · ·+ ℓ− 2)

= 1
2(a + b + k − ℓ− 1)(a + b + k − ℓ) + 1

2ℓ(ℓ− 3).

By [3, Theorem 5.5 and (5.35)], Bλ
k
∼= H

(z,c,J)
k where

z = (−1)kq2c0 , where c0 = −1
2(k(a + b− 2) + a(a− 1) + b(b− 1)) +

∑
box ∈ λ

c(box),

and c and J and the corresponding configuration κ of 2k boxes are determined as follows.
Place markers at the NW corner of the boxes at positions (1, a + b + 1), (2, a + 1),

(2, b + 1), and (3, 1) so that these markers are in the diagonals with shifted contents ±r1
and ±r2.

λ = (a + b + k − ℓ, ℓ) =
b ℓ − b

a b k − ℓ

ℓ − r2

r2 − 1 + k − ℓ

Following [3, (5.27)], let

S(0)
max =

{
(a + b− ℓ, ℓ), if a ≥ b ≥ ℓ,
(a, b), if a ≥ ℓ ≥ b

(since a ≥ b we are in the left case of [3, (5.15)] with c = d = 1 so that µc = min(ℓ, b) and
S

(0)
max = µ̊ = (a + b− µc, µc)):

S
(0)
max

ℓ

a + b − ℓ k

if a ≥ b ≥ ℓ

S
(0)
max

b ℓ − b

a k − (ℓ − b)

if a ≥ ℓ > b or ℓ > a ≥ b

.

By [3, (5.35)], the corresponding configuration of boxes is κ = rot(λ/S
(0)
max) ∪ λ/S

(0)
max, as

pictured above in (5.5).
To determine (c, J), use the conditions (κ1)–(κ4) of [3, § 3.1] which specify the relation

between κ and (c, J). First index the boxes of κ with −k, . . . ,−1, 1, . . . , k by diagonals,
left to right, and NW to SE along diagonals. The sequence c = (c1, . . . , ck) with 0 ≤ c1 ≤
c2 ≤ · · · ≤ ck is the sequence of the absolute values of the shifted contents of boxes in the
first row of κ. Next, the set J is determined as follows.

(1) By (κ4), the set J contains εi if i > 0 and boxi is NW of the marker in the
diagonal with shifted content r1 or r2 in κ. This occurs on diagonal r1 whenever
ℓ > b (marked in blue),

εℓ−b ∈ J if a ≥ ℓ > b and εa−b ∈ J if ℓ > a ≥ b;
and J contains no roots of the form εj when a ≥ b ≥ ℓ.

(2) By (κ3), the set J contains εj − εi if j > i > 0 and boxi and boxj are in the same
column of κ (so that boxi and boxj are in adjacent diagonals and boxj is NW of
boxi). This occurs exactly when 0 ≥ r2−ℓ = 1

2(a+b+2)−ℓ. If ℓ ≥ 1
2(a+b+2) and
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a+b is even then the boxes indexed 1, 3, . . . , 1+2(ℓ− 1
2(a+b+2)) = 2ℓ−(a+b+1) are

in the second row directly below boxes of index 2, 4, . . . , 2ℓ−a−b. If ℓ ≥ 1
2(a+b+2)

and a + b is odd then boxes 2, 4, . . . , 2(ℓ − 1
2(a + b + 1)), directly below boxes of

index 3, 5, . . . , 2ℓ− a− b:
r2 − ℓ

ℓ − r2

0

1

2

3

491

92

93

94 · · ·

· · · · · ·∗+1 k

9∗91

9∗

9k · · ·

· · ·

· · ·
2ℓ − a − b − 1

∗

if a + b is even,
r2 − ℓ

ℓ − r21
2

− 1
2

1

2

3

· · ·

· · · · · ·∗+1 k

91

92

939∗91

9∗

9k · · ·

· · ·

· · ·
2ℓ − a − b − 1

∗

if a + b is odd.

So J contains

ε2 − ε1, ε4 − ε3, . . . , ε2ℓ−a−b − ε2ℓ−a−b−1 if ℓ ≥ 1
2(a + b + 2) and a + b is even, or

ε3 − ε2, ε5 − ε4, . . . , ε2ℓ−a−b − ε2ℓ−a−b−1 if ℓ ≥ 1
2(a + b + 2) and a + b is odd.

(3) Also by (κ3), the set J contains εj + εi if j > i > 0, and boxj is directly above
box−i, which does not occur.

In this way c and J are determined from κ. Since all of these H
(z,c,J)
k satisfy the conditions

of Theorem 4.1, it follows that the Hext
k -action on M⊗N⊗V ⊗k factors through TLext

k . □

Remark 5.2. The dimension of B
(a+b+k−ℓ,ℓ)
k is the number of paths in the Bratteli dia-

gram from a shape on level 0 to the shape λ = (a + b + k− ℓ, ℓ) on level k. Summing over
the shapes on level 0 for which there is a path to λ gives

dim
(
B(a+b+k−ℓ,ℓ)

)
=

min(b,ℓ)∑
c=max(0,ℓ−k)

fλ/(a+b−c,c),

where fλ/µ is the number of standard tableaux of skew shape λ/µ. If ℓ ≤ a + b − c then
the second row of λ/(a + b− ℓ, ℓ) does not overlap the first row and thus

fλ/(a+b−c,c) =
(

k

ℓ− c

)
if ℓ ≤ a + b− c.

Since c ≤ min(b, ℓ), the case ℓ > a + b− c can occur only when ℓ > a ≥ b, in which case

(a + b + k − ℓ, ℓ)/(a + b− c, c) =
c

ℓ

ℓ − (a + b − c)

a + b − c k − ℓ + c

,

Ann. Repr. Th. 2 (2025), 3, p. 405–438 https://doi.org/10.5802/art.26

https://doi.org/10.5802/art.26


434 Zajj Daugherty & Arun Ram

so that

f (a+b+k−ℓ,ℓ)/(a+b−c,c) =
k+ℓ−c∑

j=ℓ−(a+b−c)
f (k−j,j) =

min(k−(ℓ−c),ℓ−c)∑
j=ℓ−(a+b−c)

(
k

j

)
−
(

k

j − 1

)

=
(

k

ℓ− c

)
−
(

k

ℓ− (a + b− c)− 1

)
.

Namely, the first equality comes from the Pieri formula and the expansion of a skew
Schur function by Littlewood–Richardson coefficients (see [13, (5.16)] for the Pieri formula
and [13, (5.2) and (5.3)] for Littlewood–Richardson coefficients) and the second equality
comes from the number of standard tableaux of a two row shape as given, for example,
in [7, Theorem 2.8.5 and Lemma 2.8.4].

The following examples reference the node label styles in Figure 5.1.

Example 5.3. Let a = 7 and b = 3. The markers are in the diagonals with shifted
contents ±r1 and ±r2, where r1 = 2 and r2 = 6. An example where ℓ > a ≥ b. Let ℓ = 11
and k = 14, then

11 λ = (13, 11) = with S(0)
max = (7, 3).

The boxes of λ/S
(0)
max have

shifted contents:
92 91 0 1 2

3
3
4

4
5

5
6 7 8

Then c is the rearrangement of the absolute values of (−2,−1, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8)
into increasing order and J = {ε4, ε2− ε1, ε4− ε3, ε6− ε5, ε8− ε7, ε10− ε9, ε12− ε11}. The
configuration of boxes κ corresponding to (c, J) has indexing of boxes

2 4 6 8 10 12
1 3 5 7 9 1192949698910912

9193959799911 13 14
913914

Example 5.4. Let a = 6 and b = 3 to take advantage of the setting and notation of
Figure 5.1. The markers are in the diagonals with shifted contents ±r1 and ±r2, where
r1 = 3

2 and r2 = 11
2 .

(1) An example where ℓ > a ≥ b. Let ℓ = 8 and k = 9, then

8 λ = (10, 8) = with S(0)
max = (6, 3).

The boxes of λ/S
(0)
max have

shifted contents:
9 3

2 9 1
2

1
2

3
2

5
2

5
2

7
2

9
2

11
2

Then c is the rearrangement of the absolute values of (−5
2 ,−3

2 ,−1
2 , 1

2 , 3
2 , 5

2 , 7
2 , 9

2 , 11
2 )

into increasing order and J = {ε3, ε3 − ε2, ε5 − ε4, ε7 − ε6}. The configuration of

Ann. Repr. Th. 2 (2025), 3, p. 405–438 https://doi.org/10.5802/art.26

https://doi.org/10.5802/art.26


Two boundary Temperley–Lieb algebras 435

boxes κ corresponding to (c, J) has indexing of boxes

−9−8−7−5−3−1 2 4 6
−6−4−2 1 3 5 7 8 9

with P (c) =


ε3, ε9, ε2 + ε1, ε3 − ε2, ε3 − ε1
ε5 − ε4, ε5 − ε3, ε6 − ε4, ε6 − ε3,
ε7 − ε6, ε7 − ε5, ε8 − ε7, ε9 − ε8

 .

(2) An example with a ≥ ℓ > b: Let k = 3 and ℓ = 5, so that a + b + k − ℓ = 7.

5 λ = (7, 5) = with S(0)
max = (6, 3).

The boxes of λ/S
(0)
max have

shifted contents:
5
2

9 3
2 9 1

2

Then c is the rearrangement of the absolute values of (1
2 , 3

2 , 5
2) in increasing order

and J = {ε2}. The configuration of boxes κ corresponding to (c, J) is

−3−2−1
1 2 3

with P (c) = {ε2, ε2 − ε1, ε3 − ε2}

(3) An example with a ≥ b ≥ ℓ: Let k = 3 and ℓ = 2, so that a + b + k− ℓ = 10. Then

2 λ = (10, 2) = with S(0)
max = (7, 2).

The boxes of λ/S
(0)
max have

shifted contents: 7
2

9
2

11
2 .

Then c is the rearrangement of the absolute values of (7
2 , 9

2 , 11
2 ) in increasing order

and J = ∅. The configuration of boxes κ corresponding to (c, J) is

−3−2−1
1 2 3

with P (c) = {ε2 − ε1, ε3 − ε2}.

(4) In the case that k = 1 then, as Uqgl2-modules, L(6, 0)⊗L(3, 0)⊗L(1, 0) is isomor-
phic to

L(6 + 3 + 1− 0, 0)⊕ L(6 + 3 + 1− 1, 1)⊕2 ⊕ L(6 + 3 + 1− 2, 2)⊕2

⊕ L(6 + 3 + 1− 3, 3)⊕2 ⊕ L(6 + 3 + 1− 3, 3)

and the dimensions of the corresponding TLext
k -modules are

dim
(
B

(6+3+1−0,0)
1

)
= 1, dim

(
B

(6+3+1−1,1)
1

)
= 2, dim

(
B

(6+3+1−2,2)
1

)
= 2,

dim
(
B

(6+3+1−3,3)
1

)
= 2, dim

(
B

(6+3+1−4,4)
1

)
= 1.

These modules correspond to the line in Figure 5.1 indexed by k = 1.
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a

a

b

b

k

k

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

0

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

k = 10

k = 11

ℓdim
( )

=
ℓ∑

c=ℓ−k

(
k

ℓ− c

)
=

k∑
i=0

(
k

i

)
= 2k 0 ≤ ℓ− k, a ≥ b ≥ ℓ

ℓdim
( )

=
ℓ∑

c=0

(
k

ℓ− c

)
=

ℓ∑
i=0

(
k

i

)
0 > ℓ− k, a ≥ b ≥ ℓ

ℓdim
( )

=
b∑

c=ℓ−k

(
k

ℓ− c

)
=

b+k−ℓ∑
i=0

(
k

i

)
0 ≤ ℓ− k, a ≥ ℓ > b

ℓdim
( )

=
b∑

c=0

(
k

ℓ− c

)
=

ℓ∑
i=ℓ−b

(
k

i

)
0 > ℓ− k, a ≥ ℓ > b

ℓdim
( )

=
b∑

c=ℓ−k

(
k

ℓ− c

)
−
(

k

ℓ− (a + b− c)− 1

)
0 ≤ ℓ− k, ℓ > a ≥ b

ℓdim
( )

=
b∑

c=0

(
k

ℓ− c

)
−
(

k

ℓ− (a + b− c)− 1

)
0 > ℓ− k, ℓ > a ≥ b

Figure 5.1. The Temperley–Lieb Bratteli diagram for a = 6 and b = 3,
levels 0–11. Partitions λ = (a+b+k−ℓ, ℓ) are labeled by ℓ. The dimensions
of the module indexed by λ = (a + b + k − ℓ, ℓ) is equal to the number of
downward-moving paths from the top vertex 0 to the vertex labeled ℓ on
level k. Combinatorial formulas for these dimensions are determined in
Remark 5.2, and depend on the regions in the diagram, delineated visually
by style of nodes.
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