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Gelfand–Tsetlin modules in the Coulomb context

Ben Webster

Abstract. This paper gives a new perspective on the theory of principal Galois orders, as developed
by Futorny, Ovsienko, Hartwig, and others. Every principal Galois order can be written as eF e for
any idempotent e in an algebra F , which we call a flag Galois order; and in most important cases
we can assume that these algebras are Morita equivalent. These algebras have the property that the
completed algebra controlling the fiber over a maximal ideal has the same form as a subalgebra in a
skew group ring, which gives a new perspective to a number of results about these algebras.

We also discuss how this approach relates to the study of Coulomb branches in the sense of
Braverman–Finkelberg–Nakajima, which are particularly beautiful examples of principal Galois or-
ders. These include most of the interesting examples of principal Galois orders, such as U(gln). In
this case, all the objects discussed have a geometric interpretation, which endows the category of
Gelfand–Tsetlin modules with a graded lift and allows us to interpret the classes of simple Gelfand–
Tsetlin modules in terms of dual canonical bases for the Grothendieck group. In particular, we classify
the Gelfand–Tsetlin modules over U(gln) and relate their characters to a generalization of Leclerc’s
shuffle expansion for dual canonical basis vectors.

Finally, as an application, we disprove a conjecture of Mazorchuk, showing that the fiber over a
maximal ideal of the Gelfand–Tsetlin subalgebra appearing in a finite-dimensional representation has
an infinite-dimensional module in its fiber for n ≥ 6.

1. Introduction

Let Λ be a Noetherian commutative ring and Ŵ a monoid acting faithfully on Λ; let
L = Frac(Λ) be the fraction field of Λ. Assume that Ŵ is the semi-direct product of a
finite subgroup W and a submonoid M and that #W is invertible in Λ. For simplicity,
we assume throughout the introduction that M has finite stabilizers in its action on
MaxSpec(Λ).
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A principal Galois order (Definition 2.1) U is a subalgebra of invariants (L#M)W of the
skew group ring L#M equipped with (among other structures) an inclusion of Γ = ΛW

as a subalgebra (usually called the Gelfand–Tsetlin subalgebra) and a faithful action on Γ.
We call a finitely generated U -module Gelfand–Tsetlin if it is locally finite under the

action of Γ, and thus decomposes as a direct sum of generalized weight spaces. An impor-
tant motivating question for a great deal of work in recent years has been the question:

Question. Given a principal Galois order U , classify the simple Gelfand–Tsetlin modules
and describe the dimensions of their generalized weight spaces for the different maximal
ideals of Γ.

1.1. Generalities on Galois orders. Work of Drozd–Futorny–Ovsienko [9, Th. 18]
shows that the simple GT modules containing a maximal ideal mγ of Γ in their sup-
port (the fiber over γ) are controlled by a profinite length algebra Ûγ , which naturally
acts on the corresponding generalized weight space for any U -module. The simple dis-
crete modules over Ûγ are the non-zero γ-generalized weight spaces of the different simple
Gelfand–Tsetlin modules. Thus, we can rephrase the above question as how to understand
these algebras in specific special cases.

One perspective shift we want to strongly emphasize is that taking invariants for a
group action conceals a great deal of structure—we can see this structure more clearly if
we instead consider subalgebras F in the skew group ring L#Ŵ with coefficients in L of
the semi-direct product Ŵ = W ⋉M, which we call principal flag orders (Definition 2.2).
These are simply the principal Galois orders containing the smash product Λ#W where
we take W ′ = {1} and M′ = Ŵ .

If we let e ∈ Z[ 1
#W ][W ] be the symmetrization idempotent, then for any principal

flag order F , the centralizer U = eFe is a principal Galois order for our original data,
and every principal Galois order appears this way (Lemma 2.5). One theme we will use
throughout the paper is the interplay between a maximal ideal mλ ⊂ Λ, and the maximal
ideal mγ = mλ ∩ Γ lying under it in Γ.

Applying the results of [9] to F in this situation, we have an algebra F̂λ which plays
the same role as Ûγ , controlling the GT modules in this fiber. One of the advantages
of this approach is that the algebra F̂λ has the same flavor as F itself, but with the
group Ŵ replaced by the stabilizer of λ in this group. Let Ŵλ ⊂ Ŵ be the stabilizer of
λ ∈ MaxSpec(Λ) and let Wλ be the stabilizer of λ in W . Let Λ̂λ be the completion of Λ
with respect to this maximal ideal and L̂λ the fraction field of this completion. Consider
the symmetrizing idempotent eλ in Z[ 1

#W ][Wλ].

Theorem 1.1 (Propositions 2.11, 2.12 & Lemma 2.13). The algebra F̂λ is a principal flag
order for the ring Λ̂ and the group Ŵλ, that is, it is a subalgebra of the skew group ring
L̂λ#Ŵλ such that F̂λ ⊗Λ̂λ

L̂λ
∼= L̂#Ŵλ, with an induced action on Λ̂.

Furthermore, we have a natural isomorphism
Ûγ = eλF̂λeλ.

In particular, if Wλ = {1}, these algebras are isomorphic.

By [17, Theorem 4.1(4)], the center of F̂λ is the subalgebra of invariants Λ̂λ = Λ̂Ŵλ and
any simple module over F̂λ will factor through the quotient F

(1)
λ by the unique maximal

Ann. Repr. Th. 1 (2024), 3, p. 393–437 https://doi.org/10.5802/art.14

https://doi.org/10.5802/art.14


Gelfand–Tsetlin modules in the Coulomb context 395

ideal of the center. Thus, this gives a canonical way to choose a finite-dimensional quotient
of F̂λ through which all simples factor.

1.2. The reflection case. The situation will be simpler if we work in the context (studied
in [22, § 4.1] and [16]) where we assume that:

(⋆) The algebra Λ is the symmetric algebra on a vector space V , the group W is a
complex reflection group acting on V , M is a subgroup of translations, and F is
free as a left Λ-module.

In this case, we can always choose F so that U and F are Morita equivalent via the
bimodules eF and Fe, and the dimension of F

(1)
λ is easy to calculate: it is just (#Ŵλ)2.

Furthermore, the quotient by the maximal ideal mλ has dimension #Ŵλ and has every
simple module as a quotient. In particular, the sum of the dimensions of the λ-generalized
weight space for all simple Gelfand–Tsetlin-modules is ≤ #Ŵλ.

If we consider how the results apply to Ûγ , then they are almost unchanged, except
that we replace the order of the group Ŵλ with the number of cosets

C(γ) = #Ŵλ

#Wλ

for any maximal ideal mλ lying over mγ in Λ. With the assumptions (⋆), the algebra U
(1)
γ

is C(γ)2-dimensional, and the sum of the dimensions of the γ-generalized weight space
for all simple Gelfand–Tsetlin-modules is ≤ S(γ). This seems to be implicit in the results
of [18] such as Theorem 4.12(c), but some of these results are left unstated there1.

1.3. Coulomb branches. The results of the previous sections are fairly abstract and
give no indication of how to actually compute the algebras U

(1)
γ and understand their

representation theory. In this section, we discuss the source of many of the most interesting
examples of principal Galois orders: the Coulomb branches of Braverman, Finkelberg,
and Nakajima [3, 37]. These include the primary motivating example, the orthogonal
Gelfand–Zetlin2 algebras of Mazorchuk [33] (including U(gln)), and a number of examples
that seem to have escaped the notice of experts, such as the spherical Cherednik algebras
of the groups G(ℓ, 1, n) and hypertoric enveloping algebras.

The Coulomb branch is an algebra constructed from the data of a gauge group G and
matter representation N . For example:

• In the case where G is abelian and N arbitrary, the Coulomb branch is a hypertoric
enveloping algebra as defined in [2]; the isomorphism of this with a Coulomb branch
(defined at a “physical level of rigor”) is proven in [7, § 6.6.2]; it was confirmed
this matches the BFN definition of the Coulomb branch in [3, § 4(vii)].
• In the case where G = GLn and N = gln ⊕ (Cn)⊕ℓ, the Coulomb branch is a

spherical Cherednik algebra of the group G(ℓ, 1, n) by [29]. Recent work of the
author and LePage confirms that the spherical Cherednik algebra for G(ℓ, p, n) is
also a principal Galois order [31, Proposition 3.16].

1Note that the published and arXived versions of [18] have different section numbering. We follow the
numbering of the published version; in the arXiv version, this is Theorem 5.2(3).

2As any savvy observer knows, there is no universally agreed-upon spelling of Гельфанд-Цетлин in the
Latin alphabet; in fact, it’s not even spelled consistently in Russian, since some authors write Цейтлин,
a different transliteration of the same name. We will write “Tsetlin” as this is the spelling that will elicit
the most correct pronunciation from an English-speaker. However, since “OGZ” is well-established as an
acronym, we will not change the spelling of the name of these algebras.
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• In the case where

G = GLv1 × · · · ×GLvn−1 (1.1a)
N = Mvn,vn−1(C)⊕Mvn−1,vn−2(C)⊕ · · · ⊕Mv2,v1(C), (1.1b)

the Coulomb branch is an orthogonal Gelfand–Zetlin algebra associated to the
dimension vector v = (v1, . . . , vn) as shown in [51, § 3.5]. In particular, U(gln)
arises from the vector v = (1, 2, 3, . . . , n).

In this case, the algebras U
(1)
γ also have a geometric interpretation in terms of convolution

in homology:

Theorem 1.2 (Theorem 4.4). The Coulomb branch for any group G and representation
N is a principal Galois order with Λ = Sym•(t)[ℏ], the symmetric algebra on the Cartan
of G with an extra loop parameter ℏ and Ŵ given by the affine Weyl group of G acting
naturally on this space.

For each maximal ideal mγ of Γ, there is a Levi subgroup Gγ ⊂ G, with parabolic Pγ

and a Pγ-submodule N−
γ ⊂ N such that

U (1)
γ
∼= HBM

∗

({(
gPγ , g′Pγ , n

)
∈ Gγ

Pγ
× Gγ

Pγ
×N

∣∣∣∣∣n ∈ gN−
γ ∩ g′N−

γ

})

U
(1)
S
∼=

⊕
γ,γ′ ∈ S

HBM
∗

({(
gPγ , g′Pγ′ , n

)
∈ Gγ

Pγ
×

Gγ′

Pγ′
×N

∣∣∣∣∣n ∈ gN−
γ ∩ g′N−

γ′

}) (1.2)

for any set S contained in a single Ŵ -orbit, where the right hand side is endowed with
the usual convolution multiplication (as in [8, (2.7.9)]).

The algebra U
(1)
S is a Steinberg algebra in the sense of Sauter [40]. One notable point

to consider is that this algebra is naturally graded. Thus, for any choice of (G, N) and
Ŵ -orbit S , this gives a graded lift Г̃Ц (S ) of the category of Gelfand–Tsetlin modules
supported on this orbit. It’s a consequence of the Decomposition Theorem that the classes
of simple modules form a dual canonical basis of the Grothendieck group K0(Г̃Ц(S )) (see
Theorem 4.11).

Let us now focus on the case of orthogonal Gelfand–Zetlin algebras, so G and N are
of the form (1.1a)–(1.1b). The convolution algebras of (1.2) have appeared in numerous
places in the literature: they are very closely related to the KLRW algebras3 T̃ as defined
in [46, Definition 4.5] corresponding to the Lie algebra sln, with its Dynkin diagram
identified as usual with the set {1, . . . , n − 1}. These algebras correspond to a list of
highest weights, which we will take to be vn copies of the (n − 1)st fundamental weight
ωn−1; the dimension vector (v1, . . . , vn−1) determines the number of times that each
Dynkin node appears as a label on a black strand. Readers unfamiliar with these algebras
can also refer to [23, § 3.1]. The author has proven in [48, Corollary 4.9] that there is a
set S such that:

T̃ ∼=
⊕

γ,γ′ ∈ S

HBM,G
∗

({(
gPγ , g′Pγ′ , n

)
∈ Gγ

Pγ
×

Gγ′

Pγ′
×N

∣∣∣∣∣n ∈ gN−
γ ∩ g′N−

γ′

})
, (1.3)

3Called “Stendhal algebras” or “Webster algebras” in some other sources, and a special case of “reduced
weighted KLR algebras” by [48, Theorem 3.5].
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n 3 4 5 6 7 8 9
# of simples 20 259 6005 235,546 14,981,789 1.494× 109 2.275× 1011

That is, T̃ is an equivariant Steinberg algebra for the space appearing in (1.2). The set
S appearing here is finite, but if we change it to the set of all integral elements, the RHS
of (1.3) gives an algebra Morita equivalent to T̃ .

The algebra T̃ is a cousin of the KLR algebras [25], but instead of categorifying the
universal enveloping algebra U(n) of the strictly lower triangular matrices in gln, they
categorify the tensor product of U(n) with the vnth tensor power of the defining represen-
tation of gln; this is proven in [46, Prop. 4.39]. The classes of simple modules over this
algebra match the dual canonical basis in this space (which is proven in the course of the
proof of [45, Th. 8.7]).

Of course, the difference between the RHS of equations (1.2) and (1.3) is between non-
equivariant and equivariant homology. We can account for the difference between these
on the LHS by taking an appropriate quotient. That is:

Corollary 1.3. For S the set of integral elements of MaxSpec(Γ), the algebra U
(1)
S is

Morita equivalent to the algebra T̃ ′, the quotient of T̃ by all positive degree central elements.

This gives a new way of interpreting the results of [23, § 6]; in particular, Corollary 1.3 is
effectively equivalent to Theorem 6.4 of loc. cit. This gives us a criterion in terms of which
weight spaces are not zero that classifies the different simple Gelfand–Tsetlin modules with
integral weights for an orthogonal Gelfand–Zetlin algebra (Theorem 5.9).

In joint work with Silverthorne [41], we develop the consequences of this connection
further and present computer calculations that completely answer Question 1 for Gelfand–
Tsetlin modules of sl3 and sl4 (higher values of n proved to be too much for our computer).
This matches the results of Futorny–Grantcharov–Ramirez [14]. We can answer at least
one basic question for much higher values of n: the number of simple integral Gelfand–
Tsetlin modules in the principal block of sln. These are given by a modified version of the
Kostant partition function (for which we know no closed form). In small ranks, these are
given by:

This shows the difficulty of answering this question in an ad hoc case-by-case manner
once n > 3 (and especially n > 4).

However, this does not preclude systematic study of these questions. As an illustration,
we use these results to resolve a question of Mazorchuk [32].

Standard calculations (for example, [35, Theorem 2.20]) compute the spectrum of Γ
on every finite-dimensional representation. These correspond precisely to Gelfand–Tsetlin
patterns, and in the fiber over such a pattern, there is a unique finite-dimensional module.
It is natural to ask if there are any infinite-dimensional modules in the fiber over a Gelfand–
Tsetlin pattern. One can easily confirm by hand that there are no such infinite-dimensional
modules for gl2, and the explicit calculations of [14, 41] show that there are no such modules
for n ≤ 4. However, low-rank cases like this can often be deceptive:

Theorem 1.4 (Theorem 6.2). Let U = U(gln) and Γ its usual Gelfand–Tsetlin subalgebra.
For the maximal ideal mγ ⊂ Γ corresponding to a Gelfand–Tsetlin pattern:

(1) If n ≤ 5, the fiber over γ is a single finite-dimensional irreducible representation.
(2) If n ≥ 6, the fiber over γ contains an infinite-dimensional irreducible representa-

tion.
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We establish this by a hands-on computation using KLR algebras (though locating the
relevant example required some help from SageMath).

2. Generalities on Galois orders

Following the notation of [22], let Λ be a noetherian integrally closed domain and L its
fraction field. Note that this implies Hartwig’s condition (A3), and we lose no generality
in assuming this by [22, Lemma 2.1]. Let W be a finite group4 acting faithfully on Λ and
Γ = ΛW , K = LW . Let M be a submonoid of Aut(Λ) which is normalized by W , and
let Ŵ = W ⋉M, which we also assume acts faithfully (this implies Hartwig’s (A1) and
(A2)). Let L be the smash product L#M, F = L#W , and K = LW . Note that L is an
L module in the obvious way and thus K is a K-module.

The more general notion of Galois orders was introduced by Futorny and Ovsienko [17],
but we will only be interested in a special class of these considered by Hartwig in [22],
which makes these properties easy to check.

Definition 2.1 ([22, Definitions 2.22 & 2.24]). The standard order (or “universal ring”
in the terminology of [34, 43]) is the subalgebra

KΓ = {X ∈ K |X(Γ) ⊂ Γ} .

A subalgebra A ⊂ KΓ containing Γ is a principal Galois order if KA = K.

It is a well-known principle in the analysis of quotient singularities that taking the
smash product of an algebra with a group acting on it is a much better-behaved operation
than taking invariants. Similarly, in the world of Galois orders, there is a larger algebra
that considerably simplifies the analysis of these algebras.

Definition 2.2. The standard flag order is the subalgebra
FΛ = {X ∈ F |X(Λ) ⊂ Λ} .

A subalgebra F ⊂ FΛ containing Λ is called a principal flag order if LF = F and W ⊂ F .

It is an easy check, via the same proofs, that the analogues of [22, Propositions 2.5,
2.14 & Theorem 2.21] hold here: that is F is a Galois order inside F with Λ maximal
commutative; in order to match the notation of [17], we must take G = {1} and M =
W ⋉M.

Let e = 1
#W

∑
w ∈ W w ∈ FΛ. Note that K ⊂ F through the obvious inclusion. Given

k ∈ K, the element eke ∈ F acts on Γ by the same operator as k. Thus, k 7→ eke is an
algebra isomorphism K ∼= eFe.

Lemma 2.3. The isomorphism above induces an isomorphism KΓ ∼= eFΛe.

Proof. If a ∈ FΛ, then eaeΓ = eaΓ ⊂ eΛ = Γ, so eae ∈ eKΓe. On the other hand, the
subalgebra eKΓe acts trivially on the elements of Λ that transform by any non-trivial
irrep of W , and sends Λ to Λ. This shows that we also have the opposite inclusion
eKΓe ⊂ eFΛe. □

Thus, we have that for any flag order F , the centralizer algebra U = eFe is a principal
Galois order. As usual with the centralizer algebra of an idempotent:

4Note that this is a departure from the notation of [22], where this group is denoted by G. We will be
most interested in the case where W is the Weyl group of a semisimple Lie group acting on the Cartan, so
we prefer to save G for the name of the Lie group.
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Lemma 2.4. The category of U -modules is a quotient of the category of F -modules through
the functor M 7→ eM ; that is, this functor is exact and has right and left adjoints N 7→
Fe⊗U N and N 7→ HomU (eF, N) that split the quotient functor.

Furthermore, every principal Galois order appears this way. Consider the smash product
Λ#W ⊂ EndΛW (Λ), and let D be a subalgebra that satisfies Λ#W ⊂ D ⊂ EndΓ(Λ) ⊂
L#W . Note that in this case, eDe = Γ, since this is true when D = Λ#W or D =
EndΓ(Λ). Let FD be the subalgebra generated by D ⊂ FΛ and by eUe, which is
the image of U ⊂ KΓ under its isomorphism to eFΛe. Although we have a canonical
isomorphism U ∼= eUe, it is helpful to distinguish these in the notation, since their natural
actions on Λ are different. Indeed, every element of eUe acts by 0 on (1− e)L, which is a
complementary K-subspace to K inside L. While eUe is not a unital subalgebra of FΛ,
the subalgebra D is, so FD is a unital subalgebra.

Lemma 2.5. For any principal Galois order U , and any D as above, the subalgebra FD

is a principal flag order such that U ∼= eFDe.

Proof. FD ⊂ FΛ: As discussed above, we have that eUe ·Λ = eUΓ. Thus, by the principal
Galois order property of U , we have

eUe · Λ = eU · Γ ⊂ Γ ⊂ Λ. (2.1)
The subalgebra D preserves Λ by definition, so combined with (2.1), we have FD ⊂ FΛ.

LFD = F and W ⊂ FD: Furthermore, we have LFD ⊃ LΛW = LW = F and by
construction, the algebra FD contains the smash product Λ#W .

Thus, the paragraphs above show that FD satisfies the conditions of a principal flag
order.

eFDe = U : The algebra FD is spanned by elements of the form f = d0eu1ed1e · · · eunedn

for di ∈ D and ui ∈ U . Thus, we have
efe = (ed0e)u1(ed1e) · · ·un(edne).

Since edie ∈ Γ, this product lies in U. □

2.1. Gelfand–Tsetlin modules. Now, fix a principal flag order F ⊂ FΛ. We wish to
understand the representation theory of this algebra. Consider the weight functors

Wλ(M) =
{

m ∈M
∣∣∣mN

λ m = 0 for some N ≫ 0
}

for λ ∈ MaxSpec(Λ). The reader might reasonably be concerned about the fact that this
is a generalized eigenspace; in this paper, we will always want to consider these, and thus
will omit “generalized” before instances of “weight.”

Definition 2.6. We call a finitely generated F -module M a weight module or Gelfand–
Tsetlin module if M =

⊕
λ ∈ MaxSpec(Λ) Wλ(M).

Remark 2.7. One subtlety here is that we have not assumed that Wλ(M) is finite-
dimensional. We’ll see below that this holds automatically if the stabilizer of λ in Ŵ is
finite.

Since many readers will be more interested in the Galois order U = eFe, let us compare
the weight spaces of a module M with those of the U -module eM . Recall that Wλ is the
stabilizer of λ in W , and let eλ ∈ Z[ 1

#W ][Wλ] be the symmetrizing idempotent. Of course,

Ann. Repr. Th. 1 (2024), 3, p. 393–437 https://doi.org/10.5802/art.14

https://doi.org/10.5802/art.14


400 Ben Webster

in U , we only have an action of Γ. Let γ ∈ MaxSpec(Γ) be the image of λ under the
obvious map, mγ ⊂ Γ the corresponding maximal ideal and

Wγ(M) =
{

m ∈ eM
∣∣∣mN

γ m = 0 ∀ N ≫ 0
}

.

Lemma 2.8. If M is a Gelfand–Tsetlin F -module, then eM is a Gelfand–Tsetlin
U -module with

Wγ(eM) ∼= eλWλ(M).

Proof. Let mγ = Γ ∩ mλ. By standard commutative algebra, the other maximal ideals
lying over mγ are those in the orbit W · λ. Thus, we have that

Wγ(eM) = e ·
( ⊕

λ′ ∈ W λ

Wλ′(M)
)

.

This space
⊕

λ′ ∈ W λ Wλ′(M) has a W -action induced by the inclusion W ⊂ F , and is
isomorphic to the induced representation IndW

Wλ
Wλ(M) since it is a sum of subspaces

which it permutes like the cosets of this subgroup. Thus, its invariants are canonically
isomorphic to the invariants for Wλ on Wλ(M). □

2.2. The fiber for a flag order.

Definition 2.9. Fix an integer N . The universal Gelfand–Tsetlin module of weight λ and
length N is the quotient F/FmN

λ .

This is indeed a Gelfand–Tsetlin -module by [22, Lem. 3.2]. Since a homomorphism
F/FmN

λ →M for any module M is determined by the image of 1̄ ∈ F/FmN
λ , the module

F/FmN
λ represents the functor of taking generalized weight vectors killed by mN

λ :

HomF

(
F/FmN

λ , M
)

=
{

m ∈M
∣∣∣mN

λ m = 0
}

.

In particular, every simple Gelfand–Tsetlin-module with Wλ(S) ̸= 0 is a quotient of
F/Fmλ, since it must have a vector killed by mλ. Taking the inverse limit lim←−F/FmN

λ ,
we obtain a universal (topological) Gelfand–Tsetlin module of arbitrary length. Consider
the algebra

F̂λ = lim←−F
/(

FmN
λ + mN

λ F
)

As noted in [9, Th. 18], this algebra controls the λ weight spaces of all modules, and
in particular simple modules, in the sense that for every simple Gelfand–Tsetlin-module
with Wλ(S) ̸= 0, the F̂λ-module Wλ(S) is simple, and every simple F̂λ appears this way
for a unique simple Gelfand–Tsetlin-module.

Let Ŵλ be the subgroup of Ŵ = W⋉M which fixes λ. For the remainder of this section,
we assume that Ŵλ is finite. This implies that Λ is finitely generated over Λλ = ΛŴλ .

Definition 2.10. Let Fλ be the intersection F ∩ L · Ŵλ ⊂ F = LŴ with the L-span of
Ŵλ. Since Fλ is the intersection of two subalgebras, it is itself a subalgebra.

Let λŴµ be the set of elements of Ŵ such that w · µ = λ. Let λFµ = F ∩K · λŴµ be
the elements of F which are in the K-span of λŴµ. This is an Fλ - Fµ bimodule

This has an obvious left and right module structure over Λ but Λ is not central. In the
notation of [18, (3)], this would be F (Ŵλ). Let Λ̂ be the completion of Λ in the mλ-adic
topology, and let L̂ be the fraction field of Λ̂.
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Proposition 2.11.
(1) The bimodule λFµ is finitely generated as a left module and as a right module over

Λ and satisfies λFµL = LλFµ = L · λŴµ.
(2) In fact, Fλ is a Galois order for the group M = Ŵλ and the commutative ring Λ,

using the notation of [17].
(3) The image of λFµ spans F/

(
FmN

µ + mN
λ F

)
for all N .

(4) The bimodule λF̂µ is the completion of λFµ with respect to the topology induced
by the basis of neighborhoods of the identity Fλm

N
µ + mN

λ Fλ. In particular, the
L̂-vector space L̂⊗Λ λF̂µ has basis λŴµ.

This shows in particular that Λ is big at λ in the terminology of [9].

Proof.
(1): Finite generation is an immediate consequence of the fact that F is an order.

Thus, it only remains to show that λF̂µL = LλF̂µ = L · λŴµ. The inclusions λF̂µL ⊂
L ·λŴµ ⊃ LλF̂µ are obvious by definition, so we only need to prove the opposite inclusions.
Since F = LF , for any w ∈ λŴµ, we have w =

∑
kifi for ki ∈ K, and fi ∈ F . Let T ⊂ Ŵ

be the support of the fi’s. If T ⊂ λŴµ, then we are done, so let us prove this by induction
on the number of elements t ∈ T \ λŴµ. Fix such a t. We have a polynomial p vanishing
at λ, but not at t−1 ·λ. Note that for w as above, we have w = 1

pt−pw (ptw−wp), with the
pt − pw being non-zero in K since it does not vanish at λ. Substituting into our formula
for w, we have

w =
∑ ki

pt − pw

(
ptfi − fip

)
.

The element ptfi − fip ∈ F has support on T \ {t}. Thus, we can inductively reduce the
size of T until T ⊂ λŴµ. That is, we can assume that fi ∈ λF̂µ. This completes the proof
that L · λŴµ = LλF̂µ; the proof for L · λŴµ = λF̂µL is identical.
(2): The property FλL = LFλ = L · Ŵλ which we have already verified shows that Fλ is
a Galois ring.

The ring Fλ inherits the order property, i.e. its intersection with any finite-dimensional
L-subspace Z for the left/right action of Fλ is finitely generated for the left/right action
of Λ, from the order F . After all, Z is a finite-dimensional subspace of F , so the order
property of F implies that Z ∩ Fλ = Z ∩ F is finitely generated over Λ.
(3): This is [18, Theorem 4.7] in the case where S = λŴµ, m = mλ and n = mµ.
(4): By point (3), λF̂µ is the completion of λFµ with respect to the subspace topology,
that is, the topology with a basis of neighborhoods given by λFµ ∩ (FmN

µ + mN
λ F ). Since

λFµm
N
µ + mN

λ λFµ ⊂ λFµ ∩
(
FmN

λ + mN
λ F

)
,

we will have the desired equivalence of topologies if we prove that the inclusion above is
an equality. Consider the quotient Λ - Λ-bimodule

QN =
λFµ ∩

(
FmN

µ + mN
λ F

)
FλmN

µ + mN
λ Fλ

.

Consider the ideal Mλ = mλ ⊗ Λ + Λ⊗mµ. Note that

M2N
λ ·QN ⊂ QNmN

µ + mN
λ QN = 0. (2.2)
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Assume that f =
∑

aigi + hibi for ai, bi ∈ F and gi ∈ mN
λ , hi ∈ mN

µ . By [18, Theorem 4.7],
we can choose a′

i, b′
i ∈Mλ ·F such that ai− a′

i, bi− b′
i ∈ λFµ. The image of f in QN is the

same as that of f ′ = a′
igi + hib

′
i ∈ MλQN . This implies that QN = MλQN . Combining

this with (2.2), Nakayama’s lemma shows that QN = 0, completing the proof. □

Alternatively, we can think about this topology by noting that Fλ is finitely generated
over Λλ = ΛŴλ . Furthermore, Λλ is central in Fλ, since it commutes with L · Ŵλ; in fact,
by Lemma 2.11 above and [17, Theorem 4.1(4)], it is the full center of this algebra. Let
nλ = mλ ∩ Λλ. Since λ is fixed by Ŵλ (by definition), the ideal nλΛ still only vanishes at
λ, that is, nλΛ ⊃ mk

λ for some k.
Let Λ̂λ be the completion of Λλ in the nλ-adic topology.

Proposition 2.12. We have an isomorphism of topological bimodules

λF̂µ
∼= λFµ ⊗Λµ Λ̂µ

∼= Λ̂λ ⊗Λλ λFµ

In particular, the ring F̂λ is a Galois order for M = Ŵλ and the ring Λ̂.

Proof. The tensor product Fλ⊗Λλ
Λ̂λ is the completion of Fλ with respect to the topology

with basis of 0 given by the 2-sided ideals Fλn
N
λ . Since Λnλ ⊃ mk

λ for some k, we have
that

Fλm
kN
λ + mkN

λ Fλ ⊂ Fλn
N
λ ⊂ Fλm

N
λ + mN

λ Fλ

which shows the equivalence of the topologies, and thus the isomorphism of completions.
Faithful base change by a central subalgebra preserves the properties of being a Galois
order, so this follows from Lemma 2.11. □

We can also use these results to understand the fiber for U as well for any principal
Galois order. By Lemma 2.5, we can choose a principal flag order with U = eFe. The
algebra Fλ contains the stabilizer Wλ and its symmetrizing idempotent eλ. As before, let
γ be the image of λ in MaxSpec(Γ) and mγ = Γ ∩mλ.

It is worth noting that there is no obvious analogue of Ŵλ and Fλ in the context of
U . The closest analogue is the set S(mγ , mγ) defined in [18, § 4.1]. This is the subset
of M = Ŵ/W such that m · w′λ = wλ for some w, w′ ∈ W . In this case, we have that
w−1mw ∈ Ŵλ. Put differently, S(mγ , mγ) is given by the W -saturation of the image of
Ŵλ, i.e. the union of all W -W double cosets WwW/W for w ∈ Ŵλ. We have a surjective
map Ŵλ/Wλ ↠ S(mγ , mγ), but this is not necessarily injective: The image contains an
element of each W -orbit, but is not W -invariant.

However, there is a close relationship between Fλ and the algebra Ûγ . Note that the
ideal Λmγ has vanishing set given by the orbit W · λ. Thus, if we consider the completion
of Λ at this ideal, the result is ⊕λ′ ∈ W ·λΛ̂λ′ . Since passing invariants for W is exact, it
commutes with inverse limits. Thus, the completion Γ̂γ of Γ at the maximal ideal mγ is
isomorphic to

Γ̂γ
∼= eλΛ̂λ = Λ̂Wλ

λ
∼=

 ⊕
λ′ ∈ W ·λ

Λ̂λ′

W

.

Lemma 2.13. The above isomorphism induces an isomorphism Ûγ
∼= eλF̂λeλ.
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Proof. Consider the completion F̂γ = F/(FmN
γ +mN

γ F ); as discussed above, since mγ is an
ideal defining the orbit W ·λ, this decomposes as the sum

⊕
λ′,λ′′ ∈ W ·λ F/(FmN

λ′ +mN
λ′′F ) by

the Chinese Remainder theorem. In particular, this means that as a W×W -representation
F̂γ = IndW ×W

Wλ×Wλ
F̂λ.

The exactness of taking invariants shows that Ûγ is eF̂γe, or put differently, the invari-
ants of Fγ under the action of W by left and right multiplication. Thus, we obtain the
desired isomorphism. □

2.3. Universal modules. While this is largely redundant with [9], it will be helpful to
explain how we construct simple Gelfand–Tsetlin modules.

Definition 2.14. Fix an integer N . The central universal Gelfand–Tsetlin module of
weight λ and length N is the quotient P

(N)
λ = F/FnN

λ .

Consider the quotient algebra F
(N)
λ := Fλ/Fλn

N
λ .

Theorem 2.15. The module P
(N)
λ is a Gelfand–Tsetlin module such that

Wλ

(
P

(N)
λ

)
∼= End

(
P

(N)
λ

)
∼= F

(N)
λ .

More generally, we have that

HomF

(
P

(N)
λ , M

)
=
{

m ∈M
∣∣∣ nN

λ m = 0
}

. (2.3)

Proof. Equation (2.3) is a basic property of left ideals. This is a Gelfand–Tsetlin module
by [22, Lem. 3.2].

Note that the map Fλ →Wλ(P (N)
λ ) is surjective by construction. Of course, the kernel

of this map is Fλ ∩ FnN
λ = Fλn

N
λ . This shows that Wλ(P (N)

λ ) ∼= Fλ/Fλn
N
λ . Since nN

λ is
central in Fλ, it acts trivially on this weight space, and the identification with End(P (N)

λ )
follows from (2.3). □

Note that “length N” refers to the maximal length of a Jordan block of an element
of nλ, not of mλ. Since nλ is central in Fλ, the ideal nN

λ acts trivially on P
(N)
λ . More

generally:

Lemma 2.16. The ideal nN
µ acts trivially on the weight space Wµ(P (N)

λ ).

Proof. Note that translation by µ − λ induces an automorphism σµ,λ : Λ → Λ, and that
σµ,λ(nN

λ ) = nN
µ . We have σµ,λ(g)w = wg for any w ∈ µŴλ, g ∈ ΛW , so by linearity,

σµ,λ(g)f = fg for any f ∈ µFλ, g ∈ ΛW . Since nN
λ is generated by W -invariant elements,

this implies that nN
µ f = fnN

λ for any f ∈ µFλ.
Let 1̄ denote that image of 1 ∈ F in P

(N)
λ The elements of Wµ(P (N)

λ ) are precisely those
of the form f · 1̄ for µFλ. Thus, the commutation above shows that nN

µ f · 1̄ = fnN
λ · 1̄ = 0,

showing the desired vanishing. □

On the other hand the nilpotent length of the action of mµ on Wµ(P (N)
λ ) is typically

more than N ; the argument above fails because the generators of mλ aren’t W -invariant.
It follows immediately from [9, Theorem 18] that:

Theorem 2.17. The map sending S 7→ Wλ(S) is a bijection between the isoclasses of
simple Gelfand–Tsetlin F -modules in the fiber over λ and simple F

(1)
λ -modules.
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Similarly, we can define a U -module Q
(N)
γ = eP

(N)
λ eλ = e(P (N)

λ )Wλ such that

Wγ

(
Q(N)

γ

)
∼= End

(
Q(N)

γ

)
∼= U

(N)
λ = eλF

(N)
λ eλ.

More generally, we have that

HomF (Q(N)
λ , M) =

{
n ∈ N

∣∣∣ (ΛnN
λ ∩ Γ

)
m = 0

}
. (2.4)

Applying [9, Theorem 18] again shows that the map sending S 7→ Wγ(S) is a bijection
between the isoclasses of simple Gelfand–Tsetlin U -modules in the fiber over γ and simple
U

(1)
γ -modules.

2.4. Dimension bounds. In [18, Theorem 4.12], bounds are given on the number and
dimensions of the irreducible representations in the fiber over a given maximal ideal γ. In
this section, we explain how related bounds can be recovered in our framework.

Let σ(λ, λ) be the minimum number of generators of F̂λ as a right Λ̂λ-module. Note that
the minimum number of generators of Fλ is an upper bound on σ(λ, λ). Since F̂λ ⊗Λ̂λ

L̂λ

is #Ŵλ dimensional over L, we have that σ(λ, λ) ≥ #Ŵλ. We will have equality if and
only if F̂λ is free over Λ̂λ, which will follow if Fλ is free over Λ (in particular if F is free
over Λ).

Let us note how these statistics compare with those in [18, § 4]. In [18, 4.1(c)], the set
M̂λ = {m ∈ M | mλ ∈ W · λ} is considered. If we write an element of Ŵλ as w−1m for
w ∈ W, m ∈ M, then we will have m ∈ M̂λ. The induced map Ŵλ → M̂λ has fiber given
by the choices of w ∈ W such that wλ = mλ; these form a single coset in W/Wλ. This
shows that #M̂λ = #Ŵλ

#Wλ
.

In any simple F
(1)
λ -module, there is a vector where mλ acts trivially. As discussed before,

this means that:

Proposition 2.18. Any simple F
(1)
λ -module appears as a quotient of Fλ/Fλmλ. If F̂λ is

a free module over Λ̂ (necessarily of rank #Ŵλ) then dimΛ/mλ
Fλ/Fλmλ = #Ŵλ.

Proof. The algebra Λ(1)
λ = Λλ/nλ is a local commutative subalgebra of the finite-length

algebra F
(1)
λ . Thus, for any F

(1)
λ -module M , some power of the maximal ideal mλ kills M .

Let n be maximal such that mn
λM ̸= 0. In this case, mn

λM is a nonzero subspace of M
killed by mλ, so any non-zero element of this space induces a non-zero map Fλ/Fλmλ →M ,
which is surjective if M is simple. □

Combining this with Theorem 2.17 above, we have that:

Corollary 2.19. The dimensions of the λ-weight spaces in the simples over F in the fiber
over λ have sum ≤ σ(λ, λ), and thus ≤ #Ŵλ if Fλ is a free right module over Λ.

The dimensions of the γ-weight spaces in the simple U -modules in the fiber over γ have
sum ≤ σ(λ,λ)

#Wλ
, and thus ≤ #Ŵλ

#Wλ
if Fλ is a free right module over Λ.

We can generalize these results to be closer to [18]. Let σ(µ, λ) be the minimal number
of generators of λFµ as a Λ-module.

Corollary 2.20. The dimensions of the λ-weight spaces in the simples over F in the fiber
over µ have sum ≤ σ(µ, λ), and thus ≤ #λŴµ if λFµ is a free right module over Λ.
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If γ′ lies under µ, then the dimensions of the γ-weight spaces in the simple U -modules
in the fiber over γ′ have sum ≤ σ(µ,λ)

#Wλ
, and thus ≤ #λŴµ

#Wλ
if λFµ is a free module over Λ.

Remark 2.21. In [18, Theorem 4.12(c)], Futorny and Ovsienko show similar bounds but
using a slightly different looking statistic #(W\S(mµ, mλ)). In [18, Theorem 4.1(c)], they
show that this is less than or equal to the size of the set {m ∈ M | mµ ∈ W · λ}. As
mentioned above, sending wm 7→ m is a #Wλ-to-1 map from λŴµ to the set {m ∈ M |
mµ ∈W · λ}, so [18, Theorem 4.1(c)] can be rewritten as

#(W\S (mµ, mλ)) ≤ #Ŵλ

#Wλ
. (2.5)

While we have not found an example where this inequality is strict, it seems likely that
they exist. The explanation for this difference between these bounds is that there could
potentially be F -modules M cyclically generated by a vector of weight µ such that eM is
not cyclically generated over U . Such a module exists for F = Ŵ#Λ if and only if the
inequality (2.5) is strict for some λ.

2.5. Weightification and canonical modules. There is another natural way to try to
construct Gelfand–Tsetlin modules. Consider any F -module M , and fix an Ŵ -invariant
subset S ⊂ MaxSpec(Λ).

Definition 2.22. Consider the sums

MS =
⊕

λ ∈ S

{m ∈M | nλm = 0} MS =
⊕

λ ∈ S

M/nλM

We can define actions of F on these sums as follows: given f ∈ F , the Λ-module
Qf,λ = ΛfΛ/ΛfΛnλ is finite length, and thus the sum of finitely many weight spaces

Qf,λ =
m⊕

i=1
Wµi (Qf,λ) .

By [18, Theorem 4.7], we can write f = f(1) + f ′ where f(1) ∈ µ1Fλ, f ′ ∈ nµ1f + fnλ;
applying this inductively, we can write

f = f(1) + f(2) + · · ·+ f(k) + f0 where f(i) ∈ µiFλ, f0 ∈ Fnλ.

The elements f(i) are unique up to the addition of an element of µiFλ ∩ (Fnλ + nµ1F ) =
µiFλnλ. Acting by f(i) gives natural maps

{m ∈M | nλm = 0} → {m ∈M | nµim = 0} M/nλM →M/nµiM ;

these maps are independent of the choice of f(i) since µiFλnλ acts trivially in both cases.

Theorem 2.23. The ring F acts on MS and MS by the formula f ·m =
∑k

i=1 f(i)m and
this module structure is Gelfand–Tsetlin.

Note that even if M is a finitely generated module, the modules MS and MS may not
be finitely generated, though the individual weight spaces

Wλ(MS ) = {m ∈M | nλm = 0} Wλ (MS ) = M/nλM

will be finitely generated over Λ(1)
λ = Λ/Λnλ.
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Proof. The module action is well-defined: We need to check that f(gm) = (fg)m for
all f, g ∈ F , and m ∈MS or MS . Without loss of generality, we can assume that f, g both
have m = 1, i.e., that gm is a weight vector, as is f(gm). That is f = f(1) +f0, g = g(1) +g0
where

f(1) ∈ νFµ g(1) ∈ µFλ f0 ∈ Fnµ g0 ∈ Fnλ.

for some ν, µ, λ, and that nλm = 0 or m ∈M/nλM . In either case, fg = f(1)g(1) +f(1)g0 +
f0g(1) + f0g0. The first term lies in νFλ. and the last three all lie in Fnλ. Thus, we have:

f(gm) = f(g(1)m) = f(1)g(1)m = (fg)m
completing the proof that the module action is well-defined.

The module is Gelfand–Tsetlin: By construction, Wλ(MS ) = {m ∈M | nλm = 0}
and Wλ(MS ) = M/nλM , and these modules are the direct sums of these spaces by
construction. □

We could similarly consider “thicker” versions of these modules where we replace nλ

with powers of this ideal, and direct/inverse limits of the resulting modules. Since we
have no application in mind for these modules, we will leave discussion of them to another
time.

One particularly interesting case is M = Λ itself. In this case, ΛS is a Gelfand–Tsetlin
module such that Wλ(ΛS ) = Λ(1)

λ for all λ ∈ S . The same module has been constructed
by Mazorchuk and Vishnyakova [34, Theorem 4]. The dual version of this construction
given by taking the vector space dual Λ∗ = Homk(Λ,k) for some subfield k and considering
(Λ∗)S has been studied by several authors, including Early–Mazorchuk–Vishnyakova [10],
Hartwig [22] and Futorny–Grantcharov–Ramirez–Zadunaisky [16]; in particular, it appears
to the author that e(Λ∗)S is precisely the U = eFe module V (Ω, T (v)) defined in [16,
Definition 7.3] when S = Ŵ · v and Ω is a base of the group Ŵλ for any λ ∈ S .

Based on the structure of this module, we can construct a “canonical” module as in [10,
22]; the author is not especially fond of this name as the embedding of F in F is not itself
canonical if the algebra F is the object of interest. For example, U(gln) has an embedding
into F for each orientation of the linear quiver, each with its own notion of “canonical
module.”

For every λ ∈ S , we can consider the submodule C ′
λ of ΛS generated by Wλ(ΛS )

which is clearly finitely (in fact, cyclically) generated.

Lemma 2.24. The submodule C ′
λ has a unique simple quotient Cλ, and corresponds to

the unique simple quotient of Λ(1)
λ as a F

(1)
λ -module under Theorem 2.17.

Proof. Given any proper submodule M ⊂ C ′
λ, consider M∩Wλ(ΛS ) ⊂ Λ(1)

λ . This must be
a proper submodule, because Wλ(ΛS ) generates C ′

λ. As a Λ(1)
λ -module, Λ(1)

λ has a unique
maximal submodule, the ideal mλ/nλ, which thus contains M ∩Wλ(ΛS ). Thus, the sum
of two proper submodules has the same property and is again proper. This shows that
there is a unique maximal proper submodule, and thus a unique simple quotient. □

In the terminology of [22], the canonical module is the right module C∗
λ obtained by

dualizing this construction with respect to a subfield k. Since we avoid dualizing, our
result here is both a bit stronger and a bit weaker than [22, Theorem 3.3]. That result
does not depend on the finiteness of Ŵλ, though as a result, one pays the price of not
knowing whether Wλ is finite-dimensional. However, our construction applies when Λ is
arbitrary, making no assumption on characteristic or linearity over a field.
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A natural question, first posed to us by Mazorchuk, is which simple GT modules appear
as canonical modules. In particular, one could hope that each simple module is the
canonical module of some maximal ideal; jointly with Silverthorne, we have shown that this
is the case for OGZ algebras with their usual Galois order structure [41, Theorem A(1)].
This heavily uses the combinatorics of that special case and does not readily generalize to
other cases.

2.6. Interaction between weight spaces. In this section, we continue to assume that
every weight considered has finite stabilizer in Ŵ .

Whereas in the previous 3 subsections, we focused attention on a single weight, in this
section we study how we can understand the classification of modules by considering how
different weights interact. For now, fix two different weights λ, µ ∈ MaxSpec(Λ). Recall
that λŴµ is the set of elements of Ŵ such that w · µ = λ and λFµ = F ∩K · λŴµ. This
is a Fλ - Fµ-bimodule, and we have a multiplication λFµ ⊗Fµ µFν → λFν . Thus, we can
define a matrix algebra:

F (λ1, . . . , λk) =


Fλ1 λ1Fλ2 · · · λ1Fλk

λ2Fλ1 Fλ2 · · · λ2Fλk

...
... . . . ...

λk
Fλ1 λk

Fλ2 · · · Fλk

 (2.6)

More generally, for any subset S ⊂ MaxSpec(Λ), we let F (S) be the direct limit of this
matrix algebra over all finite subsets. Note that if S is not finite, this is not a unital algebra,
but is locally unital. This acts by natural transformations on the functor

⊕
λ ∈ S Wλ.

Note that if λ and µ are not in the same orbit of Ŵ , then λFµ = 0, so F (S) naturally
breaks up as a direct sum over the different Ŵ -orbits that these weights lie in.

If λ and µ are in the same orbit, then we have a canonical isomorphism Λλ
∼= Λµ induced

by any element of λŴµ, which identifies the ideals nλ and nµ. For S a single Ŵ -orbit, we
can identify these with a single algebra Z (S ) ⊃ n.

Proposition 2.25. If S ⊂ S , then Z (S ) is the center of F (S).

Proof. As discussed before, we have an isomorphism Fλ ⊗Γ K ∼= L#Ŵλ, and λ1Fλ2 ⊗Γ K
is just the bimodule induced by an isomorphism between these algebras. Thus F (S)⊗K

is Morita equivalent to L#Ŵλ, and its center is the subfield LŴλ ⊂ L. We have that
Z(F (λ1, . . . , λk)) = F (S) ∩ Z(L#Ŵλ) = Z (S ). □

Let
F (N)(S) = F (S)/nN F (S)

F̂ (S) = F (S)⊗ΛS
Λ̂S .

As a consequence of [9, Theorem 17], we can easily extend Theorem 2.17 to incorporate
any number of weight spaces. Since S might be infinite, the module ⊕λ ∈ SWλ(S) might not
be finite-length as a module over Λ. We call a module M over F̂ (S) locally finite-length if
for each idempotent 1λ ∈ F̂ λ, then image 1λM is finite-length.

Theorem 2.26. The simple Gelfand–Tsetlin F -modules S such that Wλ(S) ̸= 0 for some
λ ∈ S are in bijection with locally finite-length simple modules over F (1)(S), sending S 7→⊕

λ ∈ S Wλ(S).
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We can also extend this to an equivalence of categories: let ГЦ(S) be the category of
all Gelfand–Tsetlin modules modulo the subcategory of modules such that Wλ(M) = 0
for all λ ∈ S.

Theorem 2.27. The functor S 7→ ⊕k
i=1Wλi

(S) gives an equivalence between ГЦ(S) and
locally finite-length modules over the completion F̂ (S) which are continuous with respect
to the discrete topology.

By [12, Theorem 4.7], if we remove the assumption that stabilizers are finite (or con-
sider modules which are not finitely generated), some care is needed about topologies;
representations which are continuous in the discrete topology will correspond to strong
Gelfand–Tsetlin modules, i.e. those where mN

λ Wλ(M) = 0 for N ≫ 0. With our assump-
tions, Gelfand–Tsetlin modules are automatically strong.

As before, let S be a Ŵ -orbit in MaxSpec(Λ) and let ГЦ(S ) the category of Gelfand–
Tsetlin modules where if λ /∈ S , we have Wλ(M) = 0.

Definition 2.28. We call a set of weights S ⊂ S complete for the orbit S if ГЦ(S) =
ГЦ(S ), that is, if any module M with Wλi

(M) = 0 for all i satisfies Wλ(M) = 0 for all
λ ∈ S .

A finite set S is complete for the orbit S , if and only if ГЦ(S ) ∼= F̂ (S) -fdmod.

Of course, many readers will be more interested in understanding modules of the original
principal Galois order. For simplicity, assume that S only contains at most one element of
each W -orbit. We can derive the weight spaces of U from those of F by taking invariants
under the stabilizer Wλ. Let eλ be the idempotent in F̂λ which projects to the invariants
of Wλ, and eλ ∈ F̂ (S) the matrix with these as diagonal entries for the different λ ∈ S.
Let U (1)(S) = eλF (1)(S)eλ.

Theorem 2.29. The simple Gelfand–Tsetlin U -modules S such that Wγ(S) ̸= 0 for
γ in the image of S are in bijection with simple modules over U (1)(S), sending S 7→
⊕λ ∈ SeλWλ(S).

3. The reflection case

In Section 2, we worked in the same generality as in [22]. In this section, we wish to
specialize to a much simpler case. Let V be a C-vector space with an action of a complex
reflection group W , andM a finitely generated (over Z) subgroup of V ∗. We assume from
now on that Λ = Sym•(V ) is the symmetric algebra on this vector space, with the obvious
induced M-action. Note that the stabilizer Ŵλ for any λ ∈ V ∗ is finite, and in fact a
subgroup of W via the usual quotient map Ŵ →W . It is generated by the M-translates
of root hyperplanes containing λ, and thus is again a complex reflection group, acting by
the translation of a linear action.

This simplifies matters in one key way: the module Λ is a free Frobenius extension over
Λλ and over Γ. Recall that we call a ring extension A ⊂ B free Frobenius if B is a free
A-module, and HomA(B, A) is a free B module of rank 1 for its induced left B-action or
right B-action; a Frobenius trace is a generator of HomA(B, A) as a B-module (again, as
a left module or a right module).

The fact that Λ is free Frobenius over Γ is well-known, and easily derived from results
in [5]: following the notation of loc. cit., we have a map Λ→ Γ defined by D(J∗), which
is the desired trace. In slightly more down-to-earth terms, we have a unique element
J ∈ Λ of minimal degree that transforms under the determinant character of the action
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on V ∗; this is obtained by taking a suitable power of the linear form defining each root
hyperplane. There is a unique homogeneous Frobenius trace up to scalar multiplication,
which is characterized by sending this element to 1 ∈ Γ and killing all other isotypic
components for the action of W .

In particular, this means that D = EndΓ(Λ), the nilHecke algebra of W , is Morita
equivalent to Γ; see for example [20, Lemma 7.1.5].

Definition 3.1. We call a flag order F Morita if the symmetrization idempotent gives a
Morita equivalence between U = eFe and F ; that is, if F = FeF .

Recall that for a fixed principal Galois order U , we have an associated flag Galois order
FD. Since D = DeD when D = EndΓ(Λ) in the complex reflection case, we find that the
flag order FD is Morita for any principal Galois order in this case.

Thus, for any principal Galois order, we can study the representation theory of the
corresponding flag order instead. This approach is implicit in much recent work on this
subject, which uses the nilHecke algebra, such as [13, 15, 38], but many issues are consid-
erably simplified if we think of the flag order as the basic object.

It is easy to see how Gelfand–Tsetlin modules behave under this equivalence. We can
strengthen Lemma 2.8 to:

Lemma 3.2. If F is Morita, then Wλ(M) is free as a CWλ-module and we have isomor-
phisms

Wγ(eM) ∼= Wλ(M)Wλ Wλ(M) ∼= (Wγ(eM))⊕#Wλ .

The reflection hypothesis also allows us to define a dual version of the canonical module
Cλ. We can consider the quotient C̃ ′

λ of the module ΛS by all submodules having trivial
intersection with Wλ(ΛS ).

The algebra Λ(1)
λ is a Frobenius algebra, so its socle as a Λ(1)

λ -module is 1-dimensional,
and every non-zero submodule of C̃ ′

λ has nontrivial intersection with Wλ(ΛS ), and thus
contains this socle. This shows that the intersection of all non-zero submodules is non-
trivial, giving a simple socle C̃λ ⊂ C̃ ′

λ. This will sometimes be isomorphic to Cλ, and
sometimes not.

3.1. Special cases of interest.

Definition 3.3. We call a weight λ non-singular if Ŵλ = {1} and more generally p-
singular if Ŵλ has a minimal generating set of p reflections.

In this case, we have an equality F̂ λ = Λ̂λ, which is a complete local ring, and thus has
a single simple module Λ̂λ/mλ. Theorem 2.17 shows that:

Corollary 3.4. If λ is non-singular, there is a unique simple Gelfand–Tsetlin module S
with Wλ(S) ∼= C and for all other simples S′ we have Wλ(S′) = 0.

A natural question to consider is when two non-singular weights λ, µ have the same
simple, and when they do not. Of course, they can only give the same simple if µ = w · λ
for some w ∈ Ŵ .

Corollary 3.5. Given non-singular weights λ and µ as above, we have a simple Gelfand–
Tsetlin module S with Wλ(S) ∼= Wµ(S) ∼= C if and only if λFµ · µFλ ̸⊂ mλ.

Now assume λ is 1-singular and Fλ is a free module over Λ. In this case, Ŵλ
∼= S2, so

F
(1)
λ is 4-dimensional. Thus, there are 3 possibilities for the behavior of such a weight:
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Corollary 3.6. Exactly 1 of the following holds:
(1) F

(1)
λ
∼= M2(C) and there is a unique simple Gelfand–Tsetlin module S with Wλ(S)

∼= C2 and for all other simples it is 0.
(2) The Jacobson radical of F

(1)
λ is 2-dimensional and there are two simple Gelfand–

Tsetlin modules S1, S2 with Wλ(Si) ∼= C and for all other simples it is 0.
(3) The Jacobson radical of F

(1)
λ is 3-dimensional and there is a unique simple Gelfand–

Tsetlin module S with Wλ(S) ∼= C and for all other simples it is 0.

4. Coulomb branches

Throughout this section, we fix a field k, and all (co)homology will be calculated with
coefficients in this field. For now, k can have any characteristic not dividing #W , but for
most of the sequel, we will assume that k is characteristic 0.

4.1. Coulomb branches and principal orders. One extremely interesting collection
of examples of principal Galois orders are the Coulomb branches defined by Braverman,
Finkelberg, and Nakajima [3]. These algebras have attracted considerable interest in
recent years, and subsume most examples of interesting principal Galois orders known to
the author.

There is a Coulomb branch attached to each connected reductive complex group5 G
and representation N . Let G[[t]] be the Taylor series points of the group G, and G((t)) its
Laurent series points. Let

Y = (G((t))×N [[t]])/G[[t]],
equipped with its obvious map π : Y→ N((t)); we can think of this as a vector bundle over
the affine Grassmannian G((t))/G[[t]]. Readers who prefer moduli theoretic interpretations
can think of this as the moduli space of principal bundles on a formal disk with choice of
section of the associated bundle for N and of trivialization away from the origin.

Let H = NGL(N)(G)◦ be the connected component of the identity in the normalizer
of G, and let Q be a group equipped with an inclusion G ↪→ Q with Q/G a torus,
and a compatible map Q → H. The choice we will want to make most often is to
assume that this map induces an isomorphism of Q/G to a maximal torus of H/G, but
it can be useful to have the freedom to make a different choice. Given a maximal torus
TQ of Q, its intersection with G gives a maximal torus T of G. Note that Y has a
Q-action via q · (g(t), n(t)) = (qg(t)q−1, qn(t)). It also carries a canonical principal Q-
bundle YQ given by the quotient of G((t))×Q×N [[t]] via the action g(t) · (g′(t), q, n(t)) =
(g′(t)g−1(t), qg−1(0), g(t)n(t). We can extend this to an action of Q×C∗ where the factor
of C∗ acts by the loop scaling, and let ℏ denote the equivariant parameter of the loop
scaling.

Definition 4.1. The (quantum) Coulomb branch is the convolution algebra

A = HQ×C∗
∗

(
π−1(N [[t]])

)
,

It might not be readily apparent what the algebra structure on this space is. However,
it is uniquely determined by the fact that it acts on HQ×C∗

∗ (N [[t]]) = H∗
Q×C∗(∗) by

a ⋆ b = π∗(a ∩ ι(b)) (4.1)
5Note that in most previous work on Galois orders such as [16, 17, 22], G has denoted the finite group

which we denote W ; since in all cases of interest to us, W is the Weyl group of a reductive group, and as
discussed below, this is the context where we find it, we feel this switch in notation is justified.
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where ι is the inclusion of this algebra into A as the Chern classes of the principal bundle
YQ and the obvious inclusion of C[ℏ] ∼= HC∗

∗ (N [[t]]). Obviously, there are a lot of technical
issues that are being swept under the rug here; a reader concerned about this point should
refer to [3] for more details.

Let J = Q/G, and j the Lie algebra of this group. The subalgebra H∗
J×C∗(∗) =

Sym(j∗)[ℏ] ⊂ A induced by the Q × C∗-action is central; borrowing terminology from
physics, we call these flavor parameters. Thus, we can consider the quotient of A by a
maximal ideal in this ring. This quotient is what is called the “Coulomb branch” in [3,
Definition 3.13] and our Definition 4.1 matches the deformation constructed in [3, § 3(viii)].

We let W be the Weyl group of G (which is also the Weyl group of Q), let V = t∗Q⊕C ·h
where tQ is the (abstract) Cartan Lie algebra of Q and let M be the cocharacter lattice
of TG, acting by the ℏ-scaled translations

χ · (ν + kℏ) = ν + k⟨χ, ν⟩+ kℏ.

Note that the action has finite stabilizers on any point where ℏ ̸= 0 if k has characteristic
0, but any point with ℏ = 0 will have infinite stabilizer. We’ll ultimately only be interested
in modules over the specialization ℏ = 1, so this will not cause an issue for the moment.
Note that

Λ ∼= H∗
TQ×C∗(∗) = Sym•(tQ)[ℏ] Γ ∼= H∗

Q×C∗(∗) = Sym•(tQ)W [ℏ],
and W⋉M is the extended affine Weyl group of G. Localization in equivariant cohomology
shows that the action of (4.1) induces an inclusion A ↪→ KΓ for the data above; see [3,
(5.18) & Proposition 5.19]. Thus, it immediately follows that:

Proposition 4.2. The Coulomb branch is a principal Galois order for these data.

If we fix the flavor parameters, the result will also be a principal Galois order for an
appropriate quotient of Λ.

The flag order attached to these data also has an interpretation as the flag BFN algebra
from [47, Definition 3.2]. Let X = (G((t)) × N [[t]])/I, where I is the standard Iwahori,
πX : X→ N((t)) the obvious map and 0X0 = π−1

X (N [[t]]).

Definition 4.3. The Iwahori Coulomb branch is the convolution algebra

F = H
TQ×C∗

∗ (0X0).

This is the Morita flag order FD associated to A with D = EndΓ(Λ) the nilHecke algebra
of W , as is shown in [47, Theorem 3.3].

As mentioned before, we wish to consider the specializations of these algebras where
ℏ = 1. These are again principal/flag Galois orders in their own right, but are harder to
interpret geometrically. Note that by homogeneity, the specializations of this algebra at
all different nonzero values of ℏ are isomorphic. The specialization ℏ = 0 is quite different
in nature, since in this case, the action of M is trivial.

4.2. Representations of Coulomb branches. From now on, we assume that k has
characteristic 0. For a Coulomb branch, the algebra F

(1)
λ has a geometric interpretation.

Since we assume that ℏ = 1, when we interpret λ as an element of the Lie algebra tQ⊕C,
the second component is 1. Let Gλ (resp. Qλ) be the Levi subgroup of G (resp. Q) which
only contains the roots which are integral at λ, and Nλ the span of the weight spaces for
weights integral on λ. Let Bλ be the Borel in Gλ such that Lie(Bλ) is generated by the
roots α such that ⟨λ, α⟩ is negative and those in the fixed Borel bG such that ⟨λ, α⟩ = 0.
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The element λ integrates to a character acting on Nλ. Let N−
λ be the subspace of Nλ

which is non-positive for the cocharacter corresponding to λ; this subspace is preserved by
the action of Bλ. Consider the associated vector bundle Xλ = (Gλ ×N−

λ )/Bλ and pλ the
associated map p : Xλ → Nλ. If Wλ ̸= {1}, then there is also a parabolic version of these
spaces. Let Pλ ⊂ Gλ be the parabolic corresponding to Wλ, and let Yλ = (Gλ ×N−

λ )/Pλ.
As usual, we have associated Steinberg varieties:

Xλ = Xλ ×Nλ
Xλ =

{
(g1Bλ, g2Bλ, n)

∣∣∣n ∈ g1N−
λ ∩ g2N−

λ

}
λXµ = Xλ ×Nλ

Xµ =
{

(g1Bλ, g2Bµ, n)
∣∣∣n ∈ g1N−

λ ∩ g2N−
µ

}
Yλ = Yλ ×Nλ

Yλ =
{

(g1Pλ, g2Pλ, n)
∣∣∣n ∈ g1N−

λ ∩ g2N−
λ

}
λYµ = Yλ ×Nλ

Yµ =
{

(g1Pλ, g2Pµ, n)
∣∣∣n ∈ g1N−

λ ∩ g2N−
µ

}
Recall that the Borel–Moore homology of an algebraic variety X over C is the hypercoho-
mology of the dualizing sheaf DkX indexed backwards; as usual, this pushforward needs
to be computed for the classical topological space Xan rather than in the Zariski topology.
We use the same convention for equivariant Borel–Moore homology:

HBM
i (X) = H−i (Xan;DkX) HBM,G

i (X) = H−i
G (Xan;DkX) . (4.2)

Note that this convention makes HBM,G
∗ (X) into a module over H∗

G(X) which is homoge-
nous when this ring is given the negative of its usual homological grading; similarly, the
group HBM,G

i (X) must be 0 if i > dimR X, but this can be non-zero in infinitely many
negative degrees. We let ĤBM,Gλ

∗ (X) denote the completion of Gλ-equivariant Borel–
Moore homology with respect to its grading, with all elements of degree ≤ k being a
neighborhood of the identity for all k.

The Borel–Moore homology HBM
∗ (Xλ) has a convolution algebra structure and

HBM
∗ (λXµ) a bimodule structure defined by [8, (2.7.9)].

Theorem 4.4. Keeping the assumption that k has characteristic 0, we have isomorphisms
of algebras and bimodules

F
(1)
λ
∼= HBM

∗ (Xλ) λF (1)
µ
∼= HBM

∗ (λXµ) (4.3)

F̂λ
∼= ĤBM,Qλ

∗ (Xλ) λF̂µ
∼= ĤBM,Qλ

∗ (λXµ) (4.4)

U
(1)
λ
∼= HBM

∗ (Yλ) λU (1)
µ
∼= HBM

∗ (λYµ) (4.5)

Ûλ
∼= ĤBM,Qλ

∗ (Yλ) λÛµ
∼= ĤBM,Qλ

∗ (λYµ) (4.6)

If we specialize F by fixing the flavor parameters, then the same result holds with Qλ,
replaced by Gλ.

This theorem is a consequence of [47, Theorem 4.3], which is proven purely algebraically.
H. Nakajima has also communicated a more direct geometric proof to the author, based on
the earlier work of Varagnolo–Vasserot [42, § 2]. We will include a sketch of that argument
here, but there are some slightly subtle points about infinite-dimensional topology which
we will skip over.

Proof (sketch). Note first how the left and right actions of Λ on F operate. The left action
is simply induced by the equivariant cohomology of a point, whereas the right action is
induced by the Chern classes of tautological bundles on G((t))/I.
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Consider the 1-parameter subgroup T of G×C∗ obtained by exponentiating λ. By the
localization theorem in equivariant cohomology, the completion lim−→F/nk

λF is isomorphic
to the completion of the TQ-equivariant Borel–Moore homology of 0X

T
0 with respect to

the usual grading. This is easily seen from [21, (6.2)(1)]: the TQ-equivariant Borel–Moore
homology of the complement of the fixed points is a torsion module whose support avoids
λ, since the action of T is locally free. Thus, after completion, the long exact sequence in
Borel-Moore homology gives the desired result. Note that here we also use the fact that
since the action of T on the fixed points is trivial, the completion at any point in t gives
the same result.

First, note that the fixed points N [[t]]T are isomorphic to N−
λ via the map τλ : Nλ →

N((t)) sending an element n of weight −a in Nλ to tan.
We can also apply this to the adjoint representation and find the fixed points of the 1-

parameter subgroup on g((t)); this is a copy of gλ, embedded according to the description
above. Accordingly, the centralizer of this 1-parameter subgroup in G((t)) is a copy of Gλ

generated by the roots SL2’s of the roots t−⟨λ,α⟩α. The Borel Bλ is the intersection of this
copy of Gλ with the Iwahori I.

Now consider the fixed points of T in G((t))/I. Each component of this space is a
Gλ-orbit and these components are in bijection with elements of the orbit Ŵ · λ; that is,
wI and w′I are in the same orbit if and only if w · λ = w′ · λ. If w is of minimal length
with µ = w · λ, the stabilizer of wI under the action of Gλ is the Borel Bµ. Considering
the vector bundles induced by the tautological bundles shows that elements of nµ act by
elements with trivial degree 0 term, i.e. that the homology of this component is λF̂µ.

Thus, the fixed points XT break into components corresponding to these orbits as well,
with the fiber over gwI for g ∈ Gλ and w as defined above is given by gn−

µ , via the map
g · τµ. The map πX maps this to N((t)) via the map τλ ◦ τ−1

µ ◦ g−1, so its intersection with
the preimage of N [[t]] is N−

λ ∩ gn−
µ .

The relevant TQ-equivariant homology group is thus

H
TQ
∗
({

(gBµ, x)
∣∣∣ g ∈ Gµ, x ∈ N−

λ ∩ gn−
µ

})
∼= HQλ

∗ (λXµ).

Taking quotient by nλ, we obtain the non-equivariant Borel–Moore homology of this variety
as desired. This shows that we have a vector space isomorphism in (4.3).

The row of isomorphisms (4.5) follows from the same argument applied to π−1(N [[[[t]])
and the affine Grassmannian.

Note that we have not checked that the resulting isomorphism is compatible with mul-
tiplication, and doing so is somewhat subtle. For a finite-dimensional manifold X, we
have two isomorphisms between HT

∗ (X) and HT
∗ (XT) after completion at any non-zero

point in t: pullback (defined using Poincaré duality) and pushforward, which differ by
the (invertible) Euler class of the normal bundle by the adjunction formula. To obtain an
isomorphism HT

∗ (X ×X) and HT
∗ (XT ×XT) that commutes with convolution, one must

take the middle road between these, using pullback times the inverse of the Euler class of
the normal bundle along the first factor, which is the same as the inverse of pushforward
times the Euler class of the normal bundle along the second factor (effectively, we use the
pushforward isomorphism in the first factor and the pullback in the second factor). Due
to the infinite dimensionality of the factors X and Y, and the nature of the cycles we use,
neither the pushforward nor the pullback isomorphisms make sense, but this intermediate
isomorphism does.
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As we said above, we will not give a detailed account of this isomorphism, since we
have already constructed a ring isomorphism using the algebraic arguments of [47]. That
“half” of the Euler class we need to invert should match with [47, (4.3a)]. □

Remark 4.5. This theorem can be modified to work in characteristic p, but with a rather
different variety than Xλ. Since the stabilizer of λ is the extended affine Weyl group of
a Levi subgroup in this case, the algebra F̂λ is again a principal flag order for an affine
Coxeter group, and is actually either a Coulomb branch itself or a close relative. We
develop this theory in [44].

The stabilizer Ŵλ is always isomorphic to a parabolic subgroup of the original Weyl
group W .

Definition 4.6. We call an orbit integral if Ŵλ
∼= W and N = Nλ.

One especially satisfying consequence of Theorem 4.4 is that the category of modules
with weights in the non-integral orbit is equivalent to the same category for an integral
orbit but of the Coulomb branch for the corresponding Levi subgroup Gλ and subrepre-
sentation Nλ.

More precisely, fix an orbit S of Ŵ , and let G′ = Gλ and N ′ = Nλ for arbitrary λ ∈ S .
Let S ′ ⊂ S be an orbit of the subgroup Ŵ ′ ⊂ Ŵ generated by the Weyl group of G′

and the subgroup M. Let ГЦ’(S ′) be the category of weight modules with all weights
concentrated in the set S ′ for the Coulomb branch of (G′, N ′). Note that since all the
different orbits S ′ ⊂ S are conjugate under the action of W , this category only depends
on S . Of course, for this smaller group, S ′ is an integral orbit. By Theorem 4.4, we have
that:

Corollary 4.7. We have an equivalence of categories ГЦ(S ) ∼= ГЦ’(S ′).

This equivalence does not change the underlying vector space and its weight space de-
composition; it simply multiplies the action of elements of F by elements of the appropriate
completion of Γ to adjust the relations. This can be proven in the spirit of Theorem 4.4
by presenting the Coulomb branch of (Gλ, Nλ) as the homology of the fixed points of the
torus action, and noting that the Euler class of the normal bundle acts invertibly on all
the modules in the relevant subcategory.

4.3. Gradings. In this section, we’ll assume for simplicity that we are in the integral
case. This is a particularly nice description since the convolution algebras in question
are graded, and a simple geometric argument shows that they are graded free over the
subalgebra Λ(1)

λ , with the degrees of the generators read off from the dimensions of the
preimages of the orbits in Xλ. For reasons of Poincaré duality, we grade HBM

∗ (Xλ) so that
a cycle of dimension d has degree dim Xλ−d, and HBM

∗ (λXµ) so that a cycle of dimension
d has degree dim Xλ+dim Xµ

2 − d. This is homogeneous by [8, (2.7.9)].
Note that since we have reversed the homological grading again, we’ve effectively gotten

rid of the minus sign in (4.2), and now cohomology will act homogeneously with its usual
grading rather than its negative. In particular, HBM,Qλ

∗ (λXµ) will be a homogeneous
module over H∗

Qλ
(pt) in the usual grading.

Proposition 4.8. F
(1)
λ has a set of free generators with degrees given by dim(N−

λ ) −
dim(wN−

λ ∩N−
λ )− ℓ(w) ranging over w ∈ Ŵλ, identified with the Weyl group of Gλ.
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Proof. The product (Gλ/Bλ)2 breaks up into finitely many Gλ-orbits, each one of which
contains the pair of cosets (Bλ, wBλ) for a unique w ∈ Ŵλ. This orbit is isomorphic
to an affine bundle over Gλ/Bλ with fiber Bλ/(Bλ ∩ wBλw−1), which is an affine space
of dimension ℓ(w). Furthermore, the preimage of this orbit in Xλ is a vector bundle of
dimension dim(wN−

λ ∩N−
λ ). This means that, under the usual grading on the convolution

algebra, the fundamental class has degree equal to dim Xλ minus the dimension of this
orbit. These fundamental classes give free generators over Λ(1)

λ , since the homology of each
of these vector bundles is free of rank 1. □

In particular, if these degrees are always non-negative, then all elements of positive
degree are in the Jacobson radical.

Corollary 4.9. If dim(N−
λ )− dim(wN−

λ ∩N−
λ )− ℓ(w) ≥ 0 for all w ∈ Ŵλ, then the sum

of (dimWλ(S))2 over all simple Gelfand–Tsetlin modules is

≤ #
{

w ∈ Ŵλ

∣∣∣ dim
(
N−

λ

)
− dim

(
wN−

λ ∩N−
λ

)
= ℓ(w)

}
.

Note that the fact that the algebra F (1)(S) is graded allows us to define a graded
lift Г̃Ц of the category of Gelfand–Tsetlin modules by considering graded modules over
F (1)(λ1, . . . , λk).

Following Ginzburg and Chriss [8, 8.6.7], we can restate Theorem 4.4 as

F
(1)
λ
∼= Ext• ((pλ)∗kXλ

, (pλ)∗kXλ

)
F (1)(S) ∼= Ext•

(
k⊕

i=1
(pλi

)∗kXλi
,

k⊕
i=1

(pλi
)∗kXλi

)
(4.7)

The geometric description of (4.7) has an important combinatorial consequence when
combined with the Decomposition Theorem of Beilinson–Bernstein–Deligne–Gabber [8,
Theorem 8.4.8]:

Theorem 4.10. The simple Gelfand–Tsetlin modules S such that Wλi
(S) ̸= 0 for some i

are in bijection with simple perverse sheaves IC(Y, χ) appearing as summands up to shift of
⊕i(pλi

)∗kXλi
, with the dimension of Wλi

(S) being the multiplicity of all shifts of IC(Y, χ)
in (pλi

)∗kXλi
.

Note that this result is implicit in [8, § 8.7] and [40, p. 9] but unfortunately is not stated
clearly in either source.

Proof. By the Decomposition Theorem, (pλ)∗kXλ
is a direct sum of shifts of simple per-

verse sheaves. In the notation of [8, Theorem 8.4.8], we have

(pλ)∗kXλ
∼=

⊕
(i,Y,χ)

LY,χ(i, λ)⊗ IC(Y, χ)[i].

Let LY,χ
∼= ⊕i,λj

LY,χ(i, λj) be the Z-graded vector space obtained by summing the multi-
plicity spaces. Let

A = Ext•

 ⊕
LY,χ ̸= 0

IC(Y, χ)

 B = Ext•

⊕
j

(pλj
)∗kXλj

,
⊕

LY,χ ̸= 0
IC(Y, χ)

 .

By [8, Corollary 8.4.4], this algebra A is a positively graded basic algebra with irreps in-
dexed by pairs (Y, χ) such that LY,χ ̸= 0, and B is an A - F (1)(S). The bimodule B induces
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a graded Morita equivalence between A and F (1)(S). Thus, the simple representations of
F (1)(S) are the images of these 1-dimensional irreps under the Morita equivalence, that
is, the multiplicity spaces LY,χ, with the dimension of the different weight spaces given by
dim LY,χ(∗, λ), the multiplicity of all shifts of IC(Y, χ) in (pλ)∗kXλ

. □

The additive category of perverse sheaves given by sums of shifts of summands of
(pλi

)∗kXλ
satisfies the hypotheses of [45, Lemma 1.18], and so by [45, Lemma 1.13 &

Corollary 2.4], we have that (as proven in [47, Def. 4.7]):

Theorem 4.11. The classes of the simple Gelfand–Tsetlin modules form a dual canonical
basis (in the sense of [45, § 2]) in the Grothendieck group of Г̃Ц.

We only truly need the Decomposition theorem to prove a single purely algebraic, but
extremely non-trivial fact:

Corollary 4.12. The graded algebra F (1)(S) is graded Morita equivalent to an algebra
which is non-negatively graded and semi-simple in degree 0.

This property is called “mixedness” in [1, 45]; the celebrated recent work of Elias and
Williamson [11] gives an algebraic proof of this fact in some related contexts and could
possibly be applied here as well.

4.4. Applications. As before, this description is particularly useful in the 1-singular case.
In this case, we must have Gλ/Bλ

∼= P1.
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Corollary 4.13. For a 1-singular weight, the different possibilities of Corollary 3.6 hold
when:

(1) There is exactly one simple Gelfand–Tsetlin module S with Wλ(S) ̸= 0 and this
space is 2-dimensional iff N−

λ = sN−
λ .

(2) There are exactly two simple Gelfand–Tsetlin modules S1, S2 with Wλ(Si) ̸= 0 and
for both it is 1-dimensional iff N−

λ ∩ sN−
λ is codimension 1 in N−

λ
(3) there is exactly one simple Gelfand–Tsetlin module S with Wλ(S) ̸= 0 and this

space is 1-dimensional in all other cases.

Geometrically, these correspond to the situations where the map Xλ → Gλ ·N−
λ is (1)

the projection Xλ = P1 ×N−
λ → N−

λ , (2) strictly semismall, or (3) small.
Of course, in the non-singular case, there is no difficulty in classifying the simple modules

where a given weight appears: There is always a unique one. However, it is still an
interesting question when these simples are the same for 2 different weights. Note that
if λ, µ are in the same orbit of Ŵ , then Nλ = nµ, but the positive subspaces are not
necessarily equal.

Corollary 4.14. Assume that λ, µ are non-singular and in the same Ŵ -orbit. Then there
is a simple Gelfand–Tsetlin module with Wλ(S) and Wµ(S) both non-zero if and only if
N−

λ = N−
µ .

Outside the nonsingular case, we can still usefully compare weights. We can define an
equivalence relation on weights such that λ, µ are equivalent if: For some µ′ = wµ with
w ∈W , we have λ−µ′ ∈ tZ, and for some g ∈ G, we have Bλ = gBµ′g−1 and N−

λ = gN−
µ′ .

We call the equivalence classes of this relation clans.

Lemma 4.15. If λ, µ are in the same clan, then the weight spaces Wλ(M) and Wµ(M)
are canonically isomorphic for all modules M .

Proof. The graph of the element g defines the desired isomorphism. □

Since whether a given weight space lies in N−
λ only depends on which side of a hyperplane

λ lives on, the points in a given coset of tZ such that N = N−
λ for any given N are precisely

those in the intersection of a finite number of half-spaces, i.e. a polyhedron. Thus, the
corresponding clan is the W -orbit of these points.

Since only finitely many subspaces may appear as N−
λ as λ ranges over an orbit of Ŵ :

Corollary 4.16. Every Ŵ -orbit is a union of finitely many clans, each defined by the
W -orbit of the intersection of a tZ-coset with a polyhedron, and thus has a finite complete
set in the sense of Definition 2.28.

Note that this result is not true for a general principal Galois order.
A seed is a weight γ ∈ MaxSpec(Γ) which is the image of λ ∈ MaxSpec(Λ) such that

Pλ = Gλ.

Theorem 4.17. If λ is a seed, there is a unique simple Gelfand–Tsetlin U -module S with
Wγ(S) ∼= k, and for all other simples S′ we have Wγ(S′) = 0. The weight spaces of S
satisfy dimWγ′(S) ≤ #(W/Wλ′), and this bound is sharp if N−

λ = N−
λ′ .

Proof. First, we note that U
(1)
λ
∼= k, so this shows the desired uniqueness. The mod-

ule eP
(1)
λ is a weight module with S as cosocle satisfying dimWγ′(eP

(1)
λ ) ≤ #Wλ/Wλ′

whenever λ′ ∈ Ŵ · λ. This shows that desired upper bound.
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We have that dimWγ′(S) = #(W/Wλ′) if and only if S is also the only Gelfand–Tsetlin
module such that this weight space is non-zero, i.e. if and only if λU

(1)
λ′ is a Morita

equivalence. This is clear if N−
λ = N−

λ′ , since in this case F
(1)
λ = F

(1)
λ′ with λF

(1)
λ′ giving

the obvious Morita equivalence. □

Note that this shows that the module S discussed above has all the properties proven
for the socle of the tableau module in [15, Theorem 1.1]. Using the numbering of that
paper,

(i) The weight γ itself lies in the essential support.
(ii) This follows from Corollary 2.19.
(iii) This follows from Theorem 4.17.
(iv) For any parabolic subgroup W ′ ⊂ W , we can find a λ′ such that Nλ′ = Nλ, and

W ′ = Wλ. The result then follows from Corollary 2.19.

4.5. Gelfand–Kirillov dimension. It will be useful for future applications to know some
general facts about the Gelfand–Kirillov dimensions of Gelfand–Tsetlin modules6. Con-
sider a field k and a k-algebra A which is generated by a finite-dimensional subspace A0,
and a left A-module M which is finitely generated by a finite dimensional subspace M0.
In this context, the Gelfand–Kirillov dimension GKdimA(M) is defined by:

GKdimA(M) = lim sup
n → ∞

logn dimk (An
0 M0) (4.8)

It’s a standard result that this number is independent of choice of A0 and M0, and only
depends on the structure of M as an A-module.

Let F be an Iwahori Couloumb branch as in Definition 4.3. Let M be a GT module
over F with support supp(L) ⊂ t∗Q = Spec Λ. An important statistic that measures the
“size” or “growth” of L is the dimension of the Zariski closure m = dim supp(L). Consider
the quotient A = F/ ann(M) by the annihilator of M .

In [36], Musson and van der Bergh prove two fundamental results about the Gelfand–
Kirillov dimension of Gelfand–Tsetlin modules over Coulomb branches in the case where
G is a torus (though they don’t use this terminology):

Proposition 4.18 ([36, Corollary 8.2.5]). If G is a torus, then
GKdim(A) = 2 GKdim(M) = 2m.

For use in the future, we’d like to prove that this result holds for a general Coulomb
branch.

Theorem 4.19. For any connected reductive group G, representation N , and any Gelfand–
Tsetlin module M over F , we have an equality:

GKdim(A) = 2 GKdim(M) = 2d.

Proof. The algebra F contains as a subalgebra the Coulomb branch algebra Fab associated
to the maximal torus T ⊂ G with the same matter representation. Let Aab be the image
of Fab in F . Thus, we can restrict M to be an Aab module and apply Proposition 4.18.
This shows that:

GKdim(A) ≥ GKdim(Aab) = 2m GKdimA(M) ≥ GKdimAab(M) = m (4.9)
To complete the proof, we need to show the reverse inequalities.

6Both of these notions are named after Israel Gelfand, but otherwise are unrelated.
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GKdim(A) ≤ 2m : In order to prove the reverse of the first equality of (4.9), we need
to calculate some estimates on dimensions. For w ∈ Ŵ , let F (≤ w) = F ∩ K(≤ w) be
the Λ-submodule given by the K-span of w′ ≤ w in Bruhat order on Ŵ ; this is a Λ - Λ-
subbimodule. Using the geometric model for this algebra (following the notation of [24,
Definition 2.2]), this is the homology of RB

G,N (≤ w), the preimage of the Schubert variety
IwI/I in RB

G,N .
Consider F (≤ w)/F (< w). This is a free module of rank 1 over Γ as a left module or

as a right module, this is spanned by a single element of minimal degree, which we denote
rw. The left and right actions differ by the action of w by [47, (3.6c) & (3.9d)]. For n ≥ 0,
let F (≤ n) be the span of F (≤ w) for all w of length ℓ(w) ≤ n

Taking the corresponding quotient A(≤ w)/A(< w), we thus obtain a Γ - Γ-bimodule
whose support as a left and a right module must be in supp(M ′). Since these actions differ
by w, the support as a left Γ module must lie in supp(M ′)∩w · supp(M ′). The affine Weyl
group elements where this intersection is ≥ k dimensional have translation parts that lie
in a 2d− k dimensional variety, since all the components of supp(M ′) are affine subspaces
which are ≤ d dimensional. This shows that:

(i) The number of w ∈ Ŵ of length ≤ ℓ such that dim supp(M ′) ∩ w · supp(M ′) = k
is bounded above by Dℓ2d−k for some constant D.

Now, consider the span A0 of
(1) the degree 1 elements t∗ ⊂ Γ and
(2) generators of F (≤ n) as a left Γ-module for a fixed n.

If we choose n sufficiently large, this subspace will be a set of generators of F as an
algebra. The qth power Aq

0 lies in F (≤ nq). Furthermore, if we let d(w) be the degree
of the unique generator of F (≤ w)/F (< w), then this depends at worst linearly on ℓ(w):
we have |d(w)| ≤ C ′ℓ(w) for some constant C ′ > 1. This shows that elements of Aq

0 have
degree no more than C ′nq.

If dim supp(M ′)∩w · supp(M ′) ≤ k, then we must have that the dimension of the span
of the elements of degree ≤ p in Γ times the cyclic generator in A(≤ w)/A(< w) must be
bounded by C ′′pk for some constant C ′′; since this intersection is a union of affine spaces,
whose number of components is bounded by the number of pairs of components supp(M ′),
we can choose one C ′′ which works for all w.

(ii) The dimension of (A(≤ w)∩Aq
0)/(A(< w)∩Aq

0) is bounded above by C ′′(C ′nq)k if
ℓ(w) ≤ nq. Note that if we choose C = C ′′(C ′n)2d, then this dimension is bounded
above by ≤ Cqk.

Combining observations (i) and (ii) and summing over k = 1, . . . , 2d, we have dim Aq
0 ≤

2dCDn2dq2d. Thus, we have

logq (dim Aq
0) ≤ 2d + log(2dCD) + 2d log(n)

log q

so taking the limit, we have GKdim(A) ≤ 2d. Combining with (4.9), we find that
GKdim(A) = 2d.

GKdimA(M) ≤ m : Now we turn to showing the reverse of the second inequality
in (4.9). For finite dimensional subset A0 ⊂ A and any metric on t̃, there is a point
x ∈ t̃ and a real number ϵ > 0 such that the ball Bt(x) of radius t around x satisfies
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A0 ·
⊕

λ ∈ Bt(x)
Wλ(M) ⊂

⊕
λ ∈ Bt+ϵ(x)

Wλ(M).

For t≫ 0, the sum
⊕

λ ∈ Bt(x) Wλ(M) generates M as an A module. Thus, the Gelfand–
Kirillov dimension satisfies:

GKdim(M) ≤ lim
t → ∞

log dim
⊕

λ ∈ Bt(x) Wλ(M)
log t

Since the Zariski closure supp(M) is unchanged by considering M as an Aab-module,
by [36, Proposition 7.2.4], the closure supp(M) is the union of finitely many affine spaces.
Of course, d is the maximum of these dimensions of affine spaces, and the support of M
is the intersection of a lattice with this union of affine spaces. This shows that

lim
t → ∞

log dim
⊕

λ ∈ Bt(x) Wλ

(
MB

)
log t

= d

which completes the proof that GKdimA(M) = m. □

Since it will be useful at other times, let us note that supp(M) is a union of finitely
many clans, and supp(M) is the union of the Zariski closure of these clans. Thus, we have:

Lemma 4.20. The Gelfand–Tsetlin dimension of M is ≥ d if and only if M has non-zero
multiplicity on a clan whose Zariski closure is ≥ d-dimensional.

5. The case of orthogonal Gelfand–Tsetlin algebras

We’ll continue to assume that k has characteristic 0. This is not strictly necessary for
Theorem 5.1, but will be needed for all later results in this section.

5.1. Orthogonal Gelfand–Tsetlin algebras as Coulomb branches. Let us now brie-
fly describe how one can interpret the results of this paper for orthogonal Gelfand–Tsetlin
algebras [33] over k in terms of [23]. As in the introduction, choose a dimension vector
v = (v1, . . . , vn) and fix scalars (λn,1, . . . λn,vn) ∈ k

vn . Let
Ω = {(i, r) | 1 ≤ i ≤ n, 1 ≤ r ≤ vi} .

Let U = Uv be the associated orthogonal Gelfand–Zetlin algebra modulo the ideal gener-
ated by specializing xn,r = λn,r. This is a principal Galois order with the data:

• The ring Λ given by the polynomial ring generated by xi,j with (i, j) ∈ Ω and
i < n. Note that we have not included the variables xn,1, . . . , xn,vn , since these
are already specialized to scalars.
• The monoidM given by the subgroup of Aut(Λ) generated by φi,j , the translation

satisfying
φi,j(xk,ℓ) = (xk,ℓ + δikδjℓ)φi,j

• The group W = Sv1 × · · ·×Svn−1 , acting by permuting each alphabet of variables.
By definition, U is the subalgebra of K generated by Γ = ΛW and the elements

X±
i = ∓

vi∑
j=1

vi±1∏
k=1

(xi,j − xi±1,k)∏
k ̸=j

(xi,j − xi,k)
φ±

i,j
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Let F = FD be the corresponding Morita flag order. This is the subalgebra of F
generated by U embedded in eFe ∼= K and the nilHecke algebra D = EndΓ(Λ).

As mentioned in the introduction, it is proven in [51] that:

Theorem 5.1 ([51, Corollary 3.16 & Theorem A]). We have an isomorphism between the
OGZ algebra attached to the dimension vector v and the Coulomb branch at ℏ = 1 for the
(G, N)

G = GLv1 × · · · ×GLvn−1

N = Mvn,vn−1(C)⊕Mvn−1,vn−2(C)⊕ · · · ⊕Mv2,v1(C),

where Q is given by the product of G with the diagonal matrices in GLvn and the variables
xn,1, . . . , xn,vn are given by the equivariant parameters for Q/G ∼= (C×)vn.

If we assume that

v1 ≤ v2 − v1 ≤ v3 − v2 ≤ · · · ≤ vn − vn−1,

then U is isomorphic to the quotient of a finite W -algebra of U(glvn
) for a nilpotent matrix

of Jordan type (v1, v2 − v1, . . . , vn−1), modulo a maximal ideal of the center fixed by the
scalars λn,∗. In particular, if v = (1, 2, . . . , n), then U is the universal enveloping algebra
U(gln) itself modulo this maximal ideal.

Note that here we use the realization of W -algebras as quotients of shifted Yangians
proven in [6, Theorem 10.1] (refer to [50, Theorem 4.3(a)] for a version of this more
compatible with Weekes’ notation). If you would prefer not to mod out by this maximal
ideal, we can leave xn,∗ as variables, and take invariants of Svn permuting these variables
to obtain the full W-algebra.

Proof. Using the substitutions above, the element denoted by X+
k in [22, (4.6)] is the

image of ±E
(1)
i under the map of [4, Theorem B.15], and similarly X−

k is the image of
the z−1-coefficient of ±F

(1)
i . Thus, the orthogonal Gelfand–Tsetlin algebra is contained

in the image of this map. On the other hand, the relation [4, (B.5)] shows that these
elements and the polynomials in wi,r’s generate the image, so the image is precisely the
OGZ algebra. This map is surjective by [4, Theorem B.28], which induces the desired
isomorphism. □

Thus, we can apply the results of Section 4 to OGZ algebras. An element λ ∈
MaxSpec(Λ) is exactly choosing a numerical value xi,r = λi,r for all (i, r) ∈ Ω, and
the corresponding γ ∈ MaxSpec(Γ) only remembers these values up to permutation of the
second index. A choice of λ partitions the set Ω according to which coset of Z the value
λi,r lies in. Given a coset [a] ∈ k/Z, let

Ω[a] = {(i, r) ∈ Ω |λi,r ≡ a (mod Z)} .

The maximal ideal λ has an integral orbit if there is one coset such that Ω = Ω[a].
Note that the representation N is spanned by the dual basis to the matrix coefficients

of the maps Cvk → Cvk+1 , which we denote h
(k)
r,s for 1 ≤ r ≤ vk and 1 ≤ s ≤ vk+1.

Proposition 5.2. Given λ ∈ MaxSpec(Λ), we have that Nλ is the span of the elements
h

(k)
r,s such that λk,r−λk+1,s ∈ Z, and N−

λ is the span of these elements with λk,r−λk+1,s ∈
Z≥ 0.
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Remark 5.3. Note that equivalence classes of weights in a Ŵ -orbit with N−
λ fixed also

appear in the discussion of generic regular modules in [10, § 3.3]. That is, the subspace N−
λ

changes precisely when the numerator of one of the Gelfand–Tsetlin formulae vanishes.

We can encapsulate this with an order on the set Ω which is the coarsest such that
(i, r) ≺ (i + 1, s) if λi,r − λi+1,s ∈ Z<0 and (i, r) ≻ (i + 1, s) if λi,r − λi+1,s ∈ Z≥ 0.
Lemma 4.15 then shows that:

Proposition 5.4. The weights λ and λ′ are in the same clan if and only if for all pairs
(i, r) and r ∈ [1, vi], we have λi,r − λ′

i,r ∈ Z, and the induced order on the set Ω is the
same.

While interesting, these observations are not a large advance over what was known in
the literature. To get a more detailed answer, we must use Theorem 4.4 more carefully.
As we’ve discussed, this depends sensitively on the integrality conditions of S . If S is
not integral, then by Corollary 4.7, the category ГЦ(S ) is equivalent to the category of
Gelfand–Tsetlin modules supported on the same orbit for a tensor product ⊗[a] ∈k/ZU[a]
where U[a] is the OGZ algebra attached to the set Ω[a], that is, to the dimension vector v(a)

given by the number of indices k such that λi,k ≡ a (mod Z). Since the simple Gelfand–
Tsetlin modules over this tensor product are just outer tensor products of the simple
Gelfand–Tsetlin modules over the individual factors (and in fact, the category ГЦ(S ) is
a Deligne tensor product of the corresponding category for the factors), let us focus our
attention on the integral case.

5.2. The integral case. Let SZ be the Ŵ -orbit where λi,r ∈ Z for all (i, r) ∈ Ω, and
we fix integral values λn,1 ≤ · · · ≤ λn,vn . All integral orbits differ from this one by a
uniform shift, and all these orbits are equivalent via the functor of tensor product with a
one-dimensional representation where gln acts by a multiple of the trace.

In this case, we are effectively rephrasing [23, Theorem 5.2] in a slightly different lan-
guage and in the notation of this paper. Identify I = {1, . . . , n − 1} with the Dynkin
diagram of sln as usual. Let T̃ v be the block of the KLRW algebra as discussed in [23,
§ 3.1], attached to the sequence (ωn−1, · · · , ωn−1) with this fundamental weight appearing
vn times and where vi black strands have the label i for all i ∈ I. Note that this algebra
contains a central copy of the algebra

Z (SZ) =
n−1⊗
i=1

k [xi,1, . . . , xi,vi ]
Svi ,

given by the polynomials in the dots which are symmetric under permutation of all strands.
Fix a very small real number 0 < ϵ≪ 1. Given a weight λ, we define a map

x : Ω→ R x(i, s) = λi,s − iϵ− sϵ2.

Note that under this map, the partial order ≺ is compatible with the usual order on R;
this map thus gives a canonical way to refine ≺ and the order on Ω induced by the usual
partial order on λi,s to a total order on Ω. The ϵ term is very important for assuring
the compatibility with ≺, whereas the ϵ2 term is essentially arbitrary and is only there to
avoid issues when two strands go to the same place.

Let w(x) be the word in [1, n] given by ordering the elements of Ω according to the
function x, and then projecting to the first index.

Ann. Repr. Th. 1 (2024), 3, p. 393–437 https://doi.org/10.5802/art.14

https://doi.org/10.5802/art.14


Gelfand–Tsetlin modules in the Coulomb context 423

Now, consider the idempotent e(λ) in T̃ v where we place a red strand with label ωn−1
at x(n, r) for all r = 1, . . . , vn, and a black strand with label i at x(i, s) for all i ∈ I and
s = 1, . . . , vi.

Definition 5.5. Let w(λ) be the word in [1, n] given by ordering the elements of Ω
according to the function x described above for a given λ.

The labels of strands read left to right are just the word w(λ). The isomorphism type
of this idempotent only depends on the partial order ≺, and it would be the same for any
map x that preserves this order. For example, we would match [23] more closely if we
used x(i, s) = 2λi,s− i (again with a perturbation to ensure that all elements have distinct
images), which works equally well. This choice matches better with the parameterization
of Γ by the variables wi,k used in [4].

Let S ⊂ SZ be a finite set. For simplicity, we assume that this set does not have pairs
of weights that correspond as in Proposition 5.4, up to the action of W . Of course, this set
will be complete if every possible partial order ≺ that appears in the orbit SZ is realized.
Let eS be the sum of these idempotents in T̃ v

Theorem 5.6. The algebra F̂ (S) is isomorphic to the completion with respect to its grading
of eST̃ veS, and F (1)(S) is isomorphic to eST̃ veS modulo all positive degree elements of
Z (SZ).

This is truly a restatement of [23, Theorem 5.2], but can also be derived from Theo-
rem 4.4, using the convolution description of T̃ v as a convolution algebra based on [48,
Theorems 4.5 & 3.5]. If you prefer to keep xn,r as variables rather than specializing them,
then the resulting algebra is the deformation T̃v of T̃ v defined in [41, Definition 2.7];
geometrically, this is reflected by whether we keep equivariance for the group J = Q/G.
In [41, Proposition 3.4], we give a more algebraic proof of this result, which incorporates
the variables xn,r and thus accounts for modules over the OGZ algebra where the action of
xn,r is not nilpotent; [49, Lemma 4.11] provides a useful summary of how other properties
of U(gln)-modules transfer.

This reduces the question of understanding Gelfand–Tsetlin modules to studying the
simple representations of these algebras. The usual theory of translation functors shows
that the structure of this category only depends on the stabilizer under the action of
Svn on the element (λn,1, . . . , λn,vn). This is a Young subgroup of the form Sh = Sh1 ×
· · · × Shℓ

; of course, a regular block will have all hk = 1. Consider the sequence of
dominant weights h = (h1ωn−1, . . . , hℓωn−1). This corresponds to the tensor product
Symh1(Y )⊗Symh2(Y )⊗ · · ·⊗Symhℓ(Y ), where Y is the dual of the vector representation
of sln. Thus, by [23, Proposition 3.1], we have that: K0(T̃ h

v) ∼= U(h) where n− is the
algebra of n× n strictly lower triangular matrices and

U(h) := U(n−)⊗ Symh1(Y )⊗ Symh2(Y )⊗ · · · ⊗ Symhℓ(Y ).

While we have a general theorem connecting simples over T̃ h
v to the dual canonical basis

of U(h), because we are looking at a particularly simple special case, this combinatorics
simplifies.

5.3. Goodly combinatorics. Following the work of Leclerc [30] and the relation of this
work to KLR algebras discussed in [28], we can give a simple indexing set of this dual
canonical basis. Consider a simple Gelfand–Tsetlin module S, and the set L(S) of words
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w(λ) for λ ∈ SZ such that Wλ(S) ̸= 0. We order words in the set [1, n] lexicographically,
with the rule that (i1, . . . , ik−1) > (i1, . . . , ik).

Definition 5.7. We call a word red-good if it is minimal in lexicographic order amongst
L(S) for some simple S. Since L(S) is finite, every simple has a unique good word.

Let GL be the set of words of the form (k, k−1, · · · , k−p) for k ≤ n−1, and 0 ≤ p < k,
and GL′ be the set of words of the form (n, n−1, · · · , n−p) for 0 ≤ p < n; as noted in [30,
§ 6.6], these together form the good Lyndon words of the An root system in the obvious
order on the nodes in the Dynkin diagram (which we identify with [1, n]).

Definition 5.8. We say a word i is goodly if it is the concatenation i = a1 · · · apb1 · · · bvn

of words for ak ∈ GL, and bk ∈ GL′ that satisfies a1 ≤ a2 ≤ · · · ≤ ap in lexicographic
order.

For simplicity, assume that the central character (λn,1, . . . , λn,vn) is regular, that is,
Sh = {1}. In this case, a goodly word can always be realized as w(λ(i)) for a weight λ(i)

chosen as follows: pick integers µ1, . . . , µp so that µ1 < · · · < µp < λn,1 < · · · < λn,vn .
Now, choose the set λ

(i)
i,∗ so that µk appears (always with multiplicity 1) if and only if i

appears as a letter in ak, and λn,q if and only if i appears as a letter in bq. This weight
depends on the choice of µ∗, but all these choices are equivalent via Lemma 4.15.

Theorem 5.9. The map sending a simple Gelfand–Tsetlin module to its red-good word is
a bijection, and a word is red-good if and only if it is goodly.

Note that implicit in the theorem above is that we consider the set of all red-good
words for all different v’s, but v is easily reconstructed from the word, just letting vi be
the number of times i appears.

Proof. Note that the words in GL index cuspidal representations of the KLR algebra of
sln in the sense of Kleshchev–Ram [28]; thus, concatenations of these words in increasing
lexicographic order give the good words for sln, and the lex maximal word in the different
simple representations of the KLR algebra of sln by [28, Theorem 7.2].

On the other hand, the words GL′ give the idempotents corresponding to the different
simples over the cyclotomic quotient T ωn−1 , which are all 1-dimensional.

Thus, given a red-good word i = a1 · · · apb1 · · · bvn , there is an unique simple L0 over
T̃ ∅ corresponding to a1 · · · ap and vn simple modules L1, . . . , Ln over T ωn−1 corresponding
to b1, . . . , bn. By [46, Corollary 5.23], the standardization M(i) over these simples has
a unique simple quotient L(i), and every simple appears this way for a unique goodly
word. Note that the standardization M(i) has the property that if e(j)M(i) ̸= 0, then j
is a shuffle of words who idempotents have non-zero image on L0, . . . , Ln. Since n is first
letter of such a word for Li with i > 0, and n does not appear in any word for L0, any such
shuffle which is non-trivial will be lex-greater than the trivial shuffle of the same words. In
particular, the lex-minimal word j such that e(j)M(i) ̸= 0 must be the concatentation of
the corresponding lex-minimal words for L0, . . . , Ln. This is precisely the goodly word i.

The image eSL gives a simple module over F
(1)
S for any set S containing the weight λ(i)

and thus a simple Gelfand–Tsetlin -module S by Theorem 2.27. We claim that i is the
red-good word for this simple.

For any other word that appears as w(λ) < i, we can add λ to S, and by the discussion
above, we have Wλ(S) = e(λ)L = 0, showing that i is the red-good of word of S. This
shows that the map from representations to red-good words is surjective.
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Consider any other simple S′. By the discussion above, this comes from a simple T̃ v
representation L′, which is the quotient of the standardization of a different goodly word i′.
As we’ve already argued, this means that i′ ̸= i is its red-good word. This shows that the
map on red-good words is injective and completes the proof. □

Example 5.10. For example, the case of integral Gelfand–Tsetlin modules of sl3 corre-
sponds to v = (1, 2, 3). Thus, the red-good words are of the form:

(1|2|2|3|3|3) (2, 1|2|3|3|3)
(1|2|3, 2|3|3) (1|2|3|3, 2|3) (1|2|3|3|3, 2)
(2, 1|3, 2|3|3) (2, 1|3|3, 2|3) (2, 1|3|3|3, 2)
(2|3, 2, 1|3|3) (2|3|3, 2, 1|3) (2|3|3|3, 2, 1)
(1|3, 2|3, 2|3) (1|3|3, 2|3, 2) (1|3, 2|3|3, 2)
(3, 2, 1|3, 2|3) (3|3, 2, 1|3, 2) (3, 2, 1|3|3, 2)
(3, 2|3, 2, 1|3) (3|3, 2|3, 2, 1) (3, 2|3|3, 2, 1)

We’ve included vertical bars | between the Lyndon factors of each word.
In order to construct the actual weights appearing, we choose

µ1 = −2 < µ2 = −1 < µ3 = 0 < λ3,1 = 1 < λ3,2 = 2 < λ3,3 = 3.

We’ll represent maximal ideals of the Gelfand–Tsetlin subalgebra using tableaux, where
the entries of the kth row from the bottom are the roots of

∏k
j=1(u− xk,j) ∈ Λ[u] reduced

modulo the maximal ideal. Accordingly, these entries come as an unordered k-tuple, which
we write below in decreasing order.

Using this notation, the corresponding weight spaces λ(i) for the words above are shown
in Figure 5.1.

Thus, each generic integral block for gl3 has 20 simple Gelfand–Tsetlin modules. We
discuss the structure of these modules and extend this calculation to other low-rank cases
in joint work with Silverthorne [41]. As mentioned in the introduction, we have done
computer computation of the dimensions of the weight spaces of simples through sl4, and
of the number of simples in the principal block up through sl9.

5.4. The singular case. This theorem is a little more awkward to state for the singular
case where Sh ̸= {1}. To understand this case, it will help to recall a few facts about the
cyclotomic quotient corresponding to the highest weight hωn−1.

Lemma 5.11.

(1) The algebra T
hωn−1
v is non-zero if and only if h ≥ vn−1 ≥ · · · ≥ v1.

(2) The algebra T
hωn−1
v is Morita equivalent to the cohomology ring of the variety

partial flags in Ch with subspaces of size v∗, and thus has a unique simple module
Mv

(3) The image e(i)M is non-zero if and only if i is a shuffle of words from GL′ with
their initial n removed.
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3 2 1
0 −1
−2

3 2 1
0 −1
−1

3 2 1
1 −1
−2

3 2 1
2 −1
−2

3 2 1
3 −1
−2

3 2 1
1 −2
−2

3 2 1
2 −2
−2

3 2 1
3 −2
−2

3 2 1
2 −1

1

3 2 1
2 −2

2

3 2 1
3 −2

3

3 2 1
2 1
−2

3 2 1
3 2
−2

3 2 1
3 1
−2

3 2 1
2 1

1

3 2 1
3 2

2

3 2 1
3 1

1

3 2 1
2 1

2

3 2 1
3 2

3

3 2 1
3 1

3

Figure 5.1. The tableaux corresponding to the weights λ(i) for the red-
good words for the principal block of sl3.

Proof.

(1) By [46, Proposition 3.21], the Grothendieck group of the category of T
hωn−1
v -

modules is the hωn−1 − vn−1αn−1 − · · · − v1α1 weight space of an integral form of
the representation Symh(Y ). In the usual description of the integral weights of sln
as n-tuples of integers modulo the span of (1, . . . , 1), we have the following.

hωn−1 − vn−1αn−1 − · · · − v1α1 = (0, . . . , 0,−h)− (0, . . . , vn−1,−vn−1)− · · · − (v1,−v1)
= (−v1,−v2 + v − 1, . . . ,−h + vn−1).
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The condition that h ≥ vn−1 ≥ · · · ≥ v1 is equivalent to all the entries of this
vector being negative, which indeed describes exactly the weights of Symh(Y ).

(2) By [49, Theorem 3.18], the deformed cyclotomic quotient T
hωn−1
v is Morita equiv-

alent to the GLn equivariant cohomology ring of this partial flag variety, since the
constant sheaf generates the derived category of GLn-equivariant constructible
sheaves on this flag variety. Passing to the undeformed quotient T

hωn−1
v kills the

equivariant parameters, giving the result by the equivariant formality of the partial
flag variety.

(3) The image e(i)M is nonzero if and only if the idempotent e(i) itself is. Using [49,
Theorem 3.18] again, we see that this is the case if and only if the sheaf Res(Fi)
(in the notation of [49, Theorem 3.18]) is nonzero. This is the pushforward to the
partial flag variety of a particular quiver flag variety. It’s the pushforward of the
set of

∑
i vi-tuples of flags, where for each k, we choose a flag V

(k)
1 ⊆ V

(k)
2 ⊂ · · ·

such that V
(k)

i ⊂ V
(k+1)

i for all i and k, and the dimension of V
(k)

i is the number
of times i appears in the first k letters of i. We leave it to the reader to check that
i being a shuffle of the desired form is equivalent to the existence of such a flag for
simple dimension reasons. □

Note that this implies that there is a bijection between simple modules over T
hωn−1
v and

unordered h-tuples of words from GL′.
For slightly silly reasons, the red-good words as we have defined them depend on the

choice of λn,∗, but we can still consider goodly words i = a1 · · · apb1 · · · bvn and the as-
sociated weight λ(i). Note that this now only depends on the choice of b1, . . . , bvn up to
permutations under Sh.

Proposition 5.12.
(1) For each goodly word i = a1 · · · apb1 · · · bvn which is lex maximal in its Sh-orbit,

there is a unique simple Gelfand–Tsetlin module S such that Wλ(i)(S) ̸= 0, and
Wλ(i′)(S) = 0 for all i′ of the same form with i′ < i, and this gives a complete irre-
dundant list of simple modules in ГЦ(SZ) for the corresponding central character.

(2) If S is a complete set, then F̂S is Morita equivalent to the completion of T̃ h
v with

respect to its grading for h = (h1ωn−1, . . . , hℓωn−1), and F
(1)
S to the quotient of

this algebra by positive degree elements of ΛSZ.

Proof. We’ll actually prove part (2) first. By Theorem 5.6, it’s enough to show that the
ring eST̃ veS has the desired Morita equivalence.

Given λ ∈ Spec(Λ), since we will never have a black strand between the red strands that
correspond to λn,k = λn,k+1, we have that e(λ) ∈ T̃ h

v embedded as in [46, Proposition 4.21]
by “zipping” the red strands. Thus, eS and eST̃ veS will lie in this subalgebra.

By standard results of Morita theory, it’s enough to check that no simple module over
T̃ h

v is killed by eS. By [46, Corollary 5.23], every such simple is obtained by standardization
of a module L0 over the usual KLR algebra T̃ ∅, and then of modules Li over the cyclotomic
quotient corresponding to hiωn−1. Of course, by Lemma 5.11, Li is uniquely determined
by an unordered h-tuple of words from GL′; we can uniquely construct a word from these
by taking the lex-maximal element of the set of such concatenations. Construct a goodly
word iL by concatenating the good word corresponding to L0, with the words just attached
to L1, L2, . . . , Lℓ.
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This word has a corresponding weight λiL
; note that turning this back into a word via

the usual rule, we don’t get i back, but instead, for each hi-tuple, we get the word sorted
in descending order (n, . . . , n, n− 1, . . . , n− 1, . . . , 1, . . . , 1), since all the variables λ∗,∗
assigned to these black strands have the same longitude. This is the red-good word for the
simple, following the definition precisely. Since this is a shuffle of the hi-tuple of words in
GL′, the corresponding idempotent has nonzero image on the simple Li. This means that
e(λiL

) has non-zero image on the standard module, and its image contains a pure tensor
of non-zero vectors in the simples L0, . . . , Lℓ, and thus generates the standard module.
This shows that e(λiL

) also has non-zero image in L. This shows the Morita equivalence,
since no simple is killed by eS; thus (2) holds.

Now, let us show (1). Let S be the GT module corresponding to L. We have already
noted that Wλ(i)(S) ̸= 0. We wish to show that Wλ(i′)(S) = 0 for all i′ of the same form
with i′ < i. By construction, the word i′ must be a shuffle of the words a1, . . . , ap, b1, . . . , bq

without crossing any red strands. Consider the first letter in i′ which is different from the
corresponding letter in i. This must be the first letter of one of the words ai or bi. If it
comes from one of the words bi ∈ GL′, then it is n in i′, so we must have i′ > i. If it
is from one of the words aj , then simply deleting the letter from b∗ gives a shuffle of the
words a1, . . . , ap which is lex-lower. This is impossible by [30, Lemma 15]. □

6. On a conjecture of Mazorchuk

We say that a maximal ideal Γ ⊂ U(gln) is a Gelfand–Tsetlin pattern if all λi,k lie in
the same coset of Z in C, and the order ≺ satisfies (i, s) ≺ (i − 1, s) ≺ (i, s + 1) for
i = 2, . . . , n and s = 1, . . . , i − 1. As discussed previously, if a representation of gln
is finite dimensional, then its spectrum consists of precisely the Gelfand–Tsetlin patterns
with fixed λn,∗. This result is implicit in the original work of Gelfand and Tsetlin [19]
and was developed further by Zhelobenko [52, Theorem 13.5]; see [35, Theorem 2.20] for
a more modern treatment.

Mazorchuk communicated to us a conjecture which would be a strong converse to this
result:

Conjecture 6.1. If S is a simple U(gln) module, and Wγ(S) ̸= 0 for γ a Gelfand–Tsetlin
pattern, then S is finite-dimensional. That is, for any γ ∈ MaxSpec(Γ), then either:

(1) Wγ(S) = 0 for all infinite-dimensional simple modules S and Wγ(S′) ̸= 0 for some
finite-dimensional simple module S′ (i.e. γ is a Gelfand–Tsetlin pattern) or

(2) Wγ(S′) = 0 for all finite-dimensional simple modules S and Wγ(S) ̸= 0 for some
infinite-dimensional simple module S (i.e. γ is not a Gelfand–Tsetlin pattern).

Embarrassingly, we at one point claimed to have a proof of this fact. Unfortunately,
this proof was incorrect and a more careful computer search showed that:

Theorem 6.2. Conjecture 6.1 holds for n ≤ 5 and is false for n ≥ 6. That is, a Gelfand–
Tsetlin pattern has an infinite-dimensional module in its fiber if and only if n ≥ 6.

The key to this proof is studying the algebra U
(1)
γ = F

(1)
λ for γ a Gelfand–Tsetlin pattern,

which we can write as a quotient of e(λ)T nωn−1e(λ) by Theorem 5.6. Since simple modules
in the fiber are in bijection with simple U

(1)
γ -modules, and exactly one of these modules

is finite-dimensional, the conjecture above holds if and only if U
(1)
γ has only one simple

module.
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Proof. n ≤ 5: In this case, we wish to prove that there are no other simple modules
with γ in their support, that is, that U

(1)
γ has a unique simple module. This will hold if

the algebra has a non-negative grading, with degree 0 piece spanned by the scalars. By
Proposition 4.8, as a module over the positively graded coinvariant algebra, the algebra
U

(1)
γ has a set of free generators indexed by the elements of W .
Thus, we need only confirm that any nontrivial element w ∈W = Sn−1 × · · · × S2 × S1

gives a generator of positive degree. In the cases where n ≤ 4, this is easy to do by hand.
For example, if n = 4, there are 12 elements of S3×S2×S1. The resulting diagrams have
degree 0, 2 or 4. The only diagram with degree 0 is:

3 2 3 1 2 3

The diagrams of degree 2 are:

3 2 3 1 2 3 3 2 3 1 2 3 3 2 3 1 2 3

3 2 3 1 2 3 3 2 3 1 2 3 323 1 23

The diagrams of degree 4 are:

3 2 3 1 2 3 3 2 3 1 2 3 3 2 3 1 2 3

3 2 3 1 2 3 323 1 23

For n = 5, there are 288 elements of S4 × S3 × S2 × S1, so this is impractical to check
by hand. We have checked this by computer calculation using SageMath; the code we
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used can be found on the public GitHub repository for this paper. The Jupyter notebook
ComputeDegrees.ipynb will guide you through the required computations. The identity
is the only element of this group giving a generator of degree 1, while there are 29 of
degree 2 and degree 8, 114 of degree 4 and of degree 6, and 1 of degree 10.

This confirms the conjecture for n ≤ 5. In contrast, for n = 6, we find that the number
of elements of degree 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 is 2, 222, 2406, 8598, 12418, 8122, 2434,
338, and 20. The additional element of degree 0 in this case is the first hint that the
conjecture will fail for higher values of n.

n ≥ 6: To see that this conjecture fails in the case where n ≥ 6, we need only find
one γ where it fails for each n. Of course, since all Gelfand–Tsetlin patterns are in the
same clan, and all choices of central character where Gelfand–Tsetlin patterns exist are
equivalent by translation functors, the answer will be the same for all Gelfand–Tsetlin
patterns for a fixed n.

First, consider the case n = 6. For concreteness, we choose one where the corresponding
word is

j = (6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 6, 5, 4, 3, 6, 5, 4, 6, 5, 6).
Consider the element τ = ((24), (12)(34), (13), 1, 1) ∈ S5 × S4 × S3 × S2 × S1. The

corresponding diagram D is shown below:

6 6 6 6 6 65 55 5 54 4 4 43 332 21

The degree of D is 0: there are 8 crossings of strands with the same label, and 4 crossings
of strands with adjacent labels for each of the pairs 6/5, 5/4, 4/3, and 3/2. We have verified
by computer that it is the unique non-trivial diagram with degree 0 in the case n = 6.

In order to understand this case, the key calculation is to find D2, that is:

6 6 6 6 6 65 55 5 54 4 4 43 332 21

Of course, this is a complex calculation. It will be easier if we consider the action of D
on the polynomial representation P of the KLRW algebra. It is simpler to use slightly
different notation from earlier appearances of this representation, such as [26, 39, 41],
so let us introduce this faithful module over T̃

nωn−1
v . We are following the conventions

of [41, § 2.2.1] with changed notation—instead of having a single alphabet of variables, we
separate them according to the labels on the corresponding strands. Let

S = k[zi,j ](i,j) ∈ Ω Ω = {(i, j) | 1 ≤ j ≤ i ≤ 6} .

For a permutation σ, we let σ(k) denote the action of this permutation on the variables
zk,∗. We define an action of the KLRW algebra T̃

nωn−1
v on the sum P =

⊕
i S · 1i where
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• e(i) acts by projection to the corresponding summand S · 1i,
• a dot on the kth strand from the left with label i acts by multiplication by zi,k,
• a crossing of the kth and k + 1st strands with i at the bottom and i′ at top acts by

– If ik = ik+1 and these are the rth and (r + 1)st strands with this label, the
divided difference operator

f1i 7→
f − (r, r + 1)(ik) · f

zik,r − zik,r+1
1i′ .

– If ik + 1 = ik+1 and these are the rth and sth strands with these labels, the
multiplication

f1i 7→
(
zik,r − zik+1,s

)
f1i′ .

– Otherwise, the identity map
f1i 7→ f1i′ .

By [41, Proposition 2.20], this representation is faithful. The action of the diagram D in
this representation is given by p∂τ q where

p = (z2,1 − z3,1) (z4,2 − z5,2) (z3,3 − z4,3) (z5,4 − z6,4)
q = (z5,2 − z6,3) (z3,1 − z4,2) (z4,3 − z5,4) (z2,2 − z3,3)

∂τ = ∂
(5)
(24)∂

(4)
(12)(34)∂

(3)
(13)

where ∂
(j)
σ is the divided difference operator for this element of the symmetric group Sj .

Since we are only considering the longest elements in different parabolic subgroups, we
have

∂
(5)
(24) = 1− (23)(5) − (34)(5) − (24)(5) + (234)(5) + (243)(5)∏

2 ≤ r < s ≤ 4 (zj,r − zj,s)

∂
(4)
(12)(34) = 1− (12)(4) − (34)(4) + (12)(34)(4)

(z4,1 − z4,2)(z4,3 − z4,4)

∂
(3)
(13) = 1− (12)(3) − (23)(3) − (13)(3) + (123)(3) + (132)(3)∏

1 ≤ r < s ≤ 3 (zj,r − zj,s)

Thus, D2 acts by p∂τ qp∂τ q. Since τ is the longest element of a parabolic subgroup, we
find that

p∂τ qp∂τ q = p∂τ q · ∂τ (qp)
Thus, we have that D2 = ∂τ (qp)D. Before calculating ∂τ (qp), let us note that it is not
too hard to rephrase this calculation in terms of the diagram above: The polynomial qp
will be obtained by resolving all the bigons involving different colors on the center of the
diagram (in terms of the dots), and ∂τ (qp) will be obtained by resolving the bigons of the
same color using [27, (2.20)] on the strands with label 3, those with label 5, and on the
two crossing groups of the strands with label 4.

First, note that any term that includes z2,∗ or z6,∗ will be killed by this divided difference
operator, so we can simply set these variables to 0. After this substitution, we have

∂
(4)
(12)(34)(pq) = z3,1z5,2z5,4z3,3

· ∂(4)
(12)(34)

((
z2

4,2 − (z5,2 + z3,1) z4,2 + z5,2z3,1
) (

z2
4,3 − (z5,4 + z3,3) z4,3 + z5,4z3,3

))

Ann. Repr. Th. 1 (2024), 3, p. 393–437 https://doi.org/10.5802/art.14

https://doi.org/10.5802/art.14


432 Ben Webster

Furthermore, note that only terms with degree 3 in the variables z5,∗ and z3,∗ will have
nonzero image, so we have

∂τ (qp) = −∂
(5)
(24)∂

(3)
(13) (z3,1z5,2z5,4z3,3 (z5,2 + z3,1) (z5,4 + z3,3))

= −∂
(5)
(24)

(
z2

5,2z5,4
)

∂
(3)
(13)

(
z3,1z2

3,3

)
− ∂

(5)
(24)

(
z5,2z2

5,4

)
∂

(3)
(13)

(
z2

3,1z3,3
)

= 2

Thus, we have that D2 = 2D. In particular, D/2 and 1−D/2 are orthogonal idempotents.
The same calculation addresses any value of n > 6 by considering the diagram where

the strands with labels ≤ 6 trace out D, and all the others are straight vertical. Let us
abuse notation and also denote this diagram D.

Let L0 be the unique finite-dimensional U(gln)-module such that ℓ0 = Wγ(L0) ̸= 0.
The image ℓ0 is a one-dimensional module over U

(1)
γ killed by all elements of non-zero

degree. Of course, we have that DWγ(L0) = 0 since D factors through weight spaces
that don’t correspond to Gelfand–Tsetlin patterns, which thus have trivial weight spaces
for L0. However, since D/2 is idempotent, we must have a simple U

(1)
γ -module ℓ1 such

that Dℓ1 ̸= 0; in fact, any simple quotient of the projective U
(1)
γ D will work. There is a

unique corresponding simple U(gln)-module L1 such that Wγ(L1) = ℓ1. The module L1
is necessarily infinite-dimensional, since L0 is the unique finite-dimensional module with
this infinitesimal character. □

In the case n = 6, the algebra U
(1)
γ has no elements of negative degree, so every positive

degree element lies in the Jacobson radical. The quotient Ū
(1)
γ by the ideal of positive

degree elements is two-dimensional and is spanned by the orthogonal idempotents D/2
and 1 − D/2. That is, Ū

(1)
γ
∼= C ⊕ C. This shows that U

(1)
γ has exactly two simple

modules, which are distinguished by whether D acts by zero. The simple ℓ0 on which
D acts trivially corresponds to a finite-dimensional U(gl6)-module L0 and the simple ℓ1
on which 1 − D/2 acts trivially to an infinite-dimensional module L1. Recall that for
a word i, the canonical module C(i) is the unique simple quotient of the submodule of
the polynomial representation of the KLRW algebra generated by the image of e(i); the
canonical module for U(gln) is the corresponding simple Gelfand–Tsetlin module. It’s
easy to check that L0 is the canonical module of the word w(λ), but we can also use this
language to describe L1

Lemma 6.3. The module L1 is the canonical module for the words

i = (6, 5, 2, 4, 4, 1, 6, 3, 3, 3, 2, 6, 5, 5, 5, 4, 4, 6, 6, 5, 6)
i′ = (2, 1, 3, 4, 5, 4, 3, 5, 6, 5, 4, 3, 2, 6, 6, 5, 4, 6, 6, 5, 6)

and under the bijection of Theorem 5.9, the word i′ is the corresponding red-good word.

Proof. Divide the diagram D in half by cutting at the line y = 1
2 + ϵ in diagrams D1

above this line and D2 below, so D = D1D2. Note that the word i is obtained exactly by
reading left to right on this horizontal line. Consider D11i ∈ P. This is non-zero since the
proof that D2 = D also showed that D2D11i = ∂τ (qp) · 1i = 2 · 1i. This shows that the
canonical module C(i) is infinite-dimensional (since i is not a Gelfand–Tsetlin pattern)
and Wγ(C(i)) ̸= 0. Thus, this canonical module must be L1. We can find other words
with the same canonical module by applying the rules of [41, Lemma 2.24]:
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C(6, 5, 2, 4, 4, 1, 6, 3, 3, 3, 2, 6, 5, 5, 5, 4, 4, 6, 6, 5, 6)
∼= C(2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 6, 6, 5, 5, 5, 4, 4, 6, 6, 5, 6)
∼= C(2, 1, 4, 6, 5, 4, 3, 3, 3, 2, 6, 6, 5, 5, 5, 4, 4, 6, 6, 5, 6)
∼= C(2, 1, 3, 4, 3, 6, 5, 4, 3, 2, 6, 6, 5, 5, 5, 4, 4, 6, 6, 5, 6)
∼= C(2, 1, 3, 5, 4, 3, 5, 6, 5, 4, 3, 2, 6, 6, 5, 4, 4, 6, 6, 5, 6)
∼= C(2, 1, 3, 4, 5, 4, 3, 5, 6, 5, 4, 3, 2, 6, 6, 5, 4, 6, 6, 5, 6)

This last word is red-good, so by [41, Theorem 2.23], it is the red-good word of this module
as desired. □

Index of notation

This index of notation gives a brief description of the main notation used in the paper,
together with the section and page where the notation is defined.

§ Symbol Description Page
1.0 Λ A Noetherian commutative ring. 393

L The fraction field of L. 393
Ŵ A monoid with a faithful action on Λ, which is the semi-direct

product of a finite subgroup W and a submonoid M.
393

Γ The invariants ΛW . 393
K The fraction field of Γ. 393
U A principal Galois order. 394

1.1 Ûγ The algebra controlling the Gelfand–Tsetlin modules with non-zero
γ weight space.

394

F A principal flag order. 394
mλ A maximal ideal in Λ. 394
F̂λ The endomorphism algebra of the weight functor Wλ. 394
Ŵλ The stabilizer of λ in Ŵ . 394
Wλ The stabilizer of λ in W . 394
Λ̂λ The invariants of Ŵλ acting on Λ̂ 394
F

(1)
λ The quotient of Fλ by the maximal ideal of Λ̂. 394

1.3 G A reductive connected group. 395
N A representation of N . 395
T̃ v The KLRW algebra with vi black strands. 396

2.0 KΓ The standard order {X ∈ K | X(Γ) = Γ}. 398
FΛ The standard flag order {X ∈ F | X(Λ) = Λ}. 398
FD A flag Galois order canonically constructed from U and D by con-

sidering De⊗Γ U ⊗Γ eD.
399

2.1 Wλ The weight functor Wλ(M) = {m ∈M | mN
λ m = 0 for some N ≫

0}.
399

2.2 Λλ The invariants ΛŴλ . 400
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§ Symbol Description Page

λŴµ The set of elements of Ŵ such that w · µ = λ. 400
λFµ The elements of F which are in the K-span of λŴµ. 400
nλ The maximal ideal nλ = mλ ∩ Λλ 402

2.6 F (S) The matrix algebra of (2.6). 407
ГЦ(S) The category of all Gelfand–Tsetlin modules modulo the subcate-

gory of modules such that Wλ(M) = 0 for all λ ∈ S.
408

3.0 V A vector space such that Λ = Sym•(V ). 408
4.0 k A field, assumed to be of characteristic 0 through most of the

paper.
410

4.1 G A complex reductive group, often called the “gauge group.” 410
N A representation of G, often called the “matter representation.” 410
Y The moduli space Y = (G((t))×N [[t]])/G[[t]] of principal bundles

on a formal disk with choice of section of the associated bundle for
N and of trivialization away from the origin.

410

Q A group acting on N such that G ⊂ Q and Q/G is a torus. 410
A The quantum Coulomb branch attached to the data G, N and Q

(Definition 4.1)
410

W The common Weyl group of G and Q. 411
I The standard Iwahori I ⊂ G[[t]] 411

4.2 Gλ The Levi subgroup of G which only contains the roots which are
integral at λ.

411

Nλ The span in N of the weight spaces for weights integral on λ. 411
Bλ The Borel in Gλ generated by the roots α such that ⟨λ, α⟩ is neg-

ative.
411

N−
λ The subspace of Nλ which is non-positive for the cocharacter cor-

responding to λ.
411

Xλ The associated vector bundle (Gλ ×N−
λ )/Bλ. 411

λXµ The generalized Steinberg variety Xλ ×Nλ
Xµ. 411

T The 1-parameter subgroup of G× C∗ obtained by exponentiating
λ ∈ MaxSpec(Λ).

412

4.5 GKdim The Gelfand–Kirillov dimension lim supn → ∞ logn dimk(An
0 M0). 418

5.1 v The dimension vector defining the OGZ algebra. 420
Ω The set {(i, r) | 1 ≤ i ≤ n, 1 ≤ r ≤ vi}. 420

5.2 w(λ) The word in [1, n] given by ordering the elements of Ω according to
the weight λ and then projecting to the first index. (Definition 5.5)

423

5.3 L(S) The set of words w(λ) for λ ∈ SZ such that Wλ(S) ̸= 0. 423
GL The set of words of the form (k, k − 1, · · · , k − p) for k ≤ n − 1,

and 0 ≤ p < k.
424

GL′ The set of words of the form (n, n− 1, · · · , n− p) for 0 ≤ p < n. 424
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6.0 D The KLRW diagram in U
(1)
γ induced by the permutation τ =

((24), (12)(34), (13), 1, 1).
430
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