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The Broué invariant of a p-permutation equivalence

Robert Boltje ∗

Abstract. A perfect isometry I (introduced by Broué) between two blocks B and C is a frequent
phenomenon in the block theory of finite groups. It maps an irreducible character ψ of C to ± an
irreducible character of B. Broué proved that the ratio of the codegrees of ψ and I(ψ) is a rational
number with p-value zero and that its class in Fp is independent of ψ. We call this element the Broué
invariant of I. The goal of this paper is to show that if I comes from a p-permutation equivalence
or a splendid Rickard equivalence between B and C then, up to a sign, the Broué invariant of I is
determined by local data of B and C and therefore, up to a sign, is independent of the p-permutation
equivalence or splendid Rickard equivalence. Apart from results on p-permutation equivalences,
our proof requires new results on extended tensor products and bisets that are also proved in this
paper. As application of the theorem on the Broué invariant we show that various refinements of the
Alperin–McKay Conjecture, introduced by Isaacs–Navarro, Navarro, and Turull are consequences of
p-permutation equivalences or splendid Rickard equivalences over a sufficiently large complete discrete
valuation ring or over Zp, depending on the refinement.

1. Introduction

Throughout this introduction, we fix finite groups G and H and a complete discrete
valuation ring O containing a root of unity ζ of order exp(G×H), the exponent of G×H.
We assume that the field of fractions K of O has characteristic 0 and that its residue field
F = O/J(O) has prime characteristic p. We denote by a 7→ ā the canonical epimorphisms
O → F and OX → FX for any finite group X.

Further, we fix primitive central idempotents b of OG and c of OH. We denote by
B := OGb and C := OHc the corresponding block algebras. By R(KGb,KHc) we denote
the Grothendieck group of finitely generated (KGb,KHc)-bimodules and always view it via
the usual category isomorphism KGmodKH ∼= K[G×H]mod as subgroup of the Grothendieck
group R(K[G×H]) of finitely generated left K[G×H]-modules. As usual, we also identify
the latter with the group of virtual K-characters of G×H.
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In [6], Broué introduced the notion of a perfect isometry between B and C as follows.
A virtual character µ ∈ R(K[G × H]) is called perfect if it satisfies the following two
conditions:

(i) For any (g, h) ∈ G×H one has µ(g, h)/|CG(g)| ∈ O and µ(g, h)/|CH(h)| ∈ O.
(ii) If (g, h) ∈ G × H satisfies µ(g, h) ̸= 0 then g is a p′-element if and only if h is a

p′-element.
Note that one has a group isomorphism R(KGb,KHc) ∼→ Hom(R(KHc), R(KGb)), µ 7→
Iµ, induced by the functor M ⊗KHc − : KHcmod → KGbmod for any finitely generated
(KGb,KHc)-bimodule M . A perfect isometry between B and C is an isomorphism I =
Iµ : R(KHc) → R(KGb) induced by a perfect element µ ∈ R(KGb,KHc), which respects
the Schur inner products on R(KG) and R(KH). Thus, I is a “bijection with signs”
between Irr(KHc) and Irr(KGb): I determines a bijection α : Irr(KHc) ∼→ Irr(KGb) and
signs εψ ∈ {±1}, ψ ∈ Irr(KHc), such that I(ψ) = εψα(ψ), for all ψ ∈ Irr(KHc). If I = Iµ
is a perfect isometry one also calls µ a perfect isometry.

In [6, Lemme 1.6], it is shown that if µ is a perfect isometry between B and C then the
rational numbers

|G|/Iµ(ψ)(1)
|H|/ψ(1) , ψ ∈ Irr(KHc) , (1.1)

are units in the localization Z(p) and their residue classes in Z(p)/pZ(p) = Fp are equal,
independent of ψ. We will denote this element in F×

p , which is uniquely determined by µ,
by β(µ) and will call it the Broué invariant of µ.

By [6, Proposition 1.2], an element µ ∈ R(KGb,KHc) is perfect if it belongs to the
Z-span of characters of indecomposable p-permutation (B,C)-bimodules M (i.e., direct
summands of permutation O[G × H]-modules when viewed as O[G × H]-module) which
have a twisted diagonal vertices, i.e., vertices of the form ∆(P, ϕ,Q) := {(ϕ(y), y) | y ∈ Q},
where P ≤ G and Q ≤ H are p-subgroups and ϕ : Q ∼→ P is an isomorphism. We denote
the free abelian group on the set of isomorphism classes [M ] of such indecomposable mod-
ules M by T∆(B,C). In [2], a p-permutation equivalence between B and C was defined to
be an element γ ∈ T∆(B,C) with the property that γ ·H γ◦ = [B], where −◦ : T∆(B,C) →
T∆(C,B) is induced by taking O-duals and − ·H − : T∆(B,C) ×T∆(C,B) → T∆(B,B) is
induced by −⊗OH −. It follows that also γ◦ ·G γ = [C] ∈ T∆(C,C), see [2, Theorem 12.3].
Using the canonical map

κ : T∆(B,C) → R(KGb,KHc)
induced by K ⊗O −, every p-permutation equivalence yields a perfect isometry Iµ with
µ := κ(γ), see [2, Proposition 9.9]. We set β(γ) := β(κ(γ)) and call β(γ) again the Broué
invariant of the p-permutation equivalence γ.

If γ ∈ T∆(B,C) is a p-permutation equivalence then, by [2, Theorems 14.1 and 14.3],
there exists an indecomposable p-permutation (B,C)-bimodule M with vertex of the form
∆(D,ϕ,E), where D is a defect group of B, E is a defect group of C, and ϕ : E ∼→ D is
an isomorphism, and there exists a sign ε ∈ {±1} such that

γ = ε · [M ] +
r∑
i=1

ni · [Mi]

with integers n1, . . . , nr and indecomposable p-permutation (B,C)-bimodulesM1, . . . , Mr

with vertices that are properly contained in ∆(D,ϕ,E). Thus, M and ε = ε(γ) are
uniquely determined (up to isomorphism in the case of M) by γ. They are called the
maximal module and the sign of γ.
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In the main result of this paper we show that ε(γ) · β(γ) is determined by the “most
local” data of B and C, and is independent of γ. Let (D, e) be a maximal B-Brauer
pair. Thus, D is a defect group of B and e is a block idempotent of OCG(D) with
brD(b)ē ̸= 0, where brD : (OG)D → FCG(D),

∑
g ∈G αgg 7→

∑
g ∈CG(D) αgg, is the Brauer

homomorphism, an O-algebra homomorphism, and where (OG)D denotes the set of D-
fixed points of OG under D-conjugation. The block algebra FCG(D)e has defect group
Z(D) (see [12, Corollary 6.3.10]) and, up to isomorphism, it has a unique simple module
V (see [12, Proposition 6.6.5]). We set

b(B) := [CG(D) : Z(D)]
dimF (V ) . (1.2)

Since any two maximal B-Brauer pairs are G-conjugate, the rational number b(B) does
not depend on the choices of (D, e). Since the block algebra OCG(D)e has the central
defect group Z(D), its image under the natural epimorphism OCG(D) → O[CG(D)/Z(D)]
is a block B∗ of defect zero (see [12, Proposition 6.6.5]) whose unique irreducible character
ζ satisfies ζ(1) = dimF (V ) and also has defect zero. Therefore, b(B) is the codegree of
the irreducible character ζ of CG(D)/Z(D) and an integer which is not divisible by p. We
denote by

β(B) := b(B) ∈ F×
p

its residue class in Z/pZ = Fp. It is an invariant of the block algebra B.

Theorem 1.1. Let B = OGb and C = OHc be block algebras as above and let γ ∈
T∆(B,C) be a p-permutation equivalence between B and C. Then

β(γ) = ε(γ) · β(B)
β(C) . (1.3)

In particular, up to a sign, β(γ) is independent of γ.

Remark 1.2.
(a) Let X• be a splendid Rickard equivalence between B and C. For our purposes

this is (see [16], where this concept was introduced first) a bounded chain complex
X• of finitely generated p-permutation (B,C)-bimodules, whose indecomposable
direct summands have twisted diagonal vertices, such that

X• ⊗OH X◦
• ≃ B and X◦

• ⊗OG X• ≃ C

where X◦
• denotes the O-dual chain complex of X•, ≃ means homotopy equivalence

of chain complexes of (B,B)-bimodules (resp. (C,C)-bimodules), and B (resp. C)
denotes the chain complex with B (resp. C) placed in degree 0 and being the
only non-zero term. Note that our definition for the purpose of this paper is
more general than the original one (see [16]) and also later definitions (see for
instance [12, Definition 9.7.5]). For X• as above, the element

γ :=
∑
n∈Z

(−1)n[Xn] ∈ T∆(B,C)

is a p-permutation equivalence (see [2, Theorem 15.2]) and the element

µ := κ(γ) =
∑
n∈Z

(−1)nκ([Xn]) ∈ R(KGb,KHc)
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is a perfect isometry (see [2, Proposition 9.9]). This way one can define the Broué
invariant of X• as β(X•) := β(γ) = β(µ) and the statement of Theorem 1.1 applies
also to β(X•).

(b) With the notation of Theorem 1.1 and the preceding paragraph, let M∗ be the
unique indecomposable O-torsion-free (B∗, C∗)-bimodule (up to isomorphism).
Since B∗ and C∗ are block algebras of defect 0, M∗ is a p-permutation bimod-
ule, has twisted diagonal vertex, and induces a Morita equivalence between B∗
and C∗. The chain complex consisting of the only non-zero term M∗ in degree
zero is therefore a splendid Rickard equivalence and γ∗ := [M∗] ∈ T∆(B∗, C∗) is
a p-permutation equivalence between B∗ and C∗. Equation (1.3) can now also be
interpreted as β(γ) = ϵ(γ) · β([M∗]).

Of particular interest is the situation where C is the Brauer correspondent of B with
respect to Brauer’s first main theorem.
Corollary 1.3. Suppose that D is a defect group of B = OGb, that H = NG(D), and that
the block idempotent c of OH is the Brauer correspondent of b with respect to Brauer’s
first main theorem, i.e., c̄ = brD(b). Then the Broué invariant of any p-permutation
equivalence and any splendid Rickard equivalence between B and C is equal to 1 or −1. In
particular, if there exists a p-permutation equivalence (resp. splendid Rickard equivalence)
between B and C then there also exists one with Broué invariant equal to 1.
Proof. In the situation of the corollary, one can choose D = E so that CG(D) = CH(E).
Moreover, one can choose f = e to obtain that b(B) = b(C). The first statement follows
now from Theorem 1.1. The last statement follows from replacing γ with −γ or shifting
X• by one degree. □

Next we apply Corollary 1.3 in order to relate p-permutation equivalences and splendid
Rickard equivalences to various refinements of the Alperin–McKay conjecture. Suppose
that b, D, H, and c are as in Corollary 1.3. Let Irr0(KGb) denote the set of characters
of irreducible KGb-modules of height zero. Then the Alperin–McKay conjecture, see [1,
Conjecture 3], states that

|Irr0(KGb)| = |Irr0(KHc)| . (1.4)
We first recall two refinements of this conjecture, introduced by Isaacs and Navarro in [10]
and Navarro in [14]. For χ ∈ Irr(KGb), set r(χ) := (|G|/χ(1))p′ , the p′-part of the codegree
of χ. For r ∈ {1, . . . , p − 1}, let Irr0(KGb, r) denote the set of all χ ∈ Irr0(KGb) with
r(χ) ≡ ±r mod p. In the same way we define Irr0(KHc, r). [10, Conjecture B] states that

|Irr0(KGb, r)| = |Irr0(KHc, r)| (1.5)
for every r ∈ {1, . . . , p− 1}. Isaacs and Navarro also considered Galois actions on charac-
ters. Let Qp ⊆ L ⊆ K be an intermediate field and consider the set Irr0(KGb,L) consisting
of those χ ∈ Irr0(KGb, r) with Qp(χ) = L. Here, Qp(χ) := Qp(χ(g) | g ∈ G). Similarly,
define Irr0(KHc,L). Clearly, Irr0(KGb,L) and Irr0(KHc,L) are empty unless L ⊆ Q(ζ),
where ζ ∈ K× has order exp(G). A slightly stronger version of [14, Conjecture B] states
that

|Irr0(KGb,L)| = |Irr0(KHc,L)| (1.6)
for every intermediate field Qp ⊆ L ⊆ Qp(ζ). Combining the refined Alperin–McKay
conjectures in (1.5) and (1.6), let Irr0(KGb, r, L) be the set of all χ ∈ Irr0(KGb) with
r(χ) ≡ ±r mod p and Qp(χ) = L. Then one can consider the conjecture

|Irr0(KGb, r, L)| = |Irr0(KHc, r, L)| (1.7)
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for every r ∈ {1, . . . , p − 1} and every intermediate field Qp ⊆ L ⊆ Qp(ζ). Finally,
Turull, see [18], suggested a further refinement involving endomorphism rings of simple
modules. For χ ∈ Irr(KGb), let h(χ) ∈ Q/Z be defined as follows: Let V be the unique
irreducible QpG-module with the property that χ is a constituent of the character of V
and let D := EndQpG(V ), a central simple Qp(χ)-division algebra. Then let h(χ) ∈ Q/Z
be the Hasse-invariant of D, see [15, Section 14] for a definition. For h ∈ Q/Z, define
Irr0(KGb, r, L, h) as the set of those χ ∈ Irr0(KGb, r, L) with h(χ) = h. Turull’s conjecture
then states that

|Irr0(KGb, r, L, h)| = |Irr0(KHc, r, L, h)| (1.8)
for all r ∈ {1, . . . , p − 1}, Qp ⊆ L ⊆ Q(ζ), and h ∈ Q/Z. Note that h(χ) is represented
by an element in {0, 1/p, 2/p, . . . , (p− 1)/p} if p is odd, and by 0 or 1/2 if p = 2, for any
χ ∈ Irr(KG), see [20, 19].

Corollary 1.3 allows us now to make a connection between p-permutation equivalences
and splendid Rickard equivalences and the refinements (1.5), (1.7), (1.8) of the Alperin–
McKay conjecture. Note that the definitions of p-permutation equivalences and splendid
Rickard equivalences extend in the obvious way to arbitrary complete discrete valuation
rings in place of O, in particular to Zp, as used in the statement of the next theorem.
They also extend to sums of blocks over arbitrary complete discrete valuation rings, as
used in the proof of the next theorem.

Theorem 1.4. Let b be a block idempotent of OG and let b̃ be the unique block idempotent
of ZpG with bb̃ ̸= 0. Let D be a defect group of b and set H := NG(D). Further, let c be
the block idempotent of OH which corresponds to b under Brauer’s First Main Theorem,
i.e., brD(b) = c̄, and let c̃ be the unique block idempotent of ZpH with cc̃ ̸= 0. Finally, let
ζ ∈ K be a root of unity of order exp(G) and set Γ := Gal(Qp(ζ)/Qp).

(a) If there exists a p-permutation equivalence between OGb and OHc then (1.5) holds.
In other words, there exists a bijection

α : Irr0(KGb) ∼→ Irr0(KHc)
such that r(χ) ≡ ±r(α(χ)) mod p, for all χ ∈ Irr0(KGb).

(b) If there exists a p-permutation equivalence between ZpGb̃ and ZpHc̃ then (1.7)
holds. Moreover, the Γ-stabilizers Γb and Γc of b and c, respectively, coincide and
there exists a Γb-equivariant bijection

α : Irr0(KGb) ∼→ Irr0(KHc)
such that r(χ) ≡ ±r(α(χ)) mod p, for all χ ∈ Irr0(KGb).

(c) If there exists a splendid Rickard equivalence between ZpGb̃ and ZpHc̃ then (1.8)
holds. Moreover, there exists a Γb-equivariant bijection

α : Irr0(KGb) ∼→ Irr0(KHc)
such that r(χ) ≡ ±r(α(χ)) mod p and h(χ) = h(α(χ)), for all χ ∈ Irr0(KGb).

Remark 1.5.
(a) Splendid Rickard equivalences and p-permutation equivalences between block al-

gebras of OG with abelian defect groups and their Brauer correspondents are
expected to exist according to Broué’s abelian defect group conjecture, but they
are known not to exist for general defect groups. Therefore, Theorem 1.4 cannot
be a general tool for proving the (refinements of the) Alperin–McKay Conjecture.
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(b) For blocks with cyclic defect groups, Isaacs and Navarro proved in [10] that (1.5)
and a weaker version of (1.7) hold. Turull proved in [17] that for the same blocks
a weaker version of (1.8) holds, which takes Schur indices over Qp into account.
More precisely, it was shown that there exists a bijection between Irr0(OGb) and
Irr0(OHc) preserving the invariants Qp(χ), and the order of h(χ) in Q/Z. Turull
proved in [18] that a slightly weaker version of (1.8) holds for arbitrary blocks
when G is p-solvable. In Turull’s result the invariant h(χ) ∈ Q/Z is replaced by
its order in Q/Z, which is also the Schur index of χ over Qp.

(c) The hypothesis in Theorem 1.4(c) is satisfied in the following cases: If OGb has
cyclic defect groups (see [11]), if OGb has a Klein four group as defect group
(see [7]), if G = GL(2, pn) or G = SL(2, pn) (see [9]), if G is an alternating group
and OGb has abelian defect groups (see [8]), and for some blocks of p-nilpotent
groups (see [3]). Thus, by Theorem 1.4(c), the refined version (1.8) of the Alperin–
McKay Conjecture holds in all these cases.

The paper is arranged as follows. Theorem 1.1 is proved in Section 4. The proof uses
properties of p-permutation equivalences and the notion of extended tensor products of
bimodules, a construction first introduced by Bouc in [5]. In Section 3 we recall this
construction, prove that it can be realized as a biset operation, and prove Theorem 3.5, a
formula for the extended tensor product of induced modules, which is used in the proof
of Theorem 1.1. Section 3 uses the language of bisets which we introduce in Section 2
following [4]. There, we also define the notion of an extended tensor product for bisets, and
prove a formula for bisets, analogous to Theorem 3.5 for modules. Finally, Theorem 1.4
is proved as an application of Theorem 1.1 in Section 5.

2. Bisets and extended tensor products

In the first part of this section we recall from [4, Chapter 2] the notions, notations, and
results related to bisets, that we will need in Section 3. In the second part we introduce
the notion of extended tensor products for bisets (see Section 2.6) and prove results about
this construction.

Throughout this section, G, H, K, L, I and J denote finite groups.

2.1 (G-sets, (G,H)-bisets, tensor products and external products).
(a) We denote by Gset the category of finite left G-sets and by GsetH the category

of finite (G,H)-bisets. Recall that a (G,H)-biset is a set U endowed with a left
G-action and a right H-action that commute with each other. We will often view,
without further notice, a (G,H)-biset U as left G×H-set via (g, h)u = guh−1 for
g ∈ G, h ∈ H, and u ∈ U , and vice-versa. This defines an obvious isomorphism of
categories

GsetH ∼= G×Hset .
(b) One has a functor

− ⊗H − : GsetH × HsetK → GsetK ,
where, for U ∈ GsetH and V ∈ HsetK , one defines U ⊗H V as the set of H-orbits of
U × V with respect to the H-action given by h · (u, v) := (uh−1, hv). The H-orbit
of (u, v) is denoted by u⊗v ∈ U⊗H V (or u⊗H v for clarity). Thus, uh⊗v = u⊗hv
for h ∈ H and (u, v) ∈ U × V . The set U ⊗H V has a well-defined (G,K)-biset
structure given by g(u ⊗ v)k := (gu) ⊗ (vk). If ϕ : U → U ′ and ψ : V → V ′
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are morphisms of (G,H)-bisets and (H,K)-bisets, respectively, then ϕ ⊗H ψ is
defined by (ϕ⊗H ψ)(u⊗ v) := ϕ(u) ⊗ψ(v). Note that in [4, Definition 2.3.11] this
construction is denoted by U ×H V and called the composition of U and V . Since
we will use fiber products later (see 2.7) with conflicting notation, we chose here
the notation U ⊗H V and call it the tensor product of U and V .

(c) Choosing K = {1} in (b), fixing U ∈ GsetH , and using the obvious category
isomorphisms Hset{1} ∼= Hset and Gset{1} ∼= Gset, we obtain a functor

U ⊗H − : Hset → Gset .
(d) Finally, one has a functor

− × − : Gset × Hset → G×Hset
which maps an object (U, V ) of Gset×Hset to U×V endowed with the G×H-action
(g, h)(u, v) := (gu, hv), for (g, h) ∈ G×H and (u, v) ∈ U × V .

Note that the disjoint union U
∐
U ′ of two finite sets provides a coproduct in the

categories Gset and GsetH . The functors defined in Subsection 2.1 satisfy the following
properties and compatibilities.

Lemma 2.2.
(a) For U,U ′ ∈ GsetH and V, V ′ ∈ HsetK one has isomorphisms(

U
∐

U ′
)

⊗H V ∼= (U ⊗H V )
∐(

U ′ ⊗H V
)

and U ⊗H

(
V
∐

V ′
)

∼= (U ⊗H V )
∐(

U ⊗H V ′)
in GsetK , which are natural in U , U ′, V , and V ′.

(b) For U ∈ GsetH , V ∈ HsetK , and W ∈ KsetL (resp. W ∈ Kset) one has an
isomorphism

(U ⊗H V ) ⊗K W ∼= U ⊗H (V ⊗K W )
in GsetL (resp. in Gset), which is natural in U , V and W . It maps (u⊗ v) ⊗w to
u⊗ (v ⊗ w).

(c) For U ∈ GsetH , V ∈ KsetL, R ∈ HsetI , and S ∈ LsetJ one has an isomorphism
(U ⊗H R) × (V ⊗L S) ∼= (U × V ) ⊗H×L (R× S)

in G×KsetI×J , which is natural in U , V , R, and S, and which maps (u⊗ r, v ⊗ s)
to (u, v) ⊗ (r, s).

(d) For U ∈ GsetH one has isomorphisms
G⊗G U ∼= U and U ⊗H H ∼= U

in GsetH , which are natural in U and are given by g ⊗ u → gu and u ⊗ h → uh.
Here G is viewed as (G,G)-biset and H is viewed as (H,H)-biset via left and right
multiplication.

The bisets defined in the following example are called elementary bisets.

Example 2.3.
(a) For H ≤ G, ResGH (resp. IndGH) denotes the (H,G)-biset (resp. (G,H)-biset) G

endowed with left and right multiplication. The resulting functors
ResGH := ResGH ⊗G − : Gset → Hset and IndGH := IndGH ⊗H − : Hset → Gset
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are denoted by the same symbols and are called restriction from G to H and
induction from H to G. Note that ResGH ∼= (H×G)/∆(H) in HsetG ∼= H×Gset and
IndGH ∼= (G × H)/∆(H) in GsetH ∼= G×Hset, where ∆(H) := {(h, h) ∈ h ∈ H} is
the stabilizer of 1 ∈ G.

(b) For N ⊴ G, InfGG/N (resp. DefGG/N ) denotes the (G,G/N)-biset (resp. (G/N,G)-
biset) G/N endowed with left and right multiplication, after using the natural
epimorphism π : G → G/N . The resulting functors

InfGG/N := InfGG/N⊗G/N− : G/N set → Gset and DefGG/N := DefGG/N⊗G− : Gset → G/N set

are called inflation from G/N to G (resp. deflation from G to G/N). Note that
InfGG/N ∼= (G× (G/N))/∆(G, π) in GsetG/N and DefGG/N ∼= ((G/N) ×G)/∆(π,G)
in G/N setG, where

∆(G, π) := {(g, gN) | g ∈ G} and ∆(π,G) := {(gN, g) | g ∈ G}
are the stabilizers of 1 ∈ G/N .

(c) If α : G ∼→ G′ is an isomorphism we denote by Isoα the (G′, G)-biset G′ with G′

acting by multiplication from the left and G acting via α and multiplication from
the right. Note that Isoα ∼= (G′×G)/∆(α,G) in G′setG, with ∆(α,G) = {(α(g), g) |
g ∈ G} being the stabilizer of 1 ∈ G′ under the corresponding (G′ × G)-action.
Note that if also β : G′ ∼→ G′′ is an isomorphism then Isoβα ∼= Isoβ ⊗G′ Isoα in
G′′setG.

If α = cg : H → gHg−1, h 7→ ghg−1, is the conjugation map for a subgroup
H ≤ G and g ∈ G, we set Cong := Isocg ∈ gHg−1setH and gU := Cong(U), for
U ∈ Hset.

By Lemma 2.2(d), the functors ResGH , InfGG/N , Isoα, and Cong above are naturally
isomorphic to the functors that don’t change the underlying set, but restrict the action
along the group homomorphisms H → G, G → G/N , α−1 : G′ → G and c−1

g : gHg−1 → H,
respectively.

2.4 (Subgroups of direct products). Let X ≤ G×H. We denote by p1 : G×H → G and
p2 : G×H → H the projection maps. If one sets

k1(X) := {g ∈ G | (g, 1) ∈ X} and k2(X) := {h ∈ H | (1, h) ∈ X}
then

k1(X) ⊴ p1(X) ≤ G , k2(X) ⊴ p2(X) ≤ H ,

and k1(X) × k2(X) ≤ X ≤ p1(X) × p2(X) .
Moreover, if additionally Y ≤ H ×K, one sets

X ∗ Y := {(g, k) ∈ G×K | ∃ h ∈ H : (g, h) ∈ X and (h, k) ∈ Y } .
It is easy to see that X ∗ Y is a subgroup of G × K and that the construction − ∗ − is
associative and monotonous with respect to inclusion in each argument. Moreover, one
has
k1(X) ≤ k1(X ∗ Y ) ⊴ p1(X ∗ Y ) ≤ p1(X) , k2(Y ) ≤ k2(X ∗ Y ) ⊴ p2(X ∗ Y ) ≤ p2(Y ) ,

and k1(X) × k2(Y ) ≤ X ∗ Y ≤ p1(X) × p2(Y ) .

The following theorem is an explicit formula for the functor in Subsection 2.1(b) applied
to transitive bisets, see [4, Lemma 2.3.24].
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Theorem 2.5. Let G, H, K be finite groups and let X ≤ G×H and Y ≤ H ×K. Then

(G×H)/X ⊗H (H ×K)/Y ∼=
∐

h∈ [p2(X)\H/p1(Y )]
(G×K)/

(
X ∗ (h,1)Y

)
in GsetK , where [p2(X)\H/p1(Y )] denotes a set of representatives of the (p2(X), p1(Y ))-
double cosets in H. The isomorphism maps the element (g, k)(X ∗ (h,1)Y ) in the h-
component of the right hand side to (g, 1)X ⊗ (h, k)Y .
2.6 (Extended tensor products for bisets). We generalize the tensor product of bisets from
Subsection 2.1(b) as follows. Let X ≤ G×H, Y ≤ H ×K, U ∈ Xset, V ∈ Y set, and set

k(X,Y ) := k2(X) ∩ k1(Y ) ≤ H .

We may consider U and V via restriction as U ∈ k1(X)setk(X,Y ) and V ∈ k(X,Y )setk2(Y )
and form the tensor product U ⊗k(X,Y ) V ∈ k1(X)setk2(Y ) ∼= k1(X)×k2(Y )set. The action of
k1(X)×k2(X) on U ⊗k(X,Y ) V (as defined in Subsection 2.1) can be extended to an action
of X ∗ Y as follows. Let (g, k) ∈ X ∗ Y , u ∈ U , and v ∈ V . Choose h ∈ H such that
(g, h) ∈ X and (h, k) ∈ Y , and set

(g, k)(u⊗ v) := ((g, h)u) ⊗ ((h, k)v) .
This definition does not depend on the choice of h and defines a functor that we denote
by

−
X,Y
⊗

k(X,Y )
− : Xset × Y set → X∗Y set (2.1)

or simply by −
X,Y
⊗ −. We call it the extended tensor product (with respect to X and Y ).

Note that this construction coincides with the construction in Subsection 2.1(b) when
X = G×H and Y = H ×K (and X ∗ Y = G×K). The extended tensor product functor
is associative. More precisely, if also Z ≤ K×L andW ∈ Zset, then (u⊗v)⊗w 7→ u⊗(v⊗w)
defines an isomorphism between(

U
X,Y
⊗ V

)
X∗Y ,Z

⊗ W and U
X,Y ∗Z

⊗
(
V
Y,Z
⊗ W

)
in X∗Y ∗Zset.

Moreover, the extended tensor product functor respects coproducts in each argument.
2.7 (The biset and functor DefResX×Y

X∗Y ). For X ≤ G × H and Y ≤ H ×K, consider the
pull-back X ×H Y of the two projection maps p2 : X → H and p1 : Y → H. Thus,

X ×H Y :=
{(

(g, h), (h̃, k)
)

∈ X × Y
∣∣∣h = h̃

}
≤ X × Y .

Moreover, consider the surjective homomorphism ν : X ×H Y → X ∗ Y , ((g, h), (h, k)) 7→
(g, k), with kernel {((1, h), (h, 1)) | h ∈ k(X,Y )} and the resulting isomorphism ν̄ : (X ×H

Y )/ ker(ν) ∼→ X ∗ Y . We define the (X ∗ Y,X × Y )-biset

DefResX×Y
X∗Y := Isoν̄ ⊗(X×HY )/ ker(ν) DefX×HY

(X×HY )/ ker(ν) ⊗X×HY ResX×Y
X×HY

and use the same notation for the induced functor
DefResX×Y

X∗Y := DefResX×Y
X∗Y ⊗X×Y − : X×Y set → X∗Y set .

It follows quickly from the explicit descriptions in Example 2.3 of the three factors of
DefResX×Y

X∗Y and the formula in Theorem 2.5 that one has an isomorphism

DefResX×Y
X∗Y

∼=
(
(X ∗ Y ) × (X × Y )

)
/ {(ν(z), z) | z ∈ X ×H Y } (2.2)

in X∗Y setX×Y .
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The following proposition shows that the extended tensor product functor −
X,Y
⊗ − can

be regarded as a composition of a biset operation and the functor − × − : Xset × Y set →
X×Y set from Subsection 2.1(c) and (d).

Proposition 2.8. Let X ≤ G×H and Y ≤ H ×K. The functor −
X,Y
⊗ − : Xset × Y set →

X∗Y set in (2.1) is naturally isomorphic to the functor DefResX×Y
X∗Y ◦(−×−) : Xset×Y set →

X∗Y set.

Proof. Let U ∈ Xset and V ∈ Y set. Using the isomorphism (2.2), it suffices to show that
one has an isomorphism

U
X,Y
⊗

k(X,Y )
V ∼=

(X ∗ Y ) × (X × Y )
{(ν(z), z) | z ∈ X ×H Y }

⊗X×Y (U × V ) (2.3)

of (X ∗Y )-sets which is natural in U and V . But this follows from the following statements
whose straightforward but lenghty verification we leave to the reader. Mapping u ⊗ v to
1⊗(u, v) is a well-defined morphism ϕ of (X ∗Y )-sets from the left hand side in (2.3) to the
right hand side, which is natural in U and V . Moreover, mapping ((g, k), (x, y))⊗ (u, v) to
(g, h)x−1u⊗ (h, k)y−1v, where h ∈ H is chosen such that (g, h) ∈ X and (h, k) ∈ Y , yields
a well-defined function ψ from the right hand side of (2.3) to the left hand side, such that
ϕ ◦ ψ and ψ ◦ ϕ are the respective identity maps. □

Lemma 2.9. Let X ′ ≤ X ≤ G×H and Y ′ ≤ Y ≤ H ×K. Then

DefResX×Y
X∗Y ⊗X×Y IndX×Y

X′×Y ′
∼=
∐

(x,y)
IndX∗Y

x
X′∗

y
Y ′ ⊗ x

X′∗
y
Y ′ DefRes

x
X′×

y
Y ′

x
X′∗

y
Y ′ ⊗ x

X′×
y
Y ′ Con(x,y)

as (X ∗ Y,X ′ × Y ′)-bisets, where (x, y) runs through a set of representatives of the (X ×H

Y,X ′ × Y ′)-double cosets of X × Y .

Proof. By the definition of DefResX×Y
X∗Y we have (omitting the indices of tensor products)

DefResX×Y
X∗Y ⊗ IndX×Y

X′×Y ′ = Isoν̄ ⊗ DefX×HY
(X×HY )/ ker(ν) ⊗ ResX×Y

X×HY
⊗ IndX×Y

X′×Y ′ . (2.4)

Using the commutation rule for Res and Ind, see [4, 1.1.3.2.c], we find that the right hand
side of (2.4) is the coproduct of the (X ∗ Y,X ′ × Y ′)-bisets

L(x,y) := Isoν̄ ⊗ DefX×HY
(X×HY )/ ker(ν) ⊗ IndX×HY

x
X′×H

y
Y ′ ⊗ Res

x
X′×

y
Y ′

x
X′×H

y
Y ′ ⊗ Con(x,y) , (2.5)

where (x, y) runs through a set of representatives of the (X ×H Y,X ′ × Y ′)-double cosets
of X × Y . Here we used that (X ×H Y ) ∩ ( xX ′ × yY ′) = xX ′ ×H

yY ′. Next we use the
commutation rule for Def and Ind, see [4, 1.1.3.2.e], to obtain

L(x,y) ∼= Isoν̄ ⊗ Ind(X×HY )/ ker(ν)( x
X′×H

y
Y ′
)

ker(ν)/ ker(ν)
⊗ Isoγ ⊗ Def

x
X′×H

y
Y ′( x

X′×H
y
Y ′
)
/ ker(ν′)

⊗ Res
x
X′×

y
Y ′

x
X×H

y
Y ′ ⊗ Con(x,y) ,

where ν ′ : xX ′ ×H
yY ′ → xX ′ ∗ yY ′ is the epimorphism analogous to ν in Subsection 2.7

and γ : ( xX ′ ×H
yY ′)/ ker(ν ′) ∼→ ( xX ′ ×H

yY ′) ker(ν)/ ker(ν) is the canonical isomorphism,
noting that ker(ν ′) = ( xX ′ ×H

yY ′) ∩ ker(ν). Finally, the commutation of the two left
most factors Iso and Ind, see [4, 1.1.3.2.a], yields

L(x,y) ∼= IndX∗Y
x
X′∗

y
Y ′ ⊗ Isoδ ⊗ Isoγ ⊗ Def

x
X′×H

y
Y ′( x

X′×H
y
Y ′
)
/ ker(ν′)

⊗ Res
x
X′×

y
Y ′

x
X×H

y
Y ′ ⊗ Con(x,y) ,
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with an isomorphism δ : ( xX ′ ×H
yY ′) ker(ν)/ ker(ν) ∼→ xX ′ ∗ yY ′ with the property that

δ ◦ γ = ν ′. Substituting the definition of DefRes
x
X′×

y
Y ′

x
X′∗

y
Y ′ , the proof is now complete. □

We can now generalize the formula in Theorem 2.5.

Theorem 2.10. Let X ′ ≤ X ≤ G×H, Y ′ ≤ Y ≤ H×K, U ∈ X′set and V ∈ Y ′set. Then
one has an isomorphism of X ∗ Y -sets,

IndXX′(U)
X,Y
⊗ IndYY ′(V ) ∼=

∐
(x,y)

IndX∗Y
x
X′∗

y
Y ′

(( xU) x
X′,

y
Y ′

⊗
( yV )) , (2.6)

where (x, y) runs through a set of representatives of the (X ×H Y,X ′ × Y ′)-double cosets
of X × Y . The isomorphism is induced by the maps u⊗ v 7→ (x⊗ u) ⊗ (y ⊗ v) from( xU) x

X′,
y
Y ′

⊗
( yV ) to IndXX′(U)

X,Y
⊗ IndYY ′(V ).

Here we view xU as the set U with the left xX ′-action via the isomorphism cx−1 (see the
paragraph after Example 2.3(c)). It is natural in U and V , providing a natural isomor-
phism of functors X′set × Y ′set → X∗Y set.

Proof. By Proposition 2.8, the left hand side of (2.6) is isomorphic to

DefResX×Y
X∗Y ⊗X×Y

(
IndXX′(U) × IndYY ′(V )

)
,

with
IndXX′(U) × IndYY ′(V ) ∼= IndX×Y

X′×Y ′(U × V )
by Lemma 2.2(c). Lemma 2.9 now yields an isomorphism as in (2.6). Using the isomor-
phisms from Proposition 2.8, Lemma 2.2(c), and the proof of Lemma 2.9, one obtains the
indicated map in the theorem. □

3. Bimodules and extended tensor products

In this section we recall the construction of extended tensor products of modules for
group algebras (which is analogous to the construction in 2.6 for bisets). It was first
introduced by Bouc in [5]. A list of properties of this construction can be found in [2,
Section 6]. It turns out that this construction for modules can again be viewed as a “biset
operation”, see Proposition 3.4. This allows to derive Theorem 3.5 for modules over group
algebras in analogy to Theorem 2.10 for sets with group actions. Theorem 3.5 will be used
in the proof of Theorem 1.1 in Section 4.

Throughout this section, G, H, K, and L denote finite groups and k denotes a commu-
tative ring. As with bisets, without further notice we view a (kG, kH)-bimodule as a left
k[G×H]-module via the obvious category isomorphism kGmodkH ∼= k[G×H]mod.

3.1. Let X ≤ G×H, Y ≤ H ×K, M ∈ kXmod and N ∈ kY mod. After restriction, M can
be viewed as (kk1(X), kk(X,Y ))-bimodule and N can be viewed as (kk(X,Y ),kk2(Y ))-
bimodule, so that one obtains in the usual way a (kk1(X),kk2(Y ))-bimodule M⊗kk(X,Y )N .
The corresponding k[k1(X) × k2(Y )]-module structure can be extended to k[X ∗ Y ] by
setting (g, k)(m ⊗ n) := (g, h)m ⊗ (h, k)n, for (g, k) ∈ X ∗ Y and h ∈ H such that
(g, h) ∈ X and (h, k) ∈ Y . We call this k[X ∗ Y ]-module the extended tensor product of
M and N . This defines a functor

−
X,Y
⊗

kk(X,Y )
− : kXmod × kY mod → k[X∗Y ]mod
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which we sometimes simply denote by −
X,Y
⊗ −. This functor is associative and respects

direct sums in each argument.

The extended tensor product behaves well under scalar extension. The proof of the
following Lemma is straightforward and left to the reader.

Lemma 3.2. Let X ≤ G×H and Y ≤ H ×K, and let M ∈ kXmod and N ∈ kY mod.
(a) If N is k-projective and M is projective as right kk2(X)-module then

M
X,Y
⊗

kk(X,Y )
N

is k-projective.
(b) Assume that k → k′ is a homomorphism of commutative rings. One has an iso-

morphism

k′ ⊗k

(
M

X,Y
⊗

kk(X,Y )
N

)
∼→
(
k′ ⊗k M

) X,Y
⊗

k′k(X,Y )

(
k′ ⊗k N

)
which is functorial in M and N .

Note that one has obvious linearization functors k− : GsetH → kGmodkH and k− : Gset
→ kGmod, were kU denotes the free k-module with basis U , for any finite set U . Moreover,
one has a functor

− ·H − : GsetH × kHmod → kGmod , (U,M) 7→ kU ⊗kH M .

We will sometimes just write U · M instead of U ·H M to simplify the notation. In the
following lemma we compile a list of basic properties of this functor, whose straightforward
verification we leave to the reader. Note that all isomorphisms in the following Lemma
are natural in every variable. Recall that for M ∈ kGmodkH (resp. M ∈ kGmod) and
N ∈ kKmodkL (resp. N ∈ kKmod) we may view M ⊗kN as (k[G×K],k[H×L])-bimodule
(resp. left k[G×K]-module), often referred to as the external product structure.

Lemma 3.3.
(a) For U ∈ GsetH , V ∈ HsetK one has k(U ⊗H V ) ∼= kU ⊗kH kV in kGmodkK .
(b) For U ∈ GsetH , V ∈ KsetL, one has kU ⊗k kV ∼= k(U × V ) in k[G×K]modk[H×L].
(c) For U,U ′ ∈ GsetH and M ∈ kHmod one has (U

∐
U ′) ·HM ∼= (U ·HM)⊕(U ′ ·HM)

in kGmod.
(d) For U ∈ GsetH and M,M ′ ∈ kHmod one has U ·H (M⊕M ′) ∼= (U ·HM)⊕(U ·HM ′)

in kGmod.
(e) For U ∈ GsetH , V ∈ HsetK , M ∈ kKmod one has (U ⊗H V ) ·KM ∼= U ·H (V ·KM)

in kGmod.
(f) For U ∈ GsetH , V ∈ KsetL, M ∈ kHmod, and N ∈ kLmod one has an isomorphism

(U ·H M) ⊗k (V ·L N) ∼= (U × V ) ·H×L (M ⊗k N)
in k[G×K]mod.

Proposition 3.4. Let X ≤ G×H and Y ≤ H ×K. The functors −
X,Y
⊗ − and

DefResX×Y
X∗Y ·X×Y (− ⊗k −)

from kXmod × kY mod to k[X∗Y ]mod are naturally isomorphic.
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Proof. This mirrors the proof of Proposition 2.8. Let M ∈ kXmod and N ∈ kY mod, then
by the isomorphism (2.2) it suffices to show that one has an isomorphism

M
X,Y
⊗

kk(X,Y )
N ∼=

(X ∗ Y ) × (X × Y )
{(ν(z), z) | z ∈ X ×H Y }

·X×Y (M ⊗k N)

of k[(X∗Y )×(X×Y )]-modules. Mapping m⊗n to 1⊗(m⊗n) defines such an isomorphism
with inverse analogous to the inverse in the proof of Proposition 2.8. □

Theorem 3.5. Let X ′ ≤ X ≤ G×H, Y ′ ≤ Y ≤ H ×K, M ∈ kX′mod, and N ∈ kY ′mod.
Then one has an isomorphism

IndXX′(M)
X,Y
⊗ IndYY ′(N) ∼=

⊕
(x,y)

IndX∗Y
x
X′∗

y
Y ′

(( xM) x
X′,

y
Y ′

⊗
( yN)) , (3.1)

of k[X ∗ Y ]-modules, where (x, y) runs through a set of representatives of the (X ×H

Y,X ′ × Y ′)-double cosets of X × Y . The isomorphism is induced by the maps m ⊗ n 7→
(x⊗m) ⊗ (y ⊗ n) from( xM) x

X′,
y
Y ′

⊗
( yN) to IndXX′(M)

X,Y
⊗ IndYY ′(N).

Here we view xM as the k-module M endowed with the k[ xX ′]-module structure using the
conjugation map cx−1. It is natural in M and N , providing a natural isomorphism of
functors kX′mod × kY ′mod → k[X∗Y ]mod.

Proof. Let M ∈ kX′mod and N ∈ kY ′mod. Then

IndXX′(M)
X,Y
⊗ IndYY ′(N) ∼=

(
(IndXX′) ·X′ M

)X,Y
⊗
(
(IndYY ′) ·Y ′ N

)
and, by Proposition 3.4 and Lemma 3.3(f) and (e), the latter is isomorphic to

DefResX×Y
X∗Y ·X×Y

((
IndXX′ ·X′ M

)
⊗k

(
IndYY ′ ·Y ′ N

))
∼= DefResX×Y

X∗Y ·X×Y
((

IndXX′ × IndYY ′

)
·X′×Y ′ (M ⊗k N)

)
∼= DefResX×Y

X∗Y ·X×Y
(
IndX×Y

X′×Y ′ ·X′×Y ′ (M ⊗k N)
)

∼=
(
DefResX×Y

X∗Y ⊗X×Y IndX×Y
X′×Y ′

)
·X′×Y ′ (M ⊗k N) .

Applying Lemma 2.9, Lemma 3.3(c) and (e), and Proposition 3.4, the latter becomes
isomorphic to the right hand side of (3.1), since (x,y)(M ⊗k N) ∼= xM ⊗k

yN . □

As a special case of the above theorem withX = G×H and Y = H×K we recover Bouc’s
formula from [5]. In fact if h runs through a set of representatives of the (p2(X ′), p1(Y ′))-
double cosets of H then ((1, 1), (h, 1)) runs through a set of representatives of the ((G ×
H) ×H (H ×K), (X ′ × Y ′))-double cosets of (G×H) × (H ×K). After renaming X ′ and
Y ′ as X and Y we obtain the following formulation.

Corollary 3.6. Let X ≤ G×H, Y ≤ H ×K, M ∈ kXmod, and N ∈ kY mod. Then one
has an isomorphism

IndG×H
X (M) ⊗kH IndH×K

Y (N) ∼=
⊕

h∈ [p2(X)\H/p1(Y )]
IndG×K

X∗ (h,1)
Y

M X,
(h,1)

Y
⊗ (h,1)N


of (kG, kK)-bimodules.
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4. Proof of Theorem 1.1

Before we start with the proof of Theorem 1.1 we need some preparation. Let (K,O, F )
be a p-modular system and let X be a finite group. First we formulate for convenient
reference the following well-known lemma.
Lemma 4.1. Let a ∈ Z(OX) be a block idempotent, A := OXa the corresponding block
algebra, and let M ∈ Amod be indecomposable with vertex P .

(a) P is contained in a defect group of A, and if M is O-free then rkO(M) is divisible
by [X : P ]p.

(b) Let M ′ ∈ ONX(P )mod be the Green correspondent of M and let (P, d) be a Brauer
pair such that dM ′ ̸= {0}. Then dM ′ is an indecomposable ONX(P, d)d-module
with vertex P and M ′ ∼= IndNX(P )

NX(P,d)(dM
′).

Proof.
(a) See [13, Theorems 5.1.9(i) and 4.7.5].
(b) Let d′ be the block idempotent of ONX(P ) to which M ′ belongs. Since P is normal

in NX(P ), d′ is contained in OCX(P ) (see [12, Theorem 6.2.6(ii)]) and dd′ = d,
since {0} ̸= dM = dd′M implies dd′ ̸= 0. Let I := NX(P, d) denote the stabi-
lizer of (P, d). Then dM ′ is an OId-module. The (OId,ONX(P )d′)-bimodule
dONX(P )d′ = dONX(P ) and the (ONX(P )d′,OId)-bimodule d′ONX(P )d =
ONX(P )d induce mutually inverse Morita equivalences between ONX(P )d′mod and
OIdmod (see [12, Theorem 6.2.6(iii)]). Moreover, these functors are naturally iso-
morphic to

d · ResNX(P )
I and IndNX(P )

I ,

respectively. Since M ′ is indecomposable, so is its image dM ′ = d · ResNX(P )
I (M ′)

under the Morita equivalence. Moreover, if Q is a vertex of M ′ then M ′ =
IndNX(P )

I (dM ′) implies that P ≤ Q and dM ′ | ResNX(P )
I (M ′) implies that Q ≤ P .

□

4.2. We recall some facts about p-permutation-modules and the Brauer construction
(see [2, Section 3] for more details). M ∈ OXmod (resp. M ∈ FXmod) is called a p-
permutation module if it is isomorphic to a direct summand of a permutation module.
We denote the Grothendieck group of the category of p-permutation OX-modules with
respect to split exact sequences by T (OX). If a ∈ Z(OX), we similarly define T (OXa),
T (FX), and T (FXā). The functor F ⊗O − induces an isomorphism T (OXa) ∼→ T (FXā),
[M ] 7→ [M ], preserving indecomposablility and vertices. The Brauer construction with
respect to a p-subgroup P ≤ X is a functor −(P ) : OXmod → FNX(P )mod that takes p-
permutation OXa-modules to p-permutation FNX(P )brP (a)-modules and defines a group
homomorphism −(P ) : T (OXa) → T (FNG(P )brX(a)). If M is an indecomposable p-
permutation OX-module with vertex P , then M(P ) and the Green correspondent M ′

of M are related via M ′ ∼= M(P ). For ω ∈ T (OX) and a Brauer pair (P, e) of OX,
we write (as in [2]) ω̄(P, e) ∈ T (F [NX(P, e)]ē) for the element obtained by first applying
−(P ) and then multiplying with the idempotent ē, and by ω(P, e) we denote the corre-
sponding element in T (O[NX(P, e)]e). We call (P, e) an ω-Brauer pair if ω(P, e) ̸= 0 in
T (O[NX(P, e)]e).

For the proof of Theorem 1.1 and the rest of this section, we fix again finite groups G and
H, and assume that O has a root of unity of order exp(G×H) as in Section 1. Furthermore,
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we fix block idempotents b ∈ Z(OG) and c ∈ Z(OH), and a p-permutation equivalence
γ ∈ T∆(B,C) between the block algebras B := OGb and C := OHc. Finally, we fix a
maximal γ-Brauer pair (viewing γ as an element in T (O[G × H])). By [2, Remark 10.2
and Theorem 10.11] it is of the form (∆(D,ϕ,E), e ⊗ f∗), for a maximal B-Brauer pair
(D, e) and a maximal C-Brauer pair (E, f). Thus, D is a defect group of B and E is a
defect group of C. Here, we write −∗ : OX → OX for the map defined by x 7→ x−1, for
x ∈ X. Note that this makes sense, since CG×H(∆(D,ϕ,E)) = CG(D) × CH(E). Finally,
we set I := NG(D, e) and J := NH(E, f).

Lemma 4.3. Let M ∈ OGmodOH be indecomposable with vertex X ≤ ∆(D,ϕ,E), and
let L ∈ OHmod be indecomposable with vertex Y ≤ E. If X < ∆(D,ϕ,E) or Y < E
then every indecomposable direct summand of M ⊗OH L ∈ OGmod has a vertex strictly
contained in D. If additionally M and L are O-free then also M ⊗OH L is O-free and its
rank is divisible by p · [G : D]p.

Proof. By Corollary 3.6, each indecomposable direct summand N of M ⊗OH L satisfies

N | IndG
X∗ h

Y

ResG×H
X (M)

X,
h
Y

⊗
Ok(X, h

Y )
ResHh

Y
(L)


for some h ∈ H, since M | IndG×H

X (ResG×H
X (M)) and L | IndHY (ResHY (L)). It is straight-

forward to verify that if X < ∆(D,ϕ,E) or Y < E then X ∗ hY < D, so that N has a
vertex properly contained in D. If M and L are O-free then so is

ResG×H
X (M)

X,
h
Y

⊗ ResHh
Y

(L),

since k(X, hY ) = {1}. Thus, N is O-free of O-rank divisible by p · [G : D]p (see
Lemma 4.1(a)). The result now follows. □

We will now prove Theorem 1.1 in four steps.

Proof of Theorem 1.1.

Step 1. Let ψ ∈ Irr(KHc) be an irreducible character of height zero. Then
ψ(1)p = [H : E]p and ψ(1)p′ = [H : E]−1

p · ψ(1) . (4.1)
Let L be an OHc-lattice with character ψ. Then L is indecomposable and Lemma 4.1(a)
implies that E is a vertex of L. Let L′ be the Green correspondent of L. Then IndHNH(E)(L′)
∼= L⊕ L̃ for some OH-lattice L̃ whose rank is divisible by p · [H : E]p by Lemma 4.1(a).
Thus, with (4.1) we have

ψ(1)p′ = [H : E]−1
p · rkO(L) ≡ [H : E]−1

p · rkO
(
IndHNH(E)(L

′)
)

mod p . (4.2)

Let c′ ∈ Z(ONH(E)) be the block idempotent corresponding to c via Brauer’s first main
theorem, i.e., brE(c) = c′. By [13, Corollary 5.3.11], c′ acts as the identity on L′. Since
(E, f) is a C-Brauer pair, fc′ = f̄brE(c) ̸= 0 and therefore fc′ ̸= 0. Moreover, c′ is the
sum of the distinct NH(E)-conjugates of f (see [12, Theorem 6.2.6(iii)]). Thus, c′L ̸=
{0} implies fL′ ̸= {0}. Now Lemma 4.1(b) implies that L′ = IndNH(E)

J (L′′) for the
indecomposable OJf -module L′′ := fL′. With (4.2) we obtain

ψ(1)p′ ≡ [H : E]−1
p · rkO

(
IndHJ (L′′)

)
= [H : J ]

[H : E]p
· rkO(L′′) = [H : J ]p′

[J : E]p
· rkO(L′′) mod p .
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Since the left hand side of this congruence is not divisible by p, we have rkO(L′′)p = [J : E]p
and

ψ(1)p′ ≡ [H : J ]p′ · rkO(L′′)p′ mod p . (4.3)

Step 2. Next, let µ := κ(γ) ∈ R(KGb,KHc) be as in the introduction and set
χ := Iµ(ψ) = µ ·

H
ψ .

Since µ is a perfect isometry (see [2, Proposition 9.9]), we have χ ∈ ±Irr(KGb). The goal
of this step is to determine the congruence class of χ(1)p′ modulo p in terms of local data.
First recall that the perfect isometry µ preserves heights (see [6, Lemme 1.6]) so that

χ(1)p = [G : D]p and χ(1)p′ = [G : D]−1
p · χ(1) = [G : D]−1

p ·
(
µ ·
H
ψ

)
(1) . (4.4)

By [2, Theorems 14.1, 14.3, and 10.11] we can write

γ = ε · [M ] +
r∑
i=1

ni · [Mi] ,

with ε := ε(γ) ∈ {±1} the sign of γ, integers n1, . . . , nr, an indecomposable (B,C)-
bimodule M with vertex ∆(D,ϕ,E) and indecomposable (B,C)-bimodules Mi, i = 1, . . .,
r, each of which has a vertex strictly contained in ∆(D,ϕ,E). By Lemma 3.2(a), M⊗OHL
and Mi ⊗OH L are O-free with(

µ ·
H
ψ

)
(1) = ε · rkO

(
M ⊗OH L

)
+

r∑
i=1

ni · rkO
(
Mi ⊗OH L

)
. (4.5)

Moreover, since M ⊗OH L and Mi ⊗OH L are OGb-lattices, their O-ranks are divisible by
[G : D]p (see Lemma 4.1), and by Lemma 4.3, the O-rank of Mi ⊗OH L, i = 1, . . . , r, is
divisible by p · [G : D]p. Therefore,

[G : D]−1
p · rkO (Mi ⊗OH L) ≡ 0 mod p

for all i = 1, . . . , r. Together with (4.4) and (4.5) this implies
χ(1)p′ ≡ ε · [G : D]−1

p · rkO(M ⊗OH L) mod p . (4.6)

With L′′ ∈ OJfmod and L′ ∼= IndNH(E)
J (L′′) as in Step 1, we can write IndHNH(E)(L′) ∼=

L⊕L̃, with each indecomposable direct summand of L̃ having a vertex Q strictly contained
in E. By Lemma 4.3, p · [G : D]p divides rkO(M ⊗O L̃). Thus, with (4.6) we obtain

χ(1)p′ ≡ ε · [G : D]−1
p · rkO

(
M ⊗OH IndHJ (L′′)

)
mod p . (4.7)

Set Y ′ := NG×H(∆(D,ϕ,E)) and Y ′′ := NG×H(∆(D,ϕ,E), e ⊗ f∗) ≤ Y ′ and let M ′ ∈
OY ′mod be the Green correspondent of M . Then F ⊗O M ′ = M(∆(D,ϕ,E)), since
M is a p-permutation module with vertex ∆(D,ϕ,E). Since M1, . . . , Mr have vertices
strictly contained in ∆(D,ϕ,E), we have 0 ̸= (e⊗ f∗) · γ(∆(D,ϕ,E)) = [(e⊗ f∗)M ′], and
Lemma 4.1(b) implies that M ′ ∼= IndY ′

Y ′′(M ′′) for the indecomposable OY ′′(e⊗f∗)-module
M ′′ := (e ⊗ f∗)M ′ with vertex ∆(D,ϕ,E). We have IndG×H

Y ′ (M ′) ∼= M ⊕ M̃ for some
O[G×H]-lattice M̃ , each of whose indecomposable direct summands have a vertex strictly
contained in ∆(D,ϕ,E). Lemma 4.3 implies that p·[G : D]p divides rkO(M̃⊗OH IndHJ (L′′))
and with (4.7) we obtain

χ(1)p′ ≡ ε · [G : D]−1
p · rkO

(
IndG×H

Y ′′ (M ′′) ⊗OH IndHJ (L′′)
)

mod p . (4.8)
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By [2, Proposition 11.1], we have
p1(Y ′′) = I , p2(Y ′′) = J , k1(Y ′′) = CG(D) , and k2(Y ′′) = CH(E) . (4.9)

Since p2(Y ′′) = J , Corollary 3.6 (with K = {1}) implies that

IndG×H
Y ′′ (M̃) ⊗OH IndHJ (L′′) ∼=

⊕
h∈ [J\H/J ]

IndG
Y ′′∗ h

J

(
M ′′ Y

′′,
h
J

⊗ hL′′
)
. (4.10)

We study the direct summands in (4.10).

Case (i): Suppose h ∈ H but h /∈ NH(E). Let S ∈ O h
E

mod be a source of hL′′. Since M ′′

has trivial source, we have

M ′′ Y
′′,

h
J

⊗ hL′′
∣∣∣∣∣ IndY ′′

∆(D,ϕ,E)(O)
Y ′′,

h
J

⊗ Ind
h
J

h
E

(S) .

Moreover, Theorem 3.5 (with K = {1}) and Lemma 3.2(a) imply that the latter mod-
ule is a direct sum of O[Y ′′ ∗ hJ ]-lattices that are induced from subgroups of the form
(g,h1)∆(D,ϕ,E) ∗ h2hE with (g, h1) ∈ Y ′′ and h2 ∈ hJ . Since p2(Y ′′) = J ≤ NH(E), we
obtain p2( (g,h1)∆(D,ϕ,E)) = h1E = E. Since h2hE = hE and since E ∩ hE < E by
the choice of h, the group (g,h1)∆(D,ϕ,E) ∗ h2hE is properly contained in D. Thus, by
Lemma 4.1(a), we obtain

[G : D]−1
p · rkO

(
IndG

Y ′′∗ h
J

(
M ′′ Y

′′,
h
J

⊗ hL′′
))

≡ 0 mod p

in this case.

Case (ii): Suppose h ∈ NH(E) but h /∈ J . We claim that in this case M ′′ Y
′′,

h
J

⊗ hL′′ = {0}.
In fact, since k2(Y ′′) = CH(E) ≤ hJ (see (4.9)), we have k(Y ′′, hJ) = CH(E). Thus, by

the definition of −
Y ′′,

h
J

⊗ −, we have

ResY ′′∗ h
J

CG(D)

(
M ′′ Y

′′,
h
J

⊗ hL′′
)

= ResY ′′

CG(D)×CH(E)(M
′′) ⊗OCH(E) Res

h
J
CH(E)(

hL′′) .

Since the block idempotent f of OCH(E) acts as the identity on

ResY ′′

CG(D)×CH(E)(M
′′) = eM ′f

from the right, since the block idempotent hf acts as the identity on

Res
h
J
CH(Q)

(
hL′′

)
= hf · L′

from the left, and since f · hf = 0, the claim is proved.
With the conclusions for Case (i) and Case (ii), (4.8) and (4.10) imply that

χ(1)p′ ≡ ε · [G : D]−1
p · rkO

(
IndGY ′′∗J

(
M ′′ Y

′′,J
⊗ L′′

))
mod p ,

with Y ′′ ∗ J = I, since p1(Y ′′) = I and p2(Y ′′) = J (see (4.9)). Thus,

χ(1)p′ ≡ ε · [G : I]
[G : D]p

· rkO

(
M ′′ Y

′′,J
⊗ L′′

)
= ε ·

[G : I]p′

[I : D]p
· rkO

(
M ′′ Y

′′,J
⊗ L′′

)
mod p .
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Since the left hand side of this congruence is not divisible by p, we have rkO(M ′′ Y
′′,J
⊗ L′′)p

= [I : D]p and

χ(1)p′ ≡ ε · [G : I]p′ · rkO

(
M ′′ Y

′′,J
⊗ L′′

)
p′

mod p . (4.11)

Step 3. Let V and W be the unique simple modules of FCG(D)e and FCH(E)f , respec-
tively, as defined in the paragraph preceding Theorem 1.1. We claim that

rkO

(
M ′′ Y

′′,J
⊗ L′′

)
rkO(L′′) = dimF (V )

dimF (W ) . (4.12)

By [2, Proposition 14.4] with S = CG(D) and T = CH(E), the (OCG(D)e,OCH(E)f)-
bimodule M ′′′ := ResY ′′

CG(D)×CH(E)(M ′′) induces a Morita equivalence between the block al-
gebras OCG(D)e and OCH(E)f . Therefore, the (FCG(D)ē, FCH(E)f̄)-bimodule M ′′′ :=
F ⊗O M ′′′ induces a Morita equivalence between the block algebras FCG(D)ē and
FCH(E)f̄ . This implies that

M ′′′ ⊗FCH(E) W ∼= V ,

since V and W are the unique simple modules in these block algebras. Moreover, the
multiplicity of W as composition factor in L′′ := F ⊗O L′′ is equal to the multiplicity of
V as composition factor in M ′′′ ⊗FCH(E) L′′. Thus,

dimF

(
M ′′′ ⊗FCH(E) L′′

)
dimF (L′′)

= dimF (V )
dimF (W ) .

Since dimF (M ′′′ ⊗FCH(E)L′′) = rkO(M ′′ Y
′′,J
⊗ L′′) and dimF (L′′) = rkO(L′′) by Lemma 3.2

(b), Equation (4.12) holds.

Step 4. Since we have an isomorphism ϕ : E ∼→ D, we obtain |Z(D)| = |Z(E)|. Moroever,
since the fractions in (1.1) and b(B) and b(C) are units in Z(p), it suffices to show that(

|G| ·ψ(1) · |CH(E)| · dimF (V )
)
p′ ≡ ε ·

(
|H| ·χ(1) · |CG(D)| · dimF (W )

)
p′ mod p . (4.13)

Using (4.3) and (4.12), the left hand side of (4.13) is congruent to

|G|p′ · [H : J ]p′ · rkO(L′′)p′ · |CH(E)|p′ · dimF (V )p′

= |G|p′ · [H : J ]p′ · |CH(E)|p′ · rkO

(
M ′′ Y

′′,J
⊗ L′′

)
p′

· dimF (W )p′
(4.14)

modulo p. Using (4.11), the right hand side of (4.13) is congruent to

ε · |H|p′ · ε · [G : I]p′ · rkO

(
M ′′ Y

′′,J
⊗ L′′

)
p′

· |CG(D)|p′ · dimF (W )p′ (4.15)

modulo p. But since [I : CG(D)] = [J : CH(E)] by [2, Proposition 11.1], the integers
in (4.14) and (4.15) are equal. This proves the congruence in (4.13) and completes the
proof of Theorem 1.1. □
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5. Proof of Theorem 1.4

Proof of Theorem 1.4(a). Let γ ∈ T∆(B,C) be a p-permutation equivalence between B

and C. Then µ := κG×H(γ) ∈ R(KGb,KHc) is a perfect isometry. Let α : Irr(KHc) ∼→
Irr(KGb) be the bijection induced by the perfect isometry Iµ. Since the quotient in (1.1)
is a unit in Z(p), the bijection α preserves heights. Moreover, since β(µ) ∈ {±1} by
Corollary 1.3, we obtain r(α(χ)) ≡ ±r(χ) mod p for all χ ∈ Irr(KHc). □

Proof of Theorem 1.4(b). Block idempotents of OG and OH have coefficients in Zp[ζ ′],
where ζ ′ is the exp(G×H)th

p power of ζ. Moreover, the natural map between Gal(Qp(ζ ′)
/Qp) and the Galois group of the residue field of Qp(ζ ′) over Fp is an isomorphism. There-
fore, [3, Theorem 4.2] implies that Γb = Γc.

Let γ̃ ∈ T∆(ZpGb̃,ZpHc̃) with γ̃ ·H γ̃◦ = [ZpGb̃] ∈ T∆(ZpGb̃,ZpGb̃) and γ̃◦ ◦G γ̃ =
[ZpHc̃] ∈ T∆(ZpHc̃,ZpHc̃) and let γ ∈ T∆(OGb̃,OHc̃) be the image of γ̃ under the
natural map induced by scalar extension from Zp to O. Then γ ·H γ◦ = [OGb̃] and
γ◦ ·G γ = [OHc̃]. So γ is a p-permutation equivalence between OGb̃ and OHc̃.

Set µ := κG×H(γ) and let

α : Irr(KHc̃) ∼→ Irr(KGb̃) (5.1)

be the bijection induced by the perfect isometry Iµ = µ ·H − : R(KHc̃) → R(KGb̃). Since
the character µ has values in Qp, the isomorphism Iµ and then also the bijection α in (5.1)
are Γ-equivariant.

Let b = b1, · · · , bn (resp. c = c1, . . . , cn) denote the elements of the Γ-orbit of b
(resp. c). Note that they have the same length, since Γb = Γc. Then b̃ = b1 + · · · + bn and
c̃ = c1 + · · · + cn. By [2, Theorem 10.10] there exists i ∈ {1, . . . , n} such that γc := bi ·γ · c
is a p-permutation equivalence between OGbi and OHc and the resulting perfect isometry
Ic : R(KHc) ∼→ R(KGbi) is the restriction of Iµ. Thus, the bijection α in (5.1) restricts to
a bijection

αc : Irr(KHc) ∼→ Irr(KGbi) . (5.2)
Note that Γbi

= Γb = Γc, since Γ is abelian. Moreover, since αc is the restriction of the Γ-
equivariant bijection α in (5.1), the bijection αc is Γb-invariant. Further, since β(γc) = ±1
by Corollary 1.3, we have r(αc(ψ)) ≡ ±r(ψ) mod p for all ψ ∈ Irr(KHc).

Let σ ∈ Γ be such that σ(bi) = b. Note that the bijection σ : Irr(KGbi) → Irr(KGb), χ 7→
σχ is also Γb-equivariant, since Γ is abelian, and satisfies r( σχ) = r(χ) for all χ ∈ Irr(KGbi).
Therefore, the composition of αc in (5.2) and σ yields a bijection Irr(KHc) ∼→ Irr(KGb)
with the desired properties. □

In order to prove Part (c) of Theorem 1.4, we need two more results. The first one is
known to specialists, but does not seem to occur in this formulation in the literature. It’s
proof follows from the results in [15, Sections 12–14], especially from Theorem 14.5.

Theorem 5.1. Two finite-dimensional Qp-division algebras D1 and D2 are isomorphic
as Qp-algebras if and only if their centers are isomorphic as Qp-algebras and their Hasse
invariants coincide.

For the second result we need to introduce some additional notation. Let A and B
be algebras over a field k. For a left A-module M we denote by M◦ := Homk(M,k)
the k-dual of A, viewed as right A-module. By K(A) we denote the homotopy category
of bounded chain complexes of finitely generated A-modules. We identify the category
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of (A,B)-bimodules with the category of left A ⊗k B
◦-modules in the usual way, where

B◦ denotes the opposite k-algebra of B. We denote by K(A,B) the homotopy category
of bounded chain complexes of finitely generated (A,B)-bimodules. If M is an (A,B)-
bimodule then M◦ is a (B,A)-bimodule. If X∗ is a chain complex of (A,B)-bimodules then
X◦

∗ is a chain complex of (B,A)-bimodules. For any integer i and any (A,B)-bimodule M
we write M [i] for the chain complex with term M in degree i and terms {0} in all other
degrees. Recall that for a semisimple k-algebra A and any bounded chain complex X∗ of
finitely generated A-modules, one has X∗ ∼= H(X∗) in K(A), where H(X∗) ∈ K(A) is the
Z-graded A-module consisting of the homology of X∗ with trivial boundary maps.

Proposition 5.2. Let k be a field, let A and B be semisimple k-algebras, let X∗ be a
bounded chain complex of finitely generated (A,B)-bimodules satisfying X∗ ⊗B X

◦
∗

∼= A[0]
in K(A,A) and X◦

∗ ⊗AX∗ ∼= B[0] in K(B,B). If W is a simple B-module then X∗⊗BW ∼=
V [i] in K(A) for a simple A-module V and an integer i. Moreover, EndA(V ) ∼= EndB(W )
as k-algebras.

Proof. Note that X∗ ⊗B − : K(B) → K(A) is an equivalence. Moreover, for any simple
B-module W , we have isomorphisms

EndB(W ) ∼= HomK(B)(W [0],W [0]) ∼= HomK(A) (X∗ ⊗B W [0], X∗ ⊗B W [0])
∼= HomK(A) (H(X∗ ⊗B W [0]), H(X∗ ⊗B W [0])) ∼=

∏
i∈Z

EndA (Hi(X∗ ⊗B W [0]))

of k-algebras. Since EndB(W ) is a division algebra over k, there exists a unique i ∈
Z such that EndA(Hi(X∗ ⊗B W [0])) is a division algebra isomorphic to EndB(W ) and
Hj(X∗ ⊗B W [0]) = 0 for all j ∈ Z with j ̸= i. Thus, X∗ ⊗B W [0] ∼= H(X∗ ⊗B W [0]) ∼=
Hi(X∗ ⊗B W [0]) ∼= V [i] in K(A) for V := Hi(X∗ ⊗B W [0]) ∈ Amod. Since EndA(V ) is a
division algebra, V is a simple A-module and the result follows. □

Proof of Theorem 1.4(c). Let X∗ be a splendid Rickard equivalence between ZpGb̃ and
ZpHc̃, set γ̃ :=

∑
i∈Z(−1)i[Xi] ∈ T∆(ZpGb̃,ZpHc̃). Then γ̃ is a p-permutation equivalence

between ZpGb̃ and ZpHc̃. Thus we can use all the steps and notations in the proof
of Theorem 1.4(b) and obtain a Γb-equivariant bijection αc : Irr(KHc) ∼→ Irr(KGbi) as
in (5.2) which satisfies r(α(ψ)) ≡ ±r(ψ) mod p for all ψ ∈ Irr(KHc). We claim that
also h(ψ) = h(αc(ψ)) for all ψ ∈ Irr(KHc). In fact, let W be the unique irreducible
QpHc̃-module such that ψ is a constituent of the character of W . By Proposition 5.2,
there exists i ∈ Z and an irreducible QpGb̃-module V such that (Qp ⊗Zp X) ⊗QpHc̃ W is
homotopy equivalent to V [i]. Moreover, by the definition of αc, the irreducible character
αc(ψ) is a constituent of the character of K ⊗Qp V . Thus, h(ψ) is the Hasse invariant of
the Qp-division algebra EndQpH(W ) and h(αc(ψ)) is the Hasse invariant of the Qp-division
algebra EndQpG(V ). By Proposition 5.2, these two Qp-division algebras are isomorphic.
Now, Theorem 5.1 impllies the claim.

Let σ ∈ Γ be such that σ(bi) = b. As in the proof of Theorem 1.4(b) we consider the
composition of the bijection αc : Irr(KHc) ∼→ Irr(KGbi) and the bijection σ : Irr(KGbi)

∼→
Irr(KGb). The only thing that still needs to be shown is that h( σχ) = h(χ), for any
χ ∈ Irr(KG) and any σ ∈ Γ. But this is immediate, since χ and σχ determine the same
irreducible QpG-module whose character has χ and σχ as constituent. This finishes the
proof of Theorem 1.4(c). □
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