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Wild quantum dilogarithm identities

Markus Reineke

Abstract. We exhibit and discuss “wild” analogues of the five-term quantum dilogarithm identity.
We derive these from the representation theory of quivers, using motivic wall-crossing, the geometric-
ity of motivic Donaldson–Thomas invariants, and special properties of Kronecker moduli.

1. Introduction

The quantum dilogarithm is a q-series with many remarkable properties [16], including
the famous five-term identity [2]. Cluster algebra theory and wall-crossing of motivic
invariants of quivers have led to vast generalizations of such dilogarithm identities [4].

In this note, we explore the outer limits of this circle of ideas, by investigating “wild”
dilogarithm identities, those arising from wild quivers. For this we use again motivic wall-
crossing, interpret the resulting series in terms of motivic Donaldson–Thomas invariants,
and use the geometric interpretation of the latter in terms of intersection homology of
quiver moduli spaces [6] to establish very strong positivity properties. In the rank two
case, originating from generalized Kronecker quivers, the well-explored and very special
symmetries of Kronecker moduli yield many additional explicit properties of the individual
terms of our highly infinite dilogarithm identities; see Theorem 2.7.

To derive this identity, we collect in Section 3 the available material on wall-crossing
of motivic invariants (see [7] for an introduction), and adapt it to the present notation
and special setting in Section 4. Although similar approaches are used, for example, in
the context of the tropical vertex [3, 12], it it desirable to state the nature of such wild
identities as explicitly as possible.
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2. Quantum dilogarithm identities

We first define the quantum dilogarithm, and state the classical five-term identity. The
coefficient ring Q(q1/2)[[x]], and in particular the twist by half-powers of q, will become
natural in the context of motivic Donaldson–Thomas invariants.

Definition 2.1. We define the quantum dilogarithm Φ(x) ∈ Q(q1/2)[[x]] as

Φ(x) =
∑
n ≥ 0

qn/2xn

(1− q) · . . . · (1− qn) = exp

∑
n ≥ 1

xn

n ·
(
q−n/2 − qn/2)

 =
∏

n ≥ 0

1
1− qn+1/2 · x

.

Remark 2.2. The translation from the present definition to the ones in the literature is
straightforward. For example, [2, 14] use the definition (x; q)∞ = Φ(q−1/2x)−1, and [4]
uses E(x) = Φ(−qx). The classical Euler dilogarithm [16] arises as the following limit:

(
q−1/2 − q1/2

)
log Φ(x) =

∑
n ≥ 1

xn ·
(
q−1/2 − q1/2

)
n ·
(
q−n/2 − qn/2) q→1−→

∑
n ≥ 1

xn

n2 = Li2(x).

Definition 2.3. For a positive integer m, we define Q(q1/2)qm [[x, y]] as the skew formal
power series ring with skew commutativity relation xy = qmyx.

We can now formulate the five-term quantum dilogarithm identity:

Theorem 2.4 (Schützenberger, Faddeev, Kashaev, Volkov). In Q(q1/2)q[[x, y]], we have

Φ(x)Φ(y) = Φ(y)Φ
(
−q−1/2xy

)
Φ(x).

For m = 2, we will obtain the following identity as a special case of Theorem 2.7.

Theorem 2.5. In Q(q1/2)q2 [[x, y]], we have

Φ(x)Φ(y) =Φ(y)Φ
(
q−2xy2

)
Φ
(
q−6x2y3

)
Φ
(
q−12x3y4

)
. . . ·

· Φ
(
q−1/2xy

)−1
Φ
(
q−3/2xy

)−1
·

· . . . Φ
(
q−12x4y3

)
Φ
(
q−6x3y2

)
Φ(q−2x2y)Φ(x).

To make such identities more readable, we will now introduce a shorthand notation,
which again will be motivated later by the framework of Donaldson–Thomas invariants:

Definition 2.6. For a, b ≥ 0, define

Φ(a,b) = Φ
(
(−1)mabq(a2+b2−2mab−1)/2xayb

)(−1)a2+b2−mab−1

.

More generally, for a Laurent polynomial P (q) =
∑

k ck(−q1/2)k ∈ Q[q±1/2], define

Φ◦P
(a,b) =

∏
k

Φ
(
(−1)mabq(a2+b2−2mab−1+k)/2xayb

)(−1)a2+b2−mab−1+k·ck

.

Then the previous identities simplify to
Φ(1,0)Φ(0,1) = Φ(0,1)Φ(1,1)Φ(1,0) for m = 1,

Φ(1,0)Φ(0,1) = Φ(0,1)Φ(1,2)Φ(2,3) . . . · Φ◦(q+1)
(1,1) · . . . Φ(3,2)Φ(2,1)Φ(1,0)

for m = 2.
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In the case m ≥ 3, we can no longer give explicit identities, but we will obtain a rather
complete qualitative description.

To formulate this main result, we need three more definitions. We denote by σ the
operator on Z2 given by σ(a, b) = (b, mb− a), which generates an infinite dihedral group
together with the involution (a, b) 7→ (b, a). We also define µ± = (m±

√
m2 − 4)/2, the

two roots of the quadratic equation x2 − mx + 1 = 0. Finally, we note that ordered
products in Q(q1/2)qm [[x, y]] of the form

→∏
s ∈ Q

increasing

Fs

are well-defined for series Fs ∈ Q(q1/2)[[xayb]] with constant term one, where s = a/b.

Theorem 2.7. In Q(q1/2)qm [[x, y]] for m ≥ 3, we have

Φ(1,0)Φ(0,1) = Φ(0,1)Φσ(0,1)Φσ2(0,1)Φσ3(0,1) · . . . ·

·
→∏

µ− ≤ a/b ≤ µ+
increasing

Φ◦P(a,b)
(a,b) ·

· . . . Φσ−3(1,0)Φσ−2(1,0)Φσ−1(1,0)Φ(1,0),

where the P(a,b) satisfy the following properties:
(1) “Wildness”/Completeness: We have the non-vanishing property

P(a,b) ̸= 0 for all µ− ≤ a/b ≤ µ+.

(2) Dihedral symmetry: We have the symmetries

P(b,a) = P(a,b), Pσ(a,b) = P(a,b).

(3) Positivity: We have

P(a,b) ∈ N[q], of degree d = mab− a2 − b2 + 1 > 0.

(4) Unimodality: The polynomial P(a,b) =
∑

k ckqk is palindromic and unimodal:

cd−k = ck and 1 = c0 ≤ c1 ≤ . . . ≥ cd−1 ≥ cd = 1.

(5) Lowest order terms:We have

P(1,k) =
[

m

k

]
q

.

(6) Special value: Using the number-theoretic Möbius function µ, we have

P(k,k)(1) = 1
(m− 2)k2

∑
d|k

µ

(
k

d

)
(−1)md+1

(
(m− 1)2d− 1

d

)
.

As a consequence of the dihedral symmetry property, we see that all P(a,b) are deter-
mined by those for a ≤ b ≤ m

2 a. All properties will follow from interpreting the P(a,b)
as the Poincaré polynomials in intersection homology of Kronecker moduli [1], a class of
projective varieties parametrizing certain tuples of matrices up to base change.
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3. Quiver setup

In this section, we recall the necessary terminology on quiver representations and their
moduli spaces, and we formulate the main ingredients for general quiver dilogarithm iden-
tities, namely the motivic wall-crossing formula, and the definition and geometricity of
motivic Donaldson–Thomas invariants. The reader is referred to [7] for a detailed intro-
duction into motivic wall-crossing for quivers, and to [10] for a short summary.

Let Q be a finite acyclic quiver. We order the set of vertices Q0 = {i1, . . . , in} such
that ik → il implies k > l. The Euler form of Q is the (in general non-symmetric) bilinear
form on ZQ0 given by ⟨d, e⟩ =

∑
i ∈ Q0 diei −

∑
α:i→j diej for d, e ∈ ZQ0.

We define the formal quantum affine space Q(q1/2)q[[Q0]] as the skew formal power
series ring with topological basis td for d ∈ NQ0 and multiplication twisted by the anti-
symmetrized Euler form

td · te =
(
−q1/2

)⟨d,e⟩−⟨e,d⟩
td+e.

We fix linear functions Θ, κ ∈ (ZQ0)∗ on Q such that κ(d) > 0 for d ∈ NQ0 \ 0, and
consider the associated slope function µ(d) = Θ(d)

κ(d) for d ∈ NQ0 \ 0. We denote by Λa the
set of all d ∈ NQ0 \ 0 of slope a ∈ Q.

We define the Grothendieck ring of varieties K0(VarC) as the free abelian group in
isomorphism classes of complex algebraic varieties X modulo the “cut-and-paste” relation
[X] = [A] + [U ] if A ⊂ X closed, U = X \ A, with product given by [X] · [Y ] = [X × Y ].
We abbreviate the Lefschetz motive [A1] =: L.

We consider the localization R = K0(VarC)[L±1/2, (1 − Ln)−1 : n ≥ 1], and define the
formal motivic affine space RL[[Q0]] as above, with R replacing the coefficient ring Q(q1/2)
and L replacing q. In fact, all our computations will happen in the smaller coefficient
ring of motives which are rational functions in L1/2. Note that the existence of motivic
measures such as the virtual Hodge polynomial shows that this subring is isomorphic to
a subring of Q(q1/2), so by a slight abuse of notation, we can and will identify q and L
from now on.

Given a dimension vector d ∈ NQ0, we fix C-vector spaces Vi of dimension di for i ∈ Q0.
We consider the base change action∏

i ∈ Q0

GL(Vi) = Gd ↷ Rd(Q) =
⊕

α:i → j

Hom(Vi, Vj)

given by

(gi)i · (fα)α =
(
gjfαg−1

i

)
α:i → j

,

whose orbits, by definition, correspond bijectively to the isomorphism classes of complex
representations of Q of dimension vector d.

We denote by Rµ−sst
d (Q) ⊂ Rd(Q) the open subset of µ-semistable points. Using this

notation, we can formulate the motivic wall-crossing formula, which is a formal conse-
quence of the existence of the Harder–Narasimhan filtration (see [8] for a version involving
counts over finite fields; the proof of [11, Theorem 3.5] shows that the same formula holds
for motives):
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Theorem 3.1 (Motivic wall-crossing formula). In Rq[[Q0]], we have the identity

Φ(t1) · . . . · Φ(tn) =
∑

d

(
−q1/2

)⟨d,d⟩ [Rd(Q)]
[Gd] td

=
→∏

a ∈Q decreasing

1 +
∑

d ∈ Λa

(
−q1/2

)⟨d,d⟩
[
Rµ−sst

d (Q)
]

[Gd] td

 .

Next, we can define motivic Donaldson–Thomas invariants. We generalize the shorthand
notation of the previous section to

Φ(x)◦P (q) =
∏
k

Φ
(
qk/2x

)(−1)kck

for P (q) =
∑

k ck(−q1/2)k.

Definition 3.2 ([5]). Assume that ⟨_, _⟩ is symmetric on Λa. Define DTµ
d(q) ∈ Q[q±1/2]

by factorization in Rq[[Q0]]:

1 +
∑

d ∈ Λa

(−q1/2)⟨d,d⟩ [Rµ−sst
d (Q)]
[Gd] td =

∏
d ∈ Λa

Φ(td)◦DTµ
d(q).

The DTµ
d(q) are called the motivic Donaldson–Thomas invariants of the quiver Q with

stability µ.

We remark that the more common definition in terms of the plethystic exponential Exp
is equivalent to this one since, by definition, Φ(x) = Exp( x

q−1/2−q1/2 ).
The motivic Donaldson–Thomas invariants admit a geometric interpretation in terms

of intersection homology of moduli spaces. Namely, we consider the GIT quotient
Rµ−sst

d (Q)//Gd = Mµ−sst
d (Q),

the moduli space of µ-semistable representations of Q of dimension vector d.

It is an irreducible projective normal (typically singular) complex algebraic variety. If
d is µ-stable, that is, if there exists a µ-stable representation of dimension vector d, then
dim Mµ−sst

d (Q) = 1−⟨d, d⟩. In terms of this moduli space, we have the following geometric
interpretation of the motivic Donaldson–Thomas invariants [6]:

Theorem 3.3 (Geometricity of DT invariants). We have

DTµ
d(q) = (−q1/2)⟨d,d⟩−1 ∑

k ≥ 0
dim IHk(Mµ−sst

d (Q),Q)
(
−q1/2

)k

if d is µ-stable, and DTµ
d(q) = 0 otherwise.

4. Quantum dilogarithm identity for quivers

To combine the methods prepared in the previous section, we consider quivers and
stabilities such that the restriction of ⟨_, _⟩ is symmetric on all Λa. In particular, this
holds if the antisymmetrized Euler form of Q is determined by the stability function, in
the sense that

⟨d, e⟩ − ⟨e, d⟩ = κ(d)Θ(e)− κ(e)Θ(d) for all d, e ∈ ZQ0,
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compare [10, Proposition 5.2]. Besides generalized Kronecker quivers, this property holds,
for example, for complete bipartite quivers.

Theorem 4.1. Assume that ⟨_, _⟩ is symmetric on all Λa. Then we have a factorization

Φ(t1) · . . . · Φ(tn) =
→∏

µ(d) decreasing

Φ
(
td
)◦(−q1/2)⟨d,d⟩−1·Pd(q)

in Rq[[Q0]], for polynomials Pd(q) with the following properties:
(1) Non-vanishing: We have Pd(q) ̸= 0 if and only if d is µ-stable,
(2) Positivity: We have Pd ∈ N[q], of degree deg Pd(q) = 1− ⟨d, d⟩,
(3) Unimodality: Pd(q) is palindromic and unimodal,
(4) Simplicity: We have Pd(q) = 1 if, additionally, ⟨d, d⟩ = 1.

This is now readily proved: combining Theorem 3.1, Definition 3.2 and Theorem 3.3, we
see that Pd(q) is precisely the Poincaré polynomial in intersection homology of Mµ−sst

d (Q)
in case d is µ-stable, proving the non-vanishing property. Positivity and unimodality are
proven in [6, Corollary 1.2]. The degree statement follows from the dimension formula for
the moduli space, and consequently the simplicity statement follows.

To derive Theorem 2.7, we consider the m-arrow Kronecker quiver Km = 1 (m)← 2, with
stability function given by Θ(d) = m · (d2 − d1) and κ(d) = d1 + d2.

We identify the variables t1 = x and t2 = y, leading to an identification of Q(q1/2)q

[[(Km)0]] with Q(q1/2)qm [[x, y]], such that td = (−q1/2)md1d2xd1yd2 and

Φ
(
td
)◦(−q1/2)⟨d,d⟩−1·P (q)

= Φ◦P (q)
(a,b)

for d = (a, b).
Theorem 4.1 then provides a factorization in Q(q1/2)qm [[x, y]] of the form

Φ(1,0)Φ(0,1) =
→∏

a/b increasing

Φ◦P(a,b)
(a,b) ,

such that
P(a,b)(q) =

∑
k ≥ 0

dim IH2k(K(a,b),Q)qk,

where
K(a,b) = Ma×b(C)m

sst//GLa(C)×GLb(C)
are the Kronecker moduli of [1].

All remaining properties in Theorem 2.7, as well as Theorems 2.4 and 2.5, now follow
from properties of these Kronecker moduli spaces. Using [13, Theorem 4.1], we see that
all roots, that is, dimension vectors (a, b) such that ⟨(a, b), (a, b)⟩ ≤ 1, are already Schur
roots, with the exception of proper multiples of (1, 1) for m = 2. By [13, Theorem 6.1]
(and the discussion following the theorem) Schur roots are already µ-stable. In case
⟨(a, b), (a, b)⟩ = 1, the dimension vector is a real root, and the moduli space K(a,b) reduces
to a point, thus P(a,b) = 1. This already (re-)proves Theorem 2.4 and, together with
K(1,1) ≃ Pm−1, also proves Theorem 2.5. Otherwise, we have ⟨(a, b), (a, b)⟩ ≤ 0, which
translates to µ− ≤ a/b ≤ µ+. This proves the completeness statement of the theorem. By
linear duality, we have K(a,b) ≃ K(b,a). Moreover, reflection functors induce isomorphisms
K(a,b) ≃ K(b,mb−a) by [15, Proposition 4.3]. This establishes the dihedral symmetry.
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The Kronecker moduli K(1,k) identify with the Grassmannians Grm
k , determining the lowest

order terms in the factorization. Finally, the special value P(k,k)(1) is computed in [9,
Theorem 5.2].
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