Annals of Representation Theory

Sofia Brenner \& Burkhard Külshammer
Group algebras in which the socle of the center is an ideal
Volume 1, issue 1 (2024), p. 1-19
https://doi.org/10.5802/art. 1

Communicated by Radha Kessar.
© The authors, 2024
(c) Er This article is licensed under the

Creative Commons Attribution (CC-BY) 4.0 License.
http://creativecommons.org/licenses/by/4.0/

NTNU

Group algebras in which the socle of the center is an ideal

Sofia Brenner and Burkhard Külshammer*

Abstract

Let F be a field of characteristic $p>0$. We study the structure of the finite groups G for which the socle of the center of $F G$ is an ideal in $F G$ and classify the finite p-groups G with this property. Moreover, we give an explicit description of the finite groups G for which the Reynolds ideal of $F G$ is an ideal in $F G$.

1. Introduction

Let F be a field and consider the group algebra $F G$ of a finite group G and its center $Z F G$. The question when the Jacobson radical of $Z F G$ is an ideal in $F G$ has been answered by Clarke [4], Koshitani [7] and Külshammer [9]. We now study the corresponding problem for the socle $\operatorname{soc}(Z F G)$ of $Z F G$ as well as for the Reynolds ideal $R(F G)$ of $F G$. In a prequel to this paper [3], we have already given some approaches to these problems for general symmetric algebras. Now, our aim is to analyze the structure of the finite groups G for which $\operatorname{soc}(Z F G)$ or $R(F G)$ are ideals of $F G$ in a group-theoretic manner. For the Reynolds ideal, we obtain the following characterization:

Theorem A. Let F be a field of characteristic $p>0$ and let G be a finite group. Then the Reynolds ideal $R(F G)$ is an ideal in $F G$ if and only if G^{\prime} is contained in the p-core $O_{p}(G)$ of G.

As a consequence of this result, it follows that if $\operatorname{soc}(Z F G)$ is an ideal in $F G$, one has $G=P \rtimes H$ for a Sylow p-subgroup P of G and an abelian p^{\prime}-group H. Based on this decomposition, we derive some fundamental results on the structure of finite groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$. Subsequently, we classify the finite p-groups G with this property:

Theorem B. Let F be a field of characteristic $p>0$ and let G be a finite p-group. Then $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if

[^0](i) G has nilpotency class at most two, that is, $G^{\prime} \subseteq Z(G)$ holds, or
(ii) $p=2$ and $G^{\prime} \subseteq Y(G) Z(G)$ with $Y(G)=\left\langle f g^{-1}:\{f, g\}\right.$ is a conjugacy class of length 2 of $G\rangle$.
In particular, G is metabelian.
Note that since the p-groups of nilpotency class at most two form a large subclass of the finite p-groups, the condition that $\operatorname{soc}(Z F G)$ is an ideal in $F G$ is often satisfied. One implication of Theorem B generalizes to arbitrary finite groups:

Theorem C. Let F be a field of characteristic $p>0$ and let G be a finite group. Suppose that one of the following holds:
(i) $G^{\prime} \subseteq Z\left(O_{p}(G)\right)$, or
(ii) $p=2$ and $G^{\prime} \subseteq Y\left(O_{p}(G)\right) Z\left(O_{p}(G)\right)$.

Then $\operatorname{soc}(Z F G)$ is an ideal in $F G$.
The above results are major ingredients for the proof of the main result of this paper, which is a decomposition of G into a central product:

Theorem D. Let F be a field of characteristic $p>0$. Suppose that G is a finite group for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$ and write $G=P \rtimes H$ for a Sylow p-subgroup P of G and an abelian p^{\prime}-group H as before. Then G is the central product of the centralizer $C_{P}(H)$ and the p-residual group $O^{p}(G)$. Moreover, $\operatorname{soc}\left(Z F C_{P}(H)\right)$ and $\operatorname{soc}\left(Z F O^{p}(G)\right)$ are ideals in $F C_{P}(H)$ and $F O^{p}(G)$, respectively. Furthermore, we have

$$
\operatorname{soc}(Z F G)=\left(Z(P) G^{\prime}\right)^{+} \cdot F G
$$

where $\left(Z(P) G^{\prime}\right)^{+} \in F G$ denotes the sum of the elements in $Z(P) G^{\prime}$.
This statement will allow us to restrict our investigation to the case $P=G^{\prime}$. A detailed analysis of the structure of finite groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$, based on the above results, will be carried out in a sequel to this paper.

We proceed as follows: First, we introduce our notation (see Section 2) and study the general structure of the finite groups G for which $\operatorname{soc}(Z F G)$ or $R(F G)$ are ideals in $F G$ (see Section 3). In Section 4, we classify the p-groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$ for a field F of characteristic $p>0$. In Section 5, we derive the decomposition of G given in Theorem D.

2. Notation

Let G be a finite group and p a prime number. As customary, let $G^{\prime}, Z(G)$ and $\Phi(G)$ denote the derived subgroup, the center and the Frattini subgroup of G, respectively. For elements $a, b \in G$, we define their commutator as $[a, b]=a b a^{-1} b^{-1}$. We write $[g]$ for the conjugacy class of $g \in G$ and set $\mathrm{Cl}(G)$ to be the set of conjugacy classes of G. The nilpotency class of a nilpotent group G will be denoted by $c(G)$. Recall that every p-group is nilpotent. For subsets S and T of G, let $C_{T}(S)$ and $N_{T}(S)$ denote the centralizer and the normalizer of S in T, respectively. As customary, let $O_{p}(G), O_{p^{\prime}}(G)$ and $O_{p^{\prime}, p}(G)$ be the p-core, the p^{\prime}-core and the p^{\prime}, p-core of G, respectively. By $O^{p}(G)$ and $O^{p^{\prime}}(G)$, we denote the p-residual subgroup and the p^{\prime}-residual subgroup of G, respectively. As customary, let g_{p} and $g_{p^{\prime}}$ be the p-part and the p^{\prime}-part of an element $g \in G$, respectively. The p^{\prime}-section of g is given by all elements in G whose p^{\prime}-part is conjugate to $g_{p^{\prime}}$. We write $G=G_{1} * G_{2}$ if G is the central product of subgroups G_{1} and G_{2}, that is, we have $G=\left\langle G_{1}, G_{2}\right\rangle$ and $\left[G_{1}, G_{2}\right]=1$.

For a field F and a finite-dimensional F-algebra A, we denote by $J(A)$ and $\operatorname{soc}(A)$ its Jacobson radical and (left) socle, the sum of all minimal left ideals of A, respectively. Both $J(A)$ and $\operatorname{soc}(A)$ are ideals in A. In this paper, an ideal I of A is always meant to be a two-sided ideal, and we denote it by $I \unlhd A$. Additionally, we study the Reynolds ideal $R(A):=\operatorname{soc}(A) \cap Z(A)$ of A. Furthermore, let $K(A)$ denote the commutator space of A, that is, the F-subspace of A spanned by all elements of the form $a b-b a$ with $a, b \in A$.

In the following, we consider the group algebra $F G$ of G over F. Recall that $F G$ is a symmetric algebra with symmetrizing linear form

$$
\begin{equation*}
\lambda: F G \rightarrow F, \sum_{g \in G} a_{g} g \mapsto a_{1} . \tag{2.1}
\end{equation*}
$$

For subsets S and T of $F G$, we write $\operatorname{lAnn}_{T}(S)$ and $\mathrm{rAnn}_{T}(S)$ for the left and the right annihilator of S in T, respectively, and $\operatorname{Ann}_{T}(S)$ if both subspaces coincide. For $H \subseteq G$, we set $H^{+}:=\sum_{h \in H} h \in F G$. It is well-known that the elements C^{+}with $C \in \mathrm{Cl}(G)$ form an F-basis of the center $Z F G$ of $F G$.

In this paper, we mainly study the Jacobson radical $J(Z F G)$ and the socle $\operatorname{soc}(Z F G)$ of the center of $F G$ as well as the Reynolds ideal $R(F G)$. All three spaces are ideals in $Z F G$, but not necessarily in $F G$. Note that $J(Z F G)=J(F G) \cap Z F G$ holds (see [10, Theorem 1.10.8]) and that by [10, Theorem 1.10.22], we have $\operatorname{soc}(Z F G)=\operatorname{Ann}_{Z F G}(J(Z F G))$. Furthermore, observe that $J(Z F G), \operatorname{soc}(Z F G)$ and $R(F G)$ are ideals in $F G$ if and only if they are closed under multiplication with elements of $F G$ since they are additively closed.

We recall the definition of the augmentation ideal

$$
\omega(F G)=\left\{\sum_{g \in G} a_{g} g \in F G: \sum_{g \in G} a_{g}=0\right\} .
$$

An F-basis of $\omega(F G)$ is given by $\{1-g: 1 \neq g \in G\}$. If F is a field of characteristic $p>0$ and G is a p-group, then $J(F G)$ and $\omega(F G)$ coincide (see [10, Theorem 1.11.1]). For a normal subgroup N of G, we consider the canonical projection

$$
\nu_{N}: F G \rightarrow F[G / N], \quad \sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} \cdot g N .
$$

Its kernel is given by $\omega(F N) \cdot F G=F G \cdot \omega(F N)$ (see [10, Proposition 1.6.4]).

3. General properties

Let F be a field. In this part, we answer the question for which finite groups G the Reynolds ideal $R(F G)$ is an ideal in $F G$. Moreover, we derive structural results on finite groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$. In the next section, these will be applied in order to classify the finite groups of prime power order with this property.

Concerning the choice of the underlying field F, we note the following:

Remark 3.1.

(i) Assume that F is of characteristic zero or of positive characteristic not dividing $|G|$. By Maschke's theorem, the group algebra $F G$ is semisimple. In particular, $J(F G)=J(Z F G)=0$ follows, which yields $R(F G)=\operatorname{soc}(Z F G)=Z F G$. Since $F G$ is unitary, $\operatorname{soc}(Z F G)$ is an ideal of $F G$ if and only if $Z F G=F G$ holds, that is, if and only if G is abelian.
(ii) Let F be a field of characteristic $p>0$ and let G be a finite group. Then $\operatorname{soc}\left(Z \mathbb{F}_{p} G\right)$ is an ideal in $\mathbb{F}_{p} G$ if and only if $\operatorname{soc}(Z F G)$ is an ideal in $F G$. A similar statement holds for the Reynolds ideal.

From now on until the end of this paper, we therefore assume that F is an algebraically closed field of characteristic $p>0$.

This section is organized as follows: We first derive a criterion for $\operatorname{soc}(Z F G) \unlhd F G$ (see Section 3.1) and answer the question when the Reynolds ideal of $F G$ is an ideal in $F G$ (see Section 3.2). In Section 3.3, we investigate p-blocks of $F G$. Subsequently, we find a basis for $J(Z F G)$ (see Section 3.4) and construct elements in $\operatorname{soc}(Z F G)$ arising from normal p-subgroups of G (see Section 3.5). In Section 3.6, we study the case that G^{\prime} is contained in the center of a Sylow p-subgroup of G. We conclude this part by investigating the transition to quotient groups in Section 3.7 and studying central products in Section 3.8.
3.1. Criterion for $\operatorname{soc}(Z F G) \unlhd F G$. Let G be a finite group. In this section, we derive an equivalent criterion for $\operatorname{soc}(Z F G) \unlhd F G$.
Lemma 3.2. We have $F G \cdot K(F G)=F G \cdot \omega\left(F G^{\prime}\right)$.
Proof. As $F G / \omega\left(F G^{\prime}\right) \cdot F G$ is isomorphic to the commutative algebra $F\left[G / G^{\prime}\right]$, we have $K(F G) \subseteq \omega\left(F G^{\prime}\right) \cdot F G$ and hence $K(F G) \cdot F G \subseteq \omega\left(F G^{\prime}\right) \cdot F G$ follows. Now let $f: F G \rightarrow$ $F G / K(F G) \cdot F G$ be the canonical projection map. For all $a, b \in G$, we have $f([a, b])=$ $f(a) f(b) f(a)^{-1} f(b)^{-1}=1$ since $F G / K(F G) \cdot F G$ is a commutative algebra. For $g \in G^{\prime}$, this yields $f(g)=1$ and hence $f(g-1)=0$. This shows $\omega\left(F G^{\prime}\right) \subseteq \operatorname{Ker}(f)=K(F G) \cdot F G$, which proves the claim.

Lemma 3.3. The socle $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if $\operatorname{soc}(Z F G) \subseteq\left(G^{\prime}\right)^{+} \cdot F G$ holds.

Proof. By [9, Lemma 2.1], we have $\operatorname{soc}(Z F G) \unlhd F G$ if and only if $K(F G) \cdot \operatorname{soc}(Z F G)=0$ holds, which is equivalent to $F G \cdot K(F G) \cdot \operatorname{soc}(Z F G)=0$. By Lemma 3.2, this is equivalent to $F G \cdot \omega\left(F G^{\prime}\right) \cdot \operatorname{soc}(Z F G)=0$, that is, to $\operatorname{soc}(Z F G) \subseteq \operatorname{rAnn}_{F G}\left(\omega\left(F G^{\prime}\right)\right)=\left(G^{\prime}\right)^{+} \cdot F G$ (see [11, Lemma 3.1.2]).
3.2. Reynolds ideal. Let G be a finite group. In this section, we answer the question when the Reynolds ideal $R(F G)$ is an ideal in $F G$. Our main result is the following:

Theorem 3.4. The following properties are equivalent:
(i) $R(F G)$ is an ideal of $F G$.
(ii) $G^{\prime} \subseteq O_{p}(G)$.
(iii) $G=P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H.

In this case, we have $R(F G)=O_{p}(G)^{+} \cdot F G$.
Proof. Suppose that $R(F G)$ is an ideal in $F G$. Then $F G$ is a basic F-algebra by [3, Lemma 2.2]. Since F is algebraically closed, this implies that $F G / J(F G)$ is commutative. By Lemma 3.2, we have $\omega\left(F G^{\prime}\right) \cdot F G=K(F G) \cdot F G \subseteq J(F G)$. Thus, for $g \in G^{\prime}$, the element $g-1$ is nilpotent. Hence there exists $n \in \mathbb{N}$ with $0=(g-1)^{p^{n}}=g^{p^{n}}-1$. This shows that G^{\prime} is a p-group and hence contained in $O_{p}(G)$.

Now assume $G^{\prime} \subseteq O_{p}(G)$ and let $P \in \operatorname{Syl}_{p}(G)$. Then $G^{\prime} \subseteq P$ follows, so P is a normal subgroup of G and G / P is abelian. By the Schur-Zassenhaus theorem, P has a complement H in G. Moreover, H is isomorphic to G / P and thus abelian.

Finally suppose that $G=P \rtimes H$ holds, where $P \in \operatorname{Syl}_{p}(G)$ and H is an abelian p^{\prime}-group. In particular, we have $P=O_{p}(G)$. We obtain $J(F G)=\omega(F P) \cdot F G$ and $\operatorname{soc}(F G)=\operatorname{Ann}_{F G}(J(F G))=P^{+} \cdot F G \subseteq\left(G^{\prime}\right)^{+} \cdot F G \subseteq Z F G$, so that $R(F G)=P^{+} \cdot F G$ is an ideal in $F G$.

This proves Theorem A. Moreover, we obtain the following necessary condition for $\operatorname{soc}(Z F G) \unlhd F G$:
Corollary 3.5. If $\operatorname{soc}(Z F G)$ is an ideal of $F G$, we have $G=P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H.
Proof. By [3, Lemma 1.3], $\operatorname{soc}(Z F G) \unlhd F G$ implies $R(F G) \unlhd F G$. With this, the claim follows from Theorem 3.4.

Remark 3.6. Let $G=P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H.
(i) By [5, Theorem 5.3.5], we have $P=C_{P}(H)[P, H]$. Due to $[P, H] \subseteq G^{\prime}$, this yields $G=H P=H C_{P}(H)[P, H]=H C_{P}(H) G^{\prime}$. Note that $[G, H]=[P, H]=$ $[[P, H], H]=\left[G^{\prime}, H\right]=\left[\left[G^{\prime}, H\right], H\right]$ holds by $[5$, Theorem 5.3.6] and that this is a normal subgroup of $P H=G$.
(ii) We have $O^{p}(G)=N$ for $N:=H[G, H]$: Clearly, N is a normal subgroup of G. Since G / N is a p-group, we have $O^{p}(G) \subseteq N$. On the other hand, $G / O^{p}(G)$ is a p-group, which implies $H \subseteq O^{p}(G)$ and hence $N \subseteq O^{p}(G)$ as $O^{p}(G)$ is a normal subgroup of G. In particular, this implies $O^{p}(G)^{\prime} \subseteq[G, H]$. On the other hand, we have $[G, H]=\left[\left[G^{\prime}, H\right], H\right] \subseteq\left[O^{p}(G), O^{p}(G)\right]=O^{p}(G)^{\prime}$ by (i) and hence $O^{p}(G)^{\prime}=[G, H] \in \operatorname{Syl}_{p}\left(O^{p}(G)\right)$ follows.
(iii) Since $O_{p^{\prime}}(G)$ is contained in the abelian group H and $\left[P, O_{p^{\prime}}(G)\right] \subseteq P \cap O_{p^{\prime}}(G)=$ 1 holds, we have $O_{p^{\prime}}(G) \subseteq Z(G)$. Hence [5, Theorem 6.3.3] implies $C_{G}(P) \subseteq$ $O_{p^{\prime} p}(G)=O_{p^{\prime}}(G) \times P$, and we conclude that $C_{G}(P)=O_{p^{\prime}}(G) \times Z(P)$ holds.
(iv) Since $R(F G)$ is spanned by the p^{\prime}-section sums of G (see [8, Equation (39)]), every p^{\prime}-section is of the form $h P$ for some $h \in H$.
3.3. Blocks and the p^{\prime}-core. Let G be an arbitrary finite group. In this section, we investigate the conditions $\operatorname{soc}(Z(B)) \unlhd B$ and $R(B) \unlhd B$ for a p-block B of $F G$.

Remark 3.7. Let $F G=B_{1} \oplus \ldots \oplus B_{n}$ be the decomposition of $F G$ into its p-blocks. Then we have

$$
\operatorname{soc}(Z F G)=\operatorname{soc}\left(Z\left(B_{1}\right)\right) \oplus \ldots \oplus \operatorname{soc}\left(Z\left(B_{n}\right)\right)
$$

In particular, $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if $\operatorname{soc}\left(Z\left(B_{i}\right)\right) \unlhd B_{i}$ holds for all $i \in\{1, \ldots, n\}$, and the analogous statement is true for the Reynolds ideal. Furthermore, it is known that the principal blocks of $F G$ and $F \bar{G}$ are isomorphic for $\bar{G}:=G / O_{p^{\prime}}(G)$.

For the Reynolds ideal, we obtain the following result:
Lemma 3.8. The following are equivalent:
(i) There exists a block B of $F G$ for which $R(B) \unlhd B$ holds.
(ii) For the principal block B_{0} of $F G$, we have $R\left(B_{0}\right) \unlhd B_{0}$.
(iii) G^{\prime} is contained in $O_{p^{\prime} p}(G)$.

Proof. Assume that (i) holds. By [9, Proposition 4.1], this implies $B \cong B_{0}$ and hence (ii) holds. Now assume that (ii) holds. By [9, Remarks 2.2 and 3.1], every simple B_{0}-module is one-dimensional. Since the intersection of the kernels of the simple B_{0}-modules is given by $O_{p^{\prime} p}(G)$ (see [1, Theorem 2]), we obtain $G^{\prime} \subseteq O_{p^{\prime} p}(G)$. Finally, assume that (iii) holds.

Then we have $\bar{G}^{\prime} \subseteq O_{p}(\bar{G})$. Theorem 3.4 yields $R(F \bar{G}) \unlhd F \bar{G}$, which implies $R\left(\bar{B}_{0}\right) \unlhd \bar{B}_{0}$ by Remark 3.7. Since B_{0} and \bar{B}_{0} are isomorphic, we obtain $R\left(B_{0}\right) \unlhd B_{0}$.

Concerning the analogous problem for the socle of the center, we first observe the following:
Lemma 3.9. The following are equivalent:
(i) There exists a block B of $F G$ for which $\operatorname{soc}(Z(B)) \unlhd B$ holds.
(ii) For the principal block B_{0} of $F G$, we have $\operatorname{soc}\left(Z\left(B_{0}\right)\right) \unlhd B_{0}$.
(iii) For the principal block \bar{B}_{0} of $F \bar{G}$, we have $\operatorname{soc}\left(Z\left(\bar{B}_{0}\right)\right) \unlhd \bar{B}_{0}$.

Proof. As in the proof of Lemma 3.8, the equivalence of (i) and (ii) follows by [9, Proposition 4.1] and the equivalence of (ii) and (iii) follows from the fact that B_{0} and \bar{B}_{0} are isomorphic.

This has the following important consequence:
Lemma 3.10. We have $\operatorname{soc}(Z F G) \unlhd F G$ if and only if $R(F G) \unlhd F G$ and $\operatorname{soc}(Z F \bar{G}) \unlhd$ $F \bar{G}$ hold.

Proof. If $\operatorname{soc}(Z F G)$ is an ideal of $F G$, then $R(F G) \unlhd F G$ holds by [3, Lemma 1.3] and $\operatorname{soc}(Z F \bar{G})$ is an ideal of $F \bar{G}$ by [3, Proposition 2.10]. For the latter, note that $F \bar{G} \cong F G / \operatorname{Ker}\left(\nu_{O_{p^{\prime}}(G)}\right)$ can be viewed as a quotient algebra of $F G$. Now let $R(F G)$ and $\operatorname{soc}(Z F \bar{G})$ be ideals in $F G$ and $F \bar{G}$, respectively. By Remark 3.7, this yields $\operatorname{soc}\left(Z\left(\bar{B}_{0}\right)\right) \unlhd$ \bar{B}_{0} and hence $\operatorname{soc}\left(Z\left(B_{0}\right)\right) \unlhd B_{0}$ (see Lemma 3.9). Since $R(F G)$ is an ideal in $F G$, all blocks of $F G$ are isomorphic to B_{0} by [9, Proposition 4.1]. By Remark 3.7, we then obtain $\operatorname{soc}(Z F G) \unlhd F G$.

Remark 3.11. Assume that G is of the form $G=P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H. Then $\operatorname{soc}(Z F G) \unlhd F G$ is equivalent to $\operatorname{soc}(Z F \bar{G}) \unlhd F \bar{G}$ (see Theorem 3.4 and Lemma 3.10). By going over to the quotient group $G / O_{p^{\prime}}(G)$, we may therefore restrict our investigation to groups G with $O_{p^{\prime}}(G)=1$.
3.4. Basis for $J(Z F G)$. Let $G=P \rtimes H$ be a finite group with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H (see Theorem 3.4). The aim of this section is to determine an F-basis for $J(Z F G)$. In the given situation, the kernel of the canonical map $\nu_{P}: F G \rightarrow F[G / P]$ is given by $J(F G)$ (see [10, Corollary 1.11.11]). In the following, we distinguish two types of conjugacy classes:
Remark 3.12. Let $C \in \mathrm{Cl}(G)$. We obtain $|\bar{C}|=1$ for the image $\bar{C} \in \mathrm{Cl}(G / P)$ of C in G / P since this group is abelian. Now two cases can occur:

- $|C|$ is divisible by p : Then $\nu_{P}\left(C^{+}\right)=|C| \cdot \bar{C}^{+}=0$ yields $C^{+} \in \operatorname{Ker}\left(\nu_{P}\right) \cap Z F G=$ $J(Z F G)$.
- $|C|$ is not divisible by p : In this case, $|P|$ divides $\left|C_{G}(g)\right|$ for any $g \in C$. This yields $P \subseteq C_{G}(g)$ and hence $C \subseteq C_{G}(P)$. As customary, we decompose $g=g_{p^{\prime}} g_{p}$ into its p^{\prime}-part and p-part. Note that $g_{p^{\prime}} \in O_{p^{\prime}}(G) \subseteq Z(G)$ and $g_{p} \in Z(P)$ hold by Remark 3.6. Due to $g_{p^{\prime}} \in Z(G)$, we have $C=g_{p^{\prime}}\left[g_{p}\right]$ and the element $C^{+}-|C| \cdot g_{p^{\prime}}$ is contained in $\operatorname{Ker}\left(\nu_{P}\right) \cap Z F G=J(Z F G)$.

Definition 3.13. For $C \in \mathrm{Cl}(G)$ with $C \nsubseteq O_{p^{\prime}}(G)$, we set $b_{C}:=C^{+}$if p divides $|C|$, and $b_{C}:=C^{+}-|C| \cdot g_{p^{\prime}}$ otherwise.

With this, we obtain the following basis for $J(Z F G)$:

Theorem 3.14. An F-basis for $J(Z F G)$ is given by $B:=\left\{b_{C}: C \in \operatorname{Cl}(G), C \nsubseteq O_{p^{\prime}}(G)\right\}$.
Proof. By Remark 3.12, we have $B \subseteq J(Z F G)$. Note that the elements in $B \cup O_{p^{\prime}}(G)$ form an F-basis for $Z F G$. Since the algebra $F O_{p^{\prime}}(G)$ is semisimple, $J(Z F G)$ is spanned by B.

Remark 3.15. The decomposition $F G=\bigoplus_{h \in H} F h P$ gives rise to an H-grading of $F G$. Note that the basis of $J(Z F G)$ given in Theorem 3.14 consists of homogeneous elements with respect to this grading. In particular, $J(Z F G)$ is a H-graded subspace of $F G$. It follows that $\operatorname{soc}(Z F G)=\operatorname{Ann}_{Z F G}(J(Z F G))$ is a H-graded subspace of $F G$ as well, that is, we have

$$
\operatorname{soc}(Z F G)=\bigoplus_{h \in H}(\operatorname{soc}(Z F G) \cap F h P)
$$

3.5. Elements in $\operatorname{soc}(Z F G)$. Let G be an arbitrary finite group. In this section, we study elements of $\operatorname{soc}(Z F G)$ which arise from certain normal p-subgroups of G. Using these, we show that G^{\prime} has nilpotency class at most two if $\operatorname{soc}(Z F G)$ is an ideal in $F G$. Moreover, we derive a decomposition of G which will later be used to prove Theorem D.

Lemma 3.16. Let N be a normal p-subgroup of G and set $M:=\left\{x \in[N, G]: x^{p} \in\right.$ $[N,[N, G]]\}$. For $C \in \mathrm{Cl}(G)$ with $C \nsubseteq C_{G}(N)$, we have $\nu_{M}\left(C^{+}\right)=0$ and hence $M^{+} \cdot C^{+}=$ 0 . In particular, this implies $\nu_{N}\left(C^{+}\right)=0$ and $N^{+} \cdot C^{+}=0$.

Proof. Note that M is a normal subgroup of G. Let R be an orbit of the conjugation action of N on C and consider an element $r \in R$. Then $C \nsubseteq C_{G}(N)$ implies $N \nsubseteq C_{G}(r)$, which yields $|R|=\left|N: C_{N}(r)\right| \neq 1$. Set $X:=\langle N, R\rangle=\langle N, r\rangle$.

First consider the case $[N, G] \subseteq Z(N)$. Then the map $f: N \rightarrow N, n \mapsto[n, r]$ is a group endomorphism with kernel $C_{N}(r)$. We set $S:=\operatorname{Im}(f)$. Then we have $|R|=\left|N: C_{N}(r)\right|=$ $|S|$, so in particular, $|S|$ is a nontrivial power of p. Let $\bar{G}:=G / M$ and set $\bar{g}:=g M \in \bar{G}$ for $g \in G$ (similarly for subsets of G). Note that \bar{R} is an orbit of the conjugation action of \bar{N} on \bar{C}. As before, we obtain $|\bar{R}|=\left|\bar{N}: C_{\bar{N}}(\bar{r})\right|=|\bar{S}|=|S: S \cap M|$. Since $S \subseteq[N, G]$ is a nontrivial p-group, $|S \cap M|$ is divisible by p. With this, we obtain

$$
\nu_{M}\left(R^{+}\right)=\frac{|R|}{|\bar{R}|} \cdot \bar{R}^{+}=|S \cap M| \cdot \bar{R}^{+}=0 .
$$

Now we consider the general case. Let $L:=[N,[N, G]]$. We set $\widetilde{G}:=G / L$ and write $\widetilde{g}:=g L \in \widetilde{G}$ for $g \in G$ (similarly for subsets of G). Note that we have $[\widetilde{N},[\widetilde{N}, \widetilde{G}]]=1$ and hence $[\widetilde{N}, \widetilde{G}] \subseteq Z(\widetilde{N})$. First assume $C_{\tilde{N}}(\widetilde{r})=\widetilde{N}$. For any $n \in N$, one then has $[n, r] \in L$, which implies $\nu_{L}\left(R^{+}\right)=|R| \cdot \widetilde{r}=0$. Due to $L \subseteq M$, this yields $\nu_{M}\left(R^{+}\right)=0$. Now assume $C_{\tilde{N}}(\widetilde{r}) \subsetneq \widetilde{N}$. In particular, we have $\widetilde{C} \nsubseteq C_{\tilde{G}}(\widetilde{N})$. The first part of the proof yields $\nu_{\tilde{M}}\left(\widetilde{R}^{+}\right)=0$, which implies

$$
\nu_{\tilde{M}}\left(\nu_{L}\left(R^{+}\right)\right)=\nu_{\tilde{M}}\left(\frac{|R|}{|\widetilde{R}|} \cdot \widetilde{R}^{+}\right)=\frac{|R|}{|\widetilde{R}|} \cdot \nu_{\tilde{M}}\left(\widetilde{R}^{+}\right)=0 .
$$

Due to $\widetilde{G} / \widetilde{M}=(G / L) /(M / L) \cong G / M$, the $\operatorname{map} \nu_{\tilde{M}} \circ \nu_{L}$ can be identified with ν_{M} and hence $\nu_{M}\left(R^{+}\right)=0$ follows. Since R was arbitrary, this yields $\nu_{M}\left(C^{+}\right)=0$. In particular, we have $M^{+} . C^{+}=0$.

Proposition 3.17. Let N be a normal p-subgroup of G and set $M:=\left\{x \in[N, G]: x^{p} \in\right.$ $[N,[N, G]]\}$ as in Lemma 3.16. Moreover, let K be a characteristic subgroup of $C_{G}(N)$ which satisfies $K^{+} \in \operatorname{soc}\left(Z F C_{G}(N)\right)$. Then we have $(M K)^{+} \in \operatorname{soc}(Z F G)$. In particular, this applies to $K:=O^{p^{\prime}}\left(C_{G}(N)\right)$.

Proof. By Lemma 3.16, ZFG is the sum of the subspaces $Z F G \cap F C_{G}(N)$ and $Z F G \cap$ $\operatorname{Ker}\left(\nu_{M}\right)$. Since $\operatorname{Ker}\left(\nu_{M}\right)=\omega(F M) F G=J(F M) F G \subseteq J(F G)$ holds (see [10, Proposition 1.6.4]), we have $Z F G \cap \operatorname{Ker}\left(\nu_{M}\right) \subseteq J(Z F G)$. Since $Z F G \cap F C_{G}(N)$ is contained in $Z F C_{G}(N)$, the space $J\left(Z F G \cap F C_{G}(N)\right) \subseteq J\left(Z F C_{G}(N)\right)$ is annihilated by K^{+}. This proves that $(M K)^{+}$annihilates $J(Z F G)$. Now let $K:=O^{p^{\prime}}\left(C_{G}(N)\right)$. Since K^{+}annihilates $J\left(F C_{G}(N)\right)=J(F K) F C_{G}(N)$ (see [10, Theorem 1.11.10]), we have $K^{+} \in \operatorname{soc}\left(Z F C_{G}(N)\right)$ as required.

Now we return to the assumption that G is of the form $P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H as in Theorem 3.4.

Lemma 3.18. Suppose that N is a normal p-subgroup of G. Then $\left(C_{P}(N) M\right)^{+} \in$ $\operatorname{soc}(Z F G)$ follows, where $M:=\left\{x \in[N, G]: x^{p} \in[N,[N, G]]\right\}$ is defined as in Lemma 3.16. In particular, we have $\left(C_{P}(N) N\right)^{+} \in \operatorname{soc}(Z F G)$. If $\operatorname{soc}(Z F G)$ is an ideal in $F G$, then $G^{\prime} \subseteq C_{P}(N) M$ follows.

Proof. Since $C_{P}(N)$ is a normal Sylow p-subgroup of $C_{G}(N)$, we have $O^{p^{\prime}}\left(C_{G}(N)\right)=$ $C_{P}(N)$. Proposition 3.17 then yields $\left(C_{P}(N) M\right)^{+} \in \operatorname{soc}(Z F G)$. Since $C_{P}(N) N$ is a union of cosets of $C_{P}(N) M$, we obtain $\left(C_{P}(N) N\right)^{+} \in \operatorname{soc}(Z F G)$. If $\operatorname{soc}(Z F G)$ is an ideal in $F G$, then $G^{\prime} \subseteq C_{P}(N) M$ follows by Lemma 3.3.

The following result will be particularly useful for our derivation on p-groups:
Corollary 3.19. We have $\left(Z(P) G^{\prime}\right)^{+} \cdot F G \subseteq \operatorname{soc}(Z F G) \subseteq O_{p}(Z(G))^{+} \cdot F G$.
Proof. By Lemma 3.18, we obtain $(Z(P) M)^{+} \in \operatorname{soc}(Z F G)$ for $M=\left\{x \in[P, G]: x^{p} \in\right.$ $[P,[P, G]]\} \subseteq G^{\prime}$. In particular, this implies $\left(Z(P) G^{\prime}\right)^{+} \in \operatorname{soc}(Z F G)$. Since we have $\left(Z(P) G^{\prime}\right)^{+} \cdot F G \subseteq\left(G^{\prime}\right)^{+} \cdot F G \subseteq Z F G$, this implies $\left(Z(P) G^{\prime}\right)^{+} \cdot F G \subseteq \operatorname{soc}(Z F G)$. Now for $z \in O_{p}(Z(G))$, the element $z-1$ is nilpotent and hence contained in $J(Z F G)$. For $x=\sum_{g \in G} a_{g} g \in \operatorname{soc}(Z F G)$, this yields $x \cdot(z-1)=0$, which translates to $a_{g}=a_{g z}$ for all $g \in G$. Hence $x \in O_{p}(Z(G))^{+} \cdot F G$ follows.

Observe that the right inclusion in the preceding lemma holds for arbitrary finite groups. The next result is the central ingredient in the proof of Theorem D:

Proposition 3.20. Suppose that $G^{\prime} \subseteq C_{P}(N) N$ holds for every normal p-subgroup N of G. Then the following hold:
(i) We have $\left[P, G^{\prime}\right] \subseteq Z\left(G^{\prime}\right)$. In particular, this implies $G^{\prime \prime} \subseteq Z(P)$ and that the nilpotency class of G^{\prime} is at most two. Moreover, we obtain $\Phi\left(G^{\prime}\right) \subseteq Z\left(G^{\prime}\right)$.
(ii) We have $P=C_{P}(H) *[P, H]$ and $G=C_{P}(H) * O^{p}(G)$.

Proof.
(i) Let D be a critical subgroup of P (in the sense of [5, Theorem 5.3.11]). Then D is normal in G, and $Z(D)$ contains $\Phi(D), C_{P}(D)$ and $[P, D]$. By assumption, we have $G^{\prime} \subseteq D C_{P}(D)=D$. Hence we have

$$
\left[P, G^{\prime}\right] \subseteq[P, D] \subseteq Z(D) \subseteq C_{G}\left(G^{\prime}\right)
$$

which implies $\left[P, G^{\prime}\right] \subseteq Z\left(G^{\prime}\right)$. With the 3-subgroups lemma, we obtain $\left[G^{\prime \prime}, P\right]=$ $\left[\left[G^{\prime}, G^{\prime}\right], P\right]=1$, that is, $G^{\prime \prime} \subseteq Z(P)$. Furthermore, for $x \in G^{\prime}$, we have $x \in D$ and hence $x^{p} \in Z(D) \subseteq C_{G}\left(G^{\prime}\right)$, which implies $x^{p} \in Z\left(G^{\prime}\right)$.
(ii) By (i), we have $B:=\left[C_{P}(H),[P, H]\right] \subseteq\left[P, G^{\prime}\right] \subseteq Z\left(G^{\prime}\right)$. Furthermore, B is normal in $C_{P}(H)[P, H]=P$ and $P H=G$. Due to
$\left[C_{P}(H), G\right]=\left[C_{P}(H), C_{P}(H)[P, H] H\right]=\left[C_{P}(H), C_{P}(H)[P, H]\right] \subseteq C_{P}(H) B$,
the subgroup $N:=C_{P}(H) B$ is normal in G. Moreover, we find $[N, H]=\left[C_{P}(H) B, H\right]$ $=[B, H]$. By assumption, we have $G^{\prime} \subseteq C_{P}(N) N$. By Remark 3.6, this yields

$$
[P, H]=\left[G^{\prime}, H\right] \subseteq\left[C_{P}(N) N, H\right] \subseteq[N, H]\left[C_{P}(N), H\right]
$$

since for $c \in C_{P}(N), n \in N$ and $h \in H$, we have $[c n, h]=c[n, h] c^{-1}[c, h]=$ $[n, h][c, h]$. Hence $[P, H] \subseteq[B, H]\left[C_{P}(N), H\right] \subseteq B C_{P}(N)$ follows, which yields

$$
B=\left[C_{P}(H),[P, H]\right] \subseteq\left[C_{P}(H), B C_{P}(N)\right]=\left[C_{P}(H), B\right] \subseteq[P, B] .
$$

Hence $B=1$ follows, which yields $P=C_{P}(H) *[P, H]$. By Remark 3.6, this implies $G=C_{P}(H) * H[P, H]=C_{P}(H) * O^{p}(G)$.
By Lemma 3.18, the properties given in Proposition 3.20 hold whenever $\operatorname{soc}(Z F G)$ is an ideal in $F G$. We conclude this section with a result on p-groups, which is an immediate consequence of Lemma 3.18:

Lemma 3.21. If G is a p-group satisfying $\operatorname{soc}(Z F G) \unlhd F G$, then G is metabelian.
Proof. Let A be a maximal abelian normal subgroup of G. Since $C_{G}(A)=A$ holds, Lemma 3.18 yields $G^{\prime} \subseteq A$. In particular, G^{\prime} is abelian.
3.6. Special case $G^{\prime} \subseteq Z(P)$. Let $G=P \rtimes H$ be a finite group with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H. In this section, we show that $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if $G^{\prime} \subseteq Z(P)$ holds.

Lemma 3.22.

(i) Let $g \in G$ with $g_{p} \in Z(P)$. Then $[g]=[h] \cdot\left[g_{p}\right]$ holds for $h \in H \cap g P$.
(ii) For $u \in Z(P)$ and $h \in C_{G}(H)$, we have $h[u] \subseteq[h u]$.
(iii) Assume $[P, G] \subseteq Z(P)$. Let $h \in C_{G}(H)$ and write $[h]=U_{h} h$ with $U_{h}:=\{[a, h]: a$ $\in G\}$. Then U_{h} is a normal subgroup of G.

Proof.
(i) By Remark 3.6, $g P$ is a p^{\prime}-section of G. In particular, $[h]$ is the unique p^{\prime}-conjugacy class contained in $g P$ and hence $\left[g_{p^{\prime}}\right]=[h]$ follows. Since H is abelian, we have $g_{p^{\prime}}=u h u^{-1}$ for some $u \in P$. Due to $g_{p} \in Z(P)$, this yields $g=u h g_{p} u^{-1}$ and hence $[g]=\left[h g_{p}\right]$. We may therefore assume $g_{p^{\prime}}=h$. For $x=p_{x} h_{x}$ with $p_{x} \in P$ and $h_{x} \in H$, we have $x g x^{-1}=p_{x} h p_{x}^{-1} \cdot h_{x} g_{p} h_{x}^{-1}$. This yields

$$
[g]=\left\{p_{x} h p_{x}^{-1}: p_{x} \in P\right\} \cdot\left\{h_{x} g_{p} h_{x}^{-1}: h_{x} \in H\right\}=[h] \cdot\left[g_{p}\right] .
$$

(ii) Let $u^{\prime} \in[u]$. Due to $u \in Z(P)$, there exists an element $h^{\prime} \in H$ with $h^{\prime} u h^{\prime-1}=u^{\prime}$ (see Remark 3.6). Since h and h^{\prime} commute, we obtain $h u^{\prime}=h^{\prime} h u h^{\prime-1} \in[h u]$.
(iii) We have $U_{h}=\{[a, h]: a \in P\}$. As $\left[p_{1} p_{2}, h\right]=\left[p_{1}, h\right] \cdot\left[p_{2}, h\right]$ holds for all $p_{1}, p_{2} \in P$, U_{h} is a subgroup of G^{\prime}. Since the elements of P centralize $U_{h} \subseteq[P, G] \subseteq Z(P)$ and conjugation with elements of H permutes the elements $[a, h]$ with $a \in P$, it follows that U_{h} is normal in G.

Corollary 3.23. Let $g \in G$ with $g_{p} \in Z(P)$. For $y \in Z F G$ with $y \cdot\left[g_{p^{\prime}}\right]^{+}=0$, we have $y \cdot[g]^{+}=0$.
Proof. The group P acts on $[g]$ by conjugation with orbits of the form $\left[g_{p^{\prime}}\right] u$ with $u \in P$ (see Lemma 3.22). In particular, $[g]$ is a disjoint union of sets of this form. Hence $y \cdot\left[g_{p^{\prime}}\right]^{+}$ implies $y \cdot[g]^{+}=0$.

Lemma 3.24. Let $y=\sum_{g \in G} a_{g} g \in \operatorname{soc}(Z F G)$. For $h \in C_{G}(H)$ and $u \in Z(P)$, we have $a_{h u}=a_{h}$.

Proof. We may assume $u \neq 1$. By Remark 3.6, $m:=|[u]|$ is not divisible by p. Hence we have $b_{\left[u^{-1}\right]}=\left[u^{-1}\right]^{+}-m \cdot 1$ (see Theorem 3.14) and the coefficient of h in $y \cdot b_{\left[u^{-1}\right]}=0$ is given by

$$
\sum_{u^{\prime} \in[u]} a_{h u^{\prime}}-m a_{h}=m\left(a_{h u}-a_{h}\right),
$$

since the elements in $h[u]$ are conjugate by Lemma 3.22 (ii). Since p does not divide m, we obtain $a_{h u}=a_{h}$.

Theorem 3.25. If $G=C_{G}(H) Z(P)$ holds, then $\operatorname{soc}(Z F G) \subseteq Z(P)^{+} \cdot F G$ follows. In particular, if we have $G^{\prime} \subseteq Z(P)$, then $\operatorname{soc}(Z F G)$ is an ideal in $F G$.

Proof. Consider an element $y=\sum_{g \in G} a_{g} g \in \operatorname{soc}(Z F G)$. Let $g \in G$ and write $g=c z$ with $c \in C_{G}(H)$ and $z \in Z(P)$. By Lemma 3.24, we have $a_{g}=a_{c z}=a_{c}$. Hence $y \in Z(P)^{+} . F G$ follows. If additionally $G^{\prime} \subseteq Z(P)$ holds, then $\operatorname{soc}(Z F G) \subseteq Z(P)^{+} \cdot F G \subseteq\left(G^{\prime}\right)^{+} \cdot F G$ follows, so $\operatorname{soc}(Z F G)$ is an ideal in $F G$ (see Lemma 3.3).

This proves the first part of Theorem C. The next example shows that the condition $G^{\prime} \subseteq Z(P)$ is not necessary for $\operatorname{soc}(Z F G) \unlhd F G$.

Example 3.26. Let F be an algebraically closed field of characteristic $p=3$ and consider the group $G=\operatorname{SmallGroup}(216,86)$ in GAP [12]. We have $G=G^{\prime} \rtimes H$, where G^{\prime} is the extraspecial group of order 27 and exponent three, and $H \cong C_{8}$ permutes the nontrivial elements of $G^{\prime} / G^{\prime \prime}$ transitively and acts on $G^{\prime \prime}=Z\left(G^{\prime}\right)$ by inversion. In particular, G^{\prime} is nonabelian. For $h \in H$, we set $S_{h}:=\operatorname{soc}(Z F G) \cap F h G^{\prime}$. Due to the H-grading of $F G$ introduced in Remark 3.15, it suffices to show $S_{h}=F\left(h G^{\prime}\right)^{+}$for all $h \in H$. Clearly, we have $\left(h G^{\prime}\right)^{+} \in S_{h}$. The derived subgroup G^{\prime} decomposes into the G-conjugacy classes $\{1\}$, $G^{\prime \prime} \backslash\{1\}$ and $G^{\prime} \backslash G^{\prime \prime}$. For $1 \neq h \in H$, the coset $h G^{\prime}$ consists of a single conjugacy class for $\operatorname{ord}(h)=8$ and of two conjugacy classes for $\operatorname{ord}(h) \in\{2,4\}$. In the first case, we directly obtain $S_{h}=F\left(h G^{\prime}\right)^{+}$. In the latter case, we have $[h]^{+} \cdot\left(G^{\prime \prime}\right)^{+}=\left(h G^{\prime}\right)^{+} \neq 0$, which implies $[h]^{+} \notin \operatorname{soc}(Z F G)$ since $\left(G^{\prime \prime}\right)^{+} \in J(Z F G)$ holds. Since $\left(h G^{\prime}\right)^{+}-[h]^{+} \notin \operatorname{soc}(Z F G)$ holds as well, $S_{h}=F\left(h G^{\prime}\right)^{+}$follows. Moreover, this shows $\left(G^{\prime \prime}\right)^{+} \notin \operatorname{soc}(Z F G)$ and hence $S_{1}=F\left(G^{\prime}\right)^{+}$follows as well. By Lemma 3.3, $\operatorname{soc}(Z F G)$ is an ideal of $F G$.
3.7. Quotient groups. Let G be a finite group of the form $P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H. We fix a normal subgroup $N \unlhd G$ with quotient group $\bar{G}:=G / N$. Our aim is to study the transition to the group algebra $F \bar{G}$. The image of an element $g \in G$ in \bar{G} will be denoted by \bar{g} (similarly for subsets of G). Note that \bar{G} is of the form $\bar{P} \rtimes \bar{H}$ with $\bar{P} \in \operatorname{Syl}_{p}(\bar{G})$ and the abelian p^{\prime}-group \bar{H}. In the following, we consider the canonical projection map

$$
\nu_{N}: F G \rightarrow F \bar{G}, \quad \sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} \cdot g N,
$$

together with its adjoint map $\nu_{N}^{*}: F \bar{G} \rightarrow F G$, which is defined by requiring $\lambda\left(\nu_{N}^{*}(x) y\right)=$ $\bar{\lambda}\left(x \nu_{N}(y)\right)$ for all $x \in F \bar{G}$ and $y \in F G$. Here, λ and $\bar{\lambda}$ denote the symmetrizing linear forms of $F G$ and $F \bar{G}$ given in (2.1), respectively. It is easily verified that ν_{N}^{*} is given by

$$
\nu_{N}^{*}: F \bar{G} \rightarrow F G, \quad \sum_{g N \in \bar{G}} a_{g N} \cdot g N \mapsto \sum_{g \in G} a_{g N} \cdot g .
$$

Note that ν_{N}^{*} is a linear map with image $N^{+} \cdot F G$ and that it is injective as ν_{N} is surjective.
Remark 3.27. For $a \in F \bar{G}$, it is easily seen that $a \in\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$ is equivalent to $\nu_{N}^{*}(a) \in$ $\left(G^{\prime}\right)^{+} \cdot F G$.

If $\operatorname{soc}(Z F G)$ is an ideal in $F G$, then $\operatorname{Ann}_{Z F \bar{G}}\left(\nu_{N}(J(Z F G))\right)$ is an ideal in $F \bar{G}$ by [3, Proposition 2.10]. For $C \in \mathrm{Cl}(G)$ with $C \nsubseteq O_{p^{\prime}}(G)$, let b_{C} denote the associated element of $J(Z F G)$ (see Definition 3.13) and consider the basis $B:=\left\{b_{C}: C \in \mathrm{Cl}(G), C \nsubseteq O_{p^{\prime}}(G)\right\}$ of $J(Z F G)$ (see Theorem 3.14). Clearly, $\nu_{N}(J(Z F G))$ is spanned by the images of the elements in B. We now derive a more convenient generating set.

Lemma 3.28. Let $C \in \operatorname{Cl}(G)$ be a conjugacy class with $C \nsubseteq O_{p^{\prime}}(G)$. We have $b_{C} \notin$ $\operatorname{Ker}\left(\nu_{N}\right)$ if and only if $\bar{C} \nsubseteq O_{p^{\prime}}(\bar{G})$ holds and $k:=|C| /|\bar{C}|$ is not divisible by p. In this case, the basis element $b_{\bar{C}}$ of $J(Z F \bar{G})$ corresponding to $\bar{C} \in \mathrm{Cl}(\bar{G})$ is well-defined and we have $\nu_{N}\left(b_{C}\right)=k \cdot b_{\bar{C}}$.

Proof. Observe that \bar{C} is indeed a conjugacy class of \bar{G} and that $\nu_{N}\left(C^{+}\right)=k \cdot \bar{C}^{+}$with $k:=|C| /|\bar{C}|$ holds. Suppose first that p divides $|C|$, so $b_{C}=C^{+}$holds. Then $\nu_{N}\left(b_{C}\right) \neq$ 0 is equivalent to $k \not \equiv 0(\bmod p)$, and in this case we have $|\bar{C}| \equiv 0(\bmod p)$. Since $O_{p^{\prime}}(\bar{G}) \subseteq Z(\bar{G})$ holds, this implies $\bar{C} \nsubseteq O_{p^{\prime}}(\bar{G})$. Moreover, we have $b_{\bar{C}}=\bar{C}^{+}$and thus $\nu_{N}\left(b_{C}\right)=k \cdot b_{\bar{C}}$.

It remains to consider the case $C \subseteq C_{G}(P)$. There, we have $\bar{C} \subseteq C_{\bar{G}}(\bar{P})$. If $\bar{C} \nsubseteq O_{p^{\prime}}(\bar{G})$ holds, then $b_{\bar{C}}$ is defined, and we have $b_{C}=C^{+}-|C| \cdot g_{p^{\prime}}$ and $b_{\bar{C}}=\bar{C}^{+}-|\bar{C}| \cdot \bar{g}_{p^{\prime}}$ for $g \in C$. This shows that $\nu_{N}\left(b_{C}\right)=k \cdot b_{\bar{C}}$ holds. If, in addition, $k \not \equiv 0(\bmod p)$, then $\nu_{N}\left(b_{C}\right) \neq 0$ follows. Suppose conversely that $\nu_{N}\left(b_{C}\right) \neq 0$ holds. We write $C=g_{p^{\prime}} D$ for $g_{p^{\prime}} \in O_{p^{\prime}}(G)$ and $D \in \mathrm{Cl}(G)$ with $D \subseteq Z(P)$ (see Remark 3.12). Assume that $\bar{C} \subseteq O_{p^{\prime}}(\bar{G})$ holds. Then we have $\bar{D}=\bar{g}_{p^{\prime}}^{-1} \bar{C} \subseteq O_{p^{\prime}}(\bar{G})$ due to $\bar{g}_{p^{\prime}} \in O_{p^{\prime}}(\bar{G})$. As D consists of p-elements, we must have $\bar{D}=\{1\}$, which yields the contradiction $\nu_{N}\left(b_{C}\right)=\nu_{N}\left(g_{p^{\prime}} D^{+}-|D| \cdot g_{p^{\prime}}\right)=0$. This shows that $\bar{C} \nsubseteq O_{p^{\prime}}(\bar{G})$ holds. Hence we have $\nu_{N}\left(b_{C}\right)=k \cdot b_{\bar{C}}$, so that $k \not \equiv 0(\bmod p)$.
Definition 3.29. Set $\mathrm{Cl}_{p^{\prime}, N}(G):=\left\{C \in \mathrm{Cl}(G): C \nsubseteq O_{p^{\prime}}(G)\right.$ and $\left.b_{C} \notin \operatorname{Ker}\left(\nu_{N}\right)\right\}$ and let

$$
\mathrm{Cl}_{p^{\prime}, N}^{+}(G):=\left\{b_{C}: C \in \mathrm{Cl}_{p^{\prime}, N}(G)\right\}
$$

be the set of corresponding basis elements of $J(Z F G)$ (see Definition 3.13). $\mathrm{By} \overline{\mathrm{Cl}}_{p^{\prime}, N}(G) \subseteq$ $\mathrm{Cl}(\bar{G})$, we denote the set of images of the conjugacy classes in $\mathrm{Cl}_{p^{\prime}, N}(G)$ and set

$$
\overline{\mathrm{Cl}}_{p^{\prime}, N}^{+}(G):=\left\{b_{\bar{C}}: \bar{C} \in \overline{\mathrm{Cl}}_{p^{\prime}, N}(G)\right\},
$$

where $b_{\bar{C}}$ denotes the basis element of $J(Z F \bar{G})$ corresponding to \bar{C}.
If N is a p-group, the p^{\prime}-conjugacy classes of length divisible by p in $\mathrm{Cl}_{p^{\prime}, N}(G)$ can be easily characterized:

Lemma 3.30. Consider a normal p-subgroup N of G and let $C \nsubseteq C_{G}(P)$ be a p^{\prime}-conjugacy class. Then we have $C \in \mathrm{Cl}_{p^{\prime}, N}(G)$ if and only if $C \subseteq C_{G}(N)$ holds.

Proof. If $C \nsubseteq C_{G}(N)$ holds, we have $\nu_{N}\left(b_{C}\right)=\nu_{N}\left(C^{+}\right)=0$ by Lemma 3.16, so $C \notin$ $\mathrm{Cl}_{p^{\prime}, N}(G)$. Now let $h \in C \subseteq C_{G}(N)$. Since h is a p^{\prime}-element, [5, Theorem 5.3.15] implies $C_{G / N}(h N)=C_{G}(h) N / N=C_{G}(h) / N$ and hence $|\bar{C}|=\left|G / N: C_{G / N}(h N)\right|=$ $\left|G: C_{G}(h)\right|=|C|$. Thus we have $\nu_{N}\left(b_{C}\right)=\nu_{N}\left(C^{+}\right)=\bar{C}^{+} \neq 0$, which yields $C \in$ $\mathrm{Cl}_{p^{\prime}, N}(G)$.

Now let N again be an arbitrary normal subgroup of G. We obtain the following necessary condition for $\operatorname{soc}(Z F G) \unlhd F G$:

Theorem 3.31. We have

$$
\operatorname{Ann}_{Z F \bar{G}}\left(\nu_{N}(J(Z F G))\right)=\operatorname{Ann}_{Z F \bar{G}}\left(\overline{\mathrm{Cl}}_{p^{\prime}, N}^{+}(G)\right)=: A .
$$

If $\operatorname{soc}(Z F G)$ is an ideal of $F G$, we have $A \subseteq\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$.
Proof. Clearly, the elements $\nu_{N}\left(b_{C}\right)$ with $C \in \mathrm{Cl}_{p^{\prime}, N}(G)$ span $\nu_{N}(J(Z F G))$. For $C \in$ $\mathrm{Cl}_{p^{\prime}, N}(G)$ and $y \in F \bar{G}$, we have $y \cdot \nu_{N}\left(b_{C}\right)=0$ if and only if $y \cdot b_{\bar{C}}=0$ holds (see Lemma 3.28). This implies $A=\operatorname{Ann}_{Z F \bar{G}}\left(\nu_{N}(J(Z F G))\right)$. Now assume that $\operatorname{soc}(Z F G)$ is an ideal in $F G$. By [3, Proposition 2.10], A is an ideal in $F \bar{G}$, so by [9, Lemma 2.1], we have $K(F \bar{G}) \cdot A=0$. As in the proof of Lemma 3.3, this implies $A \subseteq\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$.

As a first application, we give an alternative proof of the following special case of [3, Proposition 2.10]:

Corollary 3.32. Let $\operatorname{soc}(Z F G)$ be an ideal of $F G$. Then $\operatorname{soc}(Z F \bar{G}) \unlhd F \bar{G}$ holds.
Proof. Since $\overline{\mathrm{Cl}}_{p^{\prime}, N}^{+}(G)$ is a subset of $J(Z F \bar{G})$, Theorem 3.31 yields

$$
\operatorname{soc}(Z F \bar{G})=\operatorname{Ann}_{Z F \bar{G}} J(Z F \bar{G}) \subseteq \operatorname{Ann}_{Z F \bar{G}}\left(\overline{\mathrm{Cl}}_{p^{\prime}, N}^{+}(G)\right) \subseteq\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}
$$

and we obtain $\operatorname{soc}(Z F \bar{G}) \unlhd F \bar{G}$ by Lemma 3.3.
3.8. Central products. Let G be a finite group. We consider the question when $\operatorname{soc}(Z F G)$ is an ideal of $F G$ in case that $G=G_{1} * G_{2}$ is a central product of two subgroups G_{1} and G_{2}. Central products will play an important role throughout our investigation, for instance in the decomposition of G given in Theorem D.

Theorem 3.33. Let $G=G_{1} * G_{2}$ be the central product of G_{1} and G_{2}. Then $\operatorname{soc}(Z F G) \unlhd$ $F G$ is equivalent to $\operatorname{soc}\left(Z F G_{i}\right) \unlhd F G_{i}$ for $i=1,2$.

Proof. First assume that $\operatorname{soc}\left(Z F G_{i}\right)$ is an ideal in $F G_{i}$ for $i=1,2$. By [3, Proposition 1.9], this implies

$$
\operatorname{soc}\left(Z\left(F G_{1} \otimes_{F} F G_{2}\right)\right) \unlhd F G_{1} \otimes_{F} F G_{2}
$$

Since $F\left(G_{1} \times G_{2}\right) \cong F G_{1} \otimes_{F} F G_{2}$ holds, this yields $\operatorname{soc}\left(Z F\left(G_{1} \times G_{2}\right)\right) \unlhd F\left(G_{1} \times G_{2}\right)$. The group G is isomorphic to a quotient group of $G_{1} \times G_{2}$, so $\operatorname{soc}(Z F G)$ is an ideal in $F G$ by Corollary 3.32 .

Now assume conversely that $\operatorname{soc}(Z F G)$ is an ideal of $F G$. By Corollary 3.5, G is of the form $P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H. First suppose that $O_{p^{\prime}}(G)=1$ holds. Then $Z:=G_{1} \cap G_{2} \subseteq Z(G) \subseteq C_{G}(P)=Z(P)$ is a p-group. We consider the canonical projection $\nu:=\nu_{G_{2}}: F G \rightarrow F\left[G / G_{2}\right]$. By Theorem 3.31, we have

$$
\begin{equation*}
\operatorname{Ann}_{Z F\left[G / G_{2}\right]}(\nu(J(Z F G))) \subseteq\left(\left[G / G_{2}\right]^{\prime}\right)^{+} \cdot F\left[G / G_{2}\right] \tag{3.1}
\end{equation*}
$$

Note that there is a canonical isomorphism $G_{1} / Z \cong G / G_{2}$. Furthermore, we have $Z F G_{1} \subseteq Z F G$ and $\nu\left(Z F G_{1}\right)=\nu(Z F G)$, so also $\nu\left(J\left(Z F G_{1}\right)\right)=\nu(J(Z F G))$ holds. Hence we have

$$
\operatorname{Ann}_{Z F\left[G_{1} / Z\right]}\left(\nu_{1}\left(J\left(Z F G_{1}\right)\right)\right) \subseteq\left(\left[G_{1} / Z\right]^{\prime}\right)^{+} \cdot F\left[G_{1} / Z\right]
$$

where $\nu_{1}: F G_{1} \rightarrow F\left[G_{1} / Z\right]$ denotes the canonical projection. Let $x_{1} \in \operatorname{soc}\left(Z F G_{1}\right)$ and observe that G_{1}^{\prime} is a p-group. By Corollary 3.19, we have $x_{1} \in Z^{+} . F G_{1}=\nu_{1}^{*}\left(F\left[G_{1} / Z\right]\right)$. Let $y_{1} \in F\left[G_{1} / Z\right]$ with $x_{1}=\nu_{1}^{*}\left(y_{1}\right)$. Then [3, Remark 2.9] yields

$$
y_{1} \in \operatorname{Ann}_{Z F\left[G_{1} / Z\right]}\left(\nu_{1}\left(J\left(Z F G_{1}\right)\right)\right) \subseteq\left(\left[G_{1} / Z\right]^{\prime}\right)^{+} \cdot F\left[G_{1} / Z\right]
$$

By Remark 3.27, this yields $x_{1} \in\left(G_{1}^{\prime}\right)^{+} \cdot F G_{1}$ and hence $\operatorname{soc}\left(Z F G_{1}\right)$ is an ideal in $F G_{1}$ (see Lemma 3.3). By symmetry, we obtain $\operatorname{soc}\left(Z F G_{2}\right) \unlhd F G_{2}$.

Now we consider the general case. For $\bar{G}:=G / O_{p^{\prime}}(G)$, we have $\bar{G}=\bar{G}_{1} * \bar{G}_{2}$ with $\bar{G}_{i}:=G_{i} O_{p^{\prime}}(G) / O_{p^{\prime}}(G)(i=1,2)$. Note that $\bar{G}_{i} \cong G_{i} / O_{p^{\prime}}(G) \cap G_{i} \cong G_{i} / O_{p^{\prime}}\left(G_{i}\right)$ follows since $O_{p^{\prime}}(G) \cap G_{i}=O_{p^{\prime}}\left(G_{i}\right)$ holds. By the above, we obtain $\operatorname{soc}\left(Z F \bar{G}_{i}\right) \unlhd F \bar{G}_{i}$. Since G^{\prime} is a p-group, also G_{1}^{\prime} and G_{2}^{\prime} are p-groups. Lemma 3.10 then yields $\operatorname{soc}\left(Z F G_{i}\right) \unlhd F G_{i}$ for $i=1,2$.

Remark 3.34. For $G \cong G_{1} \times G_{2}$, the statement of Theorem 3.33 is a special case of [3, Proposition 1.9].

4. Groups of prime power order

Let F be an algebraically closed field of characteristic $p>0$. In this section, we classify the finite p-groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$ (see Theorem B). Additionally, these results will be generalized to arbitrary finite groups (see Theorem C). First we prove that the property $\operatorname{soc}(Z F G) \unlhd F G$ is preserved under isoclinism (see Section 4.1). Subsequently, we distinguish the cases $p \geq 3$ (see Section 4.2) and $p=2$ (see Section 4.3).
4.1. Isoclinism. Let G be a finite p-group. The aim of this section is to show that the property $\operatorname{soc}(Z F G) \unlhd F G$ is invariant under isoclinism in the following sense: If Q is a finite p-group isoclinic to G, then $\operatorname{soc}(Z F Q) \unlhd F Q$ holds precisely if we have $\operatorname{soc}(Z F G) \unlhd F G$. The proof of this statement is based on some observations on the center of G and the transition to the quotient group $\bar{G}:=G / Z(G)$.

Lemma 4.1.

(i) We have $\operatorname{soc}(Z F G) \subseteq Z(G)^{+} \cdot F G$.
(ii) $\operatorname{soc}(Z F G)$ is an ideal of $F G$ if and only if $\operatorname{soc}(Z F G)=\left(Z(G) G^{\prime}\right)^{+} \cdot F G$ holds.

Proof. The first statement follows by Corollary 3.19. Now let $\operatorname{soc}(Z F G)$ be an ideal of $F G$. Lemma 3.3 then yields $\operatorname{soc}(Z F G) \subseteq\left(G^{\prime}\right)^{+} \cdot F G$. Together with (i), this implies $\operatorname{soc}(Z F G) \subseteq\left(Z(G) G^{\prime}\right)^{+} \cdot F G$, and by Corollary 3.19 , we obtain equality. Conversely, $\left(Z(G) G^{\prime}\right)^{+} \cdot F G$ is obviously an ideal in $F G$.

In the given situation, we have

$$
\mathrm{Cl}_{p^{\prime}}:=\mathrm{Cl}_{p^{\prime}, Z(G)}(G)=\{C \in \mathrm{Cl}(G): C \nsubseteq Z(G),|C|=|\bar{C}|\}
$$

Note that the length of every conjugacy class in $\mathrm{Cl}_{p^{\prime}}$ is a nontrivial power of p. Let $\overline{\mathrm{Cl}}_{p^{\prime}}:=\overline{\mathrm{Cl}}_{p^{\prime}, Z(G)}(G)$ be the set of images of the classes in $\mathrm{Cl}_{p^{\prime}}$ and denote by $\overline{\mathrm{Cl}}_{p^{\prime}}^{+}:=$
$\overline{\mathrm{Cl}}_{p^{\prime}, Z(G)}^{+}(G)$ the corresponding class sums in $F \bar{G}$. In this situation, the implication given in Theorem 3.31 is an equivalence:

Lemma 4.2. The socle $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if $\operatorname{Ann}_{Z F \bar{G}}\left(\overline{\mathrm{Cl}}_{p^{\prime}}^{+}\right) \subseteq$ $\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$ holds.

Proof. Consider the map $\nu_{Z(G)}^{*}: F \bar{G} \rightarrow F G$ introduced in Section 3.7. Lemma 4.1 yields

$$
\operatorname{soc}(Z F G) \subseteq Z(G)^{+} \cdot F G=\operatorname{Im} \nu_{Z(G)}^{*}
$$

By [3, Remark 2.9], we therefore obtain

$$
\operatorname{soc}(Z F G)=\nu_{Z(G)}^{*}\left(\operatorname{Ann}_{Z F \bar{G}}\left(\overline{\mathrm{Cl}}_{p^{\prime}}^{+}\right)\right) .
$$

By Remark 3.27, we have $\operatorname{Ann}_{Z F \bar{G}}\left(\overline{\mathrm{Cl}}_{p^{\prime}}^{+}\right) \subseteq\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$ if and only if $\operatorname{soc}(Z F G) \subseteq\left(G^{\prime}\right)^{+} \cdot F G$ holds, which is equivalent to $\operatorname{soc}(Z F G) \unlhd F G$ by Lemma 3.3.

Now we proceed to the main result of this section. Recall that two finite p-groups G_{1} and G_{2} are isoclinic if there exist isomorphisms $\varphi: G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ and $\beta: G_{1} / Z\left(G_{1}\right) \rightarrow$ $G_{2} / Z\left(G_{2}\right)$ such that whenever $\beta\left(a_{1} Z\left(G_{1}\right)\right)=a_{2} Z\left(G_{2}\right)$ and $\beta\left(b_{1} Z\left(G_{1}\right)\right)=b_{2} Z\left(G_{2}\right)$ hold for $a_{1}, b_{1} \in G_{1}$ and $a_{2}, b_{2} \in G_{2}$, then $\varphi\left(\left[a_{1}, b_{1}\right]\right)=\left[a_{2}, b_{2}\right]$ follows. We set $\bar{G}_{i}:=G_{i} / Z\left(G_{i}\right)$ and write $\mathrm{Cl}_{p^{\prime}, i}$ and $\overline{\mathrm{Cl}}_{p^{\prime}, i}$ to distinguish the sets $\mathrm{Cl}_{p^{\prime}}$ and $\overline{\mathrm{Cl}}_{p^{\prime}}$ for $i \in\{1,2\}$.
Theorem 4.3. Let G_{1} and G_{2} be finite isoclinic p-groups. Then $\operatorname{soc}\left(Z F G_{1}\right) \unlhd F G_{1}$ is equivalent to $\operatorname{soc}\left(Z F G_{2}\right) \unlhd F G_{2}$.

Proof. Let $\varphi: G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ and $\beta: \bar{G}_{1} \rightarrow \bar{G}_{2}$ be the corresponding isomorphisms. We first show that $\overline{\mathrm{Cl}}_{p^{\prime}, 1}$ and $\overline{\mathrm{Cl}}_{p^{\prime}, 2}$ are in bijective correspondence under β. Let $C_{1} \in \mathrm{Cl}_{p^{\prime}, 1}$ and set \bar{C}_{1} to be its image in \bar{G}_{1}. Then $\bar{C}_{2}:=\beta\left(\bar{C}_{1}\right)$ is a conjugacy class of \bar{G}_{2}. Consider a preimage $C_{2} \in \mathrm{Cl}\left(G_{2}\right)$ of \bar{C}_{2}. Let $x_{2} \in C_{2}$ and assume that $1 \neq\left[x_{2}, g_{2}\right] \in Z\left(G_{2}\right)$ holds for some $g_{2} \in G_{2}$. Choose elements $x_{1} \in C_{1}$ and $g_{1} \in G_{1}$ with $\beta\left(x_{1} Z\left(G_{1}\right)\right)=x_{2} Z\left(G_{2}\right)$ and $\beta\left(g_{1} Z\left(G_{1}\right)\right)=g_{2} Z\left(G_{2}\right)$. We then obtain $\varphi\left(\left[x_{1}, g_{1}\right]\right)=\left[x_{2}, g_{2}\right] \in Z\left(G_{2}\right) \backslash\{1\}$. Note that $\beta\left(\left[x_{1}, g_{1}\right] Z\left(G_{1}\right)\right)=\left[x_{2}, g_{2}\right] Z\left(G_{2}\right)=Z\left(G_{2}\right)$ holds, so we have $1 \neq\left[x_{1}, g_{1}\right] \in Z\left(G_{1}\right)$. This implies $\left|\bar{C}_{1}\right|<\left|C_{1}\right|$, which is a contradiction to $C_{1} \in \mathrm{Cl}_{p^{\prime}, 1}$. Hence we obtain $\bar{C}_{2} \in \overline{\mathrm{Cl}}_{p^{\prime}, 2}$. The other implication follows by symmetry.

Extending βF-linearly gives rise to an F-algebra isomorphism $\widehat{\beta}: F \bar{G}_{1} \rightarrow F \bar{G}_{2}$. By the above, we have $\widehat{\beta}\left(\overline{\mathrm{Cl}}_{p^{\prime}, 1}^{+}\right)=\overline{\mathrm{Cl}}_{p^{\prime}, 2}^{+}$. Now if $\operatorname{soc}\left(Z F G_{1}\right)$ is an ideal of $F G_{1}$, Lemma 4.2 implies $\operatorname{Ann}_{Z F \bar{G}_{1}}\left(\overline{\mathrm{Cl}}_{p^{\prime}, 1}^{+}\right) \subseteq\left(\bar{G}_{1}^{\prime}\right)^{+} \cdot F \bar{G}_{1}$. Applying the isomorphism $\widehat{\beta}$ yields $\operatorname{Ann}_{Z F \bar{G}_{2}}\left(\overline{\mathrm{Cl}}_{p^{\prime}, 2}^{+}\right) \subseteq$ $\left(\bar{G}_{2}^{\prime}\right)^{+} \cdot F \bar{G}_{2}$. By Lemma 4.2, $\operatorname{soc}\left(Z F G_{2}\right)$ is an ideal in $F G_{2}$. The other implication follows by symmetry.
4.2. Odd characteristic. In this section, we assume that F is an algebraically closed field of odd characteristic p.

Remark 4.4. For an abelian p-group G, we have $\prod_{g \in G} g=1$ since every nontrivial element in G differs from its inverse and their product is the identity element.

Proposition 4.5. Let G be a finite p-group of nilpotency class exactly two. Then there exists an element $y \in Z F G$ with $y \notin\left(G^{\prime}\right)^{+} \cdot F G$ such that $y \cdot S^{+}=0$ holds for all subgroups $1 \neq S \subseteq G^{\prime}$.

Proof. Since G^{\prime} is a nontrivial p-group, there exists a nontrivial group homomorphism $\alpha: G^{\prime} \rightarrow F$. We define an element $y:=\sum_{g \in G} a_{g} g \in F G$ by setting $a_{g}:=\alpha(g)$ for $g \in G^{\prime}$ and $a_{g}=0$ otherwise. We have $y \in F G^{\prime} \subseteq F Z(G) \subseteq Z F G$. Now consider a subgroup $1 \neq S \subseteq G^{\prime}$. The coefficient of $w \in G$ in the product $y \cdot S^{+}$is given by $\sum_{s \in S} a_{w s^{-1}}$. For $w \notin G^{\prime}$, all summands are zero. For $w \in G^{\prime}$, we obtain

$$
\sum_{s \in S} a_{w s^{-1}}=\sum_{s \in S} \alpha\left(w s^{-1}\right)=|S| \cdot \alpha(w)+\sum_{s \in S} \alpha\left(s^{-1}\right)=\alpha\left(\prod_{s \in S} s^{-1}\right)=\alpha(1)=0 .
$$

In the second and third step, we use that α is a group homomorphism. The fourth equality is due to Remark 4.4. This implies $y \cdot S^{+}=0$ as claimed.

In this special situation, the condition given in Theorem 3.25 is in fact equivalent to $\operatorname{soc}(Z F G) \unlhd F G$:
Theorem 4.6. Let G be a finite p-group. Then $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if G has nilpotency class at most two.
Proof. If G is of nilpotency class at most two, we have $G^{\prime} \subseteq Z(G)$ and hence $\operatorname{soc}(Z F G)$ is an ideal in $F G$ by Theorem 3.25. For the converse implication, we use induction on the nilpotency class of G. Note that $\bar{G}:=G / Z(G)$ has nilpotency class $c(G)-1$. First assume $c(G)=3$. We apply Proposition 4.5 to the group \bar{G} and consider the element $y \in Z F \bar{G}$ constructed therein. Let $\bar{C} \in \overline{\mathrm{Cl}}_{p^{\prime}}$ be a conjugacy class and let $c \in \bar{C}$. Since $\bar{G}^{\prime} \subseteq Z(\bar{G})$ holds, the map $\gamma: \bar{G} \rightarrow \bar{G}, g \mapsto[g, c]$ is a group homomorphism and hence we have

$$
\bar{C}=\left\{g c g^{-1}: g \in \bar{G}\right\}=\{[g, c] c: g \in \bar{G}\}=S c,
$$

where $S:=\operatorname{Im} \gamma$ is a subgroup of \bar{G}^{\prime}. Note that we have $|S|=|\bar{C}|>1$. By Proposition 4.5, we have $y \cdot S^{+}=0$ and hence $y \cdot \bar{C}^{+}=y \cdot(S c)^{+}=0$. Since $y \notin\left(\bar{G}^{\prime}\right)^{+} \cdot F \bar{G}$ holds, $\operatorname{soc}(Z F G)$ is not an ideal of $F G$ (see Lemma 4.2). If G is of nilpotency class $c(G)>3$, we obtain $\operatorname{soc}(Z F \bar{G}) \nexists F \bar{G}$ by induction. Corollary 3.32 then yields $\operatorname{soc}(Z F G) \not \Perp F G$.
Remark 4.7. The analogous construction fails for $p=2$ since the statement of Remark 4.4 does not hold for groups of even order.
4.3. Characteristic $p=2$. Throughout, let F be an algebraically closed field of characteristic two. Unless otherwise stated, we assume that G is a finite 2-group.
Remark 4.8. Let $C=\{f, g\}$ be a conjugacy class of length two of G. An inner automorphism of G either fixes both f and g, or it interchanges the two elements. For $c:=g f^{-1} \in G^{\prime}$, this yields $C_{G}(f)=C_{G}(g) \subseteq C_{G}(c)$. For $h \in G \backslash C_{G}(f)$, we have $h c h^{-1}=h g f^{-1} h^{-1}=f g^{-1}=c^{-1}$. This shows that the subgroup $\langle c\rangle \subseteq G^{\prime}$ is normal in G.

For every conjugacy class $C:=\{f, g\}$ of length two, we set $Y_{C}:=\left\langle g f^{-1}\right\rangle$. In the following, we consider the subgroup

$$
Y(G):=\left\langle Y_{C}: C \in \mathrm{Cl}(G),\right| C|=2\rangle .
$$

Note that $Y(G)$ is characteristic in G. More precisely, we obtain the following:
Lemma 4.9. We have $Y(G) \subseteq Z(\Phi(G))$. In particular, $Y(G)$ is abelian.
Proof. Note that $Y(G) \subseteq G^{\prime} \subseteq \Phi(G)$ holds. Now let $C=\{f, g\}$ be a conjugacy class of length two. Since $C_{G}(f)$ is a maximal subgroup of G, Remark 4.8 yields $\Phi(G) \subseteq C_{G}(f) \subseteq$ $C_{G}\left(g f^{-1}\right)$ and hence $\Phi(G)$ centralizes Y_{C}. Thus $Y(G)$ is contained in the center of $\Phi(G)$, so in particular, it is abelian.

Lemma 4.10. We have $\operatorname{soc}(Z F G) \subseteq Y(G)^{+} \cdot F G$.
Proof. Let $y=\sum_{g \in G} a_{g} g \in \operatorname{soc}(Z F G)$. For a conjugacy class $C=\{f, g\}$ of length two, we have $c:=g f^{-1} \in Y(G)$ and the condition $y \cdot C^{+}=0$ yields $a_{x}=a_{x c^{-1}}$ for all $x \in G$. By induction, this implies $a_{x}=a_{x c_{1}^{-1} \ldots c_{n}^{-1}}$ for every $x \in G$ and all elements c_{1}, \ldots, c_{n} arising from G-conjugacy classes of length two as above. This shows that y has constant coefficients on the cosets of $Y(G)$, that is, we obtain $y \in Y(G)^{+} \cdot F G$.

With this preliminary result, we obtain the following characterization of the 2-groups G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$.
Theorem 4.11. The socle $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if and only if $G^{\prime} \subseteq Y(G) Z(G)$ holds.
Proof. Suppose $G^{\prime} \nsubseteq Y(G) Z(G)$, so $Y(G) Z(G) \cap G^{\prime}$ is a proper subgroup of G^{\prime}. By [6, Theorem III.7.2], there exists a subgroup $N \unlhd G$ with $Y(G) Z(G) \cap G^{\prime} \subseteq N \subseteq G^{\prime}$ and $\left|G^{\prime}: N\right|=2$. We set $M:=Y(G) Z(G) N$. Note that $M^{+} \in Z F G$ holds since M is a normal subgroup of G. We now show that M^{+}annihilates the basis of $J(Z F G)$ given in Theorem 3.14.

For $z \in Z(G) \subseteq M$, we have $(1+z) \cdot M^{+}=0$. For a G-conjugacy class $C=\{f, g\}$ of length two, we obtain $C^{+} \cdot Y(G)^{+}=f Y(G)^{+}+g Y(G)^{+}=0$ since $g f^{-1} \in Y(G)$ holds. Hence M^{+}annihilates C^{+}. Every conjugacy class $C \in \mathrm{Cl}(G)$ with $|C| \geq 4$ contains an even number of elements in every coset of N since C is contained in a coset of G^{\prime} and $\left|G^{\prime}: N\right|=2$ holds. This implies that C^{+}is annihilated by N^{+}and hence by M^{+}. Summarizing, we obtain $M^{+} \in \operatorname{soc}(Z F G)$. Moreover, $M \cap G^{\prime}=N \subsetneq G^{\prime}$ implies $M^{+} \notin\left(G^{\prime}\right)^{+} \cdot F G$. By Lemma 3.3, this yields $\operatorname{soc}(Z F G) \nexists F G$.

Conversely, assume that $G^{\prime} \subseteq Y(G) Z(G)$ holds. By Lemmas 4.1 and 4.10, we have

$$
\operatorname{soc}(Z F G) \subseteq(Y(G) Z(G))^{+} \cdot F G \subseteq\left(G^{\prime}\right)^{+} \cdot F G
$$

and hence $\operatorname{soc}(Z F G)$ is an ideal of $F G$ (see Lemma 3.3).
This completes the proof of Theorem B.
Remark 4.12. Similarly to the case of odd characteristic, $\operatorname{soc}(Z F G) \unlhd F G$ holds if G has nilpotency class at most two.

However, the next example demonstrates that in contrast to the case of odd characteristic, the nilpotency class of a finite 2-group G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$ can be arbitrarily large.

Example 4.13.

(i) Let $G=D_{2^{n}}=\left\langle r, s: r^{2^{n-1}}=s^{2}=1\right.$, srs $\left.=r^{-1}\right\rangle$ with $n \in \mathbb{N}$ be the dihedral group of order 2^{n}. For $n \leq 2, G$ is abelian and hence $\operatorname{soc}(Z F G) \unlhd F G$ holds. For $n \geq 3$, we have $G^{\prime}=\left\langle r^{2}\right\rangle=Y(G) Z(G)$ and hence $\operatorname{soc}(Z F G) \unlhd F G$ follows by Theorem 4.11. The 2-groups of maximal class of a fixed order are isoclinic. Therefore, by Theorem 4.3, $\operatorname{soc}(Z F G)$ is an ideal in $F G$ if G is a semihedral or generalized quaternion 2-group.
(ii) By [3, Theorem 4.12], every 2-group G of order at most 16 satisfies $\operatorname{soc}(Z F G) \unlhd$ $F G$. Up to isomorphism, there exist 51 groups of order 32 . Out of those, 7 groups are abelian and 26 groups have nilpotency class precisely two. Additionally, 13 groups satisfy the property $G^{\prime} \subseteq Y(G) Z(G)$.
(iii) Consider the holomorph $G=\mathbb{Z} / 8 \mathbb{Z} \rtimes(\mathbb{Z} / 8 \mathbb{Z})^{\times}$of $\mathbb{Z} / 8 \mathbb{Z}$, which has order 32 . It has 11 conjugacy classes and we have $|Z(G)|=2$. Since $G / Z(G) \cong D_{8} \times C_{2}$ has precisely 10 conjugacy classes, the images of the non-central conjugacy classes of G in $G / Z(G)$ are pairwise distinct. For every such conjugacy class C, we therefore have $Z(G) C \subseteq C$ and hence $\nu_{Z(G)}\left(C^{+}\right)=0$. This proves $J(Z F G)^{2}=$ 0 , so $J(Z F G)=\operatorname{soc}(Z F G)$ follows. In particular, we obtain $\operatorname{dim} \operatorname{soc}(Z F G)=$ $\operatorname{dim} J(Z F G)=10$. Due to $\left|G^{\prime}\right|=4$, the space $\left(G^{\prime}\right)^{+} \cdot F G$ is eight-dimensional, so it does not contain $\operatorname{soc}(Z F G)$. By Lemma 3.3, $\operatorname{soc}(Z F G)$ is not an ideal in $F G$.

We conclude this part with a generalization of Theorem 4.14 to arbitrary finite groups, which is a stronger variant of Theorem 3.25:

Theorem 4.14. Let G be an arbitrary finite group which satisfies $G^{\prime} \subseteq Y\left(O_{2}(G)\right) Z\left(O_{2}(G)\right)$. Then $\operatorname{soc}(Z F G)$ is an ideal of $F G$.

Proof. The given condition implies $G^{\prime} \subseteq O_{2}(G)$, so by Theorem 3.4, we have $G=P \rtimes H$ with $P:=O_{2}(G) \in \operatorname{Syl}_{2}(G)$ and an abelian 2^{\prime}-group H. Note that G^{\prime} is abelian as $Y(P)$ is abelian (see Lemma 4.9). By Remark 3.6, we have

$$
\begin{equation*}
P=C_{P}(H) G^{\prime}=C_{P}(H) Y(P) Z(P) \tag{4.1}
\end{equation*}
$$

Since G^{\prime} is abelian, $C_{P}(H)^{\prime}$ is normal in P. We consider the group $\bar{P}:=P / C_{P}(H)^{\prime}$ and denote the image of $S \subseteq P$ in \bar{P} by \bar{S}. Then we have

$$
\overline{Y(P)} \subseteq \bar{P}^{\prime}=\overline{\left(C_{P}(H) Y(P)\right)^{\prime}}=\left[\overline{C_{P}(H)}, \overline{Y(P)}\right] \subseteq[\bar{P}, \overline{Y(P)}]
$$

This implies $\overline{Y(P)}=1$, so $Y(P) \subseteq C_{P}(H)^{\prime}$ follows.
By (4.1), we then have $[P, H]=[Z(P), H]$ and hence $P=C_{P}(H)[Z(P), H]$ follows. Since $C_{P}(H)$ centralizes $W:=H[Z(P), H] \subseteq H Z(P)$ and $C_{P}(H) \cap[Z(P), H]=1$ follows by [5, Theorem 5.3.6], we obtain $G=C_{P}(H) \times W$. It is then easily verified that $Y(P)=$ $Y\left(C_{P}(H)\right)$ holds. With Dedekind's identity, we obtain

$$
C_{P}(H)^{\prime} \subseteq G^{\prime} \cap C_{P}(H) \subseteq Y\left(C_{P}(H)\right) Z(P) \cap C_{P}(H) \subseteq Y\left(C_{P}(H)\right) \cdot Z\left(C_{P}(H)\right)
$$

By Theorem 4.11, $\operatorname{soc}\left(Z F C_{P}(H)\right)$ is an ideal of $F C_{P}(H)$. Since $\operatorname{soc}(Z F W) \unlhd F W$ follows by Theorem $3.25, \operatorname{soc}(Z F G)$ is an ideal in $F G$ by Theorem 3.33 .

This completes the proof of Theorem C.

5. Decomposition of G into a central product

Let F be an algebraically closed field of characteristic $p>0$. We consider an arbitrary finite group G for which $\operatorname{soc}(Z F G)$ is an ideal in $F G$. By Theorem 3.4, we may write $G=P \rtimes H$ with $P \in \operatorname{Syl}_{p}(G)$ and an abelian p^{\prime}-group H. In this section, we prove Theorem D. Combined with the results on p-groups from the last section, it reduces our investigation to the case that G^{\prime} is a Sylow p-subgroup of G.

Theorem 5.1 (Theorem D). We have $G=C_{P}(H) * O^{p}(G)$. Moreover, $\operatorname{soc}\left(Z F C_{P}(H)\right)$ and $\operatorname{soc}\left(Z F O^{p}(G)\right)$ are ideals in $F C_{P}(H)$ and $F O^{p}(G)$, respectively. The socle of $Z F G$ is explicitly given by

$$
\operatorname{soc}(Z F G)=\left(Z(P) G^{\prime}\right)^{+} \cdot F G
$$

Proof. By Proposition 3.20, we have $G=C_{P}(H) * O^{p}(G)$. Theorem 3.33 then implies that $\operatorname{soc}\left(Z F C_{P}(H)\right)$ and $\operatorname{soc}\left(Z F O^{p}(G)\right)$ are ideals in $F C_{P}(H)$ and $F O^{p}(G)$, respectively. It therefore remains to determine the structure of $\operatorname{soc}(Z F G)$. By the above decomposition, we have $Z\left(C_{P}(H)\right) \subseteq Z(G)$. By Corollary 3.19, we obtain $\operatorname{soc}(Z F G) \subseteq Z\left(C_{P}(H)\right)^{+} \cdot F G$. Together with Lemma 3.3, this implies

$$
\operatorname{soc}(Z F G) \subseteq\left(Z\left(C_{P}(H)\right) G^{\prime}\right)^{+} \cdot F G \subseteq\left(Z(P) G^{\prime}\right)^{+} \cdot F G
$$

In the last step, we used $Z(P)=Z\left(C_{P}(H)\right) Z\left(\left[G^{\prime}, H\right]\right) \subseteq Z\left(C_{P}(H)\right) G^{\prime}$. On the other hand, we have $\left(Z(P) G^{\prime}\right)^{+} \cdot F G \subseteq \operatorname{soc}(Z F G)$ by Lemma 3.16, which completes the proof of Theorem D.

This result on the structure of $\operatorname{soc}(Z F G)$ generalizes the corresponding statement in Lemma 4.1. Note that, by Theorem D, the hypothesis that $\operatorname{soc}(Z F G)$ is an ideal in $F G$ implies $\operatorname{dim} \operatorname{soc}(Z F G)=\left|G: G^{\prime} Z(G)\right|$. In particular, the dimension of $\operatorname{soc}(Z F G)$ is a divisor of $|G|$. We also observe that in this situation, $\operatorname{soc}(Z F G)$ is a principal ideal of $F G$ generated by a central element. Furthermore, we obtain the following reduction:

Remark 5.2. Since the structure of the p-group $C_{P}(H)$ is determined by Theorem B, it suffices to investigate the group $O^{p}(G)$. Inductively, we may assume $O^{p}(G)=G$. By Remark 3.6, this yields $P=G^{\prime}=\left[G^{\prime}, H\right]$. In particular, $C_{G^{\prime}}(H) \subseteq G^{\prime \prime} \subseteq Z\left(G^{\prime}\right)$ follows (see [5, Theorem 5.2.3]), which implies $C_{G^{\prime}}(H) \subseteq Z(G)$. If additionally $O_{p^{\prime}}(G)=1$ holds, we obtain $C_{G^{\prime}}(H)=Z(G)$.

Moreover, we state the following consequence of Theorem D:
Theorem 5.3. We have $\operatorname{soc}(Z F P) \unlhd F P$. In particular, the group P is metabelian and its nilpotency class is at most two if p is odd.
Proof. By Theorem D, we have $P=C_{P}(H) *[P, H]$ and $\operatorname{soc}\left(Z F C_{P}(H)\right)$ is an ideal in $F C_{P}(H)$. Since $[P, H] \subseteq G^{\prime}$ has nilpotency class at most two (see Proposition 3.20), we obtain $\operatorname{soc}(Z F[P, H]) \unlhd F[P, H]$ by Theorem B. By Theorem 3.33, this yields $\operatorname{soc}(Z F P) \unlhd$ $F P$. In particular, it follows that P is metabelian and that the nilpotency class of P is at most two if p is odd (see Theorem B).

Acknowledgments

The results of this paper form a part of the PhD thesis of the first author [2], which was supervised by the second author.

References

[1] Richard Brauer, Some applications of the theory of blocks of characters of finite groups. I, J. Algebra 1 (1964), no. 2, 152-167.
[2] Sofia Brenner, The socle of the center of a group algebra, Dissertation, Friedrich-Schiller-Universität Jena, Deutschland, 2022.
[3] Sofia Brenner and Burkhard Külshammer, Ideals in the center of symmetric algebras, Int. Electron. J. Algebra 34 (2023), 126-151.
[4] Robert J. Clarke, On the Radical of the Centre of a Group Algebra, J. Lond. Math. Soc., II. Ser. 2 (1969), no. 1, 565-572.
[5] Daniel Gorenstein, Finite Groups, Harper's Series in Modern Mathematics, Harper \& Row, 1968.
[6] Bertram Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, 1967.
[7] Shigeo Koshitani, A Note on the Radical of the Centre of a Group Algebra, J. Lond. Math. Soc. 18 (1978), no. 2, 243-246.
[8] Burkhard Külshammer, Group-theoretical descriptions of ring-theoretical invariants of group algebras, Representation Theory of Finite Groups and Finite-Dimensional Algebras (Gerhard O. Michler and Claus M. Ringel, eds.), Progress in Mathematics, vol. 95, Birkhäuser, 1991, pp. 425-442.
[9] __, Centers and radicals of group algebras and blocks, Arch. Math. 114 (2020), 619-629.
[10] Markus Linckelmann, The Block Theory of Finite Group Algebras. Volume 1, London Mathematical Society Student Texts, vol. 91, Cambridge University Press, 2018.
[11] Donald S. Passman, The Algebraic Structure of Group Rings, John Wiley \& Sons, 1977.
[12] The GAP Group, Gap - Groups, Algorithms, and Programming, Version 4.10.0, 2018, https://www. gap-system.org.

\author{

- Sofia Brenner -
 Department of Mathematics, TU Darmstadt, Germany
 E-mail address: sofia.brenner@tu-darmstadt.de
 Institute for Mathematics, Friedrich Schiller University Jena, Germany
 E-mail address: sofia.bettina.brenner@uni-jena.de
 - Burkhard Külshammer -
 Institute for Mathematics, Friedrich Schiller University Jena, Germany
 E-mail address: kuelshammer@uni-jena.de
}

[^0]: Manuscript received 2022-12-02 and accepted 2023-06-07.
 2020 Mathematics Subject Classification. 20C05, 20C20, 16S34.

 * Corresponding author.

