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Nilpotent Algebras at Roots of Unity
Stéphane Launois, Samuel A. Lopes and Alexandra Rogers

Abstract. This paper extends an algorithm and canonical embedding in [6] to a large class of quan-
tum algebras. It applies to iterated Ore extensions over a field satisfying some suitable assumptions
which cover those of Cauchon’s original setting but also allows for roots of unity. The extended
algorithm constructs a quantum affine space A′ from the original quantum algebra A via a series of
change of variables within the division ring of fractions Frac(A). The canonical embedding takes a
completely prime ideal P ◁ A to a completely prime ideal Q ◁ A′ such that when A is a PI alge-
bra, PI-deg(A/P ) = PI-deg(A′/Q). When the quantum parameter is a root of unity, combining our
construction with results from [2] allows us to state an explicit formula for the PI degree of com-
pletely prime quotient algebras. This paper ends with a method to construct a maximum dimensional
irreducible representation of A/P given a suitable irreducible representation of A′/Q when A is PI.

In [6], Cauchon developed an algorithm for a large class of quantum algebras origi-
nally named CGL extensions after Cauchon, Goodearl and Letzter who first proved a
set of unifying results on the algebras in this class, and later renamed quantum nilpo-
tent algebras [20]. These are algebras which can be written in the form of an iterated
Ore extension over a field with certain conditions placed on the defining automorphisms
and skew-derivations. In essence, the algorithm takes a completely prime quotient of a
suitable CGL extension and, via a series of changes of indeterminates within its division
ring of fractions, obtains a completely prime quotient of a quantum affine space which
shares the same division ring of fractions as the original algebra. Properties from the
resulting quotiented quantum affine space can then be pulled back to the original quotient
algebra. When the prime ideal is invariant under a rational action of a torus, the algo-
rithm combined with Goodearl and Letzter’s H-stratification theory was used to prove
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the quantum Gel’fand Kirillov Conjecture on prime quotients of a large class of generic
quantum algebras, such as quantum euclidean spaces, quantum symplectic spaces, quan-
tum matrices, and quantum Weyl algebras [6, Théorème 6.1.1]. Cauchon’s algorithm has
also been applied by many authors to gain a better understanding of the structure of
quantum algebras in the generic setting. Such works include the aforementioned [7, 13] as
well as [5, 11, 12, 15, 19].

Cauchon’s algorithm cannot be applied to such algebras at roots of unity, however, as
the homomorphism defining the algorithm is not compatible with roots of unity. Several
authors have recreated the main results of [6] for quantum algebras at roots of unity
satisfying slightly different conditions [16, 21]. However, the explicit change of variables
in the original algorithm, that was essential in the applications named above, was not
recreated in either paper. This paper addresses this by extending Cauchon’s deleting
derivations algorithm, including the canonical embedding to track completely prime ideals,
to include the root of unity case by utilising an adapted version, provided in [16, Section 3],
of the homomorphism which lies at the heart of the procedure.

The main motivation for this paper is the fact that many quantum algebras become
polynomial identity (PI) algebras when taken at roots of unity and in this case the PI
degree is a useful invariant for deducing various properties of the algebra (see, for example,
[4, 9, 8]). The PI degree also plays a role in the representation theory of prime affine
PI algebras, giving an upper bound on the dimension of irreducible representations [3,
Theorem I.13.5.].

The extended algorithm defined in Section 2 of this paper takes a suitable iterated
Ore extension A and constructs a quantum affine space A′ and a canonical embedding
ψ : C.Spec(A) → C.Spec(A′) such that Frac(A/P ) = Frac(A′/ψ(P )) for any completely
prime ideal P ∈ C.Spec(A) (this can be seen as a quantum version of the Gelfand-Kirillov
Conjecture, see [3, Conjecture II.10.4] and discussion thereafter]). Furthermore, if A is
PI, then so too is A′ and thus PI-deg(A/P ) = PI-deg(A′/ψ(P )). When A′/ψ(P ) is itself
a quantum affine space then the PI degree is determined by the rank and values of the
invariant factors of its commutation matrix (see for instance [2, Lemma 2.4]). With this
in mind, we focus on those ideals Pw which give rise to quantum affine spaces A′/ψ(Pw).
For such ideals, the PI degree of A/Pw is then computed in Theorem 4.4. We end with a
method to pass certain maximum-dimensional irreducible representations of any A′/ψ(P )
back through the deleting derivations algorithm to obtain maximum irreducible represen-
tations of A/P (Section 5) and illustrate our result by constructing an explicit irreducible
representation of maximal dimension for a completely prime quotient of U+

q (s05) at roots
of unity.

1. Quantum Nilpotent Algebras at roots of unity

Take K to be an arbitrary field and R a K-algebra. One can form an Ore extension
R[x, σ, δ] in one indeterminate x by defining a K-automorphism σ and a (left) σ-derivation
δ (also called a skew-derivation) such that for any a, b ∈ R we have δ(ab) = σ(a)δ(b)+δ(a)b.
These maps define the commutation rules for x with elements of R: given r ∈ R we have
xr = σ(r)x + δ(r). Ore extensions satisfy a universal mapping property ([14, Proposi-
tion 2.4]) and thus are unique up to isomorphism ([14, Corollary 2.5]). Iterating this pro-
cess with N indeterminates gives an iterated Ore extension R[X1, σ1, δ1] . . . [XN , σN , δN ].
Note that this is a noetherian domain by the Skew Hilbert Basis Theorem [3, Theo-
rem I.1.13], provided that so is R. The exact form of R and the properties of the pairs
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(σi, δi) are what will define quantum nilpotent algebras at roots of unity and distinguish
them from CGL extensions.

If all the skew-derivations in the iterated Ore extension above are the 0 map, all the
automorphisms act by scalar multiplication on each indeterminate, i.e. σi(Xj) = λi,jXj

for all 1 ≤ j < i ≤ N and some λi,j ∈ K∗, and R = K is a field, then the iterated Ore
extension would describe a quantum affine space, which we can write as follows:

K[X1, σ1] . . . [XN , σN ] = KΛ[X1, . . . , XN ] =: OΛ
(
KN

)
where Λ := (λi,j)i,j ∈ MN (K∗) with λj,i = λ−1

i,j and λi,i = 1, for all 1 ≤ j ≤ i ≤ N .
The following terms are needed to define our class of algebras of interest.

Definition 1.1. Let R be a K-algebra and R[x, σ, δ] be an Ore extension.
(1) We call the pair (σ, δ), and indeed the Ore extension, q-skew if the automorphism

and skew-derivation satisfy the relation δ ◦ σ = qσ ◦ δ, for some 1 ̸= q ∈ K∗.
(2) The skew-derivation δ is locally nilpotent if, for every 0 ̸= a ∈ R, there exists an

integer na ≥ 0 such that δna(a) = 0 and δm(a) ̸= 0 for any m < na. We define
such an na as the δ-nilpotence index of a.

(3) [16] We say that the σ-derivation δ extends to a higher q-skew σ-derivation (h.q-
s.σ-d.) on R if there is a sequence {dn}∞

n=0 (denoted simply by {dn} when it is
obvious which subscript set indexes the sequence) of K-linear operators on R such
that:
(a) d0 is the identity;
(b) d1 = δ;
(c) dn(rs) =

∑n
i=0 σ

n−idi(r)dn−i(s) for all r, s ∈ R and all n;
(d) dn ◦ σ = qnσ ◦ dn for all n.
A (h.q-s.σ-d.) is locally nilpotent if, for all 0 ̸= r ∈ R, there exists an integer
nr ≥ 0 such that dn(r) = 0 for all n ≥ nr, and dm(r) ̸= 0 for any m < nr.
In this case we call nr the d-nilpotence index of r. A h.q-s.σ-d is called iterative
if dndm =

(n+m
m

)
q
dn+m for all n,m. Here

(n+m
m

)
q

is the q-Gaussian binomial
coefficient: a polynomial in q over Z with properties similar to those of regular
binomial coefficients. More precisely, for all n ≥ i ≥ 0, we have(

n

i

)
q

:= (n)!q
(i)!q(n− i)!q

, where (i)q = qi − 1
q − 1

and (i)!q = (1)q · · · (i− 1)q(i)q with the convention that (0)!q = 1.

The higher skew-derivations are what allowed Haynal to adapt Cauchon’s effacement
des dérivations homomorphism to a broader homomorphism which allows for roots of
unity. For practical use, [16, Theorem 2.8] gives a sufficient condition on a q-skew Ore
extension R[x;σ, δ] for the σ-derivation δ to extend to a h.q-s.σ-d. for any 1 ̸= q ∈ K∗.
This is used to check that the specific examples we are interested in do, indeed, satisfy
this condition.

The algebras that we study in this article satisfy the following:

Hypothesis 1.2. Let A = K[X1][X2;σ2, δ2] . . . [XN ;σN , δN ], where the σi are K-algebra
automorphisms, and the δi are σi-derivations on the relevant subalgebras of A. Denote
these subalgebras by Ai−1 := K[X1][X2;σ2, δ2] . . . [Xi−1;σi−1, δi−1] so that A0 := K and
AN := A. We place the following conditions on A:

(H1.2.1) σi(Xl) = λi,lXl for all l < i and 2 ≤ i ≤ N , where λi,l ∈ K∗.
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(H1.2.2) Λ := (λi,j) ∈ MN (K∗) is a multiplicatively antisymmetric matrix. That is, λi,l =
λ−1

l,i for all 1 ≤ i, l ≤ N .
(H1.2.3) For 2 ≤ i ≤ N there exists some 1 ̸= qi ∈ K∗ such that δi ◦ σi = qiσi ◦ δi, i.e.

(σi, δi) is qi-skew.
(H1.2.4) For all 2 ≤ i ≤ N each δi extends to a locally nilpotent, iterative h.qi-s.σi-

d., {di,n}∞
n=0, on Ai−1, and σl ◦ di,n = λn

l,idi,n ◦ σl on Ai−1 for all n ≥ 0 and
i+ 1 ≤ l ≤ N .

Algebras satisfying Hypothesis 1.2 are called quantum nilpotent algebras and include
quantum Schubert cell algebras, quantised Weyl algebras, quantised coordinate rings of
affine, symplectic, and euclidean spaces, and quantum matrices.

2. Deleting Derivations Algorithm

The main algorithm in this section will remove each skew-derivation from an algebra
A satisfying Hypothesis 1.2 via an iterative change of indeterminates within the division
ring of fractions of A, until we obtain a quantum affine space. This is developed in
much the same way as in [6, Section 3.2] but applies the homomorphism defined in [16,
Proposition 3.4]. For this application we need the ability to reorder the extensions of A.
This is achieved in the following lemma.

Lemma 2.1. Let
A = Aj−1 [Xj ;σj , δj ] [Xj+1;σj+1] . . . [XN ;σN ] ,

Â = Aj−1 [Xj ;σj , δj ]
[
X±1

j+1;σj+1
]
. . .
[
X±1

N ;σN

]
,

where the automorphisms and skew-derivations satisfy properties (H1.2.1)–(H1.2.3) and
δj ̸= 0.

(I) Then

A = Aj−1
[
Xj+1;σ∗

j+1

]
. . . [XN ;σ∗

N ]
[
Xj ;σ′

j , δ
′
j

]
,

Â = Aj−1
[
X±1

j+1;σ∗
j+1

]
. . .
[
X±1

N ;σ∗
N

] [
Xj ;σ′

j , δ
′
j

]
,

where
(i) σ∗

i |Aj−1 = σi|Aj−1 for all j + 1 ≤ i ≤ N and σ∗
i (Xl) = σi(Xl) = λi,lXl for all

j + 1 ≤ l < i;
(ii) σ′

j |Aj−1 = σj and δ′
j |Aj−1 = δj;

(iii) σ′
j(Xl) = λj,lXl = λ−1

l,j Xl and δ′
j(Xl) = 0 for all j + 1 ≤ l ≤ N .

(II) (σ′
j , δ

′
j) is qj-skew.

(III) Suppose that property (H1.2.4) is also satisfied. Then δ′
j extends to a locally nilpo-

tent, iterative h.qj-s.σ′
j-d., {d′

j,n}∞
n=0, on Aj−1⟨X±1

j+1, X
±1
j+2, . . . , X

±1
N ⟩, where the

d′
j,n coincide with the dj,n on Aj−1 and, for all j + 1 ≤ l ≤ N and n ≥ 1,
d′

j,n(Xl) = 0. Moreover, {d′
j,n}∞

n=0 restricts to a h.qj-s.σ′
j-d. on the algebra

Aj−1⟨Xj+1, Xj+2, . . . , XN ⟩ which is also locally nilpotent and iterative.

Proof. This is an inductive corollary to [16, Lemma 4.1] and the details are left to the
reader. □

In the results that follow, we abuse notation slightly and use the same notation for maps
defined on isomorphic algebras. We do this in the case where the action of the map on
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the generators of the algebra does not change, even though the algebras do. For example,
suppose we have two isomorphic iterated Ore extensions

K[X1][X2;σ2, δ2] ∼= K[x1]
[
x2; σ̄2, δ̄2

]
,

where σ2(X1) = λX1 and σ̄2(x1) = λx1 for the same λ ∈ K∗. In this case, we simply
denote σ̄2 by σ2 (similarly for δ̄2) and write K[x1][x2;σ2, δ2]. We may also abuse notation
in a similar way for restrictions of maps to isomorphic subalgebras.

We now describe the deleting derivations algorithm for algebras satisfying Hypothe-
sis 1.2.

2.1. The Algorithm. For each j ∈ [[2, N + 1]] we define a sequence (X(j)
1 , . . . , X

(j)
N ) of

elements of F := Frac(A) and we set A(j) := K⟨X(j)
1 , . . . , X

(j)
N ⟩ to be the subalgebra of F

generated by these elements. For j = N+1 we set (X(N+1)
1 , . . . , X

(N+1)
N ) := (X1, . . . , XN )

so that A(N+1) = A. For some fixed j ∈ [[2, N ]] we assume that the algebra A(j+1) satisfies
the following hypothesis, first setting (x1, . . . , xN ) := (X(j+1)

1 , . . . , X
(j+1)
N ) for ease of

notation.

Hypothesis 2.2.
(H2.2.1) A(j+1) ∼= K[X1] . . . [Xj ;σj , δj ][Xj+1;σ(j+1)

j+1 ] . . . [XN ;σ(j+1)
N ] by an isomorphism sen-

ding xi to Xi for all i ∈ [[1, N ]].
(H2.2.2) For each i ∈ [[j+1, N ]], the map σ(j+1)

i is an automorphism such that σ(j+1)
i (Xl) =

λi,lXl for all l ∈ [[1, i− 1]]. Furthermore, we have σ(j+1)
i ◦ dl,n = λn

i,ldl,n ◦σ(j+1)
i for

all l ∈ [[2, j]] and n ≥ 0.

This allows us to write

A(j+1) = K⟨x1, . . . , xN ⟩ (2.1)

= K[x1] . . . [xj ;σj , δj ]
[
xj+1;σ(j+1)

j+1

]
. . .
[
xN ;σ(j+1)

N

]
(2.2)

where, for i ∈ [[2, j]], σi and δi satisfy Hypothesis 1.2 and δi extends to a locally nilpotent,
iterative h.qi-s.σi-d., {di,n}∞

n=0, on Ai−1.
We define a new sequence of elements in F , (y1, . . . , yN ) := (X(j)

1 , . . . , X
(j)
N ):

yl =

xl l ≥ j;∑∞
n=0 q

n(n+1)
2

j (qj − 1)−ndj,n ◦ σ−n
j (xl)x−n

j l < j.
(2.3)

Note that the sum stated above is finite, since the sequence {dj,n}∞
n=0 is locally nilpotent.

With this we define A(j) := K⟨y1, . . . , yN ⟩.

Theorem 2.3. Let A be as in Hypothesis 1.2, with A(j+1) defined as above and satisfying
Hypothesis 2.2. Then we have the following:

(I) A(j) ∼= K[X1][X2;σ2, δ2] · · · [Xj−1;σj−1, δj−1][Xj ;σ(j)
j ] · · · [XN ;σ(j)

N ] by an isomor-
phism which sends yl to Xl for all l ∈ [[1, N ]].

(II) For all i ∈ [[j,N ]], the σ(j)
i are automorphisms satisfying

(i) σ(j)
i (Xl) = λi,lXl for all l ∈ [[1, i− 1]];

(ii) σ(j)
i ◦ dl,n = λn

i,ldl,n ◦ σ(j)
i for all n ≥ 0 and all l ∈ [[2, j − 1]].
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(III) Let Sj := {xn
j | n ≥ 0} = {yn

j | n ≥ 0}. This is a multiplicatively closed set of
regular elements satisfying the two sided Ore-condition in A(j+1) and A(j) and,
furthermore, A(j)S−1

j = A(j+1)S−1
j .

Proof. By Hypothesis 2.2, and the discussion thereafter, we can write A(j+1) as

A(j+1) = K[x1] . . . [xj ;σj , δj ]
[
xj+1;σ(j+1)

j+1

]
. . .
[
xN ;σ(j+1)

N

]
.

Define
A

(j+1)
j−1 := K[x1] [x2;σ2, δ2] . . . [xj−1;σj−1, δj−1] .

If δj = 0 then A(j) = A(j+1) and the result is trivial. So, assuming that δj ̸= 0 and
applying Lemma 2.1 to A(j+1) = A

(j+1)
j−1 [xj ;σj , δj ][xj+1;σ(j+1)

j+1 ] . . . [xN ;σ(j+1)
N ] gives

A(j+1) = A
(j+1)
j−1

[
xj+1;σ(j+1)∗

j+1

]
. . .
[
xN ;σ(j+1)∗

N

] [
xj ;σ′

j , δ
′
j

]
, (2.4)

where
(a) σ(j+1)∗

i |
A

(j+1)
j−1

= σ
(j+1)
i |

A
(j+1)
j−1

for all i ∈ [[j + 1, N ]], and σ
(j+1)∗
i (xl) = σ

(j+1)
i (xl) =

λi,lxl for all l ∈ [[j + 1, i− 1]];
(b) σ′

j |
A

(j+1)
j−1

= σj and δ′
j |

A
(j+1)
j−1

= δj ;

(c) σ′
j(xl) = λj,lxl = λ−1

l,j xl and δ′
j(xl) = 0 for all l ∈ [[j + 1, N ]].

In particular, δ′
j extends to a h.qj-s.σ′

j-d., {d′
j,n}∞

n=0, on A
(j+1)
j−1 ⟨x±1

j+1, . . . , x
±1
N ⟩ where

d′
j,n|

A
(j+1)
j−1

= dj,n (∀ n ≥ 0), (2.5)

d′
j,n(xl) = 0 (∀ l ∈ [[j + 1, N ]] and n ≥ 1). (2.6)

Define
Â(j+1) := A

(j+1)
j−1

[
xj+1;σ(j+1)∗

j+1

]
. . .
[
xN ;σ(j+1)∗

N

]
so that Equation (2.4) becomes

A(j+1) = Â(j+1)
[
xj ;σ′

j , δ
′
j

]
.

Applying [16, Theorem 3.7] to A(j+1) yields the isomorphism,

f : Â(j+1)
[
x±1

j ;σ′
j

]
−→ Â(j+1)

[
xj ;σ′

j , δ
′
j

]
S−1

j

Â(j+1) ∋ a 7−→ f(a) =
∞∑

n=0
q

n(n+1)
2

j (qj − 1)−nd′
j,n ◦ (σ′

j)−n(a)x−n
j

xj 7−→ xj .

Note that f(xl) = xl for all l ∈ [[j + 1, N ]] since, by (2.6), d′
j,n(xl) = 0 for all n ≥ 1. If

l ∈ [[1, j − 1]], then xl and (σ′
j)−n(xl) ∈ A

(j+1)
j−1 . Thus, by (2.5) and (b) above, we can

replace σ′
j and d′

j,n in f(xl) with σj and dj,n to obtain

f(xl) =
∞∑

n=0
q

n(n+1)
2

j (qj − 1)−ndj,n ◦ σ−n
j (xl)x−n

j = yl,

as defined in (2.3). Therefore, for any l ∈ [[1, N ]] we see that

f(xl) =
{
xl l ≥ j;
yl l < j.
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Hence the isomorphism f takes xl to yl for all l ∈ [[1, N ]].
Using [16, Theorem 3.7] we see that restricting f to Â(j+1)[xj ;σ′

j ] gives the deleting
derivation homomorphism as defined in [16, Proposition 3.4]. Therefore

Im(f) ∼= Â(j+1)
[
xj ;σ′

j

]
, (2.7)

where Im(f) = f(Â(j+1)[xj ;σ′
j ]) is the subalgebra of Â(j+1)[x±1

j ;σ′
j , δ

′
j ] generated by xj

and f(Â(j+1)). Since f(Â(j+1)) is generated by K and {yl | l ̸= j}, and since xj = yj , this
simply tells us that

Im(f) = K⟨y1, . . . , yN ⟩ = A(j).

Using (2.7) we see that

A(j) = Im(f) ∼= K[x1] . . . [xj−1;σj−1, δj−1]
[
xj+1;σ(j+1)∗

j+1

]
. . .
[
xN ;σ(j+1)∗

N

] [
xj ;σ′

j

]
,

and therefore,

A(j) = K[y1] . . . [yj−1;σj−1, δj−1]
[
yj+1;σ(j+1)∗

j+1

]
. . .
[
yN ;σ(j+1)∗

N

] [
yj ;σ′

j

]
. (2.8)

Finally we apply [16, Proposition 3.6] to conclude that Sj is a multiplicatively closed set
of regular elements in both A(j+1) and A(j), satisfying the two-sided Ore condition, and
that

Im(f)S−1
j = Â(j+1)

[
xj ;σ′

j , δ
′
j

]
S−1

j ,

A(j)S−1
j = A(j+1)S−1

j .

Thus assertion (III) is proved.
The property ylyj = λl,jyjyl, along with the fact that λl,j = λ−1

j,l , allows us to rear-
range (2.8) to obtain

A(j) = K[y1] . . . [yj−1;σj−1, δj−1]
[
yj ;σ(j)

j

] [
yj+1;σ(j)

j+1

]
. . .
[
yN ;σ(j)

N

]
. (2.9)

Defining
A

(j)
j−1 := K[y1] . . . [yj−1;σj−1, δj−1]

we see that A(j)
j−1

∼= Aj−1 and there is an isomorphism

A(j) = K[y1] . . . [yj−1;σj−1, δj−1]
[
yj ;σ(j)

j

] [
yj+1;σ(j)

j+1] . . . [yN ;σ(j)
N

]
∼= K[X1] . . . [Xj−1;σj−1, δj−1]

[
Xj ;σ(j)

j

] [
Xj+1;σ(j)

j+1

]
. . .
[
XN ;σ(j)

N

] (2.10)

sending yl to Xl for all l ∈ [[1, N ]], where the maps (as defined on suitable subalgebras of
A(j)) are as follows:

(a′) σ(j)
j = σ′

j |
A

(j)
j−1

= σj ;

(b′) σ(j)
i |

A
(j)
j−1

= σ
(j+1)∗
i |

A
(j)
j−1

= σ
(j+1)
i |

A
(j)
j−1

for all i ∈ [[j + 1, N ]];

(c′) σ(j)
i (yl) = λi,lyl for all i ∈ [[j + 1, N ]] and l ∈ [[1, i− 1]].

Using the isomorphism in (2.10) along with the observations (a′)–(c′) above we can prove
assertion (II) for all i ∈ [[j,N ]]: Observation (a′) proves both parts of assertion (II) when
i = j, since σj satisfies assertion (II) by definition (see (H1.2.1) and (H1.2.4)). When i ∈

Ann. Repr. Th. 1 (2024), 4, p. 567–594 https://doi.org/10.5802/art.19

https://doi.org/10.5802/art.19


574 Stéphane Launois et al.

[[j + 1, N ]], observation (b′) proves (II(ii)), since σ(j+1)
i satisfies (H2.2.2), and observation

(c′) proves (II(i)). □

Remark 2.4. If A is an algebra satisfying Hypothesis 1.2 then Hypothesis 2.2 is satisfied
for j = N + 1. Theorem 2.3 then implies that Hypothesis 2.2 is also satisfied for all
j ∈ [[2, N + 1]].

Corollary 2.5. The algebra A′ := A(2) is a quantum affine space. More precisely, by
setting Ti := X

(2)
i for all i ∈ [[1, N ]] and Λ := (λi,j) ∈ MN (K) to be the multiplicatively

antisymmetric matrix, we obtain:
A′ = KΛ[T1, . . . , TN ].

Remark 2.6. For all j ∈ [[1, N ]], we say that A(j+1) is the algebra obtained from A after
N − j steps of the deleting derivations algorithm.
2.2. Ring of fractions. In order to be able to track the completely prime ideals along
the deleting derivations algorithm we need the following two results regarding the division
ring of fractions of the algebras A(j) at each step of the algorithm. These results were
proved in [6, Subsection 3.3] in the generic setting and can be applied directly to our
setting thanks to the above results.

Let Σ be the multiplicatively closed set in A′ generated by the elements T1, . . . , TN . For
j ∈ [[2, N ]], define sets Σj :

Σ2 := Σ,

Σj+1 = A(j+1) ∩ Σj for j ∈ [[2, N ]].

Proposition 2.7. For all j ∈ [[2, N + 1]] the following are true:
(i) Σj is a multiplicatively closed set of regular elements in A(j) and Σj contains

X
(j)
j−1, . . . , X

(j)
N ;

(ii) Σj satisfies the two-sided Ore condition in A(j);
(iii) The algebras A(j)Σ−1

j ⊂ Frac(A) are all equal.

Proof. We proceed by induction on j. When j = 2, statements (i) and (ii) are trivially
true from the definition of Σ and the fact that the generators (and monomials in these
generators) of a quantum affine space are regular and normal. Let j ∈ [[2, N ]] and suppose
statements (i) and (ii) hold for j. We will show they also hold for j+1 and that A(j)Σ−1

j =
A(j+1)Σ−1

j+1.
Recall the notation from the previous section: {xi}i = {X(j+1)

i }i and {yi}i = {X(j)
i }i

where xi = yi for all i ≥ j. By the induction hypothesis, Σj is a multiplicatively closed
set of regular elements in A(j) containing yj−1, . . . , yN . Therefore Σj+1 = A(j+1) ∩ Σj is a
multiplicatively closed set of regular elements of A(j+1) containing yj = xj , . . . , yN = xN ,
thus proving statement (i).

Recall the set Sj = {xn
j | n ∈ N} = {yn

j | n ∈ N} ⊂ Σj ∩ Σj+1 and use Theorem 2.3(III)
to obtain the inclusions

A(j+1) ⊂ A(j+1)S−1
j = A(j)S−1

j ⊂ A(j)Σ−1
j . (2.11)

Since Σj+1 ⊂ Σj then Σj+1 must be invertible in A(j)Σ−1
j . We use this to show that an

element a ∈ A(j)Σ−1
j can be rewritten as an element in A(j+1)Σ−1

j+1. Write a = yu−1, with
y ∈ A(j) and u ∈ Σj . Since
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Σj ⊂ A(j) ⊂ A(j)S−1
j = A(j+1)S−1

j ,

we can write u = vs−1
1 and y = xs−1

2 , with v, x ∈ A(j+1) and s1, s2 ∈ Sj . Then a becomes

a = xs−1
2 (vs−1

1 )−1 = xs−1
2 s1v

−1 = xs1s
−1
2 v−1 = xs1(vs2)−1.

Observe that vs2 = (vs−1
1 )s1s2 = us1s2 ∈ Σj since u ∈ Σj and s1, s2 ∈ Sj ⊂ Σj .

Also, v ∈ A(j+1) and s2 ∈ Sj ⊂ A(j+1), therefore vs2 ∈ A(j+1) ∩ Σj = Σj+1. Similarly,
xs1 ∈ A(j+1) so we can write

a = bc−1 ∈ A(j+1)Σ−1
j+1,

where b = xs1 ∈ A(j+1) and c = vs2 ∈ Σj+1. From the inductive hypothesis we know
that A(j)Σ−1

j = Σ−1
j A(j), so if a ∈ A(j)Σ−1

j then it must also be true that a ∈ Σ−1
j A(j).

We also know from Theorem 2.3(III) that Sj is an Ore set in A(j) and A(j+1), thus
A(j)S−1

j = S−1
j A(j) and A(j+1)S−1

j = S−1
j A(j+1). Using these results we can follow a

similar method to before to rewrite a ∈ A(j)Σ−1
j = Σ−1

j A(j) as

a = c′−1b′ ∈ Σ−1
j+1A

(j+1),

with c′ ∈ Σj+1 and b′ ∈ A(j+1).
If we can prove that Σj+1 is a two-sided Ore set in A(j+1) then the working above

implies that A(j)Σ−1
j ⊆ A(j+1)Σ−1

j+1. Furthermore, A(j+1) ⊂ A(j)Σ−1
j and Σj+1 ⊂ Σj so

we also have A(j+1)Σ−1
j+1 ⊆ A(j)Σ−1

j . Hence statement (iii) is true if we can prove that
statement (ii) holds.

From the inclusion A(j+1)Σ−1
j+1 ⊆ A(j)Σ−1

j we can write any a = bc−1 ∈ A(j+1)Σ−1
j+1

as a ∈ A(j)Σ−1
j and, applying the above working, we see that there exist c′ ∈ Σj+1

and b′ ∈ A(j+1) such that a = c′−1b′ ∈ Σ−1
j+1A

(j+1). This verifies the two-sided Ore
condition on Σj+1 ⊂ A(j+1) necessary for proving statement (ii) and, by the comment
earlier, statement (iii). □

From the above proposition it is clear that:

Theorem 2.8.

(i) There exists a multiplicatively closed set of regular elements S ⊆ A such that
AS−1 = A′Σ−1 = KΛ[T±1

1 , . . . , T±1
N ].

(ii) Frac(A(j)) = Frac(A) for all j ∈ [[2, N+1]] and, in particular, Frac(A) = Frac(A′).
(iii) A is a PI algebra if and only if the λi,j are roots of unity for all i, j ∈ [[1, N ]] and,

in this case, PI-deg(A) = PI-deg(A′).

Proof. Let S = ΣN+1. Proposition 2.7(iii) shows that AS−1 = A′Σ−1 and that all the
algebras A(j) have a common localisation, thus proving (i) and (ii). [10, Proposition 7.1]
states that A′ is PI if and only if the λi,j are roots of unity for all 1 ≤ i, j ≤ N and [16,
Corollary 4.7] states the same result for A. Therefore they have the same PI degree since
they have equal total rings of fractions. This proves (iii). □
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3. Deleting Derivations Algorithm on completely prime quotients

In this section we set up a canonical embedding ψ : C.Spec(A) → C.Spec(A′), from the
completely prime spectrum of A into the completely prime spectrum of A′, and use this to
extend the algorithm of the previous section to quotient algebras. We also define criteria
for some ideal Q ∈ C.Spec(A′) to lie in the image of ψ.

Many of the results of this section are analogues to those found in the generic setting [6,
Sections 4 and 5] and their proofs follow in almost the same way, thanks to the results of the
previous section. The proofs concerning membership criteria for the canonical embedding
in Subsection 3.2 closely mirror those in the Poisson setting, which can be found in [18,
Sections 2.3 and 2.4].

3.1. Canonical Embedding and partition of completely prime spectra.

3.1.1. Embedding. Let A satisfy Hypothesis 1.2 and define the following sets, which we
endow with the induced Zariski topology:

P0
j

(
A(j)

)
:=
{
P ∈ C.Spec

(
A(j)

) ∣∣∣ yj /∈ P
}
,

P1
j

(
A(j)

)
:=
{
P ∈ C.Spec

(
A(j)

) ∣∣∣ yj ∈ P
}
,

P0
j

(
A(j+1)

)
:=
{
P ∈ C.Spec

(
A(j+1)

) ∣∣∣xj /∈ P
}
,

P1
j

(
A(j+1)

)
:=
{
P ∈ C.Spec

(
A(j+1)

) ∣∣∣xj ∈ P
}
.

In the following results, by the term increasing we mean that the homeomorphism is
order-preserving with respect to inclusion of ideals. By bi-increasing we mean that both
the homeomorphism and its inverse are increasing homeomorphisms.

Lemma 3.1. There is an increasing homeomorphism ψ0
j : P0

j (A(j+1)) → P0
j (A(j)) given

by ψ0
j (P ) := PS−1

j ∩ A(j). Its inverse is defined by (ψ0
j )−1(Q) := QS−1

j ∩ A(j+1) and is
also increasing. Hence ψ0

j is bi-increasing.

Proof. Extension and contraction maps provide bi-increasing inverse homeomorphisms
between C.Spec(A(j)S−1

j ) and P0
j (A(j)). Similarly, we obtain a bi-increasing homeomor-

phism between P(0)
j (A(j+1)) and C.Spec(A(j+1)S−1

j ). Since A(j)S−1
j = A(j+1)S−1

j then
their completely prime spectra, as topological spaces, are equal. Therefore the two bi-
increasing homeomorphisms defined here give rise to the bi-increasing homeomorphism in
the statement of this lemma. □

Next we turn our attention to the sets P1
j (A(j)) and P1

j (A(j+1)).

Lemma 3.2. There is a surjective algebra homomorphism gj : A(j) → A(j+1)/⟨xj⟩ which
takes yi 7→ xi + ⟨xj⟩, for all 1 ≤ i ≤ N , where xi + ⟨xj⟩ is the canonical image of xi in
A(j+1)/⟨xj⟩.

Proof. By Theorem 2.3 we have

A(j+1) := K⟨x1, . . . , xN ⟩ ∼= K[X1] · · · [Xj ;σj , δj ]
[
Xj+1;σ(j+1)

j+1

]
· · ·
[
XN ;σ(j+1)

N

]
,

A(j) := K⟨y1, . . . , yN ⟩ ∼= K[X1] · · · [Xj−1;σj−1, δj−1]
[
Xj ;σ(j)

j

]
· · ·
[
XN ;σ(j)

N

]
.

Restricting these algebras to R := K⟨x1, . . . , xj−1⟩ and S := K⟨y1, . . . , yj−1⟩ we see that
there is an isomorphism S → R sending yi 7→ xi for all i ∈ [[1, j − 1]]. Since R ⊆ A(j+1)
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we can compose this isomorphism with the natural surjection A(j+1) → A(j+1)/⟨xj⟩ to
obtain the algebra homomorphism f : S → A(j+1)/⟨xj⟩, sending yi 7→ xi + ⟨xj⟩ for all
i ∈ [[1, j−1]]. Using the commutation rules for A(j+1) and the fact that xj +⟨xj⟩ = 0, we see
that (xj +⟨xj⟩)(xi +⟨xj⟩) = λj,i(xi +⟨xj⟩)(xj +⟨xj⟩) = 0 for all i ∈ [[1, j−1]]. The relations
on xi+⟨xj⟩ ∈ A(j+1)/⟨xj⟩ therefore agree with those on yi ∈ S[yj ;σ(j)

j ] · · · [yN ;σ(j)
N ] = A(j),

for all i ∈ [[1, N ]]. Applying the universal property of Ore extensions allows us to conclude
the construction of the surjective homomorphism gj . □

Lemma 3.3. There is an increasing injective map ψ1
j : P1

j (A(j+1)) → P1
j (A(j)) tak-

ing P 7→ ψ1
j (P ) := g−1

j (P/⟨xj⟩), where P/⟨xj⟩ denotes the canonical image of P in
A(j+1)/⟨xj⟩, which induces a bi-increasing homeomorphism between P1

j (A(j+1)) and the
image ψ1

j (P1
j (A(j+1))).

Proof. Using the First Isomorphism Theorem for algebras, we restrict the map gj from
Lemma 3.2 to yield an isomorphism g′

j : A(j)/ ker(gj) ∼−→ A(j+1)/⟨xj⟩. This induces the
following bi-increasing homeomorphisms between sets endowed with the Zariski topology:

f1 : P1
j

(
A(j+1)

)
−→ C.Spec

(
A(j+1)/⟨xj⟩

)
,

f2 : C.Spec
(
A(j+1)/⟨xj⟩

)
−→ C.Spec

(
A(j)/ ker(gj)

)
,

f3 : C.Spec
(
A(j)/ ker(gj)

)
−→

{
Q ∈ C.Spec

(
A(j)

) ∣∣∣ ker(gj) ⊆ Q
}
.

The composition of these maps gives a bi-increasing homeomorphism

f3 ◦ f2 ◦ f1 : P1
j

(
A(j+1)

)
−→

{
Q ∈ C.Spec

(
A(j)

) ∣∣∣ ker(gj) ⊆ Q
}

P 7−→ g−1
j (P/⟨xj⟩).

Note that gj(yj) = xj + ⟨xj⟩ = 0 so ⟨yj⟩ ⊆ ker(gj), which leads to the inclusion{
Q ∈ C.Spec

(
A(j)

) ∣∣∣ ker(gj) ⊆ Q
}

⊆ P1
j

(
A(j)

)
.

Therefore, from f3 ◦ f2 ◦ f1, we can define an increasing injective map

ψ1
j : P1

j

(
A(j+1)

)
−→ P1

j

(
A(j)

)
P 7−→ g−1

j (P/⟨xj⟩),
which induces a bi-increasing homeomorphism on its image,{

Q ∈ C.Spec(A(j))
∣∣∣ ker(gj) ⊆ Q

}
.

□

Using the two previous results we define the map ψj : C.Spec(A(j+1)) → C.Spec(A(j))
where, for P ∈ C.Spec(A(j+1)), we set

ψj(P ) :=

ψ
0
j (P ) = PS−1

j ∩A(j) if P ∈ P0
j

(
A(j+1)

)
;

ψ1
j (P ) = g−1

j (P/⟨xj⟩) if P ∈ P1
j

(
A(j+1)

)
.

The next result follows immediately.

Proposition 3.4. For j ∈ [[2, N ]] the map ψj : C.Spec(A(j+1)) → C.Spec(A(j)) is
injective. For ϵ ∈ {0, 1}, ψj induces (by restriction) a bi-increasing homeomorphism
Pϵ

j (A(j+1)) → ψj(Pϵ
j (A(j+1))) which is a closed subset of Pϵ

j (A(j)).
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Using these maps, we define the canonical embedding:

Definition 3.5. Set ψ := ψ2 ◦ · · · ◦ ψN to be the injective map ψ : C.Spec(A) −→
C.Spec(A′). We call ψ the canonical embedding of C.Spec(A) into C.Spec(A′).

3.1.2. Partition of C.Spec(A). Let W := P([[1, N ]]) denote the power set of [[1, N ]] and,
for all w ∈ W, set

C.Specw(A′) :=
{
Q ∈ C.Spec(A′)

∣∣Q ∩ {T1, . . . TN } = {Ti | i ∈ w}
}
,

where {Ti}N
i=1 are the generators of the quantum affine space A′. From [13, Section 2.1]

we get:

Lemma 3.6. The sets {C.Specw(A′)}w ∈ W provide a partition of C.Spec(A′).

We use ψ to pull this partition back to one on C.Spec(A). For each w ∈ W we define
C.Specw(A) := ψ−1(C.Specw(A′))

and let W ′ ⊆ W denote the set of all w ∈ W such that C.Specw(A) ̸= ∅. (Note that W ′

depends on the expression of the algebra A as an iterated Ore extension.) We immediately
obtain a partition of C.Spec(A).

Theorem 3.7. The set C.Spec(A) has a partition indexed by the family W ′ so that,

C.Spec(A) =
⊔

w ∈ W ′

C.Specw(A), where |W ′| ≤ |W| = 2N .

Definition 3.8. We refer to the partition {C.Specw(A)}w ∈ W ′ as the canonical partition
of C.Spec(A), and we call each w ∈ W ′ a Cauchon diagram of A.

3.2. Properties of the Canonical Embedding. In order to use the deleting derivations
algorithm for the purpose of calculating the PI degree of quotient algebras, we need to
be able to test whether a completely prime ideal of A′ lies in the image of the canonical
embedding.

Lemma 3.9. Fix some j ∈ [[2, N ]] and let Q ∈ C.Spec(A(j)). Then,
Q ∈ Im(ψj) ⇐⇒ [Either xj = yj /∈ Q or ker(gj) ⊆ Q] .

Proof. Apply Lemmas 3.1 and 3.3 to the cases yj /∈ Q and yj ∈ Q respectively. □

We define injective maps fj : C.Spec(A(j+1)) → C.Spec(A′), for all j ∈ [[1, N ]], with
f1 := idC.Spec(A′), the identity on C.Spec(A′) and, for all j ∈ [[2, N ]], fj := ψ2 ◦ · · · ◦ ψj , so
that fN = ψ.

Proposition 3.10. Let Q ∈ C.Spec(A′). The following are equivalent:
(i) Q ∈ Im(ψ).

(ii) For all j ∈ [[2, N ]] we have Q ∈ Im(fj−1) and either X(j)
j = X

(j+1)
j /∈ f−1

j−1(Q) or
ker(gj) ⊆ f−1

j−1(Q).

Proof. Let Q ∈ C.Spec(A′). Suppose Q ∈ Im(ψ). Then Q = ψ(P ) for some P ∈
C.Spec(A). Since ψ = fj−1 ◦ ψj ◦ · · ·ψN then Q = fj−1(Pj) for all j ∈ [[2, N ]], where
Pj = ψj ◦ · · · ◦ ψN (P ). Hence Q ∈ Im(fj−1) for all j ∈ [[2, N ]]. From this we see that
f−1

j−1(Q) ∈ Im(ψj), for all j ∈ [[2, N ]], and we apply Lemma 3.9 to f−1
j−1(Q) to conclude

that either X(j)
j = X

(j+1)
j /∈ f−1

j−1(Q) or ker(gj) ⊆ f−1
j−1(Q).
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Now suppose the second statement holds. By Lemma 3.9, f−1
j−1(Q) ∈ Im(ψj) for all

j ∈ [[2, N ]]. Let P ′ := f−1
N−1(Q) so that P ′ ∈ Im(ψN ). Then P ′ = ψN (P ) for some

P ∈ C.Spec(A) and
Q = fN−1(P ′) = fN−1(ψN (P )) = ψ(P ) ∈ Im(ψ). □

We finish this subsection by giving a sufficient condition for a completely prime ideal
in A′ to be in the image of the canonical embedding. These next two results are not used
in this paper, however they are stated here for the interested reader (proofs can be found
in [23, Section 4]).

Theorem 3.11. [23, Theorem 4.17] Let w ∈ W ′. Then ψ(C.Specw(A)) is a (non-empty)
closed subset of C.Specw(A′) and the map ψ induces (by restriction) a bi-increasing home-
omorphism from C.Specw(A) to ψ(C.Specw(A)).

Proposition 3.12 ([23, Proposition 4.18]). Let w ∈ W ′, P ∈ C.Specw(A), and Q ∈
C.Specw(A′). If ψ(P ) ⊆ Q then Q ∈ Im(ψ).

3.3. Completely Prime Quotients. In this subsection we extend the algorithm in Sec-
tion 2 to apply to completely prime quotient algebras of quantum nilpotent algebras. The
results of the previous sections allow us to construct proofs in a similar way to those found
in [6, Section 5.3]. This extended algorithm will allow us to pull certain irreducible repre-
sentations on A′/Q (clarified in Section 5) back to irreducible representations on A/P .

3.3.1. A(j)/ψj(P ) and A(j+1)/P . We start by extending one step of the algorithm to
completely prime quotients. For some j ∈ [[2, N ]], let P ∈ C.Spec(A(j+1)) and Q =
ψj(P ) ∈ C.Spec(A(j)) be its image under the canonical embedding. Set

B(j+1) := A(j+1)/P, B(j) := A(j)/Q.

We denote by x̄1, . . . , x̄N ∈ B(j+1) and ȳ1, . . . , ȳN ∈ B(j) the canonical images of the
generators x1, . . . , xN ∈ A(j+1) in B(j+1) and y1, . . . , yN ∈ A(j) in B(j), respectively.

Lemma 3.13. Suppose x̄j = 0. Then there exists an algebra isomorphism B(j) → B(j+1)

sending ȳi 7→ x̄i for all i ∈ [[1, N ]].

Proof. Since xj ∈ P then Q = ψ1
j (P ) = g−1

j (P/⟨xj⟩). Concatenating gj with the natural
surjection π : A(j+1)/⟨xj⟩ → A(j+1)/P gives the following surjective algebra homomor-
phism:

A(j) gj−→ A(j+1)/⟨xj⟩ π−→ A(j+1)/P
yi 7−→ xi + ⟨xj⟩ 7−→ x̄i.

The desired isomorphism may then be constructed upon noting that we have
ker(π ◦ gj) = g−1

j (P/⟨xj⟩) = Q. □

Lemma 3.14. Suppose x̄j ̸= 0 and let Zj := {x̄n
j | n ∈ N}. Then the following hold:

(i) Zj is a multiplicative set of regular elements of B(j+1), which satisfies the two-sided
Ore condition.

(ii) There exists an injective algebra homomorphism γ : B(j) → B(j+1)Z−1
j defined on

the generators of B(j) in the following way:

γ(ȳi) =

x̄i if i ≥ j;∑∞
n=0 q

n(n+1)
2

j (qj − 1)−n λ−n
j,i dj,n(xi)x̄−n

j if i < j,
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where dj,n(xi) denotes the canonical image of dj,n(xi) in B(j+1).
(iii) If we identify B(j) with its image γ(B(j)) ⊆ B(j+1)Z−1

j then Zj is a multiplicative
set of regular elements in B(j) satisfying the two-sided Ore condition. Furthermore,
B(j)Z−1

j = B(j+1)Z−1
j .

Proof. Since xj /∈ P then Q = ψ0
j (P ) = PS−1

j ∩ A(j), where Sj = {xn
j | n ∈ N} is the

multiplicatively closed set of regular elements in A(j+1) and A(j) satisfying the two-sided
Ore condition (Theorem 2.3(III)). Denote the subalgebra A(j+1)S−1

j = A(j)S−1
j ⊆ F by

Ω and the completely prime ideal PS−1
j = QS−1

j by Θ ◁ Ω. Note that Θ ∩ A(j+1) = P

and Θ ∩A(j) = Q.
We define an injective algebra homomorphism γ ′ : B(j+1) −→ Ω/Θ; a+P 7−→ a1−1 +Θ

and identify B(j+1) with its image. Since Zj = {x̄n
j | n ∈ N} = {xn

j +P | n ∈ N} = Sj +P ,
its image under γ ′ becomes

γ ′(Zj) = Zj1−1 + Θ = (Sj + P ) 1−1 + Θ = Sj1−1 + Θ ⊆ B(j+1) ⊆ Ω/Θ.

Identifying Zj with its image γ ′(Zj), we observe that all elements of the set Zj are invert-
ible in B(j+1). We can therefore write any element b ∈ Ω/Θ as

b = a1s
−1
1 + Θ = s−1

2 a2 + Θ, (3.1)

where a1, a2 ∈ A(j+1) and s1, s2 ∈ Sj . Let b1, b2 ∈ B(j+1) and z1, z2 ∈ Zj such that

b1 = a11−1 + Θ, b2 = a21−1 + Θ, z1 = s11−1 + Θ, z2 = s21−1 + Θ.

Using (3.1), we see that, for all b ∈ Ω/Θ,

b = b1z
−1
1 = z−1

2 b2.

This shows that the set Zj ⊂ B(j+1) satisfies the two-sided Ore condition, thus proving
property (i) of the lemma. We have also proved the equality B(j+1)Z−1

j = Ω/Θ, i.e.
(A(j+1)/P )Z−1

j = A(j+1)S−1
j /PS−1

j .
For part (ii) we use the fact that Θ ∩ A(j) = Q and B(j+1)Z−1

j = Ω/Θ to define an
injective homomorphism

γ : B(j) −→ Ω/Θ
a+Q 7−→ a1−1 + Θ.

Recall that the generators yi ∈ A(j) are defined as:

yi :=

xi if i ≥ j;∑∞
n=0 q

n(n+1)
2

j (qj − 1)−nλ−n
j,i dj,n(xi)x−n

j if i < j.

It is straightforward to check that γ(ȳi) = yi1−1 + Θ gives the desired results for i < j
and i ≥ j.

Part (iii) is proved in the same way as (i) by identifying B(j) with its image γ(B(j)). □

Lemmas 3.13 and 3.14 imply:

Lemma 3.15. Frac(B(j+1)) = Frac(B(j)).
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3.3.2. A/P and A′/ψ(P ). We continue to extend the algorithm to apply to completely
prime quotients A/P . Let P ∈ C.Spec(A) and Q = ψ(P ) ∈ C.Spec(A′) and set the
following notation:

(i) B := A/P and set X̄1, . . . , X̄N ∈ B to be the canonical images of X1, . . . , XN ∈
A.

(ii) B′ := A′/Q and set t1, . . . , tN ∈ B′ to be the canonical images of T1, . . . , TN ∈ A′.
(iii) For j ∈ [[2, N + 1]], denote by Pj := ψj ◦ · · · ◦ ψN (P ) ∈ C.Spec(A(j)) the image of

P after N − j + 1 steps of the deleting derivations algorithm.
(iv) For each j ∈ [[2, N + 1]], define the algebra B(j) := A(j)/Pj and denote by

X̄
(j)
1 , . . . , X̄

(j)
N the canonical images of X(j)

1 , . . . , X
(j)
N in B(j). Note: B(N+1) = B

with (X̄(N+1)
1 , . . . , X̄

(N+1)
N ) = (X̄1, . . . , X̄N ), andB(2) = B′ with (X̄(2)

1 , . . . , X̄
(2)
N )

= (t1, . . . , tN ).

Proposition 3.16. For each j ∈ [[2, N + 1]], B(j) is a subalgebra of Frac(B) generated by
X̄

(j)
1 , . . . , X̄

(j)
N and there is an algebra homomorphism,

fj : A(j) −→ Frac(B)

X
(j)
i 7−→ X̄

(j)
i

with image B(j) and kernel Pj.

Proof. Since B(j) is (trivially) a subalgebra of Frac(B(j)) generated by X̄
(j)
1 , . . . , X̄

(j)
N ,

Lemma 3.15 implies that B(j) is a subalgebra of Frac(B) generated by these same elements.
The homomorphism fj is the concatenation of the natural embedding B(j) ↪→ Frac(B) with
the canonical surjection, πj : A(j) → A(j)/Pj = B(j). The stated image and kernel are
easily verified. □

Proposition 3.17. Let j ∈ [[2, N + 1]].
(i) If X̄(j+1)

j = 0 then X̄
(j)
i = X̄

(j+1)
i for all i ∈ [[1, N ]].

(ii) Suppose X̄(j+1)
j ̸= 0 and set (x1, . . . , xN ) := (X(j+1)

1 , . . . , X
(j+1)
N ). Then the gen-

erators of B(j) are can be obtained as follows:

X̄
(j)
i =

X̄
(j+1)
i if i ≥ j;∑∞
n=0 q

n(n+1)
2

j (qj − 1)−n λ−n
j,i fj+1 ◦ dj,n(xi)

(
X̄

(j+1)
j

)−n
if i < j,

where fj+1 is the map defined in Proposition 3.16.
(iii) Suppose X̄

(j+1)
j ̸= 0 and let Zj = {(X̄(j+1)

j )n | n ∈ N} = {(X̄(j)
j )n | n ∈ N}

be a multiplicatively closed set of regular elements in B(j) and B(j+1). Then
Zj satisfies the two-sided Ore condition in both B(j) and B(j+1) and we have
B(j)Z−1

j = B(j+1)Z−1
j .

Proof. Lemmas 3.13 and 3.15 prove part (i). Part (ii) follows from Lemma 3.14 once one
notes that fj+1 ◦ dj,n(xi) = dj,n(xi) · 1−1 ∈ Frac(B). Part (iii) also follows directly from
Lemma 3.14. □

Let w ∈ W ′ with P ∈ C.Specw(A) and Q = ψ(P ). By the definition of C.Specw(A′),
we have that Ti ∈ Q if and only if i ∈ w or, equivalently, ti = 0 if and only if i ∈ w. Let
i ∈ w̄ := {1, . . . , N}\w so that ti ̸= 0. Then, since Ti is normal in A′ and Q is completely
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prime, ti is normal and regular in B′, hence it is invertible in Frac(B′) = Frac(B). We
denote by Σ the multiplicatively closed set of regular elements in B′ generated by all ti
such that i ∈ w̄. From this set we define, recursively, the sets Σj ⊂ B(j) for j ∈ [[2, N + 1]]
in the following way:

Σ2 := Σ, Σj+1 := B(j+1) ∩ Σj .

The next result extends Proposition 2.7 to quotient algebras.

Proposition 3.18. For each j ∈ [[2, N + 1]] the following statements hold:
(i) Σj is a multiplicatively closed set of regular elements in B(j) which contains, as a

subset, {X̄(j)
i | i ∈ [[j − 1, N ]] and X̄(j)

i ̸= 0};
(ii) Σj satisfies the two-sided Ore condition in B(j);

(iii) The algebras B(j)Σ−1
j , when considered as subalgebras of Frac(B), are all equal.

Proof. We proceed by induction on j. When j = 2, statements (i) and (ii) are immediately
satisfied by the discussion preceding this proposition. Fix j ∈ [[2, N ]] and assume state-
ments (i) and (ii) are true. We show that these properties are also true when replacing
j with j + 1 and that B(j)Σ−1

j = B(j+1)Σ−1
j+1. We consider two cases: X̄(j+1)

j = 0 and
X̄

(j+1)
j ̸= 0.
When X̄

(j+1)
j = 0 we apply Proposition 3.17(i) to obtain X̄

(j)
i = X̄

(j+1)
i for all i ∈

[[1, N ]]. Therefore B(j) = B(j+1), and statements (i) and (ii) follow immediately by the
inductive hypothesis and the fact that Σj+1 ⊆ Σj .

Now suppose X̄(j+1)
j ̸= 0. Applying Proposition 3.17(ii) gives X̄(j)

i = X̄
(j+1)
i for all

i ≥ j and, by the induction hypothesis, we know that{
X̄

(j)
i

∣∣∣ i ∈ [[j − 1, N ]], X̄(j)
i ̸= 0

}
⊆ Σj .

Therefore,

Σj+1 := B(j+1) ∩ Σj ⊇ B(j+1) ∩
{
X̄

(j)
i

∣∣∣ i ∈ [[j − 1, N ]], X̄(j)
i ̸= 0

}
=
{
X̄

(j+1)
i

∣∣∣ i ∈ [[j,N ]], X̄(j+1)
i ̸= 0

}
.

The set Σj is multiplicatively closed, by the induction hypothesis, which means Σj+1 is
multiplicatively closed and it contains regular elements because Pj+1 is a completely prime
ideal. Hence B(j+1) is a domain in which all nonzero elements are regular. This proves
part (i).

Note that Zj ⊂ Σj+1 and Zj ⊂ Σj . Applying Proposition 3.17(iii), we see that

B(j+1) ⊂ B(j+1)Z−1
j = B(j)Z−1

j ⊂ B(j)Σ−1
j .

These inclusions mirror those found in (2.11), and we may apply the rest of the method
used in the proof of Proposition 2.7 to conclude parts (ii) and (iii) of this proposition. □

An immediate consequence of this proposition is that we can now show equivalence of
the total rings of fractions of A/P and A′/ψ(P ) for P ∈ C.Spec(A).

Theorem 3.19. Let w ∈ W ′, P ∈ C.Specw(A), and Q = ψ(P ) ∈ C.Specw(A′). Let Σ
be the multiplicatively closed set of elements in A′/Q which is generated by all the ti such
that i ∈ w̄ = {1, . . . , N}\w, where ti is the canonical image of Ti in A′/Q. Then,

(i) Σ is a multiplicatively closed set of regular, normal elements in A′/Q.
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(ii) There exists a multiplicatively closed set of regular elements, Γ, in A/P which satis-
fies the two-sided Ore condition in A/P and is such that (A/P )Γ−1 = (A′/Q)Σ−1.

(iii) Frac(A/P ) = Frac(A′/Q). Furthermore, A/P and A′/Q are PI algebras if all λi,j

with i, j ∈ w̄ are roots of unity and, in this case, PI-deg(A/P ) = PI-deg(A′/Q).

The first part of (iii) in the above theorem can be seen as a quantum version of the
Gelfand–Kirillov Conjecture, see [3, Conjecture II.10.4] and discussion thereafter.

The following ideals are defined for later use as they ensure that at the end of the
deleting derivations algorithm on A/P we obtain a quantum affine space A′/ψ(P ).

Definition 3.20. Let w ∈ W ′. We call Pw ∈ C.Specw(A) a Cauchon ideal if ψ(Pw) =
Jw := ⟨Ti ∈ A′ | i ∈ w⟩ ∈ C.Specw(A′).

Remark 3.21. It can be shown that a rational torus action on A induces a rational
torus action on A′ and that ψ sends torus-invariant completely prime ideals in A to torus-
invariant completely prime ideals in A′. This matches analogous results in the generic
setting [6] and the Poisson setting [18]. Unlike in those settings, this observation does
not immediately yield results allowing us to determine explicitly what W ′ is for specific
algebras A. For this reason, we omit these results from this paper.

4. PI degree of completely prime quotients of quantum matrices at roots
of unity

In this section, we consider iterated Ore extensions
A = K[X1][X2;σ2, δ2] . . . [XN ;σN , δN ]

satisfying Hypothesis 1.2 at roots of unity. That is, we assume that all the parameters
λi,j from Hypothesis 1.2 are roots of unity.

In that case, it follows from [16, Theorem 1.2] that the algebra A is PI and that, with
the notation of the previous section:

PI-deg(A) = PI-deg(A′).
Our aim in this section is to provide techniques to compute the PI degree of completely

prime quotients of A. In particular, we will focus on the case where A is a single parameter
quantum matrix algebra (at roots of unity).

4.1. PI degree of completely prime quotients of A. Under our assumptions, A is
a PI algebra and this implies that every completely prime quotient of A is a PI algebra
too. Our next aim is to compute the PI degree and construct irreducible representations
of maximal dimension of quotients by Cauchon ideals.

4.2. PI degree of quotients by a Cauchon ideal. In the case where Pw is the Cauchon
ideal associated to a Cauchon diagram w ∈ W ′, we get that ψ(Pw) = ⟨Ti | i ∈ w⟩ and so
A′/Q is a quantum affine space. Namely, A′/Q = OΛw(KN−|w|), where Λw is the matrix
deduced from Λ = (λij) by removing rows and columns indexed by elements of w.

In view of Theorem 3.19(iii) and the above discussion, we obtain the following result.

Theorem 4.1. Let Pw be the Cauchon ideal associated to a Cauchon diagram w ∈ W ′.
Then PI-deg(A/Pw) = PI-deg(OΛw(KN−|w|)).

De Concini and Procesi developed techniques to compute the PI degree of a quantum
affine space. More precisely, they prove the following result.
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Theorem 4.2 ([10, Proposition 7.1]). Let S = (sij) be a multiplicatively skew-symmetric
n× n matrix with coefficients in K. Then:

(1) If all sij are roots of unity, then there exists a primitive root of unity q ∈ K× and
integers aij such that sij = qaij for all i, j.

(2) Assume sij = qaij for all i, j, where q is a primitive ℓth root of unity and aij ∈ Z
for all i, j, so that M := (aij) ∈ Mn(Z) is a skew-symmetric matrix. Then the
PI degree of the corresponding quantum affine space OqM (Kn) := OS(Kn) is

√
h,

where h is the cardinality of the image of the homomorphism

Zn Zn (Z/ℓZ)n,M π

where π denotes the canonical epimorphism.

The above result together with Theorem 4.1 allows us to compute the PI degree of
quotients by Cauchon ideals.

In the following section, we illustrate this in the case when A is a single parameter
quantum matrix algebra.

4.3. PI degree of quotients of single parameter quantum matrix algebras by
Cauchon ideals. In this section, we assume that λij = qmij for all i, j, where q is
a primitive ℓth root of unity and mij ∈ Z for all i, j. In this case, we say that A is
uniparameter. We set M := (mij) ∈ MN (K) and it can be assumed that M is skew-
symmetric. It is a well-known result that every skew-symmetric integral matrix S is
congruent (in the sense of [22, Chapter IV]) to its skew-normal form, that is, to a block
diagonal matrix of the form

S =



0 h1
−h1 0

0 h2
−h2 0

. . .
0 hs

−hs 0
0

 ,

where 0 is a square matrix of zeros of dimension dim(ker(S)) so that 2s = N−dim(ker(S)),
and h1, h1, h2, h2, . . . , hs, hs ∈ Z\{0} are called the invariant factors of M . As they
always come in pairs, from now on we will avoid repetition and list the invariant factors
simply as h1, h2, . . . , hs. These have the property that hi|hi+1 for all i ∈ [[1, s− 1]].

The following results assume the existence of a Cauchon ideal for w ∈ W ′. While we
have not discussed this non-trivial question in this article, we note that in the case of
quantum matrices, it was proved in [23, Theorem 4.37] that Cauchon ideals exist for all
w ∈ W ′.

Theorem 4.3. Assume A is a uniparameter iterated Ore extension satisfying Hypothe-
sis 1.2 with parameter q being a primitive ℓth root of unity. Let w ∈ W ′ and Pw := ψ−1(Jw)
be the corresponding Cauchon ideal. Then

PI-deg(A/Pw) =

N−|w|−dim(ker(M(w)))
2∏

i=1

ℓ

gcd(hi, ℓ)
,

where the hi are the invariant factors of the matrix M(w) deduced from M by removing
rows and columns indexed by w.
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We finish this section by studying the case of single parameter quantum matrices. That
is, we assume that A = Oq(Mm,n(K)) with q being a primitive ℓth root of unity. Recall
that the quantised coordinate ring of m × n matrices over K denoted by Oq(Mm,n(K))
is the K-algebra generated by m × n indeterminates {Xi,j}m,n

i,j=1 subject to the following
relations: for (1, 1) ≤ (i, j) < (s, t) ≤ (m,n) (in lexicographic ordering), we have

Xi,jXs,t =


Xs,tXi,j i < s, j > t;
qXs,tXi,j (i = s, j < t) or (i < s, j = t) ;
Xs,tXi,j + (q − q−1)Xi,tXs,j i < s, j < t.

Under our assumption that q is a primitive ℓth root of unity, the quantum matrix
algebra A = Oq(Mm,n(K)) is a uniparameter iterated Ore extension (with the generators
added in the lexicographic order) satisfying Hypothesis 1.2, see [16, Section 5.3] for details.

Let w be a Cauchon diagram and Pw the corresponding Cauchon ideal in A. It follows
from the above result that to compute the PI degree of A/Pw, we need to compute the
dimension of ker(M(w)) and the invariant factors of M(w)). This was done in [1] and [2]
respectively. Before stating our main result, we recall necessary results from these two
articles.

To any w ∈ W, we associate an m × n diagram D(w), where D(w) is the m × n grid
whose square in position (i, j) is coloured black if (i, j) ∈ w and white if (i, j) /∈ w. We
may compute its toric permutation τ = τw, as defined in [1, Section 4.1], by laying pipes
over the squares such that we place a “cross” on each black square and a “hyperbola” on
each white square. We label the sides of the diagram with the numbers 1, . . . , m+n such
that each pair of opposite sides share the same labels in the same order. The permutation,
τw, may then be read off this diagram by defining τw(i) to be the label (on the left or top
side of D(w)) reached by following the pipe starting at label i (on the right or bottom side
of D(w)). See Figure 4.1 for an example of a diagram with τ = (17)(26384).

1 2 3

4 5 6 7

8 9

←→

1

2

3

1

2

3

4 5 6 7 8

4 5 6 7 8

Figure 4.1. Labelled 3 × 5 diagram (left) with pipe dream construction
(right) associated to the diagram {(1, 2), (1, 4), (2, 2), (3, 1), (3, 2), (3, 3)} in
Oq(M3,5(K)).

It was proved in [1] that dim(ker(M(w)) is given by the number r(w) of odd cycles
in the disjoint cycle decomposition of its associated toric permutation τw. Moreover, [2,
Theorem 2.6] shows that all invariant factors of M(w) are powers of 2.

Putting all these together, we obtain the following result.
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Theorem 4.4. Assume q is a primitive ℓth root of unity with ℓ odd.Let w be a Cauchon
diagram for Oq(Mm,n(K)) and Pw be the corresponding Cauchon ideal. Then

PI-deg(Oq(Mm,n(K))/Pw) =
√
ℓmn−r(w),

where r(w) is the number of odd cycles in the disjoint cycle decomposition of the toric
permutation associated to w.

Note that we did not need an explicit description of the set W ′ of Cauchon diagrams
to obtain the above result. For completeness, we note that W ′ coincides with the set of
m× n Cauchon-Le diagrams (see [23, Theorem 4.37] for details).

5. Irreducible Representations of Maximum Dimension

We take 1 ̸= q ∈ K∗ to be arbitrary, unless stated otherwise. Let A be an algebra
satisfying Hypothesis 1.2 such that λi,j = qmi,j for some skew-symmetric matrix M =
(mi,j)i,j ∈ MN (Z). Fix P ∈ C.Specw(A), for some Cauchon diagram w ∈ W ′. We make
use of the deleting derivations algorithm to construct an irreducible representation of A/P
given a “suitable” irreducible representation of A′/ψ(P ). When A is a PI algebra (which
holds if q is a root of unity), P is a Cauchon ideal and K is algebraically closed, it turns
out that any irreducible representation of A′/ψ(P ) is “suitable”.

Recall the notation set in Section 3.3: B := A/P with generators X̄i := Xi + P and
B′ := A′/ψ(P ) with generators ti := T̄i. Set, again, Σ := Σ2 ⊆ B′ to be the (two-sided)
Ore set generated by the ti, for i ∈ [[1, N ]]\w and then define, recursively for all j ∈ [[2, N ]],
Σj+1 := Bj+1 ∩ Σj , with Γ := ΣN+1 being a (two-sided) Ore set in B.

Proposition 5.1. Let A be a K-algebra satisfying Hypothesis 1.2, P ∈ C.Specw(A) for
some w ∈ W ′ and suppose that (ϕ′, V ) is an irreducible representation of B′ where, for
each e ∈ Σ, there exists some ξ = ξe ∈ K∗ and ℓ = ℓe ∈ N>1 such that ϕ′(e)ℓ = ξ IdV .

Then, for any b ∈ B, there exists some b′ ∈ B′ and e ∈ Σ such that
b = b′e−1 ∈ B′Σ−1

and ϕ′ induces an irreducible representation of B on the same vector space V , defined by
the algebra homomorphism

ϕ : B −→ EndK(V )
b 7−→ ξ−1ϕ′(b′)ϕ′(e)ℓ−1.

Proof. Let (ϕ′, V ) be an irreducible representation of B′ satisfying the conditions of the
proposition. The condition on ϕ′ implies that ϕ′(e)−1 = ξ−1

e ϕ′(e)ℓe−1 and induces a rep-
resentation of B′Σ−1,

ϕ̂ : B′Σ−1 −→ EndK(V )
b′ 7−→ ϕ′(b′)

e−1 7−→ ξ−1
e ϕ′(e)ℓe−1,

from which we observe that ϕ̂(e)−1 = ξ−1
e ϕ̂(e)ℓe−1, for all e ∈ Σ. The inclusion B′ ⊆ B′Σ−1

ensures that (ϕ̂, V ) is irreducible.
From Proposition 3.18 and Theorem 3.19 we see that B′Σ−1 = BΓ−1, hence each

element in BΓ−1 can be written in terms of elements in B′Σ−1, and vice versa. This
allows us to view ϕ̂ as an algebra homomorphism ϕ̂ : BΓ−1 → EndK(V ), hence (ϕ̂, V )
defines an irreducible representation of BΓ−1.
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Every element b ∈ B may be written as an element b · 1−1 ∈ BΓ−1, which we write
simply as b ∈ BΓ−1. By the equality of localisations, b may also be written as an element
in B′Σ−1, that is, b = b′e−1 ∈ B′Σ−1. Restricting ϕ̂ to B gives the following algebra
homomorphism:

ϕ : B −→ EndK(V )

b 7−→ ϕ̂
(
b′e−1

)
= ξ−1ϕ′(b′)ϕ′(e)ℓ−1.

This defines a (not necessarily irreducible) representation of B on V . To show that this
representation is irreducible we note that Γ ⊆ Σ. Therefore, for all g ∈ Γ, there exists
some ξ′ ∈ K∗ and ℓ′ ∈ N>1 such that ϕ̂(g)ℓ′ = ξ′ IdV , hence

ϕ(g)ℓ′ = ϕ̂(g)ℓ′ = ξ′ IdV .

Using the identity BΓ−1 = B′Σ−1 we may write any element b′ ∈ B′ as b′ = bg−1 ∈ BΓ−1.
Thus

ϕ′(b′) = ϕ̂(b′) = ϕ̂
(
bg−1

)
= ξ′−1ϕ̂(b)ϕ̂(g)ℓ′−1 = ϕ

(
ξ′−1bgℓ′−1

)
,

which shows that ϕ′(B′) ⊆ ϕ(B). Therefore, since (ϕ′, V ) is irreducible, so too is (ϕ, V ).
□

Remark 5.2. If we take P = {0} in Proposition 5.1 then we get B′ = A′ and B = A and
the statement can be stated analogously given the results and notation of Proposition 2.7
and Theorem 2.8. This means that we can construct an irreducible representation of
A provided we have an irreducible representation (ϕ′, V ) of A′ satisfying the condition
ϕ′(e)ℓe = ξe IdV , for some ℓe ∈ N> 1 and ξe ∈ K∗, for all elements e of the Ore set in A′

generated by {Ti}N
i=1.

Restricting the algebra A to the root of unity case and taking K to be algebraically closed
(needed for Schur’s lemma, used in the proof), we see that any irreducible representation
on B′ will satisfy the conditions of Proposition 5.1, except that in general it cannot be
guaranteed that all of the scalars ξe ∈ K are nonzero. However, this caveat can be
circumvented for Cauchon ideals.

Theorem 5.3. Take K to be an algebraically closed field. Let A be a K-algebra satisfying
Hypothesis 1.2 and suppose that the λi,j in (H1.2.1) are of the form λi,j = qmi,j for some
skew-symmetric matrix M = (mi,j)i,j ∈ MN (Z), where q ∈ K∗ is a primitive ℓth root of
unity with ℓ ∈ N>1.

Let P ∈ C.Specw(A), for some w ∈ W ′. Then:
(1) For any irreducible representation (ϕ′, V ) of B′ and for each e ∈ Σ, there exists

ξe ∈ K such that ϕ′(e)ℓ = ξe IdV .
(2) Any irreducible representation (ϕ′, V ) of B′ induces an irreducible representation

(ϕ, V ) of B on the same underlying vector space V , provided that no generator ti,
with i ∈ [[1, N ]]\w, annihilates (ϕ′, V ).

In particular, if P = Pw is a Cauchon ideal, then we can construct an irreducible rep-
resentation (ϕ′, V ) of B′ of maximal dimension which induces, by the same method, an
irreducible representation (ϕ, V ) of B, consequently also of maximal dimension.

Proof. The algebra, B′ = A′/ψ(P ) is generated by the ti with i ∈ [[1, N ]]\w, where ti :=
Ti + ψ(P ), hence titj = qmi,j tjti, for all i, j ∈ [[1, N ]]\w. It follows from Theorem 2.8(iii)
that B′ is a prime affine PI algebra. In particular, any irreducible representation (ϕ′, V )
of B′ is finite dimensional.
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Since q is an ℓth root of unity, we deduce that tℓi ∈ Z(B′), for all i ∈ [[1, N ]]\w. Thus,
by Schur’s lemma, ϕ′(ti)ℓ = ξi IdV , for some ξi ∈ K. Recall that Σ is the multiplicatively
closed set generated by {ti | i ∈ [[1, N ]]\w}, thus it follows that, for each e ∈ Σ, there
exists ξe ∈ K such that ϕ′(e)ℓ = ξe IdV . Moreover, if ξi ̸= 0 for all i ∈ [[1, N ]]\w, then
also ξe ̸= 0. In this case, by Proposition 5.1, (ϕ′, V ) induces an irreducible representation
(ϕ, V ) of B.

Suppose that ξi = 0 for some i ∈ [[1, N ]]\w. Since ti is normal in B′ and V is irreducible,
tiV is either 0 or V and since tℓiV = ξiV = 0, it follows that tiV = 0, so ti annihilates
(ϕ′, V ).

Finally, suppose that P = Pw is a Cauchon ideal. Then B′ = A′/Jw is a quantum
affine space OqM(w)(KN−|w|). Using [2, Proposition 3.4] we can construct an irreducible
representation (ϕ′, V ) of B′ of maximal dimension such that no ti annihilates V , for any
i ∈ [[1, N ]]\w. The conclusion then follows from the above results. (See Subsection 5.1.4
for a detailed construction.) □

Remark 5.4. When P is a Cauchon ideal (P = Pw for some w ∈ W ′) then, by definition,
B′ becomes a quantum affine space. Thus, if A is a quantum nilpotent algebra at a
primitive ℓth root of unity q as in Theorem 5.3, then

PI-deg(B′) =

N−|w|−dim(ker(M(w)))
2∏

i=1

ℓ

gcd(hi, ℓ)
,

where the hi are the invariant factors of the matrix M(w) deduced from M by removing
rows and columns indexed by w (see Theorem 4.3). We can construct an irreducible
representation of B′ of maximal dimension using [2, Proposition 3.4], in such a way that
the conditions in Theorem 5.3 are satisfied. As explained in the statement and proof of
that result, this will then induce an irreducible representation of B via the method of
Proposition 5.1. These results therefore give a method to construct an explicit maximal
dimensional irreducible representation of B.

Proposition 5.1 and Theorem 5.3 have been stated for the two extreme algebras in the
DDA. In practice, we would often deal with one step of the DDA at a time, that is we would
deduce an irreducible representation of A(j+1)/Pj+1 from an irreducible representation of
A(j)/Pj .

5.1. Example: A maximal irreducible representation of U+
q (so5)/⟨z′⟩. To illustrate

Remark 5.4 we will construct an irreducible representation of a quotient of A := U+
q (so5)

by the ideal ⟨z′⟩ (defined later in this section). This example will require applications of
the deleting derivations algorithm on both A (Theorem 2.3) and A/⟨z′⟩ (Theorem 3.19),
computing the image of ⟨z′⟩ by the canonical embedding (Section 3.2), and the calcula-
tion of the PI degree of A/⟨z′⟩ (Theorem 4.3). The full details of these computations
are omitted as they are straightforward but lengthy, however they can be found in [23,
Sections 5.3.1 and 7.3.2].

For this example, we take q to be a primitive ℓth root of unity with ℓ /∈ {2, 4}.
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5.1.1. Defining the algebra. U+
q (so5) is the C-algebra generated by two indeterminates

E1, E2 subject to the following relations:

E3
1E2 −

(
q2 + 1 + q−2

)
E2

1E2E1 +
(
q2 + 1 + q−2

)
E1E2E

2
1 − E2E

3
1 = 0

E2
2E1 −

(
q2 + q−2

)
E2E1E2 + E1E

2
2 = 0.

There is a PBW basis of U+
q (so5) formed by monomials Ek1

1 Ek4
4 Ek3

3 Ek2
2 , where k1, k2, k3, k4

are nonnegative integers and E3, E4 are certain root vectors. This result can be found, for
example, in [17, Section 2.4]. The same paper also expresses this algebra as an iterated Ore
extension over C generated by these four indeterminates in the order E1, E4, E3, E2. For
an easier application of the deleting derivations algorithm, we relabel the indeterminates:

X1 := E1, X2 := E4, X3 := E3, X4 := E2.

The relations between X1, X2, X3, X4 in [17] then become

X2X1 = q−2X1X2,

X3X1 = X1X3 −
(
q + q−1

)
X2, X3X2 = q−2X2X3,

X4X1 = q2X1X4 − q2X3, X4X2 = X2X4 − q2 − 1
q + q−1X

2
3 , X4X3 = q−2X3X4.

This allows us to present A := U+
q (so5) as the following iterated Ore extension:

U+
q (so5) = C[X1][X2;σ2][X3;σ3, δ3][X4;σ4, δ4]

where, using the notation Aj := C⟨X1, . . . , Xj⟩ ⊆ A, the automorphisms σi and skew-
derivations δi are defined on the generators as:

σ2 : A1 −→ A1; X1 7−→ q−2X1,

σ3 : A2 −→ A2; X1 7−→ X1 δ3 : A2 −→ A2; X1 7−→ −
(
q + q−1

)
X2

X2 7−→ q−2X2, X2 7−→ 0,
σ4 : A3 −→ A3; X1 7−→ q2X1 δ4 : A3 −→ A3; X1 7−→ −q2X3

X2 7−→ X2 X2 7−→ − q2 − 1
q + q−1X

2
3

X3 7−→ q−2X3, X3 7−→ 0.

(5.1)

5.1.2. Verifying that U+
q (s05) satisfies Hypothesis 1.2. Routine computations on these

maps using [16, Theorem 2.8 and Lemma 5.3] show that A satisfies all properties of
Hypothesis 1.2. In particular:

(H1.2.1) The λi,j ’s are as in (5.1).
(H1.2.2) λi,j = qmi,j , with the mi,j defining the skew-symmetric matrix

M :=
( 0 2 0 −2

−2 0 2 0
0 −2 0 2
2 0 −2 0

)
∈ M4(Z).

(H1.2.3) (σ3, δ3) is q2-skew and (σ4, δ4) is q4-skew. So we set q3 = q2 and q4 = q4.
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(H1.2.4) The higher qj-skew σj-derivations are defined to be:

dj,n(Xl) =


Xl n = 0;
δj(Xl) n = 1;
0 n > 1,

(5.2)

for j ∈ {3, 4} and l ∈ [[1, j − 1]].
Since there are two nonzero derivations we apply Theorem 2.3 twice to obtain A′ =
CqM [T1, T2, T3, T4], where

T4 := X4, T3 := X3, T2 := X2 − q5

(q2 + 1)2X
2
3X

−1
4 , (5.3)

T1 := X1 − q2 (q + q−1)
q2 − 1 X2X

−1
3 . (5.4)

5.1.3. Finding the PI degree of U+
q (s05)/⟨z′⟩. Consider the ideal ⟨z′⟩ ◁ A, generated by

the central element (see [17, Section 2.4])

z′ := −
(
q2 − q−2

) (
q + q−1

)
X2X4 + q2

(
q2 − 1

)
X2

3 .

Using localisation theory, Proposition 2.7 (iii), and repeated application of Proposition 3.4
and Lemma 3.1, one can show that ψ−1(⟨T2⟩) = ⟨z′⟩. In particular this proves that
⟨z′⟩ ∈ C.Spec{2}(A) and therefore {2} ∈ W ′. In fact, since A′/⟨T2⟩ = CqM′ [t1, t3, t4],
where ti := Ti + ⟨T2⟩ for all i ∈ {1, 3, 4}, then ⟨z′⟩ is a Cauchon ideal.

By Theorem 3.19,

PI-deg
(
U+

q (s05)/⟨z′⟩
)

= PI-deg
(
A′/⟨T2⟩

)
= PI-deg

(
CqM′ [t1, t3, t4]

)
where

M ′ =
(

0 0 −2
0 0 2
2 −2 0

)
is obtained from M by deleting the second row and second column. It is easily verified
that the skew normal form of M ′ is

S =
( 0 2 0

−2 0 0
0 0 0

)
,

hence M ′ has a kernel of dimension 1 and one pair of invariant factors: h1 = 2. Applying
Theorem 4.3 with P{2} = ⟨z′⟩ gives:

PI-deg(A/⟨z′⟩) =
4−1−1

2∏
i=1

ℓ

gcd(hi, ℓ)
= ℓ

gcd(2, ℓ) =
{
ℓ ℓ is odd;
ℓ/2 ℓ > 4 is even.

5.1.4. Constructing an irreducible representation of U+
q (so5)/⟨z′⟩ of maximum dimension.

Recall that B′ := CqM′ [t1, t3, t4], B := U+
q (so5)/⟨z′⟩ and let Σ ⊆ B′ be the multiplicatively

closed set generated by {t1, t3, t4}. The quantum affine space associated to S is D :=
CqS [x1, y1, z1]. Let ℓ′ = ℓ

gcd(2,ℓ) = PI-deg(B). By [2, Proposition 3.4(ii)] there is an ℓ′-
dimensional C-vector space V , λ, ξ ∈ C∗ and an algebra homomorphism φ : D → EndC(V )
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whose image on the generators of D, upon fixing a basis v1, . . . , vℓ′ ∈ V , may be presented
as matrices in the following way:

φ(x1) =


λ

λq2

λq4

. . .
λq(ℓ′−1)2

 , φ(y1) =


0 0 ... 0 1
1 0 ... 0 0
0 1 ... 0 0
... . . . ...

...
0 ... ... 1 0

 , φ(z1) = ξ IdV .

The pair (φ, V ) defines an irreducible representation of D.
To define an irreducible representation of CqM′ [t1, t3, t4] we apply [2, Proposition 3.4(iii)]

using

E−1 =
(

1 0 1
−1 0 0
0 −1 0

)
,

where E ∈ M3(Z) is the invertible matrix satisfying EM ′ET = S. The resulting algebra
homomorphism ϕ′ : CqM′ [t1, t3, t4] → EndC(V ), is defined on t1, t3, t4 as

ϕ′(t1) = φ
(
x1

1y
0
1z

1
1

)
= φ(x1)φ(z1) = ξφ(x1),

ϕ′(t3) = φ
(
x−1

1 y0
1z

0
1

)
= φ(x1)−1 = λ−ℓ′

φ
(
xℓ′−1

1

)
,

ϕ′(t4) = φ
(
x0

1y
−1
1 z0

1

)
= φ(y1)−1 = φ

(
yℓ′−1

1

)
,

(5.5)

and it defines an irreducible representation of CqM′ [t1, t3, t4] on V . Using the definition of
φ, we see that

ϕ′(t1)ℓ′ = ξℓ′
φ(x1)ℓ′ = (ξλ)ℓ′ IdV ,

ϕ′(t3)ℓ′ = λ−ℓ′2
φ(x1)ℓ′2−ℓ′ = λ−ℓ′2

λℓ′2−ℓ′ IdV = λ−ℓ′ IdV ,

ϕ′(t4)ℓ′ = φ(y1)ℓ′2−ℓ′ = IdV ,

hence the conditions of Proposition 5.1 are satisfied. Applying this proposition allows us
to define an irreducible representation of B once we know how to write the generators
X̄1, . . . , X̄4 ∈ B in terms of the generators t1, t3, t4 ∈ B′. Using (5.3) we see that

t4 := X̄4, t3 = X̄3, t2 = X̄2 − q4

(q2 + 1) (q + q−1)X̄
2
3X̄

−1
4 ,

and t1 = X̄1 − q2 (q + q−1)
q2 − 1 X̄2X̄

−1
3 .

Rearranging these identities, and noting that t2 = 0, allows us to write

X̄4 = t4, X̄3 = t3, X̄2 = q4

(q2 + 1) (q + q−1) t
2
3t

−1
4 , X̄1 = t1 + q4

q4 − 1 t3t
−1
4 .
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Applying Proposition 5.1 and using (5.5), we deduce that there is an algebra homomor-
phism ϕ : B → EndC(V ) defined on generators as

ϕ(X̄4) = ϕ′(t4) = φ(y1)−1, ϕ(X̄3) = ϕ′(t3) = φ(x1)−1,

ϕ(X̄2) = ϕ′
(

q4

(q2 + 1)(q + q−1) t
2
3t

−1
4

)
ϕ(X̄1) = ϕ′

(
t1 + q4

q4 − 1 t3t
−1
4

)

= q4

(q2 + 1)(q + q−1)φ(x1)−2φ(y1), = ξφ(x1) + q4

q4 − 1φ(x1)−1φ(y1),

which defines an irreducible representation (ϕ, V ) of B. Substituting in the matrices for
φ(x1) and φ(y1) and taking, for example, ℓ = 5 gives the following explicit form of this
irreducible representation:

ϕ(X̄4) =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


, ϕ(X̄3) =



λ−1 0 0 0 0
0 λ−1q3 0 0 0
0 0 λ−1q 0 0
0 0 0 λ−1q4 0
0 0 0 0 λ−1q2


,

ϕ(X̄2) =



0 0 0 0 1
(q2+1)2λ2

q
(q2+1)2λ2 0 0 0 0

0 q2

(q2+1)2λ2 0 0 0

0 0 q3

(q2+1)2λ2 0 0

0 0 0 q4

(q2+1)2λ2 0


,

ϕ(X̄1) =



ξλ 0 0 0 q4

(q4−1)λ
q2

(q4−1)λ ξλq2 0 0 0

0 1
(q4−1)λ ξλq4 0 0

0 0 q3

(q4−1)λ ξλq 0

0 0 0 q
(q4−1)λ ξλq3


.
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